

Implementing MPLS Layer 3 VPNs

A Multiprotocol Label Switching (MPLS) Layer 3 Virtual Private Network (VPN) consists of a set of sites that are interconnected by means of an MPLS provider core network. At each customer site, one or more customer edge (CE) routers attach to one or more provider edge (PE) routers.

This module provides the conceptual and configuration information for MPLS Layer 3 VPNs on Cisco NCS 5500 Series Routers.

Note You must acquire an evaluation or permanent license in order to use MPLS Layer 3 VPN functionality. For more information about licenses, see the module in the *System Management Configuration Guide for Cisco NCS 5500 Series Routers*.

For a complete description of the commands listed in this module, refer these command references:

- BGP
- MPLS
- Routing
- VPN and Ethernet Services

This chapter includes topics on:

- MPLS L3VPN Overview, on page 1
- How MPLS L3VPN Works, on page 2
- Hardware Module Profiles, on page 4
- Inter-AS Support for L3VPN, on page 6
- How to Implement MPLS Layer 3 VPNs, on page 11
- VRF-lite, on page 46
- MPLS L3VPN Services using Segment Routing, on page 50
- Implementing MPLS L3VPNs References, on page 55
- Layer 3 QinQ, on page 58

MPLS L3VPN Overview

Before defining an MPLS VPN, VPN in general must be defined. A VPN is:

- · An IP-based network delivering private network services over a public infrastructure
- A set of sites that are allowed to communicate with each other privately over the Internet or other public or private networks

Conventional VPNs are created by configuring a full mesh of tunnels or permanent virtual circuits (PVCs) to all sites in a VPN. This type of VPN is not easy to maintain or expand, as adding a new site requires changing each edge device in the VPN.

MPLS-based VPNs are created in Layer 3 and are based on the peer model. The peer model enables the service provider and the customer to exchange Layer 3 routing information. The service provider relays the data between the customer sites without customer involvement.

MPLS VPNs are easier to manage and expand than conventional VPNs. When a new site is added to an MPLS VPN, only the edge router of the service provider that provides services to the customer site needs to be updated.

The following figure depicts a basic MPLS VPN topology.

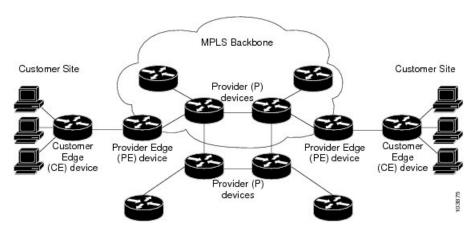


Figure 1: Basic MPLS VPN Topology

These are the basic components of MPLS VPN:

- Provider (P) router—Router in the core of the provider network. P routers run MPLS switching and do not attach VPN labels to routed packets. VPN labels are used to direct data packets to the correct private network or customer edge router.
- PE router—Router that attaches the VPN label to incoming packets based on the interface or sub-interface on which they are received, and also attaches the MPLS core labels. A PE router attaches directly to a CE router.
- Customer (C) router-Router in the Internet service provider (ISP) or enterprise network.
- Customer edge (CE) router—Edge router on the network of the ISP that connects to the PE router on the network. A CE router must interface with a PE router.

How MPLS L3VPN Works

MPLS VPN functionality is enabled at the edge of an MPLS network. The PE router performs the following tasks:

- Exchanges routing updates with the CE router
- Translates the CE routing information into VPN version 4 (VPNv4) routes
- Exchanges VPNv4 routes with other PE routers through the Multiprotocol Border Gateway Protocol (MP-BGP)

Major Components of MPLS L3VPN

An MPLS-based VPN network has three major components:

- VPN route target communities—A VPN route target community is a list of all members of a VPN community. VPN route targets need to be configured for each VPN community member.
- Multiprotocol BGP (MP-BGP) peering of the VPN community PE routers—MP-BGP propagates VRF reachability information to all members of a VPN community. MP-BGP peering needs to be configured in all PE routers within a VPN community.
- MPLS forwarding—MPLS transports all traffic between all VPN community members across a VPN service-provider network.

A one-to-one relationship does not necessarily exist between customer sites and VPNs. A given site can be a member of multiple VPNs. However, a site can associate with only one VRF. A customer-site VRF contains all the routes available to the site from the VPNs of which it is a member.

Read more at Major Components of MPLS L3VPN-Details, on page 56.

Restrictions for MPLS L3VPN

Implementing MPLS L3VPN in Cisco NCS 5500 Series Routers is subjected to these restrictions:

- L3VPN prefix lookup always yields a single path. In case of multiple paths at IGP or BGP level, path selection at each level is done using the prefix hash in control plane. The selected path is programmed in the data plane.
- L3VPN over Generic Routing Encapsulation (GRE) is not supported.
- BGP-Prefix Independent Convergence (PIC) is not supported for Layer 3 VPN routes learnt over BGP-LU.
- PIC over RSVP-TE is not supported.
- When paths of different technologies are resolved over ECMP, it results in *heterogeneous* ECMP, leading to severe network traffic issues. Don't use ECMP for any combination of the following technologies:
 - LDP
 - BGP-LU, including services over BGP-LU loopback peering or recursive services at Level-3
 - VPNv4
 - 6PE and 6VPE
 - EVPN
 - · Recursive static routing

Apart from the specific ones mentioned above, these generic restrictions for implementing MPLS L3VPNs also apply for Cisco NCS 5500 Series Routers:

The following restrictions apply when configuring MPLS VPN Inter-AS with ASBRs exchanging IPv4 routes and MPLS labels:

- For networks configured with eBGP multihop, a label switched path (LSP) must be configured between non adjacent routers.
- Layer 3 VPN over SR-TE is not supported.


```
Note
```

The physical interfaces that connect the BGP speakers must support FIB and MPLS.

Hardware Module Profiles

Hardware module profile is used to modify router resources for the specific needs during the router boot up time. You can configure the hardware module profile or you can view the default profile.

The following table describes the hardware module profile commands:

Table 1: Hardware Module Commands

Hardware Module Commands	Description	Supported Platforms
hw-module fib mpls label lsr-optimized	Use this command to store the outgoing MPLS label with a prefix in largest exact match (LEM) memory in the hardware. For host routes with /32 IPv4 prefixes, this optimization saves the following entries: • One Egress Encapsulation Data Base (EEDB) entry. • One regular Forward Equivalence Class (FEC) per ECMP path per prefix. • One ECMP FEC per prefix, as all the prefixes share the same set of ECMP path point to one shared ECMP FEC. The command is used for LSR roles. Note Layer 3 VPN services do not work when the command is configured.	 NCS 5500 fixed port routers NCS 5700 fixed port routers NCS 5500 modular routers NCS 5500 line cards NCS 5700 line cards [Mode: Compatibility]

Hardware Module Commands	Description	Supported Platforms	
hw-module fib mpls bgp-sr lsr-optimized	Use this command to optimize the ECMP FEC resources for BGP SR prefixes when the out label is the same for all the LU paths, by pushing the label into the leaf. Note This command cannot co-exist with the hw-module fib mpls label lsr-optimized command.	 NCS 5500 fixed port routers NCS 5700 fixed port routers NCS 5500 modular routers NCS 5500 line cards NCS 5700 line cards [Mode: Compatibility] 	
hw-module fib mpls ldp lsr-optimized	Enables the Push or Swap shared MPLS encapsulation, which can be used for label push or label swap. If the label consists of IPv4 packets, then it is pushed and if it consists if MPLS packets, then it is swapped. Note The optimization does not work on Layer 2, Layer 3, and EVPN services.	 NCS 5500 fixed port routers NCS 5700 fixed port routers NCS 5500 modular routers NCS 5500 line cards NCS 5700 line cards [Mode: Compatibility] 	
hw-module fib recycle service-over-rsvpte hw-module fib bgp-mp-pic auto-protect	Use this command to support the LU services on LDP over RSVP-TE. Note Bandwidth is limited as the command uses the recycle approach. Use this command to enable the BGP MP PIC loop-back peering auto protection.	 NCS 5500 fixed port routers NCS 5500 modular routers NCS 5500 line cards NCS 5500 fixed port routers NCS 5700 fixed port routers 	
	By default, the BGP MP PIC auto-protection is disabled.	 NCS 5500 modular routers NCS 5500 line cards NCS 5700 line cards [Mode: Compatibility; Native] 	

Hardware Module Commands	Description	Supported Platforms
hw-module fib bgp-pic multipath-core enable	Use this command to save ECMP FEC resources by enabling the BGP	• NCS 5500 fixed port routers
multipatil-core enable	PIC multipath core and BGP PIC multipath edge interface peering.	• NCS 5700 fixed port routers
		NCS 5500 modular routers
		NCS 5500 line cards
		• NCS 5700 line cards [Mode: Compatibility; Native]

Inter-AS Support for L3VPN

This section contains the following topics:

Inter-AS Support: Overview

An autonomous system (AS) is a single network or group of networks that is controlled by a common system administration group and uses a single, clearly defined routing protocol.

As VPNs grow, their requirements expand. In some cases, VPNs need to reside on different autonomous systems in different geographic areas. In addition, some VPNs need to extend across multiple service providers (overlapping VPNs). Regardless of the complexity and location of the VPNs, the connection between autonomous systems must be seamless.

An MPLS VPN Inter-AS provides the following benefits:

• Allows a VPN to cross more than one service provider backbone.

Service providers, running separate autonomous systems, can jointly offer MPLS VPN services to the same end customer. A VPN can begin at one customer site and traverse different VPN service provider backbones before arriving at another site of the same customer. Previously, MPLS VPN could traverse only a single BGP autonomous system service provider backbone. This feature lets multiple autonomous systems form a continuous, seamless network between customer sites of a service provider.

Allows a VPN to exist in different areas.

A service provider can create a VPN in different geographic areas. Having all VPN traffic flow through one point (between the areas) allows for better rate control of network traffic between the areas.

Allows confederations to optimize iBGP meshing.

Internal Border Gateway Protocol (iBGP) meshing in an autonomous system is more organized and manageable. You can divide an autonomous system into multiple, separate subautonomous systems and then classify them into a single confederation. This capability lets a service provider offer MPLS VPNs across the confederation, as it supports the exchange of labeled VPN-IPv4/IPv6 Network Layer Reachability Information (NLRI) between the subautonomous systems that form the confederation.

Inter-AS and ASBRs

Separate autonomous systems from different service providers can communicate by exchanging IPv4 NLRI and IPv6 in the form of VPN-IPv4/IPv6 addresses. The ASBRs use eBGP to exchange that information. Then an Interior Gateway Protocol (IGP) distributes the network layer information for VPN-IPv4/IPv6 prefixes throughout each VPN and each autonomous system. The following protocols are used for sharing routing information:

- Within an autonomous system, routing information is shared using an IGP.
- Between autonomous systems, routing information is shared using an eBGP. An eBGP lets service providers set up an interdomain routing system that guarantees the loop-free exchange of routing information between separate autonomous systems.

The primary function of an eBGP is to exchange network reachability information between autonomous systems, including information about the list of autonomous system routes. The autonomous systems use EBGP border edge routers to distribute the routes, which include label switching information. Each border edge router rewrites the next-hop and MPLS labels.

Inter-AS configurations supported in an MPLS VPN can include:

- Interprovider VPN—MPLS VPNs that include two or more autonomous systems, connected by separate border edge routers. The autonomous systems exchange routes using eBGP. No IGP or routing information is exchanged between the autonomous systems.
- BGP Confederations—MPLS VPNs that divide a single autonomous system into multiple subautonomous systems and classify them as a single, designated confederation. The network recognizes the confederation as a single autonomous system. The peers in the different autonomous systems communicate over eBGP sessions; however, they can exchange route information as if they were iBGP peers.

Note

Inter-AS options A and C are supported.

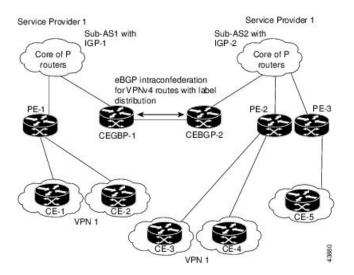
Confederations

A confederation is multiple subautonomous systems grouped together. A confederation reduces the total number of peer devices in an autonomous system. A confederation divides an autonomous system into subautonomous systems and assigns a confederation identifier to the autonomous systems. A VPN can span service providers running in separate autonomous systems or multiple subautonomous systems that form a confederation.

In a confederation, each subautonomous system is fully meshed with other subautonomous systems. The subautonomous systems communicate using an IGP, such as Open Shortest Path First (OSPF) or Intermediate System-to-Intermediate System (IS-IS). Each subautonomous system also has an eBGP connection to the other subautonomous systems. The confederation eBGP (CEBGP) border edge routers forward next-hop-self addresses between the specified subautonomous systems. The next-hop-self address forces the BGP to use a specified address as the next hop rather than letting the protocol choose the next hop.

You can configure a confederation with separate subautonomous systems two ways:

- Configure a router to forward next-hop-self addresses between only the CEBGP border edge routers (both directions). The subautonomous systems (iBGP peers) at the subautonomous system border do not forward the next-hop-self address. Each subautonomous system runs as a single IGP domain. However, the CEBGP border edge router addresses are known in the IGP domains.
- Configure a router to forward next-hop-self addresses between the CEBGP border edge routers (both directions) and within the iBGP peers at the subautonomous system border. Each subautonomous system runs as a single IGP domain but also forwards next-hop-self addresses between the PE routers in the domain. The CEBGP border edge router addresses are known in the IGP domains.



