
Programmability Configuration Guide for Cisco NCS 540 Series Routers,
Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
First Published: 2024-03-14

Last Modified: 2024-09-04

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Drive Network Automation Using Programmable YANG Data Models 1C H A P T E R 1

YANG Data Model 2

Access the Data Models 9

CLI to Yang Mapping Tool 10

Communication Protocols 11

NETCONF Protocol 12

gRPC Protocol 12

YANG Actions 12

Use NETCONF Protocol to Define Network Operations with Data Models 17C H A P T E R 2

NETCONF Operations 20

Retrieve Default Parameters Using with-defaults Capability 24

Retrieve Transaction ID for NSO Operations 30

Set Router Clock Using Data Model in a NETCONF Session 32

Use gRPC Protocol to Define Network Operations with Data Models 37C H A P T E R 3

gRPC Operations 40

gRPC Network Management Interface 41

gRPC Network Operations Interface 41

gRPC Network Security Interface 42

How to Update gRPC-Level Authorization Policy 43

gRPC Authentication Modes 48

Certificate Common-Name For Dial-in Using gRPC Protocol 49

Configure Certificate Common Name For Dial-in 50

Configure Interfaces Using Data Models in a gRPC Session 51

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
iii

Enhancements to Data Models 59C H A P T E R 4

Improved YANG Input Validator and Get Requests 59

OpenConfig Data Model Enhancements 61

OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models 62

Automatic Resynchronization of OpenConfig Configuration 67

Unified Configuration Models 73C H A P T E R 5

Automation Scripts 81P A R T I

Achieve Network Operational Simplicity Using Automation Scripts 83C H A P T E R 6

Explore the Types of Automation Scripts 83

EEM Scripts 85C H A P T E R 7

Workflow to Run Event Scripts 86

Download the Script to the Router 87

Define Trigger Conditions for an Event 89

Create Actions for Events 91

Create a Policy Map of Events and Actions 92

View Operational Status of Event Scripts 93

Example: Shut Inactive Bundle Interfaces Using EEM Script 94

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
iv

Contents

C H A P T E R 1
Drive Network Automation Using Programmable
YANG Data Models

Typically, a network operation center is a heterogeneous mix of various devices at multiple layers of the
network. Such network centers require bulk automated configurations to be accomplished seamlessly. CLIs
are widely used for configuring and extracting the operational details of a router. But the general mechanism
of CLI scraping is not flexible and optimal. Small changes in the configuration require rewriting scripts
multiple times. Bulk configuration changes through CLIs are cumbersome and error-prone. These limitations
restrict automation and scale. To overcome these limitations, you need an automated mechanism to manage
your network.

Cisco IOS XR supports a programmatic way of configuring and collecting operational data of a network
device using data models. They replace the process of manual configuration, which is proprietary, and highly
text-based. The data models are written in an industry-defined language and is used to automate configuration
task and retrieve operational data across heterogeneous devices in a network. Although configurations using
CLIs are easier and human-readable, automating the configuration using model-driven programmability results
in scalability.

Model-driven programmability provides a simple, flexible and rich framework for device programmability.
This programmability framework provides multiple choices to interface with an IOS XR device in terms of
transport, protocol and encoding. These choices are decoupled from the models for greater flexibility.

The following image shows the layers in model-driven programmability:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
1

Figure 1: Model-driven Programmability Layers

Data models provides access to the capabilities of the devices in a network using Network Configuration
Protocol (NETCONF Protocol) or google-defined Remote Procedure Calls (gRPC Protocol). The operations
on the router are carried out by the protocols using YANG models to automate and programme operations in
a network.

Benefits of Data Models

Configuring routers using data models overcomes drawbacks posed by traditional router management because
the data models:

• Provide a common model for configuration and operational state data, and perform NETCONF actions.

• Use protocols to communicate with the routers to get, manipulate and delete configurations in a network.

• Automate configuration and operation of multiple routers across the network.

This article describes how you benefit from using data models to programmatically manage your network
operations.

• YANG Data Model, on page 2
• Access the Data Models, on page 9
• CLI to Yang Mapping Tool, on page 10
• Communication Protocols, on page 11
• YANG Actions, on page 12

YANG Data Model
A YANG module defines a data model through the data of the router, and the hierarchical organization and
constraints on that data. Each module is uniquely identified by a namespace URL. The YANGmodels describe
the configuration and operational data, perform actions, remote procedure calls, and notifications for network
devices.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
2

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model

The YANG models must be obtained from the router. The models define a valid structure for the data that is
exchanged between the router and the client. The models are used by NETCONF and gRPC-enabled
applications.

gRPC is supported only in 64-bit platforms.Note

• Cisco-specific models: For a list of supported models and their representation, see Native models.

• Common models: These models are industry-wide standard YANG models from standard bodies, such
as IETF and IEEE. These models are also called Open Config (OC) models. Like synthesized models,
the OC models have separate YANG models defined for configuration data and operational data, and
actions.

YANG models can be: For a list of supported OC models and their representation, see OC models.

All data models are stamped with semantic version 1.0.0 as baseline from release 7.0.1 and later.

For more details about YANG, refer RFC 6020 and 6087.

Data models handle the following types of requirements on routers (RFC 6244):

• Configuration data: A set of writable data that is required to transform a system from an initial default
state into its current state. For example, configuring entries of the IP routing tables, configuring the
interface MTU to use a specific value, configuring an ethernet interface to run at a given speed, and so
on.

• Operational state data:A set of data that is obtained by the system at runtime and influences the behavior
of the system in a manner similar to configuration data. However, in contrast to configuration data,
operational state data is transient. The data is modified by interactions with internal components or other
systems using specialized protocols. For example, entries obtained from routing protocols such as OSPF,
attributes of the network interfaces, and so on.

• Actions:A set of NETCONF actions that support robust network-wide configuration transactions.When
a change is attempted that affects multiple devices, the NETCONF actions simplify the management of
failure scenarios, resulting in the ability to have transactions that will dependably succeed or fail atomically.

For more information about Data Models, see RFC 6244.

YANG data models can be represented in a hierarchical, tree-based structure with nodes. This representation
makes the models easy to understand.

Each feature has a defined YANG model, which is synthesized from schemas. A model in a tree format
includes:

• Top level nodes and their subtrees

• Subtrees that augment nodes in other YANG models

• Custom RPCs

YANG defines four node types. Each node has a name. Depending on the node type, the node either defines
a value or contains a set of child nodes. The nodes types for data modeling are:

• leaf node - contains a single value of a specific type

• leaf-list node - contains a sequence of leaf nodes

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
3

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/
https://github.com/openconfig/public/tree/master/release/models

• list node - contains a sequence of leaf-list entries, each of which is uniquely identified by one or more
key leaves

• container node - contains a grouping of related nodes that have only child nodes, which can be any of
the four node types

Structure of LLDP Data Model

The Link Layer Discovery Protocol (LLDP) data model is represented in the following structure:
$ cat Cisco-IOS-XR-ethernet-lldp-cfg.yang
module Cisco-IOS-XR-ethernet-lldp-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns"+
"/yang/Cisco-IOS-XR-ethernet-lldp-cfg";

prefix "ethernet-lldp-cfg";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import cisco-semver { prefix "semver"; }

import Cisco-IOS-XR-ifmgr-cfg { prefix "a1"; }

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";

contact
"Cisco Systems, Inc.
Customer Service

Postal: 170 West Tasman Drive
San Jose, CA 95134

Tel: +1 800 553-NETS

E-mail: cs-yang@cisco.com";

description
"This module contains a collection of YANG definitions
for Cisco IOS-XR ethernet-lldp package configuration.

This module contains definitions
for the following management objects:
lldp: Enable LLDP, or configure global LLDP subcommands

This YANG module augments the
Cisco-IOS-XR-ifmgr-cfg

module with configuration data.

Copyright (c) 2013-2019 by Cisco Systems, Inc.
All rights reserved.";

revision "2019-04-05" {
description
"Establish semantic version baseline.";

semver:module-version "1.0.0";
}

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
4

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model

revision "2017-05-01" {
description
"Fixing backward compatibility error in module.";

}

revision "2015-11-09" {
description
"IOS XR 6.0 revision.";

}

container lldp {
description "Enable LLDP, or configure global LLDP subcommands";

container tlv-select {
presence "Indicates a tlv-select node is configured.";
description "Selection of LLDP TLVs to disable";

container system-name {
description "System Name TLV";
leaf disable {
type boolean;
default "false";
description "disable System Name TLV";

}
}

container port-description {
description "Port Description TLV";
leaf disable {
type boolean;
default "false";
description "disable Port Description TLV";

}
}

.......................... (snipped)
container management-address {
description "Management Address TLV";
leaf disable {
type boolean;
default "false";
description "disable Management Address TLV";

}
}
leaf tlv-select-enter {
type boolean;
mandatory true;
description "enter lldp tlv-select submode";

}
}
leaf holdtime {
type uint32 {
range "0..65535";

}
description
"Length of time (in sec) that receiver must
keep this packet";

.......................... (snipped)
}

augment "/a1:interface-configurations/a1:interface-configuration" {

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
5

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model

container lldp {
presence "Indicates a lldp node is configured.";
description "Disable LLDP TX or RX";

.......................... (snipped)
description
"This augment extends the configuration data of
'Cisco-IOS-XR-ifmgr-cfg'";

}
}

The structure of a data model can be explored using a YANG validator tool such as pyang and the
data model can be formatted in a tree structure.