Note eBGP Connection Between Two Subautonomous Systems in a Confederation figure illustrates how two autonomous systems exchange routes and forward packets. Subautonomous systems in a confederation use a similar method of exchanging routes and forwarding packets.

The figure below illustrates a typical MPLS VPN confederation configuration. In this configuration:

- The two CEBGP border edge routers exchange VPN-IPv4 addresses with labels between the two autonomous systems.
- The distributing router changes the next-hop addresses and labels and uses a next-hop-self address.
- IGP-1 and IGP-2 know the addresses of CEBGP-1 and CEBGP-2.

Figure 2: eBGP Connection Between Two Subautonomous Systems in a Confederation

In this confederation configuration:

- CEBGP border edge routers function as neighboring peers between the subautonomous systems. The subautonomous systems use eBGP to exchange route information.
- Each CEBGP border edge router (CEBGP-1 and CEBGP-2) assigns a label for the router before distributing the route to the next subautonomous system. The CEBGP border edge router distributes the route as a VPN-IPv4 address by using the multiprotocol extensions of BGP. The label and the VPN identifier are encoded as part of the NLRI.

- Each PE and CEBGP border edge router assigns its own label to each VPN-IPv4 address prefix before redistributing the routes. The CEBGP border edge routers exchange IPV-IPv4 addresses with the labels. The next-hop-self address is included in the label (as the value of the eBGP next-hop attribute). Within the subautonomous systems, the CEBGP border edge router address is distributed throughout the iBGP neighbors, and the two CEBGP border edge routers are known to both confederations.
- For more information about how to configure confederations, see the "Configuring MPLS Forwarding for ASBR Confederations, on page 44".

MPLS VPN Inter-AS BGP Label Distribution

Note This section is not applicable to Inter-AS over IP tunnels.

You can set up the MPLS VPN Inter-AS network so that the ASBRs exchange IPv4 routes with MPLS labels of the provider edge (PE) routers. Route reflectors (RRs) exchange VPN-IPv4 routes by using multihop, multiprotocol external Border Gateway Protocol (eBGP). This method of configuring the Inter-AS system is often called MPLS VPN Inter-AS BGP Label Distribution.

Configuring the Inter-AS system so that the ASBRs exchange the IPv4 routes and MPLS labels has the following benefits:

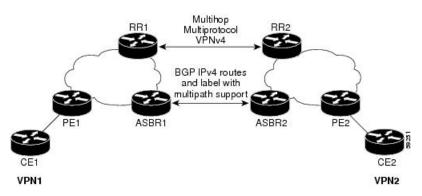
- Saves the ASBRs from having to store all the VPN-IPv4 routes. Using the route reflectors to store the VPN-IPv4 routes and distributes them to the PE routers results in improved scalability compared with configurations in which the ASBR holds all the VPN-IPv4 routes and distributes the routes based on VPN-IPv4 labels.
- Having the route reflectors hold the VPN-IPv4 routes also simplifies the configuration at the border of the network.
- Enables a non-VPN core network to act as a transit network for VPN traffic. You can transport IPv4 routes with MPLS labels over a non-MPLS VPN service provider.
- Eliminates the need for any other label distribution protocol between adjacent label switch routers (LSRs). If two adjacent LSRs are also BGP peers, BGP can handle the distribution of the MPLS labels. No other label distribution protocol is needed between the two LSRs.

Exchanging IPv4 Routes with MPLS labels

Note

This section is not applicable to Inter-AS over IP tunnels.

You can set up a VPN service provider network to exchange IPv4 routes with MPLS labels. You can configure the VPN service provider network as follows:


- Route reflectors exchange VPN-IPv4 routes by using multihop, multiprotocol eBGP. This configuration
 also preserves the next-hop information and the VPN labels across the autonomous systems.
- A local PE router (for example, PE1 in the figure below) needs to know the routes and label information for the remote PE router (PE2).

This information can be exchanged between the PE routers and ASBRs in one of two ways:

- Internal Gateway Protocol (IGP) and Label Distribution Protocol (LDP): The ASBR can redistribute the IPv4 routes and MPLS labels it learned from eBGP into IGP and LDP and from IGP and LDP into eBGP.
- Internal Border Gateway Protocol (iBGP) IPv4 label distribution: The ASBR and PE router can use direct iBGP sessions to exchange VPN-IPv4 and IPv4 routes and MPLS labels.

Alternatively, the route reflector can reflect the IPv4 routes and MPLS labels learned from the ASBR to the PE routers in the VPN. This reflecting of learned IPv4 routes and MPLS labels is accomplished by enabling the ASBR to exchange IPv4 routes and MPLS labels with the route reflector. The route reflector also reflects the VPN-IPv4 routes to the PE routers in the VPN. For example, in VPN1, RR1 reflects to PE1 the VPN-IPv4 routes and MPLS labels learned from ASBR1. Using the route reflectors to store the VPN-IPv4 routes and forward them through the PE routers and ASBRs allows for a scalable configuration.

Figure 3: VPNs Using eBGP and iBGP to Distribute Routes and MPLS Labels

BGP Routing Information

BGP routing information includes the following items:

- Network number (prefix), which is the IP address of the destination.
- Autonomous system (AS) path, which is a list of the other ASs through which a route passes on the way to the local router. The first AS in the list is closest to the local router; the last AS in the list is farthest from the local router and usually the AS where the route began.
- Path attributes, which provide other information about the AS path, for example, the next hop.

BGP Messages and MPLS Labels

MPLS labels are included in the update messages that a router sends. Routers exchange the following types of BGP messages:

- Open messages—After a router establishes a TCP connection with a neighboring router, the routers exchange open messages. This message contains the number of the autonomous system to which the router belongs and the IP address of the router that sent the message.
- Update messages—When a router has a new, changed, or broken route, it sends an update message to the neighboring router. This message contains the NLRI, which lists the IP addresses of the usable routes. The update message includes any routes that are no longer usable. The update message also includes

path attributes and the lengths of both the usable and unusable paths. Labels for VPN-IPv4 routes are encoded in the update message, as specified in RFC 2858. The labels for the IPv4 routes are encoded in the update message, as specified in RFC 3107.

- Keepalive messages—Routers exchange keepalive messages to determine if a neighboring router is still
 available to exchange routing information. The router sends these messages at regular intervals. (Sixty
 seconds is the default for Cisco routers.) The keepalive message does not contain routing data; it contains
 only a message header.
- Notification messages-When a router detects an error, it sends a notification message.

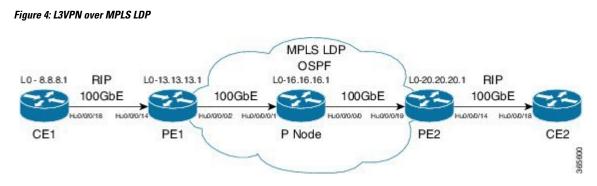
Sending MPLS Labels with Routes

When BGP (eBGP and iBGP) distributes a route, it can also distribute an MPLS label that is mapped to that route. The MPLS label mapping information for the route is carried in the BGP update message that contains the information about the route. If the next hop is not changed, the label is preserved.

When you issue the **show bgp neighbors** *ip-address* command on both BGP routers, the routers advertise to each other that they can then send MPLS labels with the routes. If the routers successfully negotiate their ability to send MPLS labels, the routers add MPLS labels to all outgoing BGP updates.

How to Implement MPLS Layer 3 VPNs

Implementing MPLS L3VPNs involves these main tasks:


Prerequisites for Implementing MPLS L3VPN

These are the prerequisites to configure MPLS L3VPN:

- You must be in a user group associated with a task group that includes the proper task IDs for these commands:
 - BGP
 - IGP
 - MPLS
 - MPLS Layer 3 VPN
- If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- To configure MPLS Layer 3 VPNs, routers must support MPLS forwarding and Forwarding Information Base (FIB).

Configure the Core Network

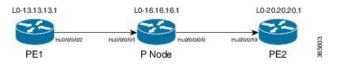
Consider a network topology where MPLS L3VPN services are transported over MPLS LDP core.

Configuring the core network involves these main tasks:

Assess the Needs of MPLS VPN Customers

Before configuring an MPLS VPN, the core network topology must be identified so that it can best serve MPLS VPN customers. The tasks listed below helps to identify the core network topology.

• Identify the size of the network:


Identify the following to determine the number of routers and ports required:

- How many customers to be supported?
- How many VPNs are required for each customer?
- How many virtual routing and forwarding (VRF) instances are there for each VPN?
- Determine the routing protocols required in the core.
- Determine if BGP load sharing and redundant paths in the MPLS VPN core are required.

Configure Routing Protocols in the Core

You can use RIP, OSPF or IS-IS as the routing protocol in the core.

Figure 5: OSPF as Routing Protocol in the Core

Configuration Example

This example lists the steps to configure OSPF as the routing protocol in the core.

```
Router-PE1#configure
Router-PE1(config)#router ospf dc-core
Router-PE1(config-ospf)#address-family ipv4 unicast
Router-PE1(config-ospf)#area 1
Router-PE1(config-ospf-ar)#interface HundredGigE0/0/0/2
Router-PE1(config-ospf-ar-if)#commit
```

Running Configuration

```
router ospf dc-core
router-id 13.13.13.1
address-family ipv4 unicast
area 1
interface HundredGigE0/0/0/2
!
!
```

Verification

• Verify the OSPF neighbor and ensure that the State is displayed as 'FULL'.

```
Router-PE1# show ospf neighbor
Neighbors for OSPF dc-core
```

Neighbor ID Pri State Dead Time Address Interface 16.16.16.1 1 **FULL/-** 00:00:34 191.22.1.2 HundredGigE0/0/0/2 Neighbor is up for 1d18h Total neighbor count: 1

Related Topics

• How to Implement MPLS Layer 3 VPNs, on page 11

For more details on configuring the routing protocol, see *Routing Configuration Guide for Cisco NCS 5500* Series Routers and BGP Configuration Guide for Cisco NCS 5500 Series Routers.

Associated Commands

- router-id
- router ospf

Configure MPLS in the Core

To enable MPLS on all routers in the core, you must configure a Label Distribution Protocol (LDP).

You can also transport MPLS L3VPN services using segment routing in the core. For details, see Configure Segment Routing in MPLS Core, on page 51.

Configuration Example

This example lists the steps to configure LDP in MPLS core.

```
Router-PE1#configure
Router-PE1(config)#mpls ldp
Router-PE1(config-ldp)#router-id 13.13.13.1
Router-PE1(config-ldp)#address-family ipv4
Router-PE1(config-ldp-af)#exit
Router-PE1(config-ldp)#interface HundredGigE0/0/0/2
```

Router-PE1(config-ldp-if)#commit

Repeat this configuration in PE2 and P routers as well.

Running Configuration

```
mpls ldp
router-id 13.13.13.1
address-family ipv4
!
interface HundredGigE0/0/0/2
!
```

Verification

• Verify that the neighbor (16.16.16.1) is UP through the core interface:

```
Router-PE1#show mpls ldp neighbor
Peer LDP Identifier: 16.16.16.1:0
 TCP connection: 16.16.16.1:47619 - 13.13.13.1:646
 Graceful Restart: No
 Session Holdtime: 180 sec
 State: Oper; Msgs sent/rcvd: 40395/35976; Downstream-Unsolicited
 Up time: 2w2d
 LDP Discovery Sources:
   IPv4: (1)
     HundredGigE0/0/0/2
   IPv6: (0)
 Addresses bound to this peer:
   IPv4: (6)
     10.64.98.32
                  87.0.0.2
                                 88.88.88.14
                                               50.50.50.50
     178.0.0.1
                   192.1.1.1
   IPv6: (0)
```

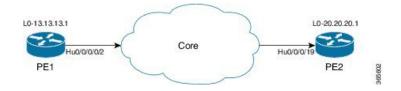
Related Topics

• How to Implement MPLS Layer 3 VPNs, on page 11

For more details on configuring MPLS LDP, see the *Implementing MPLS Label Distribution Protocol* chapter in the *MPLS Configuration Guide for Cisco NCS 5500 Series Routers*.

Associated Commands

- mpls ldp
- show mpls ldp neighbor


Determine if FIB is Enabled in the Core

Forwarding Information Base (FIB) must be enabled on all routers in the core, including the provider edge (PE) routers. For information on how to determine if FIB is enabled, see the *Implementing Cisco Express Forwarding* module in the *IP Addresses and Services Configuration Guide for Cisco NCS 5500 Series Routers*.

Configure Multiprotocol BGP on the PE Routers and Route Reflectors

Multiprotocol BGP (MP-BGP) propagates VRF reachability information to all members of a VPN community. You must configure MP-BGP peering in all the PE routers within a VPN community.