LLDP Configuration Data Model

The following example shows the LLDP interface manager configuration model in tree format.
module: Cisco-IOS-XR-ethernet-lldp-cfg

+--rw lldp
+--rw tlv-select!
| +--rw system-name
| | +--rw disable? boolean
| +--rw port-description
| | +--rw disable? boolean
| +--rw system-description
| | +--rw disable? boolean
| +--rw system-capabilities
| | +--rw disable? boolean
| +--rw management-address
| | +--rw disable? boolean
| +--rw tlv-select-enter boolean
+--rw holdtime? uint32
+--rw enable-priority-addr? boolean
+--rw extended-show-width? boolean
+--rw enable-subintf? boolean
+--rw enable-mgmtintf? boolean
+--rw timer? uint32
+--rw reinit? uint32
+--rw enable? boolean

module: Cisco-IOS-XR-ifmgr-cfg
+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations

+--rw interface-configuration* [active interface-name]
+--rw dampening
| +--rw args? enumeration
| +--rw half-life? uint32
| +--rw reuse-threshold? uint32
| +--rw suppress-threshold? uint32
| +--rw suppress-time? uint32
| +--rw restart-penalty? uint32
+--rw mtus
| +--rw mtu* [owner]
| +--rw owner xr:Cisco-ios-xr-string
| +--rw mtu uint32
+--rw encapsulation
| +--rw encapsulation? string
| +--rw capsulation-options? uint32
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
6

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model

https://github.com/mbj4668/pyang

+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ethernet-lldp-cfg:lldp!

+--rw ethernet-lldp-cfg:transmit
| +--rw ethernet-lldp-cfg:disable? boolean
+--rw ethernet-lldp-cfg:receive
| +--rw ethernet-lldp-cfg:disable? boolean
+--rw ethernet-lldp-cfg:lldp-intf-enter boolean
+--rw ethernet-lldp-cfg:enable? Boolean

.......................... (snipped)

LLDP Operational Data Model

The following example shows the Link Layer Discovery Protocol (LLDP) interface manager
operational model in tree format.
$ pyang -f tree Cisco-IOS-XR-ethernet-lldp-oper.yang
module: Cisco-IOS-XR-ethernet-lldp-oper

+--ro lldp
+--ro global-lldp
| +--ro lldp-info
| +--ro chassis-id? string
| +--ro chassis-id-sub-type? uint8
| +--ro system-name? string
| +--ro timer? uint32
| +--ro hold-time? uint32
| +--ro re-init? uint32
+--ro nodes

+--ro node* [node-name]
+--ro neighbors
| +--ro devices
| | +--ro device*

.......................... (snipped)

notifications:
+---n lldp-event

+--ro global-lldp
| +--ro lldp-info
| +--ro chassis-id? string
| +--ro chassis-id-sub-type? uint8
| +--ro system-name? string
| +--ro timer? uint32
| +--ro hold-time? uint32
| +--ro re-init? uint32
+--ro nodes

+--ro node* [node-name]
+--ro neighbors
| +--ro devices
| | +--ro device*
| | +--ro device-id? string
| | +--ro interface-name? xr:Interface-name
| | +--ro lldp-neighbor*
| | +--ro detail
| | | +--ro network-addresses
| | | | +--ro lldp-addr-entry*
| | | | +--ro address

.......................... (snipped)
+--ro interfaces
| +--ro interface* [interface-name]
| +--ro interface-name xr:Interface-name
| +--ro local-network-addresses
| | +--ro lldp-addr-entry*
| | +--ro address

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
7

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model

| | | +--ro address-type? Lldp-l3-addr-protocol
| | | +--ro ipv4-address? inet:ipv4-address
| | | +--ro ipv6-address? In6-addr
| | +--ro ma-subtype? uint8
| | +--ro if-num? uint32
| +--ro interface-name-xr? xr:Interface-name
| +--ro tx-enabled? uint8
| +--ro rx-enabled? uint8
| +--ro tx-state? string
| +--ro rx-state? string
| +--ro if-index? uint32
| +--ro port-id? string
| +--ro port-id-sub-type? uint8
| +--ro port-description? string

.......................... (snipped)

Components of a YANG Module

A YANG module defines a single data model. However, a module can reference definitions in other modules
and sub-modules by using one of these statements:

The YANG models configure a feature, retrieve the operational state of the router, and perform actions.

• import imports external modules

• include includes one or more sub-modules

• augment provides augmentations to another module, and defines the placement of new nodes in the data
model hierarchy

• when defines conditions under which new nodes are valid

• prefix references definitions in an imported module

The gRPC YANG path or JSON data is based on YANG module name and not YANG namespace.Note

YANG Module Set

You can provide structured, protocol-driven access to a network management configuration and its state
information using YANG models. By default, all YANG models (native and OpenConfig) are accessible.
You can activate a desired module-set using the yang-server module-set command to access a specific set
of YANG modules.

Configure YANG Module Set

To activate a specific set of YANG module, use the yang-server module-set command.
Router# config
Router(config)# yang-server module-set XR-only
Router# end

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
8

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model

Access the Data Models
You can access the Cisco IOS XR native and OpenConfig data models from GitHub, a software development
platform that provides hosting services for version control.

CLI-based YANG data models, also known as unified configuration models were introduced in Cisco IOS
XR, Release 7.0.1. The new set of unified YANG config models are built in alignment with the CLI commands.

You can also access the supported data models from the router. The router ships with the YANG files that
define the data models. Use NETCONF protocol to view the data models available on the router using
ietf-netconf-monitoring request.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas/>
</netconf-state>

</filter>
</get>
</rpc>

All the supported YANG models are displayed as response to the RPC request.

<rpc-reply message-id="16a79f87-1d47-4f7a-a16a-9405e6d865b9"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas>
<schema>

<identifier>Cisco-IOS-XR-crypto-sam-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>
<schema>

<identifier>Cisco-IOS-XR-crypto-sam-oper-sub1</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>
<schema>

<identifier>Cisco-IOS-XR-snmp-agent-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-snmp-agent-oper</namespace>
<location>NETCONF</location>

</schema>

------------<snipped>--------------
<schema>

<identifier>openconfig-aft-types</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/fib-types</namespace>
<location>NETCONF</location>

</schema>
<schema>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
9

Drive Network Automation Using Programmable YANG Data Models
Access the Data Models

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
https://github.com/openconfig/public/tree/master/release/models

<identifier>openconfig-mpls-ldp</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/ldp</namespace>
<location>NETCONF</location>

</schema>
</schemas>
</netconf-state>
------------<truncated>--------------

CLI to Yang Mapping Tool
Table 1: Feature History Table

DescriptionRelease InformationFeature Name

This tool provides a quick reference
for IOS XR CLIs and a
corresponding YANG data model
that could be used.

New command introduced for this
feature: yang describe

Release 7.4.1CLI to YANG Mapping Tool

Starting fromRelease 7.11.1, the command yang-describe in the Command Line Interface (CLI) is deprecated.Note

CLI commands are widely used for configuring and extracting the operational details of a router. But bulk
configuration changes through CLIs are cumbersome and error-prone. These limitations restrict automation
and scale. To overcome these limitations, you need an automated mechanism to manage your network. Cisco
IOS XR supports a programmatic way of configuring and collecting operational data of a router using Yang
data models. However, owing to the large number of CLI commands, it is cumbersome to determine the
mapping between the CLI command and its associated data model.

The CLI to Yang describer tool is a component in the IOS XR software. It helps in mapping the CLI command
with its equivalent data models. With this tool, network automation using data models can be adapted with
ease.

The tool simulates the CLI command and displays the following data:

• Yang model mapping to the CLI command

• List of the associated sensor paths

To retrieve the Yang equivalent of a CLI, use the following command:
Router#yang-describe ?
configuration Describe configuration commands(cisco-support)
operational Describe operational commands(cisco-support)

The tool supports description of both operational and configurational commands.

Example: Configuration Data

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
10

Drive Network Automation Using Programmable YANG Data Models
CLI to Yang Mapping Tool

In the following example, the Yang paths for configuring the MPLS label range with minimum and
maximum static values are displayed:
Router#yang-describe configuration mpls label range table 0 34000 749999 static 34000 99999
Mon May 10 12:37:27.192 UTC
YANG Paths:
Cisco-IOS-XR-um-mpls-lsd-cfg:mpls/label/range/table-0
Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range
Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/minvalue
Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/max-value

Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/min-static-value

Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/max-static-value

In the following example, the Yang paths for configuring the gRPC address are displayed:
Router#yang-describe configuration grpc address-family ipv4
Mon May 10 12:39:56.652 UTC
YANG Paths:
Cisco-IOS-XR-man-ems-cfg:grpc/enable
Cisco-IOS-XR-man-ems-cfg:grpc/address-family

Example: Operational Data

The operational data includes support for the show CLI commands.

The example shows the Yang paths to retrieve the operational data for MPLS interfaces:
Router#yang-describe operational show mpls interfaces
Mon May 10 12:34:05.198 UTC
YANG Paths:
Cisco-IOS-XR-mpls-lsd-oper:mpls-lsd/interfaces/interface

The following example shows the Yang paths to retrieve the operational data for Virtual Router
Redundancy Protocol (VRRP):
Router#yang-describe operational show vrrp brief
Mon May 10 12:34:38.041 UTC
YANG Paths:
Cisco-IOS-XR-ipv4-vrrp-oper:vrrp/ipv4/virtual-routers/virtual-router
Cisco-IOS-XR-ipv4-vrrp-oper:vrrp/ipv6/virtual-routers/virtual-router

Communication Protocols
Communication protocols establish connections between the router and the client. The protocols help the
client to consume the YANG data models to, in turn, automate and programme network operations.