Figure 6: Multiprotocol BGP on PE Routers

Configuration Example

This example shows how to configure MP-BGP on PE1. The loopback address (20.20.20.1) of PE2 is specified as the neighbor of PE1. Similarly, you must perform this configuration on PE2 node as well, with the loopback address (13.13.13.1) of PE1 specified as the neighbor of PE2.

```
Router-PE1#configure
Router-PE1 (config) #router bgp 2001
Router-PE1(config-bgp) #bgp router-id 13.13.13.1
Router-PE1(config-bgp)#address-family ipv4 unicast
Router-PE1(config-bgp-af) #exit
Router-PE1(config-bgp)#address-family vpnv4 unicast
Router-PE1 (config-bgp-af) #exit
Router-PE1 (config-bgp) #neighbor 20.20.20.1
Router-PE1(config-bgp-nbr) #remote-as 2001
Router-PE1(config-bgp-nbr) #update-source loopback 0
Router-PE1(config-bgp-nbr) #address-family ipv4 unicast
Router-PE1(config-bgp-nbr-af)#exit
Router-PE1 (config-bgp-nbr) #address-family vpnv4 unicast
Router-PE1(config-bgp-nbr-af)#exit
Router-PE1 (config-bgp-nbr) #exit
/* VRF configuration */
Router(config-bgp) # vrf vrf1601
Router-PE1 (config-bgp-vrf) #rd 2001:1601
Router-PE1(config-bgp-vrf)#address-family ipv4 unicast
Router-PE1(config-bgp-vrf-af) #label mode per-vrf
Router-PE1(config-bgp-vrf-af) #redistribute connected
Router-PE1 (config-bgp-vrf-af) #commit
```

Running Configuration

```
router bgp 2001
bgp router-id 13.13.13.1
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
neighbor 20.20.20.1
remote-as 2001
update-source Loopback0
address-family vpnv4 unicast
!
address-family ipv4 unicast
!
```

```
!
vrf vrf1601
rd 2001:1601
address-family ipv4 unicast
label mode per-vrf
redistribute connected
!
!
```

Verification

• Verify if the BGP state is established, and if the Remote AS and local AS displays the same value (2001 in this example):

```
Router-PE1#show bgp neighbor
BGP neighbor is 20.20.20.1
Remote AS 2001, local AS 2001, internal link
Remote router ID 20.20.20.1
 BGP state = Established, up for 1d19h
 NSR State: None
 Last read 00:00:04, Last read before reset 00:00:00
 Hold time is 60, keepalive interval is 20 seconds
 Configured hold time: 60, keepalive: 30, min acceptable hold time: 3
 Last write 00:00:16, attempted 19, written 19
  Second last write 00:00:36, attempted 19, written 19
  Last write before reset 00:00:00, attempted 0, written 0
  Second last write before reset 00:00:00, attempted 0, written 0
 Last write pulse rcvd Apr 12 10:31:20.739 last full not set pulse count 27939
 Last write pulse rcvd before reset 00:00:00
  Socket not armed for io, armed for read, armed for write
 Last write thread event before reset 00:00:00, second last 00:00:00
  Last KA expiry before reset 00:00:00, second last 00:00:00
 Last KA error before reset 00:00:00, KA not sent 00:00:00
 Last KA start before reset 00:00:00, second last 00:00:00
  Precedence: internet
 Non-stop routing is enabled
 Multi-protocol capability received
  Neighbor capabilities:
   Route refresh: advertised (old + new) and received (old + new)
   Graceful Restart (GR Awareness): received
    4-byte AS: advertised and received
   Address family IPv4 Unicast: advertised and received
    Address family VPNv4 Unicast: advertised and received
  Received 25595 messages, 0 notifications, 0 in queue
  Sent 8247 messages, 0 notifications, 0 in queue
  Minimum time between advertisement runs is 0 secs
  Inbound message logging enabled, 3 messages buffered
 Outbound message logging enabled, 3 messages buffered
For Address Family: IPv4 Unicast
 BGP neighbor version 484413
  Update group: 0.4 Filter-group: 0.3 No Refresh request being processed
  Inbound soft reconfiguration allowed
  NEXT HOP is always this router
  AF-dependent capabilities:
   Outbound Route Filter (ORF) type (128) Prefix:
     Send-mode: advertised, received
     Receive-mode: advertised, received
    Graceful Restart capability received
     Remote Restart time is 120 seconds
     Neighbor did not preserve the forwarding state during latest restart
```

```
Additional-paths Send: advertised and received
  Additional-paths Receive: advertised and received
Route refresh request: received 1, sent 1
Policy for incoming advertisements is pass-all
Policy for outgoing advertisements is pass-all
 24260 accepted prefixes, 24260 are bestpaths
Cumulative no. of prefixes denied: 0.
Prefix advertised 2000, suppressed 0, withdrawn 0
Maximum prefixes allowed 1048576
Threshold for warning message 75%, restart interval 0 min
AIGP is enabled
An EoR was received during read-only mode
Last ack version 484413, Last synced ack version 0
Outstanding version objects: current 0, max 1
Additional-paths operation: Send and Receive
Send Multicast Attributes
Advertise VPNv4 routes enabled with defaultReoriginate, disable Local with stitching-RT
option
```

For Address Family: VPNv4 Unicast BGP neighbor version 798487 Update group: 0.2 Filter-group: 0.1 No Refresh request being processed AF-dependent capabilities: Graceful Restart capability received Remote Restart time is 120 seconds Neighbor did not preserve the forwarding state during latest restart Additional-paths Send: advertised and received Additional-paths Receive: advertised and received Route refresh request: received 0, sent 0 29150 accepted prefixes, 29150 are bestpaths Cumulative no. of prefixes denied: 0. Prefix advertised 7200, suppressed 0, withdrawn 0 Maximum prefixes allowed 2097152 Threshold for warning message 75%, restart interval 0 min AIGP is enabled An EoR was received during read-only mode Last ack version 798487, Last synced ack version 0 Outstanding version objects: current 0, max 1 Additional-paths operation: Send and Receive Send Multicast Attributes Advertise VPNv4 routes enabled with defaultReoriginate, disable Local with stitching-RT option

Connections established 1; dropped 0 Local host: 13.13.13.1, Local port: 35018, IF Handle: 0x00000000 Foreign host: 20.20.20.1, Foreign port: 179 Last reset 00:00:00

• Verify if all the IP addresses are learnt on PE1 from PE2:

```
Router-PE1#show bgp vpnv4 unicast
```

BGP router identifier 13.13.13.1, local AS number 2001 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 798487 BGP NSR Initial initsync version 15151 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best

i - internal, r RIB-failure, S stale, N Nexthop-discard					
Origin codes: i - IGP, e - EGP, ? - incomplete					
Network Next Hop	Metric LocPrf Weight Path				
Route Distinguisher: 2001:1601 (def	ault for vrf vrf1601)				
*> 20.13.1.1/32 192.13.26.5	0 7501 i				
*> 20.13.1.2/32 192.13.26.5	0 7501 i				
*> 20.13.1.3/32 192.13.26.5	0 7501 i				
*> 20.13.1.4/32 192.13.26.5	0 7501 i				
*> 20.13.1.5/32 192.13.26.5	0 7501 i				
*>i20.14.1.1/3214.14.14.1	100 0 8501 i				
*>i20.14.1.2/3214.14.14.1	100 0 8501 i				
*>i20.14.1.3/3214.14.14.1	100 0 8501 i				
*>i20.14.1.4/3214.14.14.1	100 0 8501 i				
*>i20.14.1.5/3214.14.14.1	100 0 8501 i				

Related Topics

- Configure the Core Network, on page 11
- Define VRFs on PE Routers to Enable Customer Connectivity, on page 19

For more details on Multiprotocol BGP, see BGP Configuration Guide for Cisco NCS 5500 Series Routers.

Associated Commands

- neighbor
- router-bgp
- update-source
- vrf
- show bgp

Connect MPLS VPN Customers

Connecting MPLS VPN customers involves these main tasks:

- Define VRFs on PE Routers to Enable Customer Connectivity, on page 19
- Configure VRF Interfaces on PE Routers for Each VPN Customer, on page 20
- · Configure the Routing Protocol between the PE and CE Routers

Use any of these options:

- Configure BGP as the Routing Protocol Between the PE and CE Routers, on page 21
- Configure RIPv2 as the Routing Protocol Between the PE and CE Routers
- Configure Static Routes Between the PE and CE Routers, on page 27
- Configure OSPF as the Routing Protocol Between the PE and CE Routers, on page 27

Define VRFs on PE Routers to Enable Customer Connectivity

VPN routing and forwarding (VRF) defines the VPN membership of a customer site attached to a PE router. A one-to-one relationship does not necessarily exist between customer sites and VPNs. A site can be a member of multiple VPNs. However, a site can associate with only one VRF. A VRF contains all the routes available to the site from the VPNs of which it is a member. The distribution of VPN routing information is controlled through the use of VPN route target communities, implemented by BGP extended communities.

Configuration Example

This example configures a VRF instance (vrf1601) and specifies the import and export route-targets (2001:1601). The import route policy is the one that can be imported into the local VPN. The export route policy is the one that can be exported from the local VPN. The import route-target configuration allows exported VPN routes to be imported into the VPN if one of the route targets of the exported route matches one of the local VPN import route targets. When the route is advertised to other PE routers, the export route target is sent along with the route as an extended community.

```
Router-PE1#configure
Router-PE1(config)#vrf vrf1601
Router-PE1(config-vrf)#address-family ipv4 unicast
Router-PE1(config-vrf-af)#import route-target
Router-PE1(config-vrf-af-import-rt)#2001:1601
Router-PE1(config-vrf-af-import-rt)#exit
Router-PE1(config-vrf-af-export-rt)#2001:1601
Router-PE1(config-vrf-af-export-rt)#2001:1601
Router-PE1(config-vrf-af-export-rt)#commit
```

This VRF instance is then associated with the respective BGP instance.

Running Configuration

```
vrf vrf1601
address-family ipv4 unicast
import route-target
2001:1601
!
export route-target
2001:1601
!
!
!
```

Verification

Verify the import and export route targets.

Router-PE1# show v	rf vrf1601				
VRF	RD	RT		AFI	SAFI
vrf1601	2001:1601				
		import	2001:1601	IPV4	Unicast
		export	2001:1601	IPV4	Unicast

Related Topics

- Configure VRF Interfaces on PE Routers for Each VPN Customer, on page 20
- Configure Multiprotocol BGP on the PE Routers and Route Reflectors, on page 15

Associated Commands

- import route-policy
- import route-target
- export route-policy
- export route-target
- vrf

Configure VRF Interfaces on PE Routers for Each VPN Customer

After a VRF instance is created, you must associate that VRF instance with an interface or a sub-interface on the PE routers.


```
Note
```

You must remove the IPv4 or IPv6 addresses from an interface prior to assigning, removing, or changing an interface's VRF. If this is not done in advance, any attempt to change the VRF on an IP interface is rejected.

Configuration Example

This example assigns an IP address 192.13.26.6 to the interface (HundredGigE0/0/0/14.1601) on PE1 router and associates the VRF instance vrf1601, to that interface.

```
Router-PE1#configure
Router-PE1(config)#interface HundredGigE0/0/0/14.1601
Router-PE1(config-if)#vrf vrf1601
Router-PE1(config-if)#ipv4 address 192.13.26.6 255.255.252
Router-PE1(config-if)#encapsulation dot1q 1601
Router-PE1(config)#commit
```

Running Configuration

```
interface HundredGigE0/0/0/14.1601
vrf vrf1601
ipv4 address 192.13.26.6 255.255.255
encapsulation dot1q 1601
!
```

Verification

• Verify that the interface with which the VRF is associated, is UP.

```
Router-PE1#show ipv4 vrf vrf1601 interface
```

```
interface HundredGigE0/0/0/14.1601 is Up, ipv4 protocol is Up
Vrf is vrf1601 (vrfid 0x60000001)
Internet address is 192.13.26.6/30
MTU is 1518 (1500 is available to IP)
Helper address is not set
Multicast reserved groups joined: 224.0.0.2 224.0.0.1
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound common access list is not set, access list is not set
Proxy ARP is disabled
ICMP redirects are never sent
ICMP unreachables are always sent
ICMP mask replies are never sent
Table Id is 0xe0000001
```

Related Topics

• Define VRFs on PE Routers to Enable Customer Connectivity, on page 19

Configure Routing Protocol Between the PE and CE Routers

Configure BGP as the Routing Protocol Between the PE and CE Routers

BGP distributes reachability information for VPN-IPv4 prefixes for each VPN. PE to PE or PE to route reflector (RR) sessions are iBGP sessions, and PE to CE sessions are eBGP sessions. PE to CE eBGP sessions can be directly or indirectly connected (eBGP multihop).

Figure 7: BGP as the Routing Protocol between PE and CE Routers

Configuration Example

This example lists the steps to configure BGP as the routing protocol between the PE and CE routers. The route policy, *pass-all* in this example, must be configured before it can be attached.

PE1:

```
Router-PE1#configure
Router-PE1 (config) #router bgp 2001
Router-PE1 (config-bgp) #bgp router-id 13.13.13.1
Router-PE1 (config-bgp) #address-family ipv4 unicast
Router-PE1(config-bgp-af) #exit
Router-PE1(config-bgp) #address-family vpnv4 unicast
Router-PE1 (config-bgp-af) #exit
/* VRF configuration */
Router-PE1(config-bgp)#vrf vrf1601
Router-PE1(config-bgp-vrf) #rd 2001:1601
Router-PE1(config-bgp-vrf) #address-family ipv4 unicast
Router-PE1(config-bgp-vrf-af) #label mode per-vrf
Router-PE1(config-bgp-vrf-af) #redistribute connected
Router-PE1(config-bgp-vrf-af)#exit
Router-PE1(config-bgp-vrf)#neighbor 192.13.26.5
Router-PE1(config-bgp-vrf-nbr) #remote-as 7501
Router-PE1 (config-bgp-vrf-nbr) #address-family ipv4 unicast
```

```
Router-PE1(config-bgp-vrf-nbr-af)#route-policy pass-all in
Router-PE1(config-bgp-vrf-nbr-af)#route-policy pass-all out
Router-PE1(config-bgp-vrf-nbr-af)#commit
```

CE1:

```
Router-CE1#configure
Router-CE1(config)#router bgp 2001
Router-CE1(config-bgp)#bgp router-id 8.8.8.1
Router-CE1(config-bgp)#address-family ipv4 unicast
Router-CE1(config-bgp-af)#exit
Router-CE1(config-bgp)#address-family vpnv4 unicast
Router-CE1(config-bgp-af)#exit
Router-CE1(config-bgp)#neighbor 192.13.26.6
Router-CE1(config-bgp-nbr)#remote-as 2001
Router-CE1(config-bgp-nbr)#remote-as 2001
Router-CE1(config-bgp-nbr)#address-family ipv4 unicast
Router-CE1(config-bgp-nbr)#route-policy pass-all in
Router-CE1(config-bgp-nbr-af)#route-policy pass-all out
Router-CE1(config-bgp-nbr-af)#route-policy pass-all out
```

Running Configuration

PE1:

```
router bgp 2001
bgp router-id 13.13.13.1
address-family ipv4 unicast
address-family vpnv4 unicast
 1
vrf vrf1601
 rd 2001:1601
 address-family ipv4 unicast
  label mode per-vrf
  redistribute connected
 !
 neighbor 192.13.26.5
  remote-as 7501
  address-family ipv4 unicast
   route-policy pass-all in
   route-policy pass-all out
  !
  1
 1
```

CE1:

```
router bgp 7501
bgp router-id 8.8.8.1
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
neighbor 192.13.26.6
remote-as 2001
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
```

Verification • PE1:

!

```
Router-PE1#show bgp neighbor
BGP neighbor is 192.13.26.5
Remote AS 6553700, local AS 2001, external link
Administratively shut down
 Remote router ID 192.13.26.5
 BGP state = Established
 NSR State: None
 Last read 00:00:04, Last read before reset 00:00:00
  Hold time is 60, keepalive interval is 20 seconds
  Configured hold time: 60, keepalive: 30, min acceptable hold time: 3
  Last write 00:00:16, attempted 19, written 19
  Second last write 00:00:36, attempted 19, written 19
  Last write before reset 00:00:00, attempted 0, written 0
  Second last write before reset 00:00:00, attempted 0, written 0
  Last write pulse rcvd Apr 12 10:31:20.739 last full not set pulse count 27939
  Last write pulse rcvd before reset 00:00:00
  Socket not armed for io, armed for read, armed for write
  Last write thread event before reset 00:00:00, second last 00:00:00
  Last KA expiry before reset 00:00:00, second last 00:00:00
 Last KA error before reset 00:00:00, KA not sent 00:00:00
  Last KA start before reset 00:00:00, second last 00:00:00
  Precedence: internet
  Non-stop routing is enabled
  Graceful restart is enabled
  Restart time is 120 seconds
  Stale path timeout time is 360 seconds
  Enforcing first AS is enabled
 Multi-protocol capability not received
  Received 0 messages, 0 notifications, 0 in queue
  Sent 0 messages, 0 notifications, 0 in queue
 Minimum time between advertisement runs is 30 secs
  Inbound message logging enabled, 3 messages buffered
 Outbound message logging enabled, 3 messages buffered
 For Address Family: IPv4 Unicast
 BGP neighbor version 0
  Update group: 0.2 Filter-group: 0.0 No Refresh request being processed
  Inbound soft reconfiguration allowed
  AF-dependent capabilities:
    Outbound Route Filter (ORF) type (128) Prefix:
      Send-mode: advertised
      Receive-mode: advertised
   Graceful Restart capability advertised
      Local restart time is 120, RIB purge time is 600 seconds
      Maximum stalepath time is 360 seconds
  Route refresh request: received 0, sent 0
  Policy for incoming advertisements is pass-all
  Policy for outgoing advertisements is pass-all
  0 accepted prefixes, 0 are bestpaths
  Cumulative no. of prefixes denied: 0.
  Prefix advertised 0, suppressed 0, withdrawn 0
 Maximum prefixes allowed 1048576
  Threshold for warning message 75%, restart interval 0 min
```

```
An EoR was not received during read-only mode Last ack version 1, Last synced ack version 0
```

Outstanding version objects: current 0, max 0 Additional-paths operation: None Advertise VPNv4 routes enabled with defaultReoriginate, disable Local with stitching-RT option Advertise VPNv6 routes is enabled with default option Connections established 1; dropped 0 Local host: 192.13.26.6, Local port: 23456, IF Handle: 0x00000000 Foreign host: 192.13.26.5, Foreign port: 179 Last reset 03:12:58, due to Admin. shutdown (CEASE notification sent - administrative

```
shutdown)
Time since last notification sent to neighbor: 03:12:58
Notification data sent:
None
```

External BGP neighbor not directly connected.

• CE1:

```
Router-CE1#show bgp neighbor
BGP neighbor is 192.13.26.6
Remote AS 2001, local AS 6553700, external link
Remote router ID 192.13.26.6
 BGP state = Established
 NSR State: None
 Last read 00:00:04, Last read before reset 00:00:00
 Hold time is 60, keepalive interval is 20 seconds
 Configured hold time: 60, keepalive: 30, min acceptable hold time: 3
  Last write 00:00:16, attempted 19, written 19
  Second last write 00:00:36, attempted 19, written 19
 Last write before reset 00:00:00, attempted 0, written 0
  Second last write before reset 00:00:00, attempted 0, written 0
 Last write pulse rcvd Apr 12 10:31:20.739 last full not set pulse count 27939
  Last write pulse rcvd before reset 00:00:00
  Socket not armed for io, armed for read, armed for write
 Last write thread event before reset 00:00:00, second last 00:00:00
 Last KA expiry before reset 00:00:00, second last 00:00:00
 Last KA error before reset 00:00:00, KA not sent 00:00:00
 Last KA start before reset 00:00:00, second last 00:00:00
  Precedence: internet
 Non-stop routing is enabled
 Graceful restart is enabled
  Restart time is 120 seconds
  Stale path timeout time is 360 seconds
  Enforcing first AS is enabled
 Multi-protocol capability not received
 Received 0 messages, 0 notifications, 0 in queue
  Sent 0 messages, 0 notifications, 0 in queue
 Minimum time between advertisement runs is 30 secs
  Inbound message logging enabled, 3 messages buffered
  Outbound message logging enabled, 3 messages buffered
For Address Family: IPv4 Unicast
 BGP neighbor version 0
  Update group: 0.1 Filter-group: 0.0 No Refresh request being processed
  Inbound soft reconfiguration allowed
  AF-dependent capabilities:
   Outbound Route Filter (ORF) type (128) Prefix:
     Send-mode: advertised
     Receive-mode: advertised
    Graceful Restart capability advertised
     Local restart time is 120, RIB purge time is 600 seconds
     Maximum stalepath time is 360 seconds
```

```
Route refresh request: received 0, sent 0

Policy for incoming advertisements is pass-all

Policy for outgoing advertisements is pass-all

0 accepted prefixes, 0 are bestpaths

Cumulative no. of prefixes denied: 0.

Prefix advertised 0, suppressed 0, withdrawn 0

Maximum prefixes allowed 1048576

Threshold for warning message 75%, restart interval 0 min

An EoR was not received during read-only mode

Last ack version 1, Last synced ack version 0

Outstanding version objects: current 0, max 0

Additional-paths operation: None

Connections established 0; dropped 0
```

```
Local host: 192.13.26.5, Local port: 179, IF Handle: 0x00000000
Foreign host: 192.13.26.6, Foreign port: 23456
Last reset 00:00:00
External BGP neighbor not directly connected.
```

Related Topics

- Connect MPLS VPN Customers, on page 18
- Configure Multiprotocol BGP on the PE Routers and Route Reflectors, on page 15

For more details on BGP, see BGP Configuration Guide for Cisco NCS 5500 Series Routers.

Associated Commands

- label mode
- neighbor
- rd
- redistribute
- remote-as
- route-policy
- router bgp

Configure RIPv2 as the Routing Protocol Between the PE and CE Routers

Figure 8: RIP as the Routing Protocol between PE and CE Routers

Configuration Example

This example lists the steps to configure RIPv2 as the routing protocol between the PE and CE routers. The VRF instance vrf1601 is configured in the router rip configuration mode and the respective interface (TenGigE0/0/0/14.1601 on PE1 and TenGigE0/0/0/18.1601 on CE1) is associated with that VRF. The **redistribute** option specifies routes to be redistributed into RIP.

PE1:

```
Router-PE1#configure
Router-PE1(config)#router rip
Router-PE1(config-rip)#vrf vrf1601
Router-PE1(config-rip-vrf)#interface TenGigE0/0/0/14.1601
Router-PE1(config-rip-vrf-if)#exit
Router-PE1(config-bgp-vrf)#redistribute bgp 2001
Router-PE1(config-bgp-vrf)#redistribute connected
Router-PE1(config-bgp-vrf)#commit
```

CE1:

```
Router-CE1#configure
Router-CE1(config)#router rip
Router-CE1(config-rip)#vrf vrf1601
Router-CE1(config-rip-vrf)#interface TenGigE0/0/0/14.1601
Router-CE1(config-rip)i#exit
Router-CE1(config-rip)#redistribute connected
Router-CE1(config-rip)#commit
```

Running Configuration

PE1:

```
Router-PE1#show running-config router rip
router rip
vrf vrf1601
interface TenGigE0/0/0/14.1601
!
redistribute bgp 2001
redistribute connected
!
```

CE1:

```
Router-CE1#show running-config router rip
router rip
vrf vrf1601
interface TenGigE0/0/0/18.1601
!
redistribute connected
!
```

Related Topics

Connect MPLS VPN Customers, on page 18

Associated Commands

• redistribute

• router rip

Configure Static Routes Between the PE and CE Routers

Configuration Example

In this example, the static route is assigned to VRF, vrf1601.

```
Router-PE1#configure
Router-PE1(config)#router static
Router-PE1(config-static)#vrf vrf1601
Router-PE1(config-static-vrf)#address-family ipv4 unicast
Router-PE1(config-static-vrf-afi)#23.13.1.1/32 TenGigE0/0/0/14.1601 192.13.3.93
Router-PE1(config-static-vrf-afi)#commit
```

Repeat the configuration in CE1, with the respective interface values.

Running Configuration

PE1:

```
router static
vrf vrf1601
address-family ipv4 unicast
23.13.1.1/32 TenGigE0/0/0/14.1601 192.13.3.93
!
!
```

CE1:

```
router static
vrf vrf1601
address-family ipv4 unicast
23.8.1.2/32 TenGigE0/0/0/18.1601 192.8.3.94
!
!
```

Related Topics

• Connect MPLS VPN Customers, on page 18

Associated Commands

• router static

Configure OSPF as the Routing Protocol Between the PE and CE Routers

You can use RIP, OSPF or ISIS as the routing protocol between the PE and CE routers.

Figure 9: OSPF as the Routing Protocol between PE and CE Routers

Configuration Example

This example lists the steps to configure PE-CE routing sessions that use OSPF routing protocol. A VRF instance *vrf1601* is configured in the **router ospf** configuration mode. The router-id for the OSPF process is 13.13.13.1. The **redistribute** option specifies routes to be redistributed into OSPF. The OSPF area is configured to be *1* and interface TenGigE0/0/0/14.1601 is associated with that area to enable routing on it.

PE1:

```
Router-PE1#configure
Router-PE1(config)#router ospf pe-ce-ospf-vrf
Router-PE1(config-ospf)#router-id 13.13.13.1
Router-PE1(config-ospf)#vrf vrf1601
Router-PE1(config-ospf-vrf)#redistribute connected
Router-PE1(config-ospf-vrf)#redistribute bgp 2001
Router-PE1(config-ospf-vrf)#area 1
Router-PE1(config-ospf-vrf-ar)#interface TenGigE0/0/0/14.1601
Router-PE1(config-ospf-vrf-ar)# commit
```

Repeat this configuration at PE2 node as well.