YANG uses one of these protocols:

• Network Configuration Protocol (NETCONF)

• RPC framework (gRPC) by Google

gRPC is supported only in 64-bit platforms.Note

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
11

Drive Network Automation Using Programmable YANG Data Models
Communication Protocols

The transport and encoding mechanisms for these two protocols are shown in the table:

Encoding/ DecodingTransportProtocol

xmlsshNETCONF

jsonhttp/2gRPC

NETCONF Protocol
NETCONF provides mechanisms to install, manipulate, or delete the configuration on network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as well as
protocol messages. You use a simple NETCONFRPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. To get started with issuing NETCONF RPCs to configure
network features using data models

gRPC Protocol
gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure by defining protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs. To get started with issuing NETCONF RPCs to configure network features using
data models

gRPC is supported only in 64-bit platforms.Note

YANG Actions
IOS XR actions are RPC statements that trigger an operation or execute a command on the router. Theses
actions are defined as YANG models using RPC statements. An action is executed when the router receives
the corresponding NETCONF RPC request. Once the router executes an action, it replies with a NETCONF
RPC response.

For example, ping command is a supported action. That means, a YANG model is defined for the ping
command using RPC statements. This command can be executed on the router by initiating the corresponding
NETCONF RPC request.

NETCONF supports XML format, and gRPC supports JSON format.Note

The following table shows a list of actions. For the full list of supported actions, query the device or see the
YANG Data Models Navigator.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
12

Drive Network Automation Using Programmable YANG Data Models
NETCONF Protocol

https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

YANG ModelsActions

Cisco-IOS-XR-syslog-actlogmsg

Cisco-IOS-XR-snmp-test-trap-actsnmp

Cisco-IOS-XR-cfgmgr-rollback-actrollback

Cisco-IOS-XR-isis-actclear isis

Cisco-IOS-XR-ipv4-bgp-actclear bgp

Example: PING NETCONF Action

This use case shows the IOS XR NETCONF action request to run the ping command on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<destination>
<destination>1.2.3.4</destination>
</destination>
</ping>
</rpc>

This section shows the NETCONF action response from the router.

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping-response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<ipv4>
<destination>1.2.3.4</destination>
<repeat-count>5</repeat-count>
<data-size>100</data-size>
<timeout>2</timeout>
<pattern>0xabcd</pattern>
<rotate-pattern>0</rotate-pattern>
<reply-list>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
</reply-list>
<hits>5</hits>
<total>5</total>
<success-rate>100</success-rate>
<rtt-min>1</rtt-min>
<rtt-avg>1</rtt-avg>
<rtt-max>1</rtt-max>
</ipv4>
</ping-response>
</rpc-reply>

Example: XR Process Restart Action

This example shows the process restart action sent to NETCONF agent.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<sysmgr-process-restart xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-sysmgr-act">

<process-name>processmgr</process-name>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
13

Drive Network Automation Using Programmable YANG Data Models
YANG Actions

<location>0/RP0/CPU0</location>
</sysmgr-process-restart>

</rpc>

This example shows the action response received from the NETCONF agent.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Example: Copy Action

This example shows the RPC request and response for copy action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<copy xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">
<sourcename>//root:<location>/100MB.txt</sourcename>
<destinationname>/</destinationname>
<sourcefilesystem>ftp:</sourcefilesystem>
<destinationfilesystem>harddisk:</destinationfilesystem>
<destinationlocation>0/RSP1/CPU0</destinationlocation>

</copy>
</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">Successfully
completed copy operation</response>
</rpc-reply>

8.261830565s elapsed

Example: Delete Action

This example shows the RPC request and response for delete action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<delete xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">

<name>harddisk:/netconf.txt</name>
</delete>

</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">Successfully
completed delete operation</response>
</rpc-reply>

395.099948ms elapsed

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
14

Drive Network Automation Using Programmable YANG Data Models
YANG Actions

Example: Install Action

This example shows the Install action request sent to NETCONF agent.

<install-add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-spirit-install-act">
<packagepath>/nobackup/hanaik/yang_project/img-xrv9k</packagepath>
<packagename>xrv9k-mpls-2.1.0.0-r64102I.x86_64.rpm</packagename>

</install-add>

This example shows the Install action response received from NETCONF agent.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<op-id xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-spirit-install-act">6</op-id>
</rpc-reply>

This example shows how to use install add rpc request with multiple packages enclosed within packagename
tag.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<install-add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-spirit-install-act">

<packagepath>http://10.105.227.154/install_repo/fretta/651/651_02</packagepath>
<packagename>ncs540-k9sec-1.0.0.0-r632.x86_64.rpm</packagename>
<packagename>ncs540-li-1.0.0.0-r632.x86_64.rpm</packagename>
<packagename>ncs540-mcast-1.0.0.0-r632.x86_64.rpm</packagename>
<packagename>ncs5500-mini-x.iso-6.5.1.02Incs540-mini-x.iso-6.3.2</packagename>
<packagename>ncs540-mpls-1.0.0.0-r632.x86_64.rpm</packagename>

</install-add>
</rpc>

Restrictions for Install Action

• Install upgrade command is deprecated. Hence, use install update command instead of the install
upgrade command.

• Only one request can be sent at a time.

• ISSU is not supported.

• Install Yang using NETCONF action can accept a maximum of 32 input parameters. Input parameters
can be any inputs used in install action commands, such as package names to add, activate, deactivate,
or remove, and operation IDs to retrieve any particular log related to that operation.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
15

Drive Network Automation Using Programmable YANG Data Models
YANG Actions

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
16

Drive Network Automation Using Programmable YANG Data Models
YANG Actions

C H A P T E R 2
Use NETCONF Protocol to Define Network
Operations with Data Models

Table 2: Feature History Table

DescriptionRelease InformationFeature Name

Cisco IOSXR supports NETCONF
1.0 and 1.1 programmable
management interfaces. With this
release, a client can choose to
establish a NETCONF 1.0 or 1.1
session using a separate interface
for both these formats. This
enhancement provides a secure
channel to operate the network with
both interface specifications.

Release 7.3.1Unified NETCONFV1.0 andV1.1

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

Network Configuration Protocol (NETCONF) is a standard transport protocol that communicates with network
devices. NETCONF provides mechanisms to edit configuration data and retrieve operational data from network
devices. The configuration data represents the way interfaces, routing protocols and other network features
are provisioned. The operational data represents the interface statistics, memory utilization, errors, and so on.

NETCONF uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as
well as protocol messages. It uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router. NETCONF defines how to communicate
with the devices, but does not handle what data is exchanged between the client and the server.

NETCONF Session

A NETCONF session is the logical connection between a network configuration application (client) and a
network device (router). The configuration attributes can be changed during any authorized session; the effects
are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a hello message, where features and capabilities are announced. At the end of

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
17

each message, the NETCONF agent sends the]]>]]> marker. Sessions are terminated using close or kill
messages.

Cisco IOS XR supports NETCONF 1.0 and 1.1 programmable management interfaces that are handled using
two separate interfaces. From IOS XR, Release 7.3.1, a client can choose to establish a NETCONF 1.0 or 1.1
session using an interface for both these formats. A NETCONF proxy process waits for the hello message
from its peer. If the proxy does not receive a hello message within the timeout period, it sends a NETCONF
1.1 hello message.
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability
--snip--
</capabilities>
<session-id>5</session-id>
</hello>]]>]]>

The following examples show the hello messages for the NETCONF versions:

netconf-xml agent listens on port 22

netconf-yang agent listens on port 830

Version 1.0 The NETCONF XML agent accepts the message.
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
</capabilities>
</hello>

Version 1.1 The NETCONF YANG agent accepts the message.
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>
</capabilities>
</hello>

Using NETCONF 1.1, the RPC requests begin with #<number> and end with ##. The number indicates how
many bytes that follow the request.

Example:
#371
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<filter>
<isis xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-clns-isis-oper">
<instances>
<instance>
<neighbors/>
<instance-name/>

</instance>
</instances>

</isis>
</filter>

</get>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
18

Use NETCONF Protocol to Define Network Operations with Data Models

</rpc>

##

Configure NETCONF Agent

To configure a NETCONF TTY agent, use the netconf agent tty command. In this example, you configure
the throttle and session timeout parameters:
netconf agent tty

throttle (memory | process-rate)
session timeout

To enable the NETCONF SSH agent, use the following command:
ssh server v2
netconf-yang agent ssh

NETCONF Layers

NETCONF protocol can be partitioned into four layers:

Figure 2: NETCONF Layers

• Content layer: includes configuration and notification data

• Operations layer: defines a set of base protocol operations invoked as RPCmethods with XML-encoded
parameters

• Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

• Secure Transport layer: provides a communication path between the client and the server

For more information about NETCONF, refer RFC 6241.

This article describes, with a use case to configure the local time on a router, how data models help in a faster
programmatic configuration as compared to CLI.

• NETCONF Operations, on page 20
• Retrieve Default Parameters Using with-defaults Capability, on page 24
• Retrieve Transaction ID for NSO Operations, on page 30
• Set Router Clock Using Data Model in a NETCONF Session, on page 32

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
19

Use NETCONF Protocol to Define Network Operations with Data Models

NETCONF Operations
NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive
commands.