CE1:

```
Router-CE1#configure
Router-CE1(config)#router ospf ospf pe-ce-1
Router-CE1(config-ospf)#router-id 8.8.8.1
Router-CE1(config-ospf)#vrf vrf1601
Router-CE1(config-ospf-vrf)#area 1
Router-CE1(config-ospf-vrf-ar)#interface TenGigE0/0/0/18.1601
Router-CE1(config-ospf-vrf-ar)#commit
```

Running Configuration

PE1:

```
router ospf pe-ce-ospf-vrf
router-id 13.13.13.1
vrf vrf1601
redistribute connected
redistribute bgp 2001
area 1
interface TenGigE0/0/0/14.1601
!
!
!
```

CE1:

router ospf pe-ce-1

```
router-id 8.8.8.1
vrf vrf1601
area 1
    interface TenGigE0/0/0/18.1601
    !
  !
!
```

Related Topics

• Connect MPLS VPN Customers, on page 18

Associated Commands

• router ospf

Verify MPLS L3VPN Configuration

You must verify these to ensure the successful configuration of MPLS L3VPN:

Verify the L3VPN Traffic Flow

• Verify the number of bytes switched for the label associated with the VRF (vrf1601):

P node:

Router-	-P# show mpls	forwarding			
Local	Outgoing	Prefix	Outgoing	Next Hop	Bytes
Label	Label	or ID	Interface		Switched
24119	Рор	20.20.20.1/32	Hu0/0/0/0	191.31.1.90	2170204180148

PE2:

Router	#show mpls f	orwarding			
Local	Outgoing	Prefix	Outgoing	Next Hop	Bytes
Label	Label	or ID	Interface		Switched
24031	Aggregate	vrf1601: Per-VRF A	.ggr[V] \		
			vrf1601		11124125835

Verify the Underlay (transport)

• Verify if the LDP neighbor connection is established with the respective neighbor:

```
Router-PE1#show mpls ldp neighbor
Peer LDP Identifier: 16.16.16.1:0
TCP connection: 16.16.16.1:47619 - 13.13.13.1:646
Graceful Restart: No
Session Holdtime: 180 sec
State: Oper; Msgs sent/rcvd: 40395/35976; Downstream-Unsolicited
Up time: 2w2d
```

LDP Discovery Sou IPv4: (1)	rces:		
IPv6: (0) Addresses bound to	o this peer:		
IPv4: (6)			
10.64.98.32	87.0.0.2	88.88.88.14	50.50.50.50
178.0.0.1	192.1.1.1		
IPv6: (0)			

• Verify if the label update is received by the FIB:

Router Local Label	-PE1# show mp Outgoing Label	Dis forwarding Prefix or ID	Outgoing Interface	Next Hop	Bytes Switched
24036	Рор	16.16.16.1/32	Hu0/0/0/2	191.22.1.2	293294
24037	24165	18.18.18.1/32	Hu0/0/0/2	191.22.1.2	500
24039 24041	24167 24167 Aggregate	20.20.20.1/32 20.20.20.1/32 vrf1601: Per-VRF A	Hu0/0/0/2 Hu0/0/0/2.1	191.22.1.2 191.22.3.2	17872433 6345
24041	Aggregate	VIIIOUI. IEI VIN A	vrf1601		7950400999

• Verify if label is updated in the hardware:

Router-PE1#show mpls forwarding labels 24001 hardware egress

Local	Outgoing	Prefix	Outgoing	Next Hop	Bytes
Label	Label	or ID	Interface		Switched
24039	24167	20.20.20.1/32	191.22.1.2	N/A	
	24167	20.20.20.1/32	191.22.3.2	N/A	

Show-data Print at RPLC

LEAF - HAL pd context : sub-type : MPLS, ecd_marked:0, has_collapsed_ldi:0 collapse_bwalk_required:0, ecdv2_marked:0

Leaf H/W Result:

Leaf H/W Result on NP:0 Label SwitchAction EgressIf Programmed 24039 0 0x 200185 **Programmed** nrLDI eng ctx:

flags: 0x101, proto: 2, npaths: 0, nbuckets: 1
ldi_tbl_idx: 0xc37e40, ecd_ref_cft: 0
pbts_ldi_tbl_idx: 0x0, fastnrldi:0x0

NR-LDI H/W Result for path 0 [index: 0xc37e40 (BE), common to all NPs]:

ECMP Sw Idx: 12811840 HW Idx: 200185 Path Idx: 0

NR-LDI H/W Result for path 1 [index: 0xc37e41 (BE), common to all NPs]:

ECMP Sw Idx: 12811841 HW Idx: 200185 Path Idx: 1

SHLDI eng ctx: flags: 0x0, shldi tbl idx: 0, num entries:0 SHLDI HW data for path 0 [index: 0 (BE)] (common to all NPs): Unable to get HW NRLDI Element rc: 1165765120NRLDI Idx: 0 SHLDI HW data for path 1 [index: 0x1 (BE)] (common to all NPs): Unable to get HW NRLDI Element rc: 1165765120NRLDI Idx: 1 TX H/W Result for NP:0 (index: 0x187a0 (BE)): Next Hop Data Next Hop Valid: YES Next Hop Index: 100256 Egress Next Hop IF: 100047 Hw Next Hop Intf: 606 HW Port: 0 Next Hop Flags: COMPLETE Next Hop MAC: e4aa.5d9a.5f2e NHINDEX H/W Result for NP:0 (index: 0 (BE)): NhIndex is NOT required on this platform NHINDEX STATS: pkts 0, bytes 0 (no stats) RX H/W Result on NP:0 [Adj ptr:0x40 (BE)]: Rx-Adj is NOT required on this platform TX H/W Result for NP:0 (index: 0x189a8 (BE)): Next Hop Data Next Hop Valid: YES Next Hop Index: 100776 Egress Next Hop IF: 100208 Hw Next Hop Intf: 607 HW Port: 0 Next Hop Flags: COMPLETE Next Hop MAC: e4aa.5d9a.5f2d NHINDEX H/W Result for NP:0 (index: 0 (BE)): NhIndex is NOT required on this platform NHINDEX STATS: pkts 0, bytes 0 (no stats) RX H/W Result on NP:0 [Adj ptr:0x40 (BE)]:

Verify the Overlay (L3VPN)

Imposition Path

• Verify if the BGP neighbor connection is established with the respective neighbor node:

```
Router-PE1#show bgp summary
BGP router identifier 13.13.13.1, local AS number 2001
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe000000 RD version: 18003
BGP main routing table version 18003
```

Rx-Adj is NOT required on this platform

BGP NSR Initial initsync version 3 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs BGP is operating in STANDALONE mode. RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer Process Speaker 18003 18003 18003 18003 18003 0 Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd 4000 0 2001 19173 0 7001 4615 18003 0 0 1d07h 18003 0 0 09:26:21 7671 21.21.21.1 192.13.2.149 7773 125

• Verify if BGP routes are advertised and learnt:

Router-PE1**#show bgp vpnv4 unicast** BGP router identifier 13.13.13.1, local AS number 2001 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: **Active** Table ID: 0x0 RD version: 0 BGP main routing table version 305345 BGP NSR Initial initsync version 12201 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 2001:1601 (default for vrf vrf1601) *> 20.13.1.1/32 192.13.26.5 0 7501 i 192.13.26.5 *> 20.13.1.2/32 0 7501 i 100 *>i20.23.1.1/32 20.20.20.1 0 6553700 11501 i *>i20.23.1.2/32 20.20.20.1 100 0 6553700 11501 i

· Verify BGP labels:

Router-PE1#show bgp label table					
Label	Туре	VRF/RD	Context		
24041	IPv4 VRF Ta	ble vrf1601	-		
24042	IPv4 VRF Ta	ble vrf1602	-		

• Verify if the route is downloaded in the respective VRF:

```
Router-PE1#show cef vrf vrf1601 20.23.1.1
20.23.1.1/32, version 743, internal 0x5000001 0x0 (ptr 0x8f932174) [1], 0x0 (0x8fa99990),
0xa08 (0x8f9fba58)
Updated Apr 20 12:33:47.840
Prefix Len 32, traffic index 0, precedence n/a, priority 3
via 20.20.20.1/32, 3 dependencies, recursive [flags 0x6000]
path-idx 0 NHID 0x0 [0x8c0e3148 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 20.20.20.1/32 via 24039/0/21
next hop 191.23.1.2/32 Hu0/0/1/1 labels imposed {24059 24031}
```

Disposition Path

 Verify if the imposition and disposition labels are assigned and label bindings are exchanged for L3VPN prefixes:

```
Router-PE2#show mpls lsd forwarding
In_Label, (ID), Path_Info: <Type>
24030, (IPv4, 'default':4U, 13.13.13.1/32), 5 Paths
1/1: IPv4, 'default':4U, Hu0/0/0/19.2, nh=191.31.1.93, lbl=24155,
flags=0x0, ext_flags=0x0
24031, (VPN-VRF, 'vrf1601':4U), 1 Paths
1/1: PopLkup-v4, 'vrf1601':4U, ipv4
24032, (VPN-VRF, 'vrf1602':4U), 1 Paths
1/1: PopLkup-v4, 'vrf1602':4U, ipv4
```

• Verify if the label update is received by the FIB:

Router Local Label	-PE2 #show mp Outgoing Label	ols forwarding Prefix or ID	Outgoing Interface	Next Hop	Bytes Switched
24019	Рор	18.18.18.3/32	Hu0/0/0/19	191.31.1.89	11151725032
24030	24155	13.13.13.1/32	Hu0/0/0/19	191.31.1.89	3639895
24031	Aggregate	vrf1601: Per-VRF A	Aggr[V] ∖ vrf1601		32167647049

Providing VPN Connectivity Across Multiple Autonomous Systems with MPLS VPN Inter-AS with ASBRs Exchanging IPv4 Routes and MPLS Labels

Note

This section is not applicable to Inter-AS over IP tunnels.

This section contains instructions for the following tasks:

Configuring ASBRs to Exchange IPv4 Routes and MPLS Labels

This example shows how to configure the autonomous system boundary routers (ASBRs) to exchange IPv4 routes and MPLS labels.

Configuration Example

```
Router# configure
Router(config)#router bgp 500
Router(config-bgp)#address-family ipv4 unicast
Router(config-bgp-af)#allocate-label all
Router(config-bgp-af)#neighbor 16.1.1.1
Router(config-bgp-nbr)#remote-as 100
Router(config-bgp-nbr)#address-family ipv4 labeled-unicast
Router(config-bgp-nbr-af)#route-policy pass-all in
```

Router(config-bgp-nbr-af)#route-policy pass-all out Router(config-bgp-nbr-af)#commit

Running Configuration

```
router bgp 500
bgp router-id 60.200.11.1
address-family ipv4 unicast
   allocate-label all
!
neighbor 16.1.1.1
remote-as 100
address-family ipv4 labeled-unicast
route-policy PASS-ALL in
route-policy pass-all out
!
```

Verification

Router#show bgp ipv4 labeled-unicast

```
BGP router identifier 60.200.11.1, local AS number 500
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 10
BGP main routing table version 10
BGP NSR Initial initsync version 6 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
          i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
                Next Hop
                                Metric LocPrf Weight Path
 Network
                                     0
*> 10.200.1.1/32
                   16.1.1.1
                                                      0 100 ?
                   66.161.1.1
                                         0
                                                      0 100 ?
*> 10.200.2.1/32
                  16.1.1.1
                                         5
                                                     0 100 ?
                  66.161.1.1
                                         5
                                                     0 100 ?
                                        11
*> 10.200.5.1/32
                  16.1.1.1
                                                      0 100 ?
                                        11
                   66.161.1.1
                                                      0 100 ?
*> 10.200.6.1/32
                   16.1.1.1
                                         4
                                                      0 100 ?
                  66.161.1.1
                                                     0 100 ?
                                         4
                                               32768 ?
*> 60.200.11.1/32
                0.0.0.0
                                         0
                                         0 100 0 ?
*>i60.200.12.1/32
                60.200.12.1
*>i60.200.13.1/32
                 60.200.13.1
                                         0
                                             100
                                                      0 ?
```

Router#show bgp ipv4 labeled-unicast 10.200.1.1

```
16.1.1.1 from 16.1.1.1 (10.200.1.1)
     Received Label 3
     Origin incomplete, metric 0, localpref 100, valid, external, best, group-best,
multipath, labeled-unicast
     Received Path ID 0, Local Path ID 0, version 31
      Origin-AS validity: not-found
Router#show cef vrf default ipv4 10.200.1.1
10.200.1.1/32, version 161, internal 0x5000001 0x0 (ptr 0x8910c440) [1], 0x0 (0x87f73bc0),
 0xa00 (0x88f40118)
Updated May 3 18:10:47.034
 Prefix Len 32, traffic index 0, precedence n/a, priority 4
Extensions: context-label:64006
  via 16.1.1.1/32, 3 dependencies, recursive, bgp-ext, bgp-multipath [flags 0x60a0]
   path-idx 0 NHID 0x0 [0x889e55a0 0x87b494b0]
   recursion-via-/32
   next hop 16.1.1.1/32 via 16.1.1.1/32
     local label 64006
    next hop 16.1.1.1/32 Te0/0/1/4/2 labels imposed {ImplNull ImplNull}
   via 66.161.1.1/32, 3 dependencies, recursive, bgp-ext, bgp-multipath [flags 0x60a0]
   path-idx 1 NHID 0x0 [0x89113870 0x87b493e8]
    recursion-via-/32
    next hop 66.161.1.1/32 via 66.161.1.1/32
    local label 64006
    next hop 66.161.1.1/32 BE161
                                       labels imposed {ImplNull ImplNull}
Router#
```

Associated Commands

- allocate-label all
- address-family ipv4 labeled-unicast

Configuring the Route Reflectors to Exchange VPN-IPv4 Routes

This example shows how to configure the route reflectors to exchange VPN-IPv4 routes by using multihop. This task specifies that the next-hop information and the VPN label are to be preserved across the autonomous system (AS).

Configuration Example

```
Router# configure
Router(config)# router bgp 500
Router(config-bgp)# neighbor 10.200.2.1
Router(config-bgp-nbr)# remote-as 100
Router(config-bgp-nbr)# ebgp-multihop 255
Router(config-bgp-nbr)# update-source loopback0
Router(config-bgp-nbr)# address-family vpnv4 unicast
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy pass-all out
Router(config-bgp-nbr-af)# next-hop-unchanged
Router(config-bgp-nbr)# address-family vpnv6 unicast
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy pass-all out
Router(config-bgp-nbr-af)# next-hop-unchanged
```

Running Configuration

Router#**show run router bgp 500** router bgp 500 bgp router-id 60.200.13.1

```
address-family ipv4 labeled-unicast
  allocate-label all
address-family vpnv4 unicast
address-family ipv6 unicast
address-family vpnv6 unicast
neighbor 10.200.2.1
  remote-as 100
  ebgp-multihop 255
 update-source Loopback0
  address-family vpnv4 unicast
  route-policy PASS-ALL in
  route-policy PASS-ALL out
   next-hop-unchanged
  1
  address-family vpnv6 unicast
  route-policy PASS-ALL in
  route-policy PASS-ALL out
  next-hop-unchanged
```

Verification

1

```
Router#show cef vrf vrf2001 ipv4 111.1.1.2/32 hardware egress location0/0/CPU0
111.1.1.2/32, version 39765, internal 0x5000001 0x0 (ptr 0x9f4d326c) [1], 0x0 (0xa0263058),
0 \times 808 (0 \times 899285b8)
Updated Oct 27 10:58:39.350
Prefix Len 32, traffic index 0, precedence n/a, priority 3
   via 10.200.1.1/32, 307 dependencies, recursive, bgp-ext [flags 0x6020]
   path-idx 0 NHID 0x0 [0x89a59100 0x0]
   recursion-via-/32
   next hop VRF - 'default', table - 0xe0000000
   next hop 10.200.1.1/32 via 69263/0/21
    next hop 63.13.1.1/32 Te0/3/0/17/0 labels imposed {24007 64007 64023}
LEAF - HAL pd context :
sub-type : IPV4, ecd marked:0, has collapsed ldi:0
collapse bwalk required:0, ecdv2 marked:0
HW Walk:
LEAF:
   PI:0x9f4d326c PD:0x9f4d3304 Rev:3865741 type: 0
   FEC handle: 0x890c0198
    TWTDT:
        PI:0xa0263058 PD:0xa0263098 rev:3865740 p-rev: ldi type:0
        FEC hdl: 0x890c0198 fec index: 0x0(0) num paths:1, bkup: 0
REC-SHLDI HAL PD context :
ecd marked:0, collapse bwalk required:0, load shared lb:0
    RSHLDI:
        PI:0x9f17bfd8 PD:0x9f17c054 rev:0 p-rev:0 flag:0x1
        FEC hdl: 0x890c0198 fec index: 0x20004fa6(20390) num paths: 1
        Path:0 fec index: 0x20004fa6(20390) DSP fec index: 0x2000120e(4622)
              MPLS Encap Id: 0x4001381e
LEAF - HAL pd context :
sub-type : MPLS, ecd marked:0, has collapsed ldi:0
collapse bwalk required:0, ecdv2 marked:0
HW Walk:
```

LEAF: PI:0x89a59100 PD:0x89a59198 Rev:3864195 type: 2 FEC handle: (nil) LWLDI: EOS0/1 LDI: PI:0xb9a51838 PD:0xb9a51878 rev:3864192 p-rev: ldi type:0 FEC hdl: 0x890c0818 fec index: 0x20004fa2(20386) num paths:1, bkup: 0 DSP fec index:0x2000120e(4622) Path:0 fec index: 0x20004fa2(20386) DSP fec index:0x2000120e(4622) MPLS encap hdl: 0x400145ed MPLS encap id: 0x400145ed Remote: 0 IMP LDI: PI:0xb9a51838 PD:0xb9a51878 rev:3864192 p-rev: FEC hdl: 0x890c0b58 fec index: 0x20004fa0(20384) num paths:1 Path:0 fec index: 0x20004fa0(20384) DSP fec index: 0x2000120e(4622) MPLS encap hdl: 0x400145ec MPLS encap id: 0x400145ec Remote: 0 REC-SHLDI HAL PD context : ecd_marked:0, collapse_bwalk_required:0, load_shared_lb:0 RSHLDT : PI:0xb7e387f8 PD:0xb7e38874 rev:0 p-rev:0 flag:0x1 FEC hdl: 0x890c0e98 fec index: 0x20004f9e(20382) num paths: 1 Path:0 fec index: 0x20004f9e(20382) DSP fec index: 0x2000120e(4622) LEAF - HAL pd context : sub-type : MPLS, ecd marked:0, has collapsed ldi:0 collapse bwalk required:0, ecdv2 marked:0 HW Walk: LEAF: PI:0x89a59028 PD:0x89a590c0 Rev:31654 type: 2 FEC handle: (nil) TWTDT: PI:0x8c69c1c8 PD:0x8c69c208 rev:31653 p-rev:31652 ldi type:5 FEC hdl: 0x8903a718 fec index: 0x0(0) num paths:1, bkup: 0 Path:0 fec index: 0x0(0) DSP:0x0 TMP LDT: PI:0x8c69c1c8 PD:0x8c69c208 rev:31653 p-rev:31652 FEC hdl: 0x8903aa58 fec index: 0x2000120e(4622) num paths:1 Path:0 fec index: 0x2000120e(4622) DSP:0x518 MPLS encap hdl: 0x40013808 MPLS encap id: 0x40013808 Remote: 0 SHLDI: PI:0x8af02580 PD:0x8af02600 rev:31652 dpa-rev:66291 flag:0x0 FEC hdl: 0x8903a718 fec index: 0x2000120d(4621) num paths: 1 bkup paths: 0 p-rev:2373 Path:0 fec index: 0x2000120d(4621) DSP:0x518 Dest fec index: 0x0(0) TX-NHINFO: PD: 0x89bf94f0 rev: 2373 dpa-rev: 9794 Encap hdl: 0x8a897628 Encap id: 0x40010002 Remote: 0 L3 int: 1043 npu mask: 4

Associated Commands

- address-family vpnv4 unicast
- allocate-label all
- ebgp-multihop
- next-hop-unchanged

Configure the Route Reflectors to Reflect Remote Routes in its AS

This example shows how to enable the route reflector (RR) to reflect the IPv4 routes and labels learned by the autonomous system boundary router (ASBR) to the provider edge (PE) routers in the autonomous system. This task is accomplished by making the ASBR and PE as the route reflector clients of the RR.

Configuration Example

```
Router#configure
Router (config) #router bgp 500
Router (config-bgp) #address-family ipv4 unicast
Router(config-bgp-af) #allocate-label all
Router(config-bgp-af)#neighbor 60.200.11.1
Router(config-bgp-nbr)#remote-as 500
Router (config-bgp-nbr) #update-source loopback0
Router(config-bgp-nbr)#address-family ipv4 labeled-unicast
Router (config-bgp-nbr-af) #route-reflector-client
Router (config-bgp-nbr-af) #neighbor 60.200.12.1
Router(config-bgp-nbr) #remote-as 500
Router(config-bgp-nbr) #update-source loopback0
Router(config-bgp-nbr)#address-family ipv4 labeled-unicast
Router(config-bgp-nbr-af)#route-reflector-client
Router (config-bgp-nbr) #address-family vpnv4 unicast
Router (config-bgp-nbr-af) #route-reflector-client
```

Running Configuration

```
Router#show run router bgp 500
router bgp 500
bgp router-id 60.200.13.1
 address-family ipv4 unicast
 allocate-label all
 1
 address-family vpnv4 unicast
 1
 neighbor 60.200.11.1
  remote-as 500
  update-source Loopback0
  1
  address-family ipv4 labeled-unicast
  route-reflector-client
  address-family vpnv4 unicast
  1
 !
 neighbor 60.200.12.1
 remote-as 500
  update-source Loopback0
  address-family ipv4 labeled-unicast
  route-reflector-client
  1
  address-family vpnv4 unicast
   route-reflector-client
  1
```

Providing VPN Connectivity Across Multiple Autonomous Systems with MPLS VPN Inter-AS with ASBRs Exchanging VPN-IPv4 Addresses

This section contains instructions for the following tasks:

Configuring the ASBRs to Exchange VPN-IPv4 Addresses for IP Tunnels

Perform this task to configure an external Border Gateway Protocol (eBGP) autonomous system boundary router (ASBR) to exchange VPN-IPv4 routes with another autonomous system.

Step 1	configure
	Example:
	RP/0/RP0/CPU0:router# configure
	Enters the XR Config mode.
Step 2	router bgp autonomous-system-number
	Example:
	RP/0/RP0/CPU0:router(config)# router bgp 120 RP/0/RP0/CPU0:router(config-bgp)#
	Enters Border Gateway Protocol (BGP) configuration mode allowing you to configure the BGP routing process.
Step 3	address-family { ipv4 tunnel }
	Example:
	RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 tunnel RP/0/RP0/CPU0:router(config-bgp-af)#
	Configures IPv4 tunnel address family.
Step 4	address-family { vpnv4 unicast }
	Example:
	RP/0/RP0/CPU0:router(config-bgp-af)# address-family vpnv4 unicast
	Configures VPNv4 address family.
Step 5	neighbor ip-address
	Example:
	RP/0/RP0/CPU0:router(config-bgp-af)# neighbor 172.168.40.24 RP/0/RP0/CPU0:router(config-bgp-nbr)#
	Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address 172.168.40.24 as an ASBR eBGP peer.
Step 6	remote-as autonomous-system-number
	Example:

	RP/0/RP0/CPU0:router(config-bgp-nbr) # remote-as 2002
	Creates a neighbor and assigns it a remote autonomous system number.
Step 7	address-family { vpnv4 unicast }
	Example:
	RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family vpnv4 unicast RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
	Configures VPNv4 address family.
Step 8	<pre>route-policy route-policy-name { in }</pre>
	Example:
	<pre>RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all in</pre>
	Applies a routing policy to updates that are received from a BGP neighbor.
	• Use the <i>route-policy-name</i> argument to define the name of the of route policy. The example shows that the route policy name is defined as pass-all.
	• Use the in keyword to define the policy for inbound routes.
Step 9	<pre>route-policy route-policy-name { out }</pre>
	Example:
	<pre>RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all out</pre>
	Applies a routing policy to updates that are sent from a BGP neighbor.
	• Use the <i>route-policy-name</i> argument to define the name of the route policy. The example shows that the route policy name is defined as pass-all.
	• Use the out keyword to define the policy for outbound routes.
Step 10	neighbor ip-address
	Example:
	RP/0/RP0/CPU0:router(config-bgp-nbr-af)# neighbor 175.40.25.2 RP/0/RP0/CPU0:router(config-bgp-nbr)#
	Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address 175.40.25.2 as an VPNv4 iBGP peer.
Step 11	remote-as autonomous-system-number
	Example:
	RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002
	Creates a neighbor and assigns it a remote autonomous system number.
Step 12	update-source type interface-path-id
	Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# update-source loopback0

Allows BGP sessions to use the primary IP address from a particular interface as the local address.

Step 13 address-family { ipv4 tunnel }

Example:

```
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 tunnel
RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
```

Configures IPv4 tunnel address family.

Step 14 address-family { vpnv4 unicast }

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# address-family vpnv4 unicast

Configures VPNv4 address family.

Step 15 Use the commit or end command.

commit - Saves the configuration changes and remains within the configuration session.

- end Prompts user to take one of these actions:
 - Yes Saves configuration changes and exits the configuration session.
 - No Exits the configuration session without committing the configuration changes.
 - Cancel Remains in the configuration mode, without committing the configuration changes.

Configuring a Static Route to an ASBR Peer

Perform this task to configure a static route to an ASBR peer.

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters the XR Config mode.

Step 2 router static

Example:

```
RP/0/RP0/CPU0:router(config)# router static
RP/0/RP0/CPU0:router(config-static)#
```

Enters router static configuration mode.

Step 3 address-family ipv4 unicast

Example:

RP/0/RP0/CPU0:router(config-static)# address-family ipv4 unicast RP/0/RP0/CPU0:router(config-static-afi)#

Enables an IPv4 address family.

Step 4 A.B.C.D/length *next-hop*

Example:

RP/0/RP0/CPU0:router(config-static-afi)# 10.10.10.10/32 10.9.9.9

Enters the address of the destination router (including IPv4 subnet mask).

Step 5 Use the **commit** or **end** command.

commit - Saves the configuration changes and remains within the configuration session.

end - Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No Exits the configuration session without committing the configuration changes.
- Cancel Remains in the configuration mode, without committing the configuration changes.

Configuring EBGP Routing to Exchange VPN Routes Between Subautonomous Systems in a Confederation

Perform this task to configure external Border Gateway Protocol (eBGP) routing to exchange VPN routes between subautonomous systems in a confederation.

To ensure that host routes for VPN-IPv4 eBGP neighbors are propagated (by means of the Interior Gateway Protocol [IGP]) to other routers and PE routers, specify the **redistribute connected** command in the IGP configuration portion of the confederation eBGP (CEBGP) router. If you are using Open Shortest Path First (OSPF), make sure that the OSPF process is not enabled on the CEBGP interface in which the "redistribute connected" subnet exists.

Step 1

configure Example:

RP/0/RP0/CPU0:router# configure

Enters XR Config mode.

Step 2 router bgp autonomous-system-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120 RP/0/RP0/CPU0:router(config-bgp)#

Enters BGP configuration mode allowing you to configure the BGP routing process.

Step 3 bgp confederation peers peer autonomous-system-number Example:

RP/0/RP0/CPU0:router(config-bgp) # bgp confederation peers 8

Configures the peer autonomous system number that belongs to the confederation.

 Step 4
 bgp confederation identifier autonomous-system-number

 Example:

RP/0/RP0/CPU0:router(config-bgp) # bgp confederation identifier 5

Specifies the autonomous system number for the confederation ID.

Step 5 address-family vpnv4 unicast

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family vpnv4 unicast RP/0/RP0/CPU0:router(config-bgp-af)#

Configures VPNv4 address family.

Step 6 neighbor *ip-address*

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# neighbor 10.168.40.24 RP/0/RP0/CPU0:router(config-bgp-nbr)#

Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address 10.168.40.24 as a BGP peer.

Step 7 remote-as autonomous-system-number

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002

Creates a neighbor and assigns it a remote autonomous system number.