The base protocol includes the following NETCONF operations:

| +--get-config
| +--edit-Config
| +--merge
| +--replace
| +--create
| +--delete
| +--remove
| +--default-operations
| +--merge
| +--replace
| +--none
| +--get
| +--lock
| +--unLock
| +--close-session
| +--kill-session

These NETCONF operations are described in the following table:

ExampleDescriptionNETCONF
Operation

Retrieve specific interface configuration details from
running configuration using filter option

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter>
<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg"\>
<interface-configuration>
<active>act</active>
<interface-name>TenGigE0/0/0/2</interface-name>
</interface-configuration>
</interface-configurations>
</filter>
</get-config>
</rpc>

Retrieves all or part of a specified
configuration from a named data
store

<get-config>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
20

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Retrieve all acl configuration and device state
information.

Request:
<get>
<filter>
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-oper"/>
</filter>
</get>

Retrieves running configuration
and device state information

<get>

Configure ACL configs using Merge operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target><candidate/></target>
<config
xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-cfg"
xc:operation=”merge”>

<accesses>
<access>
<access-list-name>aclv4-1</access-list-name>
<access-list-entries>
<access-list-entry>
<sequence-number>10</sequence-number>
<remark>GUEST</remark>
</access-list-entry>
<access-list-entry>
<sequence-number>20</sequence-number>
<grant>permit</grant>
<source-network>
<source-address>172.0.0.0</source-address>
<source-wild-card-bits>0.0.255.255</source-wild-card-bits>
</source-network>
</access-list-entry>
</access-list-entries>
</access>
</accesses>
</ipv4-acl-and-prefix-list>
</config>
</edit-config>
</rpc>

Commit:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Loads all or part of a specified
configuration to the specified
target configuration

<edit-config>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
21

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Lock the running configuration.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>

Response :
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Allows the client to lock the
entire configuration datastore
system of a device

<lock>

Lock and unlock the running configuration from the same
session.
Request:
rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

Response -
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

• The specified lock is not
currently active.

• The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

<Unlock>

Close a NETCONF session.
Request :
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

<close-session>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
22

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Terminate a session if the ID is other session ID.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<kill-session>
<session-id>4</session-id>
</kill-session>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Terminates operations currently
in process, releases locks and
resources associated with the
session, and close any associated
connections.

<kill-session>

The system admin models support <get> and <get-config> operations, and only <edit-config> operations
with the <merge> operation. The other operations such as <delete>, <remove>, and <replace> are not supported
for the system admin models.

Note

NETCONF Operation to Get Configuration

This example shows how a NETCONF <get-config> request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

Netconf Response (Router to Client)Netconf Request (Client to Router)

<?xml version="1.0"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<lldp

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ethernet-lldp-cfg">

<timer>60</timer>
<enable>true</enable>
<reinit>3</reinit>
<holdtime>150</holdtime>
</lldp>

</data>
</rpc-reply>
319 bytes received
6.409561ms elapsed

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source><running/></source>
<filter>
<lldp

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ethernet-lldp-cfg"/>

</filter>
</get-config>
</rpc>

The <rpc> element in the request and response messages enclose a NETCONF request sent between
the client and the router. The message-id attribute in the <rpc> element is mandatory. This attribute
is a string chosen by the sender and encodes an integer. The receiver of the <rpc> element does not
decode or interpret this string but simply saves it to be used in the <rpc-reply> message. The sender

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
23

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations

must ensure that the message-id value is normalized. When the client receives information from the
server, the <rpc-reply> message contains the same message-id.

Retrieve Default Parameters Using with-defaults Capability
NETCONF servers report default data nodes in response to RPC requests in the following ways:

• report-all: All data nodes are reported

• trim: Data nodes set to the YANG default aren't reported

• explicit: Data nodes set to the YANG default by the client are reported

Cisco IOS XR routers support only the explicit basic mode. A server that uses this mode must consider any
data node that isn’t explicitly set to be the default data.

As per RFC 6243, the router supports <with-defaults> capability to retrieve the default parameters of
configuration and state data node using a NETCONF protocol operation. The <with-defaults> capability
indicates which default-handling basic mode is supported by the server. It also indicates support for additional
retrieval modes. These retrieval modes allow a NETCONF client to control whether the server returns the
default data.

By default, <with-defaults> capability is disabled. To enable this capability, use the following command in
Config mode:
netconf-yang agent
ssh
with-defaults-support enable
!

Once enabled, the capability is applied to all netconf-yang requests.

After enabling, the router must return the new capability as:
urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults:1.0?basic-mode=explicit

The <get>, <get-config>, <copy-config> and ,<edit-config> operations support with-defaults capability.

Example 1: Create Operation

A valid create operation attribute for a data node that is set by the server to its schema default value must
succeed. It is set or used by the device whenever the NETCONF client does not provide a specific value for
the relevant data node. In the following example, an edit-config request is sent to create a configuration:

<edit-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:43efc290-c312-4df0-bb1b-a6e0bf8aac50">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
24

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability

<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>
</config>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Commit the configuration.

[host 172.x.x.x session-id 2985924161] Requesting 'Commit'
[host 172.x.x.x session-id 2985924161] Sending:
<?xml version="1.0" encoding="UTF-8"?><nc:rpc
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:295eff87-1fb6-4f84-bb7d-c40b268eab1b"><nc:commit/></nc:rpc>

[host 172.x.x.x session-id 2985924161] Received:
<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:295eff87-1fb6-4f84-bb7d-c40b268eab1b"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
CREATE operation completed

A create operation attribute for a data node that has been set by a client to its schema default value must fail
with a data-exists error tag. The client can only create a default node that was not previously created by it.
Else, the operation is rejected with the data-exists message.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1f29267f-7593-4a3c-8382-6ab9bec323ca">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>
</config>

</subinterface>
</subinterfaces>
</interface>
</interfaces>

</config>
</edit-config>
</rpc>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
25

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability

[host 172.x.x.x session-id 2985924161] Received:
<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:1f29267f-7593-4a3c-8382-6ab9bec323ca"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<error-type>application</error-type>
<error-tag>data-exists</error-tag>
<error-severity>error</error-severity>
<error-path

xmlns:ns1="http://openconfig.net/yang/interfaces">ns1:interfaces/ns1:interface[name =
'TenGigE0/0/0/0']/ns1:subinterfaces/ns1:subinterface[index = '2']/ns1:config</error-path>
</rpc-error>
</rpc-reply>

Example 2: Delete Operation

A valid delete operation attribute for a data node set by a client to its schema default value must succeed.
Whereas a valid delete operation attribute for a data node set by the server to its schema default value fails
with a data-missing error tag.

<edit-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface xc:operation="delete">
<index>2</index>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<error-type>application</error-type>
<error-tag>data-missing</error-tag>
<error-severity>error</error-severity>
<error-path xmlns:ns1="http://openconfig.net/yang/interfaces">ns1:interfaces/ns1:
interface[name = 'TenGigE0/0/0/0']/ns1:subinterfaces/ns1:subinterface[index =
'2']/ns1:config</error-path></rpc-error>
</rpc-reply>

Example 3: Copy Configuration

In the following example, a copy-config request is sent to copy a configuration.

<copy-config> request sent to the NETCONF agent:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
26

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<candidate/>
</target>
<source>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
</config>
</subinterface>
</subinterfaces>
</interface>

</interfaces>
</config>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
</copy-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>

</rpc>

The show run command shows the copied configuration.
Router#show run
<data and time stamp>
Building configuration...
!! IOS XR Configuration 7.2.1
!! Last configuration change at <data and time stamp> by root
!
interface TenGigE0/0/0/0.2
!
end

Example 4: Get Configuration

The following example shows a get-config request with explicit mode to query the default parameters
from the oc-interfaces.yang data model. The client gets the configuration values of what it sets.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:63a49626-9f90-4ebe-89fd-741410cddf29">
<get-config>
<source>
<running/>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">
<interfaces xmlns="http://openconfig.net/yang/interfaces"/>
</filter>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
27

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability

</get-config>
</rpc>

<get-config> response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:99d8b2d0-ab05-474a-bc02-9242ba511308"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
<enabled>false</enabled>
</config>

<ipv6 xmlns="http://openconfig.net/yang/interfaces/ip">
<config>

<enabled>false</enabled>
</config>
</ipv6>

</subinterface>
</subinterfaces>
</interface>

<interface>
<name>MgmtEth0/RSP0/CPU0/0</name>
<config>
<name>MgmtEth0/RSP0/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>

</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>

<subinterfaces>
<subinterface>
<index>0</index>
<ipv4 xmlns="http://openconfig.net/yang/interfaces/ip">
<addresses>
<address>
<ip>172.xx.xx.xx</ip>
<config>
<ip>172.xx.xx.xx</ip>
<prefix-length>24</prefix-length>
</config>

</address>
</addresses>
</ipv4>
</subinterface>
</subinterfaces>
</interface>
<interface>
<name>MgmtEth0/RSP1/CPU0/0</name>
<config>
<name>MgmtEth0/RSP1/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>
<enabled>false</enabled>

</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
28

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability

<config>
<auto-negotiate>false</auto-negotiate>

</config>
</ethernet>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Example 5: Get Operation

The following example shows a get request with explicit mode to query the default parameters from the
oc-interfaces.yang data model.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:d8e52f0f-ceac-4193-89f6-d377ab8292d5">
<get>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<state/>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</filter>
</get>
</rpc>