Step 8 address-family vpnv4 unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family vpnv4 unicast

	RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
	Configures VPNv4 address family.
Step 9	route-policy route-policy-name in
	Example:
	RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy In-Ipv4 in
	Applies a routing policy to updates received from a BGP neighbor.
Step 10	route-policy route-policy-name out
	Example:
	RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy Out-Ipv4 out
	Applies a routing policy to updates advertised to a BGP neighbor.
Step 11	next-hop-self
	Example:
	RP/0/RP0/CPU0:router(config-bgp-nbr-af)# next-hop-self
	Disables next-hop calculation and let you insert your own address in the next-hop field of BGP updates.
Step 12	Use the commit or end command.
	commit - Saves the configuration changes and remains within the configuration session.
	end - Prompts user to take one of these actions:
	• Yes - Saves configuration changes and exits the configuration session.

- No Exits the configuration session without committing the configuration changes.
- Cancel Remains in the configuration mode, without committing the configuration changes.

Configuring MPLS Forwarding for ASBR Confederations

Perform this task to configure MPLS forwarding for autonomous system boundary router (ASBR) confederations (in BGP) on a specified interface.

Note This configuration adds the implicit NULL rewrite corresponding to the peer associated with the interface, which is required to prevent BGP from automatically installing rewrites by LDP (in multihop instances).

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters XR Config mode.

Step 2 router bgp as-number

Example:

RP/0/RP0/CPU0:router(config) # router bgp 120 RP/0/RP0/CPU0:router(config-bgp)

Enters BGP configuration mode allowing you to configure the BGP routing process.

Step 3 mpls activate

Example:

RP/0/RP0/CPU0:router(config-bgp) # mpls activate RP/0/RP0/CPU0:router(config-bgp-mpls) #

Enters BGP MPLS activate configuration mode.

Step 4 *interface type interface*-*path-id*

Example:

RP/0/RP0/CPU0:router(config-bgp-mpls) # interface GigabitEthernet 0/3/0/0

Enables MPLS on the interface.

Step 5 Use the **commit** or **end** command.

commit - Saves the configuration changes and remains within the configuration session.

end - Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No Exits the configuration session without committing the configuration changes.
- Cancel Remains in the configuration mode, without committing the configuration changes.

Configuring a Static Route to an ASBR Confederation Peer

Perform this task to configure a static route to an Inter-AS confederation peer.

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters XR Config mode.

Step 2 router static

Example:

RP/0/RP0/CPU0:router(config) # router static RP/0/RP0/CPU0:router(config-static) #

Enters router static configuration mode.

Step 3 address-family ipv4 unicast

Example:

```
RP/0/RP0/CPU0:router(config-static)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-static-afi)#
```

Enables an IPv4 address family.

Step 4 A.B.C.D/length next-hop

Example:

RP/0/RP0/CPU0:router(config-static-afi)# 10.10.10.10/32 10.9.9.9

Enters the address of the destination router (including IPv4 subnet mask).

Step 5 Use the commit or end command.

commit - Saves the configuration changes and remains within the configuration session.

end - Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No Exits the configuration session without committing the configuration changes.
- Cancel Remains in the configuration mode, without committing the configuration changes.

VRF-lite

VRF-lite is the deployment of VRFs without MPLS. VRF-lite allows a service provider to support two or more VPNs with overlapping IP addresses. With this feature, multiple VRF instances can be supported in customer edge devices.

VRF-lite interfaces must be Layer 3 interface and this interface cannot belong to more than one VRF at any time. Multiple interfaces can be part of the same VRF, provided all of them participate in the same VPN.

Configure VRF-lite

Consider two customers having two VPN sites each, that are connected to the same PE router. VRFs are used to create a separate routing table for each customer. We create one VRF for each customer (say, vrf1 and vrf2)

and then add the corresponding interfaces of the router to the respective VRFs. Each VRF has its own routing table with the interfaces configured under it. The global routing table of the router does not show these interfaces, whereas the VRF routing table shows the interfaces that were added to the VRF. PE routers exchange routing information with CE devices by using static routing or a routing protocol such as BGP or RIP.

To summarize, VRF-lite configuration involves these main tasks:

- Create VRF
- Configure VRF under the interface
- Configure VRF under routing protocol

Configuration Example

• Create VRF:

```
Router#configure
Router(config)#vrf vrf1
Router(config-vrf)#address-family ipv4 unicast
```

```
/* You must create route-policy pass-all before this configuration */
Router(config-vrf-af)#import from default-vrf route-policy pass-all
Router(config-vrf-af)#import route-target
Router(config-vrf-import-rt)#100:100
Router(config-vrf-af)#export route-target
Router(config-vrf-af)#export route-target
Router(config-vrf-import-rt)#100:100
Router(config-vrf-import-rt)#exit
Router(config-vrf-import-rt)#exit
Router(config-vrf-import-rt)#exit
Router(config-vrf-import-rt)#exit
Router(config-vrf-import-rt)#exit
```

Similarly create vrf2, with route-target as 100:100.

Configure VRF under the interface:

```
Router#configure
Router(config)#interface TenGigE0/0/0/0.2001
Router(config-subif)#vrf vrf1
Router(config-subif)#ipv4 address 192.0.2.2 255.255.252
Router(config-subif)#encapsulation dot1q 2001
Router(config-subif)#exit
Router(config)#interface TenGigE0/0/0/0.2000
Router(config-subif)#vrf vrf2
Router(config-subif)#ipv4 address 192.0.2.5/30 255.255.252
Router(config-subif)#ipv4 address 192.0.2.5/30 255.255.252
Router(config-subif)#encapsulation dot1q 2000
Router(config-vrf-import-rt)#commit
```

Similarly configure vrf1 under interface TenGigE0/0/0/1.2001 and vrf2 under interface TenGigE0/0/0/1.2000 TenGigE0/0/0/0.2001 and vrf2 under interface TenGigE0/0/0/0.2000

• Configure VRF under routing protocol:

```
Router#configure
Router(config)#router rip
Router(config-rip)#vrf vrf1
Router(config-rip-vrf)#interface TenGigE0/0/0/0.2001
```

```
Router(config-rip-vrf-if)#exit
Router(config-rip-vrf)#interface TenGigE0/0/0/1.2001
Router(config-rip-vrf-if)#exit
Router(config-rip-vrf)#default-information originate
Router(config-vrf-import-rt)#commit
```

Similarly configure vrf2 under rip, with interface TenGigE0/0/0/0.2000 and interface TenGigE0/0/0/1.2000

Running Configuration

```
/* VRF Configuration */
vrf vrf1
address-family ipv4 unicast
 import route-target
  100:100
  !
 export route-target
  100:100
  !
!
!
vrf vrf2
address-family ipv4 unicast
 import route-target
   100:100
  1
 export route-target
  100:100
 1
!
!
/* Interface Configuration */
interface TenGigE0/0/0/0.2001
vrf vrf1
ipv4 address 192.0.2.2 255.255.255.252
encapsulation dot1q 2001
1
interface TenGigE0/0/0/0.2000
vrf vrf2
ipv4 address 192.0.2.5/30 255.255.255.252
encapsulation dot1q 2000
1
interface TenGigE0/0/0/1.2001
vrf vrf1
ipv4 address 203.0.113.2 255.255.255.252
encapsulation dot1q 2001
!
interface TenGigE0/0/0/1.2000
vrf vrf2
ipv4 address 203.0.113.5 255.255.255.252
encapsulation dot1q 2000
!
/* Routing Protocol Configuration */
```

```
router rip
interface Loopback0
!
interface TenGigE0/0/0/0
interface TenGigE0/0/0/0.2000
interface TenGigE0/0/0/0.2001
!
interface TenGigE0/0/0/1
Т
interface TenGigE0/0/0/1.2000
1
interface TenGigE0/0/0/1.2001
1
vrf vrf1
 interface TenGigE0/0/0/0.2001
 interface TenGigE0/0/0/1.2001
 1
 default-information originate
 1
vrf vrf2
 interface TenGigE0/0/0/1.2000
 1
 interface TenGigE0/0/0/1.2000
 default-information originate
 Т
```

Verification

```
Router#show route vrf vrf1
Mon Jul 4 19:12:54.739 UTC
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
       O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
      U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
      A - access/subscriber, a - Application route
      M - mobile route, r - RPL, (!) - FRR Backup path
Gateway of last resort is not set
     203.0.113.0/24 is directly connected, 00:07:01, TenGigE0/0/0/1.2001
С
     203.0.113.2/30 is directly connected, 00:07:01, TenGigE0/0/0/1.2001
L
     192.0.2.0/24 is directly connected, 00:05:51, TenGigE0/0/0/1.2001
С
T.
     192.0.2.2/30 is directly connected, 00:05:51, TenGigE0/0/0/1.2001
Router#show route vrf vrf2
Mon Jul 4 19:12:59.121 UTC
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
       O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
```

```
i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
      U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
      A - access/subscriber, a - Application route
      M - mobile route, r - RPL, (!) - FRR Backup path
Gateway of last resort is not set
     198.51.100.53/30 [120/1] via 192.0.2.1, 00:01:42, TenGigE0/0/0/0.2000
R
С
     203.0.113.0/24 is directly connected, 00:08:43, TenGigE0/0/0/1.2000
Τ.
     203.0.113.5/30 is directly connected, 00:08:43, TenGigE0/0/0/1.2000
С
     192.0.2.0/24 is directly connected, 00:06:17, TenGigE0/0/0/0.2000
     192.0.2.5/30 is directly connected, 00:06:17, TenGigE0/0/0/0.2000
T.
```

Related Topics

• VRF-lite, on page 46

Associated Commands

- import route-target
- export route-target
- vrf

MPLS L3VPN Services using Segment Routing

Currently, MPLS Label Distribution Protocol (LDP) is the widely used transport for MPLS L3VPN services. The user can achieve better resilience and convergence for the network traffic, by transporting MPLS L3VPN services using Segment Routing (SR), instead of MPLS LDP. Segment routing can be directly applied to the MPLS architecture without changing the forwarding plane. In a segment-routing network using the MPLS data plane, LDP or other signaling protocol is not required; instead label distribution is performed by IGP (IS-IS or OSPF) or BGP protocol. Removing protocols from the network simplifies its operation and makes it more robust and stable by eliminating the need for protocol interaction. Segment routing utilizes the network bandwidth more effectively than traditional MPLS networks and offers lower latency.

Configure MPLS L3VPN over Segment Routing

Topology

Given below is a network scenario, where MPLS L3VPN service is transported using Segment Routing.

In this topology, CE1 and CE2 are the two customer routers. ISP has two PE routers, PE1 and PE2 and a P router. RIP is used for the edge protocol support between the CE and PE routers. Label distribution can be performed by IGP (IS-IS or OSPF) or BGP. OSPF is used in this scenario.

Customer's autonomous system is 65534, which peers with ISP's autonomous system 65000. This must be a vrf peering to prevent route advertisement into the global IPv4 table. The ISP routers PE1 and PE2 contain the VRF (for example, vrf1601) for the customer. PE1 and PE2 export and import the same route targets, although this is not necessary.

Loopback interfaces are used in this topology to simulate the attached networks.

Configuration

You must complete these tasks to ensure the successful configuration of MPLS L3VPN over segment routing:

- Configure protocol support on PE-CE (refer, Connect MPLS VPN Customers, on page 18)
- Configure protocol support on PE-PE (refer, Configure Multiprotocol BGP on the PE Routers and Route Reflectors, on page 15)

Configure Segment Routing in MPLS Core

This section takes you through the configuration procedure to enable segment routing in MPLS core. You must perform this configuration in PE1, P and PE2 routers in the topology, using the corresponding values.

Configuration Example

```
/* Configure Segment Routing using OSFP */
Router-PE1#configure
Router-PE1 (config) # router ospf dc-sr
Router-PE1 (config-ospf) #router-id 13.13.13.1
Router-PE1 (config-ospf) #segment routing mpls
Router-PE1 (config-ospf) #segment routing forwarding mpls
Router-PE1 (config-ospf) #mpls ldp sync
Router-PE1 (config-ospf) #mpls ldp auto-config
Router-PE1 (config-ospf) #segment-routing mpls
Router-PE1 (config-ospf) #segment-routing mpls sr-prefer
Router-PE1 (config-ospf) #segment-routing prefix-sid-map advertise-local
Router-PE1 (config-ospf) #exit
Router-PE1 (config-ospf) #area 1
Router-PE1 (config-ospf-ar) #interface HundredGigE0/0/0/2
Router-PE1(config-ospf-ar-if)#exit
Router-PE1(config-ospf-ar)#interface Loopback0
Router-PE1 (config-ospf-ar-if) #prefix-sid index 1
Router-PE1 (config-ospf-ar-if) #commit
/ * Configure segment routing global block */
Router# configure
Router(config) # segment-routing
Router(config-sr) # global-block 180000 200000
Router(config-sr) # commit
Router(config-sr) # exit
/* Configure Segment Routing using ISIS */
Router# configure
Router(config) # router isis ring
Router(config-isis)# is-type level-2-only
Router(config-isis) # net 49.0001.1921.6800.1001.00
Router(config-isis) # nsr
Router(config-isis) # distribute link-state
Router(config-isis) # nsf cisco
Router(config-isis)# address-family ipv4 unicast
Router(config-isis-af) # metric-style wide
```

Router(config-isis-af) # mpls traffic-eng level-1

```
Router(config-isis-af)# mpls traffic-eng router-id loopback0
Router(config-isis-af)# segment-routing mpls
Router(config-isis-af)# exit
!
Router(config-isis)# interface loopback0
Router(config-isis-if)# address-family ipv4 unicast
Router(config-isis-af)# prefix-sid index 30101
Router(config-isis-af)# exit
```