<get> response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:933df011-191f-4f31-9549-c4f7f6edd291"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<state>
<index>2</index>
<name>TenGigE0/0/0/0.2</name>
<enabled>false</enabled>
<admin-status>DOWN</admin-status>
<oper-status>DOWN</oper-status>
<last-change>0</last-change>
<counters>
<in-unicast-pkts>0</in-unicast-pkts>
<in-pkts>0</in-pkts>
<in-broadcast-pkts>0</in-broadcast-pkts>
<in-multicast-pkts>0</in-multicast-pkts>
<in-octets>0</in-octets>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
29

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability

<out-unicast-pkts>0</out-unicast-pkts>
<out-broadcast-pkts>0</out-broadcast-pkts>
<out-multicast-pkts>0</out-multicast-pkts>
<out-pkts>0</out-pkts>
<out-octets>0</out-octets>
<out-discards>0</out-discards>
<in-discards>0</in-discards>
<in-unknown-protos>0</in-unknown-protos>
<in-errors>0</in-errors>
<in-fcs-errors>0</in-fcs-errors>
<out-errors>0</out-errors>
<carrier-transitions>0</carrier-transitions>
<last-clear>2020-03-02T15:35:30.927+00:00</last-clear>
</counters>
<ifindex>92</ifindex>
<logical>true</logical>
</state>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Retrieve Transaction ID for NSO Operations
Table 3: Feature History Table

DescriptionRelease InformationFeature Name

The network orchestrator is a
central point of management for the
network and typical workflow
involves synchronizing the
configuration states of the routers
it manages. Loading configurations
for comparing the states involves
unnecessary data and subsequent
comparisons are load intensive.
This feature synchronizes the
configuration states between the
orchestrator and the router using a
unique commit ID that the router
maintains for each configuration
commit. The orchestrator retrieves
this commit ID from the router
using NETCONF Remote
Procedure Calls (RPCs) to identify
whether the router has the latest
configuration.

Release 7.4.1Unique Commit ID for
Configuration State

Cisco Network Services Orchestrator (NSO) is a data model-driven platform for automating your network
orchestration. NSO uses NETCONF-based Network Element Drivers (NED) to synchronize the configuration

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
30

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Transaction ID for NSO Operations

states of the routers it manages. NEDs comprise of the network-facing part of NSO and communicate over
the native protocol supported by the router, such as Network Configuration Protocol (NETCONF).

IOS XR configuration manager maintains commit IDs (also known as the transaction IDs) for each commit
operation. The manageability interfaces use these IDs. Currently, the operational data model provides a list
of up to 100 last commits for NETCONF requests. The YANG client querying the last commit ID collects
the entire list and finds the latest ID. Loading configurations for comparison to the orchestrator's configuration
state can involve huge redundant data. The subsequent comparisons are also load intensive.

To overcome these limitations, the router maintains a unique last commit ID that is ideal for NSO operations.
This ID indicates the latest configuration state on the router. The ID provides a one-step operation and increases
the performance of configuration updates for the orchestrator.

An augmented configuration manageability model Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper
provides a single last-commit-id for the unique commit state. This model is available as part of the base
package.

The following table lists the synchronization support between NSO and the IOS XR variants:

64-bit Routers (Releases 7.4.1 and
Later)

64-bit Routers (Releases Earlier
than 7.4.1)

Entity

YesYescfgmgr

YesYessysadmin

YesNocfgmgr-aug

cfgmgr-augNALeaf Data

YesNoCheck synchronization (NSO
functionality from release 7.4.1 and
later)

Where:

• commit-id represents
Cisco-IOS-XR-config-cfgmgr-exec-oper:config-manager/global/config-commit/commits/commit/commit-id

• cfgmgr is the XR configuration manager

• sysadmin represents the Cisco-IOS-XR-sysadmin-system data model

• cfgmgr-aug represents the Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper data model

The last commit ID is obtained from the configuration manager. The following example shows a sample
NETCONF request and response to retrieve the commit ID:

Request:
<rpc message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter type="subtree">
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper"/>
</config-commit>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
31

Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Transaction ID for NSO Operations

</global>
</config-manager>

</filter>
</get>
</rpc>

Response:
<rpc-reply message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper">
XR:1000000009;Admin:1595-891537-949905</last-commit-id>

</config-commit>
</global>
</config-manager>
</data>
</rpc-reply>

Set Router Clock Using Data Model in a NETCONF Session
The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using NETCONF communication protocol.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Note

The following image shows the tasks involved in using data models.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
32

Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session

Figure 3: Process for Using Data Models

In this section, you use native data models to configure the router clock and verify the clock state using a
NETCONF session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
33

Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session

Figure 4: Network Topology for gRPC session

You use Cisco IOS XR native models Cisco-IOS-XR-infra-clock-linux-cfg.yang and
Cisco-IOX-XR-shellutil-oper to programmatically configure the router clock. You can explore the structure
of the data model using YANG validator tools such as pyang.

Before you begin

Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

Step 1 Explore the native configuration model for the system local time zone.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-infra-infra-clock-linux-cfg.yang
module: Cisco-IOS-XR-infra-infra-clock-linux-cfg

+--rw clock
+--rw time-zone!
+--rw time-zone-name string
+--rw area-name string

Step 2 Explore the native operational state model for the system time.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-shellutil-oper.yang
module: Cisco-IOS-XR-shellutil-oper

+--ro system-time
+--ro clock
| +--ro year? uint16
| +--ro month? uint8
| +--ro day? uint8
| +--ro hour? uint8
| +--ro minute? uint8
| +--ro second? uint8
| +--ro millisecond? uint16
| +--ro wday? uint16
| +--ro time-zone? string
| +--ro time-source? Time-source
+--ro uptime

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
34

Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session

https://github.com/mbj4668/pyang

+--ro host-name? string
+--ro uptime? uint32

Step 3 Retrieve the current time on router LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>
controller:netconf$ netconf get --filter xr-system-time-oper.xml
198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">

<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>17</hour>
<minute>30</minute>
<second>37</second>
<millisecond>690</millisecond>
<wday>1</wday>
<time-zone>UTC</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>851237</uptime>

</uptime>
</system-time>

Notice that the timezone UTC indicates that a local timezone is not set.

Step 4 Configure Pacific Standard Time (PST) as local time zone on LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>
controller:netconf$ get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">
<clock>

<year>2019</year>
<month>8</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>852530</uptime>

</uptime>
</system-time>

Step 5 Verify that the router clock is set to PST time zone.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
35

Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session

Example:

controller:netconf$ more xr-system-time-oper.xml
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>

controller:netconf$ netconf get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">

<clock>
<year>2018</year>
<month>12</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>852530</uptime>

</uptime>
</system-time>

In summary, router LER1, which had no local timezone configuration, is programmatically configured using data models.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
36

Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session

C H A P T E R 3
Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only
TCP protocol.

Note

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:
syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
37

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

rpc CommitReplace(CommitReplaceArgs) returns(CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;
string yangpathjson = 2;

}

message ConfigGetReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message GetOperArgs {
int64 ReqId = 1;
string yangpathjson = 2;

}

message GetOperReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

}

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

}

message CliConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

}

message CommitReplaceReply {
int64 ResReqId = 1;
string errors = 2;

}

Example for gRPCExec configuration:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
38

Use gRPC Protocol to Define Network Operations with Data Models

service gRPCExec {
rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

}

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

}

message ShowCmdTextReply {
int64 ResReqId =1;
string output = 2;
string errors = 3;

}

Example for OpenConfiggRPC configuration:
service OpenConfiggRPC {

rpc SubscribeTelemetry(SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry(CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels(GetModelsInput) returns (GetModelsOutput) {};

}

message GetModelsInput {
uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;
enum MODLE_REQUEST_TYPE {

SUMMARY = 0;
DETAIL = 1;

}
MODLE_REQUEST_TYPE requestType = 5;

}

message GetModelsOutput {
uint64 requestId = 1;
message ModelInfo {

string name = 1;
string namespace = 2;
string version = 3;
GET_MODEL_TYPE modelType = 4;
string modelData = 5;

}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE_TYPE responseCode = 3;
string msg = 4;

}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

• gRPC Operations, on page 40
• gRPC Network Management Interface, on page 41
• gRPC Network Operations Interface , on page 41
• gRPC Network Security Interface , on page 42
• gRPC Authentication Modes, on page 48

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
39

Use gRPC Protocol to Define Network Operations with Data Models

• Configure Interfaces Using Data Models in a gRPC Session, on page 51

gRPC Operations
The following are the defined manageability service gRPC operations for Cisco IOS XR:

DescriptiongRPC Operation

Retrieves the configuration from the router.GetConfig

Gets the supported Yang models on the routerGetModels

Merges the input config with the existing device configuration.MergeConfig

Deletes one or more subtrees or leaves of configuration.DeleteConfig

Replaces part of the existing configuration with the input configuration.ReplaceConfig

Replaces all existing configurationwith the new configuration provided.CommitReplace

Retrieves operational data.GetOper

Invokes the input CLI configuration.CliConfig

Returns the output of a show command in the text formShowCmdTextOutput

Returns the output of a show command in JSON form.ShowCmdJSONOutput

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
40

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Operations

gRPC Response (Router to Client)gRPC Request (Client to Router)

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

}
}

rpc GetConfig
{
"Cisco-IOS-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]

}

rpc GetConfig
{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": [
"lldp": "running-configuration"
]

}

gRPC Network Management Interface
gRPCNetworkManagement Interface (gNMI) is a gRPC-based networkmanagement protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gRPC Network Operations Interface
gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

This feature is not supported for the following PIDs:

• N540-ACC-SYS

• N540X-ACC-SYS (Premium)

• N540-24Z8Q2C-SYS

Note

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
41

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Management Interface

https://github.com/openconfig/gnoi

gRPC Network Security Interface
Table 4: Feature History Table

Feature DescriptionRelease InformationFeature Name

This release implements
authorization mechanisms to
restrict access to gRPC applications
and services based on client
permissions. This is made possible
by introducing an authorization
protocol buffer service for gRPC
Network Security Interface (gNSI).