Running Configuration

PE1:

```
router ospf dc-sr
router-id 13.13.13.1
 segment-routing mpls
segment-routing forwarding mpls
mpls ldp sync
mpls ldp auto-config
 segment-routing mpls
 segment-routing mpls sr-prefer
 segment-routing prefix-sid-map receive
 segment-routing prefix-sid-map advertise-local
 1
area 1
 interface HundredGigE0/0/0/2
  1
 interface Loopback0
  prefix-sid index 1
 1
 !
!
configure
segment-routing
 global-block 180000 200000
 !
!
configure
router isis ring
 net 49.0001.1921.6800.1001.00
 nsr
 distribute link-state
 nsf cisco
 address-family ipv4 unicast
  metric-style wide
  mpls traffic-eng level-1
  mpls traffic-eng router-id Loopback0
  segment-routing mpls
 !
 interface Loopback0
 address-family ipv4 unicast
  prefix-sid index 30101
  1
 1
```

P node:

router ospf dc-sr

L

```
router-id 16.16.16.1
 segment-routing mpls
segment-routing forwarding mpls
mpls ldp sync
mpls ldp auto-config
 segment-routing mpls
 segment-routing mpls sr-prefer
 segment-routing prefix-sid-map receive
 segment-routing prefix-sid-map advertise-local
 1
 area 1
 interface HundredGigE0/0/1/0
 1
 interface HundredGigE0/0/1/1
 1
 interface Loopback0
  prefix-sid index 1
  1
 !
!
configure
segment-routing
 global-block 180000 200000
 !
!
configure
router isis ring
 net 49.0001.1921.6800.1002.00
 nsr
 distribute link-state
 nsf cisco
  address-family ipv4 unicast
  metric-style wide
  mpls traffic-eng level-1
  mpls traffic-eng router-id Loopback0
   segment-routing mpls
 1
 interface Loopback0
 address-family ipv4 unicast
  prefix-sid index 30102
 !
 !
```

PE2:

```
router ospf dc-sr
router-id 20.20.20.1
segment-routing mpls
segment-routing forwarding mpls
mpls ldp sync
mpls ldp auto-config
segment-routing mpls
 segment-routing mpls sr-prefer
 segment-routing prefix-sid-map receive
 segment-routing prefix-sid-map advertise-local
 !
area O
 interface HundredGigE0/0/0/19
 interface Loopback0
  prefix-sid index 1
  1
```

```
!
I.
configure
segment-routing
 global-block 180000 200000
 Т
!
configure
 router isis ring
 net 49.0001.1921.6800.1003.00
 nsr
 distribute link-state
 nsf cisco
  address-family ipv4 unicast
  metric-style wide
   mpls traffic-eng level-1
   mpls traffic-eng router-id Loopback0
   segment-routing mpls
 1
 interface Loopback0
  address-family ipv4 unicast
  prefix-sid index 30103
  1
```

Related Topics

You must perform these tasks as well to complete the MPLS L3VPN configuration over segment routing:

- Connect MPLS VPN Customers, on page 18
- Configure Multiprotocol BGP on the PE Routers and Route Reflectors, on page 15

Associated Commands

- index
- prefix-sid
- router isis
- router ospf
- segment-routing

The applicable segment routing commands are described in the Segment Routing Command Reference for Cisco NCS 5500 Series Routers

Verify MPLS L3VPN Configuration over Segment Routing

• Verify the statistics in core router and ensure that the counter for IGP transport label (64003 in this example) is increasing:

P node:

```
Router-P#show mpls forwarding
Local Outgoing Prefix
```

Outgoing Next Hop

Bytes

Label	Label	or ID	Interface	Switched
64003	Рор	SR Pfx (idx 0)	Hu0/0/0/0 193.16.1.2	572842

• Verify the statistics in PE1 router:

PE1:

Router-	P#show mpls	forwarding			
Local	Outgoing	Prefix	Outgoing	Next Hop	Bytes
Label	Label	or ID	Interface		Switched
64001	60003	SR Pfx (idx 0)	Hu0/0/0/2	191.22.1.2	532978

• Verify the statistics in PE2 router and ensure that the counter for the VPN label (24031 in this example) is increasing:

PE2:

Router-PE2# show mpls forwarding					
Local	Outgoing	Prefix	Outgoing	Next Hop	Bytes
Label	Label	or ID	Interface		Switched
24031	Aggregate	vrf1601: Per-VRF A	.ggr[V] \		
			vrf1601		501241

Also, refer Verify MPLS L3VPN Configuration, on page 29 for a detailed list of commands and sample outputs.

Implementing MPLS L3VPNs - References

MPLS L3VPN Benefits

MPLS L3VPN provides the following benefits:

- Service providers can deploy scalable VPNs and deliver value-added services.
- Connectionless service guarantees that no prior action is necessary to establish communication between hosts.
- Centralized Service: Building VPNs in Layer 3 permits delivery of targeted services to a group of users represented by a VPN.
- Scalability: Create scalable VPNs using connection-oriented and point-to-point overlays.
- Security: Security is provided at the edge of a provider network (ensuring that packets received from a customer are placed on the correct VPN) and in the backbone.
- Integrated Quality of Service (QoS) support: QoS provides the ability to address predictable performance and policy implementation and support for multiple levels of service in an MPLS VPN.
- Straightforward Migration: Service providers can deploy VPN services using a straightforward migration path.

• Migration for the end customer is simplified. There is no requirement to support MPLS on the CE router and no modifications are required for a customer intranet.

Major Components of MPLS L3VPN—Details

Virtual Routing and Forwarding Tables

Each VPN is associated with one or more VPN routing and forwarding (VRF) instances. A VRF defines the VPN membership of a customer site attached to a PE router. A VRF consists of the following components:

- An IP version 4 (IPv4) unicast routing table
- A derived FIB table
- A set of interfaces that use the forwarding table
- A set of rules and routing protocol parameters that control the information that is included in the routing table

These components are collectively called a VRF instance.

A one-to-one relationship does not necessarily exist between customer sites and VPNs. A site can be a member of multiple VPNs. However, a site can associate with only one VRF. A VRF contains all the routes available to the site from the VPNs of which it is a member.

Packet forwarding information is stored in the IP routing table and the FIB table for each VRF. A separate set of routing and FIB tables is maintained for each VRF. These tables prevent information from being forwarded outside a VPN and also prevent packets that are outside a VPN from being forwarded to a router within the VPN.

VPN Routing Information: Distribution

The distribution of VPN routing information is controlled through the use of VPN route target communities, implemented by BGP extended communities. VPN routing information is distributed as follows:

- When a VPN route that is learned from a CE router is injected into a BGP, a list of VPN route target extended community attributes is associated with it. Typically, the list of route target community extended values is set from an export list of route targets associated with the VRF from which the route was learned.
- An import list of route target extended communities is associated with each VRF. The import list defines
 route target extended community attributes that a route must have for the route to be imported into the
 VRF. For example, if the import list for a particular VRF includes route target extended communities
 A, B, and C, then any VPN route that carries any of those route target extended communities—A, B, or
 C—is imported into the VRF.

BGP Distribution of VPN Routing Information

A PE router can learn an IP prefix from the following sources:

- A CE router by static configuration
- An eBGP session with the CE router
- Open Shortest Path First (OSPF) and RIP as Interior Gateway Protocols (IGPs)

The IP prefix is a member of the IPv4 address family. After the PE router learns the IP prefix, the PE converts it into the VPN-IPv4 prefix by combining it with a 64-bit route distinguisher. The generated prefix is a member of the VPN-IPv4 address family. It uniquely identifies the customer address, even if the customer site is using globally nonunique (unregistered private) IP addresses. The route distinguisher used to generate the VPN-IPv4 prefix is specified by the **rd** command associated with the VRF on the PE router.

BGP distributes reachability information for VPN-IPv4 prefixes for each VPN. BGP communication takes place at two levels:

- Internal BGP (iBGP)-within the IP domain, known as an autonomous system.
- External BGP (eBGP)—between autonomous systems.

BGP propagates reachability information for VPN-IPv4 prefixes among PE routers by the BGP protocol extensions (see RFC 2283, Multiprotocol Extensions for BGP-4), which define support for address families other than IPv4. Using the extensions ensures that the routes for a given VPN are learned only by other members of that VPN, enabling members of the VPN to communicate with each other.

MPLS Forwarding

Based on routing information stored in the VRF IP routing table and the VRF FIB table, packets are forwarded to their destination using MPLS.

A PE router binds a label to each customer prefix learned from a CE router and includes the label in the network reachability information for the prefix that it advertises to other PE routers. When a PE router forwards a packet received from a CE router across the provider network, it labels the packet with the label learned from the destination PE router. When the destination PE router receives the labeled packet, it pops the label and uses it to direct the packet to the correct CE router. Label forwarding across the provider backbone is based on dynamic label switching. A customer data packet carries two levels of labels when traversing the backbone:

- The top label directs the packet to the correct PE router.
- The second label indicates how that PE router should forward the packet to the CE router.

Automatic Route Distinguisher Assignment

To take advantage of iBGP load balancing, every network VRF must be assigned a unique route distinguisher. VRF is require a route distinguisher for BGP to distinguish between potentially identical prefixes received from different VPNs.

With thousands of routers in a network each supporting multiple VRFs, configuration and management of route distinguishers across the network can present a problem. Cisco IOS XR software simplifies this process by assigning unique route distinguisher to VRFs using the **rd auto** command.

To assign a unique route distinguisher for each router, you must ensure that each router has a unique BGP router-id. If so, the **rd auto** command assigns a Type 1 route distinguisher to the VRF using the following format: *ip-address:number*. The IP address is specified by the BGP router-id statement and the number (which is derived as an unused index in the 0 to 65535 range) is unique across theVRFs.

Finally, route distinguisher values are checkpointed so that route distinguisher assignment to VRF is persistent across failover or process restart. If an route distinguisher is explicitly configured for a VRF, this value is not overridden by the autoroute distinguisher.

Layer 3 QinQ

The Layer 3 QinQ feature enables you to increase the number of VLAN tags in an interface and increment the number of subinterfaces up to 4094. Hence, with the dual tag, the number of VLANs can reach up to 4094*4094. You can enable this feature either on a physical interface or a bundle interface. When you cofigure this feature with the dual tag, interfaces check for IP addresses along with MAC addresses. Layer 3 QinQ is an extension of IEEE 802.1 QinQ VLAN tag stacking.

A dot1q VLAN subinterface is a virtual interface that is associated with a VLAN ID on a routed physical interface or a bundle interface. Subinterfaces divide the parent interface into two or more virtual interfaces on which you can assign unique Layer 3 parameters, such as IP addresses and dynamic routing protocols. The IP address for each subinterface must be in a different subnet from any other subinterface on the parent interface.

This feature supports:

- 802.1Q standards like 0x8100, 0x9100, 0x9200 (used as outer tag ether-type) and 0x8100 (used as inner tag ether-type).
- L3 802.1ad VLAN subinterfaces with 0x88a8 as the outer S-tag ether-type.
- Co-existence of Layer 2 and Layer 3 single tagged and double tagged VLANs.
- QinQ and dot1ad over ethernet bundle subinterfaces.

The Layer 3 QinQ feature allows you to provision quality of service (QoS), access lists (ACLs), bidirectional forwarding detection (BFD), NetFlow, routing protocols, IPv4 unicast and multicast, and IPv6 unicast and multicast.

Interface type	Outer tag	Inner tag
Dot1q subinterface	0x8100	None
QinQ subinterface	0x8100	0x8100
QinQ subinterface	0x88a8	0x8100
QinQ subinterface	0x9100	0x8100
QinQ subinterface	0x9200	0x8100

Types of Subinterfaces

Restrictions

- Only default VRF is supported.
- MPLS is not supported.

Configure Layer 3 QinQ

Configuration Example

Perform this task to configure the Layer 3 QinQ feature.

```
Router# configure
Router(config)# interface Bundle-Ether1000.3
Router(config-subif)# ipv4 address 192.0.2.1/24
Router(config-subif)# ipv6 address 2001:DB8::1/32
Router(config-subif)# ipv6 address 2001:DB8::2/32
Router(config-subif)# encapsulation dot1q 3 second-dot1q 4000
Router(config-subif)# commit
```

Running Configuration

This section shows the running configuration of Layer 3 QinQ.

```
configure
interface Bundle-Ether1000.3
ipv4 address 192.0.2.1/24
ipv6 address 2001:DB8::1/32
ipv6 address 2001:DB8::2/32
encapsulation dot1q 3 second-dot1q 4000
!
!
```

Verification

Verify Layer 3 QinQ configuration.

```
Router# show interfaces Bundle-Ether1000.3
Bundle-Ether1000.3 is up, line protocol is up
  Interface state transitions: 1
  Hardware is VLAN sub-interface(s), address is 0c75.bd30.1c88
  Internet address is 192.0.2.1/24
  MTU 1522 bytes, BW 30000000 Kbit (Max: 30000000 Kbit)
    reliability 255/255, txload 0/255, rxload 6/255
  Encapsulation 802.1Q Virtual LAN, VLAN Id 3, 2nd VLAN Id 4000,
  loopback not set,
  Last link flapped 19:30:41
  ARP type ARPA, ARP timeout 04:00:00
  Last input 00:00:00, output 00:01:59
  Last clearing of "show interface" counters never
  5 minute input rate 797298000 bits/sec, 844605 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     59288018302 packets input, 6995904900380 bytes, 0 total input drops
     0 drops for unrecognized upper-level protocol
     Received 2 broadcast packets, 516 multicast packets
     419 packets output, 54968 bytes, 0 total output drops
     Output 0 broadcast packets, 0 multicast packets
```

Related Topics

• Layer 3 QinQ, on page 58

I

Associated Commands

show interfaces