Prior to this release, the gRPC
services in the gNSI systems could
be accessed by unauthorized users.

This feature introduces the
following change:

CLI:

• gnsi load service
authorization policy

• show gnsi service
authorization policy

To view the specification of gNSI,
see Github repository.

Release 7.11.1gRPC Network Security Interface

gRPC Network Security Interface (gNSI) is a repository which contains security infrastructure services
necessary for safe operations of an OpenConfig platform. The services such as authorization protocol buffer
manage a network device's certificates and authorization policies.

This feature introduces a new authorization protocol buffer under gRPC gNSI. It contains gNSI.authz policies
which prevent unauthorized users to access sensitive information. It defines an API that allows the configuration
of the RPC service on a router. It also controls the user access and restricts authorization to update specific
RPCs.

By default, gRPC-level authorization policy is provisioned using Secure ZTP. If the router is in zero-policy
mode that is, in the absence of any policy, you can use gRPC authorization policy configuration to restrict
access to specific users. The default authorization policy at the gRPC level can permit access to all RPCs
except for the gNSI.authz RPCs.

If there is no policy specified or the policy is invalid, the router will fall back to zero-policy mode, in which
the default behavior allows access to all gRPC services to all the users if their profiles are configured. If an
invalid policy is configured, you can revert it by loading a valid policy using exec command gnsi load service
authorization policy. For more information on how to create user profiles and update authorization policy
for these user profiles, see How to Update gRPC-Level Authorization Policy, on page 43. Using show gnsi
service authorization policy command, you can see the active policy in a router.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
42

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Security Interface

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/b-setup-and-upgrade-cisco8k/secure-ztp.html

We have introduced the following commands in this release :

• gnsi load service authorization policy: To load and update the gRPC-level authorization policy in a
router.

• show gnsi service authorization policy: To see the active policy applied in a router.

When both gNSI and gNOI are configured, gNSI takes precedence over gNOI. If niether gNSI nor gNOI is
configured, then tls trsutpoint's data is considered for certificate management.

Note

The following RPCs are used to perform key operations at the system level such as updating and displaying
the current status of the authorization policy in a router.

Table 5: Operations

DescriptionRPC

Updates the gRPC-level authorization policy.gNSI.authz.Rotate()

Verifies the authenticity of a user based on the defined policy of the gRPC-level
authorization policy engine.

gNSI.authz.Probe()

Shows the current instance of the gRPC-level authorization policy, including the version
and date of creation of the policy.

gNSI.authz.Get()

How to Update gRPC-Level Authorization Policy
gRPC-level authorization policy is configured by default at the time of router deployment using secure ZTP.
You can update the same gRPC-level authorization policy using any of two the following methods:

• Using gNSI Client.

• Using exec command.

Updating the gRPC-Level Authorization Policy in the Router Using gNSI Client

Before you start

When a router boots for the first time, it should have the following prerequisites:

• The gNSI.authz service is up and running.

• The default gRPC-level authorization policy is added for all gRPC services.

• The default gRPC-level authorization policy allows access to all RPCs.

The following steps are used to update the gRPC-level authorization policy:

1. Initiate the gNSI.authz.Rotate() streaming RPC. This step creates a streaming connection between the
router and management application (client).

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
43

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

Only one gNSI.authz.Rotate() must be in progress at a time. Any other RPC request is rejected by the
server.

Note

2. The client uploads new gRPC-level authorization policy using the UploadRequest message.

• There must be only one gRPC-level authorization policy in the router. All the policies must be defined
in the same gRPC-level authorization policy which is being updated. As gNSI.authz.Rotate()method
replaces all previously defined or used policies once the finalize message is sent.

• The upgrade information is passed to the version and the created_on fields. These information are not
used by the gNSI.authz service. It is designed to help you to track the active gRPC-level authorization
policy on a particular router.

Note

3. The router activates the gRPC-level authorization policy.

4. The router sends the UploadResponse message back to the client after activating the new policy.

5. The client verifies the new gRPC-level authorization policy using separate gNSI.authz.Probe() RPCs.

6. The client sends the FinalizeRequest message, indicating the previous gRPC-level authorization policy
is replaced.

It is not recommended to close the stream without sending the finalize message. It results in the abandoning
of the uploaded policy and rollback to the one that was active before the gNSI.authz.Rotate() RPC started.

Note

Below is an example of a gRPC-level authorization policy that allows admins, V1,V2,V3 and V4, access to
all RPCs that are defined by the gNSI.ssh interface. All the other users won't have access to call any of the
gNSI.ssh RPCs:
{
"version": "version-1",
"created_on": "1632779276520673693",
"policy": {
"name": "gNSI.ssh policy",
"allow_rules": [{
"name": "admin-access",
"source": {
"principals": [
"spiffe://company.com/sa/V1",
"spiffe://company.com/sa/V2"

]
},
"request": {
"paths": [
"/gnsi.ssh.Ssh/*"

]
}

}],
"deny_rules": [{
"name": "sales-access",

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
44

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

"source": {
"principals": [
"spiffe://company.com/sa/V3",
"spiffe://company.com/sa/V4"

]
},
"request": {
"paths": [
"/gnsi.ssh.Ssh/MutateAccountCredentials",
"/gnsi.ssh.Ssh/MutateHostCredentials"

]
}

}]
}

}

Updating the gRPC-Level Authorization Policy file Using Exec Command

Use the following steps to update the authorization policy in the router.

1. Create the users profiles for the users who need to be added in the authorization policy. You can skip this
step if you have already defined the user profiles.

The following example creates three users who are added in the authorization policy.

Router(config)#username V1
Router(config-un)#group root-lr
Router(config-un)#group cisco-support
Router(config-un)#secret x
Router(config-un)#exit
Router(config)#username V2
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#exit
Router(config)#username V3
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#commit

2. Enable tls-mutual to establish the secure mutual between the client and the router.

Router(config)#grpc
Router(config-grpc)#port 0
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

3. Define the gRPC-level authorization policy.

The following sample gRPC-level authorization policy defines authorization policy for the users V1, V2
and V3.

{
"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"source": {

"principals": [
"*"

]

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
45

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

},
"request": {

"paths": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V1"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get".

]
}

},

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V2"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get"

]
}

},
{

"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V3"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Set"

]
}

}
]

}

4. Copy the gRPC-level authorization policy to the router.

The following example copies the gNSI Authz policy to the router:
-bash-4.2$ scp test.json V1@192.0.2.255:/disk0:/
Password:
test.json

100% 993 161.4KB/s 00:00
-bash-4.2$

5. Activate the gRPC-level authorization policy to the router.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
46

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

The following example loads the policy to the router.

Router(config)#gnsi load service authorization policy /disk0:/test.json
Successfully loaded policy

Verification

Use the show gnsi service authorization policy to verify if the policy is active in the router.
Router#show gnsi service authorization policy
Wed Jul 19 10:56:14.509 UTC{

"version": "1.0",
"created_on": 1700816204,
"policy": {

"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"request": {

"paths": [
"*"

]
},
"source": {

"principals": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"request": {

"paths": [
"/gnmi.gNMI/*"

]
},
"source": {

"principals": [
"User1"

]
}

}
]

}
}

In the following example, User1 user tries to access the get RPC request for which the permission is denied
in the above authorization policy.
bash-4.2$./gnmi_cli -address 198.51.100.255 -ca_crt
certs/certs/ca.cert -client_crt certs/certs/User1.pem -client_key
certs/certs/User1.key -server_name ems.cisco.com -get -proto get-oper.proto

Output

E0720 14:49:42.277504 26473 gnmi_cli.go:195]
target returned RPC error for Get("path:{origin:"openconfig-interfaces"
elem:{name:"interfaces"}
elem:{name:"interface" key:{key:"name" value:"HundredGigE0/0/0/0"}}}
type:OPERATIONAL encoding:JSON_IETF"):
rpc error: code = PermissionDenied desc = unauthorized RPC request rejected

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
47

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

gRPC Authentication Modes
gRPC supports the following authentication modes to secure communication between clients and servers.
These authenticationmodes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various
authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

Table 6: gRPC Authentication Modes and Configuration Requirements

Requirement From
Client

Configuration
Requirement

Authorization
Method

Authentication
Method

Type

username, password,
and CA

grpcusernameusername, passwordMetadata with TLS

username, passwordgrpc no-tlsusernameusername, passwordMetadata without
TLS

username, password,
client certificate,
client key, and CA

grpc tls-mutualusernameusername, passwordMetadata with
Mutual TLS

client certificate,
client key, and CA

grpc tls-mutual

and

grpc certificate
authentication

username from
client certificate's
common name field

client certificate's
common name field

Certificate based
Authentication

Certificate based Authentication

In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:
/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/Note

Generation of Certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
48

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Authentication Modes

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the customCA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Certificate Common-Name For Dial-in Using gRPC Protocol
Table 7: Feature History Table

DescriptionRelease InformationFeature Name

You can now specify a
common-name for the certificate
generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.com andwas
not configurable. Using a specified
common-name avoids potential
certification failures where youmay
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:

• grpc certificate
common-name

YANG Data Model:

• New XPath for
Cisco-IOS-XR-um-grpc-cfg.yang

• New XPath for
Cisco-IOS-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

Release 24.1.1Certificate Common-Name For
Dial-in Using gRPC Protocol

When using gRPC dial-in on Cisco IOS-XR router, the common-name associated with the certificate generated
by the router is fixed as ems.cisco.com and this caused failure during certificate verification.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
49

Use gRPC Protocol to Define Network Operations with Data Models
Certificate Common-Name For Dial-in Using gRPC Protocol

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

From Cisco IOS XR Release 24.1.1, you can now have the flexibility of specifying the common-name in the
certificate using the grpc certifcate common-name command. This allows gRPC clients to verify if the
domain name in the certificate matches the domain name of the gRPC server being accessed.

Configure Certificate Common Name For Dial-in
Configure a common name to be used in EMSD certificates for gRPC dial-in.

Step 1 Configure a common name.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#certificate common-name cisco.com
Router(config-grpc)#commit

Use the show command to verify the common name:
Router#show grpc
Certificate common name : cisco.com

For the above configuration to be successful, ensure to regenerate the certificate. so that the new EMSD certificates
include the configured common name.

Note

To regenerate the self-signed certificate, perform the following steps.

Step 2 Remove the certificates: /misc/config/grpc/ems.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert
from /misc/config/grpc file.

Example:
Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 10:58 ems.pem
-rw-------. 1 root root 1675 Feb 14 10:58 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#run rm -rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Step 3 Restart gRPC server by toggling the TLS configuration.

Configure gRPC with non TLS and then re-configure with TLS.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 8

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
50

Use gRPC Protocol to Define Network Operations with Data Models
Configure Certificate Common Name For Dial-in

drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#config
Router(config)#grpc
Router(config-grpc)#no no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 14:23 ems.pem
-rw-------. 1 root root 1675 Feb 14 14:23 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 14:23 ca.cert

Copy the newly generated /misc/config/grpc/ems.pem certificate in this path (from the device) to the gRPC client.

Configure Interfaces Using Data Models in a gRPC Session
Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using gRPC communication protocol.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Note

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
51

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Figure 5: Network Topology for gRPC session

You use Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang to programmatically configure router
LER1.

Before you begin

• Retrieve the list of YANGmodules on the router using NETCONFmonitoring RPC. For more information

• Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is
not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure
internal network.

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,
you enable gRPC protocol on LER1, the server.

Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.Note

a) Enable gRPC over an HTTP/2 connection.

Example:

Router#configure
Router(config)#grpc
Router(config-grpc)#port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

b) Set the session parameters.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
52

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Example:
Router(config)#grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |
max-streams-per-user | no-tls | tlsv1-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}

where:

• address-family: set the address family identifier type.

• certificate-authentication: enables certificate based authentication

• dscp: set QoS marking DSCP on transmitted gRPC.

• max-request-per-user: set the maximum concurrent requests per user.

• max-request-total: set the maximum concurrent requests in total.

• max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

• max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

• no-tls: disable transport layer security (TLS). The TLS is enabled by default

• tlsv1-disable: disable TLS version 1.0

• service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

• tls-cipher: enable the gRPC TLS cipher suites.

• tls-mutual: set the mutual authentication.

• tls-trustpoint: configure trustpoint.

• server-vrf: enable server vrf.

After gRPC is enabled, use the YANG data models to manage network configurations.

Step 2 Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPCOperations, on page 40. In this example, youmerge configurations with merge-configRPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of
the data model using YANG validator tools such as pyang.

LER1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not
configure a sub interface with tag 0.

Note

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
53

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://github.com/mbj4668/pyang

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-IOS-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg

+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations

+--rw interface-configuration* [active interface-name]
+--rw dampening
| ...
+--rw mtus
| ...
+--rw encapsulation
| ...
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipv4-io-cfg:ipv4-network
| ...
+--rw ipv4-io-cfg:ipv4-network-forwarding ...

b) Configure a loopback0 interface on LER1.

Example:
controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "Loopback0",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
],
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {

"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

}
}
}
}
]

}
}

c) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
54

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-gi0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {

"addresses": {
"primary": {

"address": "172.16.1.0",
"netmask": "255.255.255.254"

}
}
}
}
]
}
}

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LER1 to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server_addr 198.18.1.11:57400 -yang_path "$(< xr-interfaces-gi0-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqId 1, yangJson {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null

]
}
]
}
}
emsDeleteConfig: Received ReqId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
55

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

-server_addr 198.18.1.11:57400 -oper_yang_path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [
null
]

}
}
{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": {
"interface-brief": [
{
"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "Loopback0",
"interface": "Loopback0",
"type": "IFT_LOOPBACK",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

},
{

"interface-name": "MgmtEth0/RP0/CPU0/0",
"interface": "MgmtEth0/RP0/CPU0/0",
"type": "IFT_ETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
56

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

},
{

"interface-name": "Null0",
"interface": "Null0",
"type": "IFT_NULL",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

}
]
}
}
}
emsGetOper: ReqId 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
57

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
58

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

C H A P T E R 4
Enhancements to Data Models

This section provides an overview of the enhancements made to data models.

• Improved YANG Input Validator and Get Requests, on page 59
• OpenConfig Data Model Enhancements, on page 61
• OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models, on page 62
• Automatic Resynchronization of OpenConfig Configuration, on page 67

Improved YANG Input Validator and Get Requests
Table 8: Feature History Table

DescriptionRelease InformationFeature Name

The OpenConfig data models
provide a structure for managing
networks via YANG protocols.
With this release, enhancements to
the configuration architecture
improve input validations and
ensure that the Get requests made
through gNMI or NETCONF
protocols return only explicitly
configured OpenConfig leaves.

Previously, Get requests returned
all the items in the Cisco native
data models that the system could
convert into OpenConfig items,
regardless of whether they were
initially configured via
OpenConfig.We have added a new
legacy mode option for a limited
number of releases which helps you
preserve this behaviour.

Release 7.10.1Improved YANG Input Validator
and Get Requests

In IOS XR Software Release 7.10.1, the following are the enhancements to improve YANG Input Validator
and Get Requests:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
59

• Get requests made via NETCONF or gNMI now return only OpenConfig leaves that were configured
using OpenConfig models.

Use the legacy mode as follows:

NETCONF: Add a legacy mode attribute to the get-config request tag,

Example: get-config xmlns:xr-md=”http://cisco.com/ns/yang/cisco-xr-metadata”
xr-md:mode="legacy"

gNMI: Set the origin to openconfig-legacy.

• Improved input validation for OpenConfig configurations to provide a more consistent experience across
the schema.

The new validation includes enhanced error reporting, though some errors may include references to XR
configuration schema paths and item values in the message string.

• OpenConfig leaves now return default values consistently.

Get requests use the Explicit Basic Mode (refer RFC6243) to return only the OpenConfig leaves that
were explicitly configured.

Usage Guidelines and Limitations

In this release, the following usage guidelines and limitations apply based on the following functionalities:

• Upgrades to Cisco IOS XR Software Release 7.10.1 and later will not show OpenConfig leaves in Get
requests until OpenConfig has been successfully committed.

• Similarly, downgrading from Release 7.10.1 to an earlier version and then upgrading back to Release
7.10.1 will not showOpenConfig leaves in Get requests until OpenConfig has been successfully committed.

• Each feature must be fully configured using OpenConfig or Cisco native data model or CLI.

If configuration items applied to a feature via OpenConfig are overridden by configuring those items
directly via Cisco native data model, this will not be reflected in the system view of currently configured
OpenConfig items.

Use the Cisco native data model to configure features not supported by OpenConfig data model.

• Use either gNMI or NETCONF to manage configuration via OpenConfig. We recommend not to use
both the management agents on the same device simultaneously.

Once a successful commit has beenmade using gNMI or NETCONF, that management agent is considered
the active agent.

OpenConfig items cannot be configured by the non-active agent. However, the non-active agent can
configure Cisco native data model items and perform Get requests on any configuration items.

All OpenConfig leaves must first be removed by the active agent before a different agent can be used.

• During the commit process (which can take many minutes for large changesets), Get requests can be
made on the running datastore.

Other request types like, Edit request, Commit request from other clients, and Get request on the candidate
datastore of another client are rejected.

• When ACLs are configured via OpenConfig, CLI actions such as resequencing ACLs and copying ACLs
will not be reflected in the system view of the current OpenConfig configuration.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
60

Enhancements to Data Models
Improved YANG Input Validator and Get Requests

• Configuration modifications made by Config Scripts to features configured through OpenConfig will
not be reflected in the system view of the current OpenConfig configuration which is returned from
Get-config operations.

• Configuration removal from the system may occur as a result of some events, such as install operations
and startup configuration failures during line card insertion.

OpenConfig items currently configured do not reflect this change. In such cases, a syslog will be generated
to remind the user to manually apply OpenConfig configurations to the system.

• All OpenConfig will be removed from the system when a Commit Replace operation is performed
using the CLI.

• By using the show running-config | (xml | json) openconfig command, you can still view the running
OpenConfig. However, you cannot filter the view using XR CLI configuration keywords.

• The load rollback changes and load commit changes commands are not supported for rollback or
commit that include OpenConfig leaves.

OpenConfig Data Model Enhancements
Table 9: Feature History Table

DescriptionRelease InformationFeature Name

The OpenConfig MPLS data model provides data
definitions forMultiprotocol Label Switching (MPLS)
configuration and associated signaling and traffic
engineering protocols. In this release, the following
data models are revised for streaming telemetry from
OpenConfig version 2.3.0 to version 3.0.1:

• openconfig-mpls

• openconfig-mpls-te

• openconfig-mpls-rsvp

• openconfig-mpls-igp

• openconfig-mpls-types

• openconfig-mpls-sr

You can access this data model from the Github
repository.

Release 7.3.3Revised OpenConfig
MPLS Model to Version
3.0.1 for Streaming
Telemetry

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
61

Enhancements to Data Models
OpenConfig Data Model Enhancements

https://github.com/openconfig/public/tree/master/release/models/mpls

OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute
Data Models

Table 10: Feature History Table

DescriptionRelease InformationFeature Name

This feature introduces the
Cisco-IOS-XR-mpls-ping-act and
Cisco-IOS-XR-mpls-traceroute-act

YANG data models to
accommodate operations,
administration and maintenance
(OAM) RPCs for MPLS and
SR-MPLS.

You can access these Cisco IOSXR
native data models from the Github
repository.

Release 7.3.2YANG Data Models for MPLS
OAM RPCs

The Cisco-IOS-XR-mpls-ping-act and Cisco-IOS-XR-mpls-traceroute-act YANG data models are introduced
to provide the following options:

• Ping for MPLS:

• MPLS IPv4 address

• MPLS TE

• FEC-129 Pseudowire

• FEC-128 Pseudowire

• Multisegment Pseudowire

• Ping for SR-MPLS:

• SR policy name or BSID with LSP end-point

• SR MPLS IPv4 address

• SR Nil-FEC labels

• SR Flexible Algorithm

• Traceroute for MPLS:

• MPLS IPv4 address

• MPLS TE

• Traceroute for SR-MPLS:

• SR policy name or BSID with LSP end-point

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
62

Enhancements to Data Models
OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/732

• SR MPLS IPv4 address

• SR Nil-FEC labels

• SR Flexible Algorithm

The following example shows the ping operation for an SR policy and LSP end-point:
<mpls-ping xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-mpls-ping-act">
<sr-mpls>
<policy>
<name>srte_c_10_ep_10.10.10.1</name>
<lsp-endpoint>10.10.10.4</lsp-endpoint>

</policy>
</sr-mpls>
<request-options-parameters>
<brief>true</brief>

</request-options-parameters>
</mpls-ping>

Response:

<?xml version="1.0"?>
<mpls-ping-response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-mpls-ping-act">
<request-options-parameters>
<exp>0</exp>
<fec>false</fec>
<interval>0</interval>
<ddmap>false</ddmap>
<force-explicit-null>false</force-explicit-null>
<packet-output>
<interface-name>None</interface-name>
<next-hop>0.0.0.0</next-hop>
</packet-output>
<pad>abcd</pad>
<repeat>5</repeat>
<reply>
<dscp>255</dscp>
<reply-mode>default</reply-mode>
<pad-tlv>false</pad-tlv>
</reply>
<size>100</size>
<source>0.0.0.0</source>
<destination>127.0.0.1</destination>
<sweep>
<minimum>100</minimum>
<maximum>100</maximum>
<increment>1</increment>
</sweep>
<brief>true</brief>
<timeout>2</timeout>
<ttl>255</ttl>
</request-options-parameters>
<replies>
<reply>
<reply-index>1</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>2</reply-index>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
63

Enhancements to Data Models
OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>3</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>4</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>5</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
</replies>
</mpls-ping-response>

The following example shows the ping operation for an SR policy BSID and LSP end-point:
<mpls-ping xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-mpls-ping-act">
<sr-mpls>
<policy>

<bsid>1000</bsid>
<lsp-endpoint>10.10.10.4</lsp-endpoint>

</policy>
</sr-mpls>
<request-options-parameters>

<brief>true</brief>
</request-options-parameters>
</mpls-ping>

Response:

<?xml version="1.0"?>
<mpls-ping-response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-mpls-ping-act">
<request-options-parameters>
<exp>0</exp>
<fec>false</fec>
<interval>0</interval>
<ddmap>false</ddmap>
<force-explicit-null>false</force-explicit-null>
<packet-output>
<interface-name>None</interface-name>
<next-hop>0.0.0.0</next-hop>
</packet-output>
<pad>abcd</pad>
<repeat>5</repeat>
<reply>
<dscp>255</dscp>
<reply-mode>default</reply-mode>
<pad-tlv>false</pad-tlv>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
64

Enhancements to Data Models
OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

</reply>
<size>100</size>
<source>0.0.0.0</source>
<destination>127.0.0.1</destination>
<sweep>
<minimum>100</minimum>
<maximum>100</maximum>
<increment>1</increment>
</sweep>
<brief>true</brief>
<timeout>2</timeout>
<ttl>255</ttl>
</request-options-parameters>
<replies>
<reply>
<reply-index>1</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>2</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>3</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>4</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
<reply>
<reply-index>5</reply-index>
<return-code>3</return-code>
<return-char>!</return-char>
<reply-addr>14.14.14.3</reply-addr>
<size>100</size>
</reply>
</replies>
</mpls-ping-response>

The following example shows the traceroute operation for an SR policy and LSP end-point:
<mpls-traceroute xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-mpls-traceroute-act">
<sr-mpls>
<policy>

<name>srte_c_10_ep_10.10.10.1</name>
<lsp-endpoint>10.10.10.4</lsp-endpoint>

</policy>
</sr-mpls>
<request-options-parameters>

<brief>true</brief>
</request-options-parameters>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
65

Enhancements to Data Models
OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

</mpls-traceroute>

Response:

<?xml version="1.0"?>
<mpls-traceroute-response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-mpls-traceroute-act">

<request-options-parameters>
<exp>0</exp>
<fec>false</fec>
<ddmap>false</ddmap>
<force-explicit-null>false</force-explicit-null>
<packet-output>
<interface-name>None</interface-name>
<next-hop>0.0.0.0</next-hop>
</packet-output>
<reply>
<dscp>255</dscp>
<reply-mode>default</reply-mode>
</reply>
<source>0.0.0.0</source>
<destination>127.0.0.1</destination>
<brief>true</brief>
<timeout>2</timeout>
<ttl>30</ttl>
</request-options-parameters>
<paths>
<path>
<path-index>0</path-index>
<hops>
<hop>

<hop-index>0</hop-index>
<hop-origin-ip>11.11.11.1</hop-origin-ip>
<hop-destination-ip>11.11.11.2</hop-destination-ip>
<mtu>1500</mtu>
<dsmap-label-stack>

<dsmap-label>
<label>16003</label>

</dsmap-label>
</dsmap-label-stack>
<return-code>0</return-code>
<return-char> </return-char>

</hop>
<hop>

<hop-index>1</hop-index>
<hop-origin-ip>11.11.11.2</hop-origin-ip>
<hop-destination-ip>14.14.14.3</hop-destination-ip>
<mtu>1500</mtu>
<dsmap-label-stack>

<dsmap-label>
<label>3</label>

</dsmap-label>
</dsmap-label-stack>
<return-code>8</return-code>
<return-char>L</return-char>

</hop>
<hop>

<hop-index>2</hop-index>
<hop-origin-ip>14.14.14.3</hop-origin-ip>
<hop-destination-ip></hop-destination-ip>
<mtu>0</mtu>
<dsmap-label-stack/>
<return-code>3</return-code>
<return-char>!</return-char>

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
66

Enhancements to Data Models
OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models

</hop>
</hops>
</path>
</paths>
</mpls-traceroute-response>

Automatic Resynchronization of OpenConfig Configuration
Table 11: Feature History Table

Feature DescriptionRelease InformationFeature Name

OpenConfig infrastructure now
provides an operational data YANG
model, Cisco-IOS-XR-yiny-oper,
which can be queried to view the
inconsistent OpenConfig
configuration caused due to
activities such as interface breakout
operations, installation activities or
insertion of a new line card.

See GitHub, YANG Data Models
Navigator

Release 24.1.1View Inconsistent OpenConfig
Configuration

OpenConfig infrastructure can now
reapply all the OpenConfig
configurations automatically if
there are any discrepancies in the
running configuration.

With this feature, there is no need
for manual replacement of the
OpenConfig configuration using
Netconf or gNMI.

The re-sync operation is triggered
if the running configurations and
the OpenConfig configuration go
out of sync after any system event
that removes some running
configurations from the system. A
corresponding system log gets
generated to indicate the re-sync
status.

Release 7.11.1Automatic Resynchronization of
OpenConfig Configuration

In the earlier releases, when activities such as interface breakout operations, installation activities or insertion
of a new line card took place, there was a risk of OpenConfig configuration and the running configuration
going out of sync. A full replacement of the OpenConfig configuration was required in order to get the
OpenConfig configurations back in sync using Netconf or gNMI.

From the Cisco IOSXR Software Release 7.11.1, if the OpenConfig configurations and running configurations
go out of sync, or any activities takes place which may result in the two configurations to go out of sync, the

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
67

Enhancements to Data Models
Automatic Resynchronization of OpenConfig Configuration

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

system automatically reapplies all the OpenConfig configurations and resolve the sync issue. If there is a
synchronization issue between the running configuration and the OpenConfig configuration, a corresponding
system log is generated to indicate it. Similarly, a corresponding system log is generated indicating the status
of the re-synchronization attempt.

This feature is enabled by default. This process is completely automated.

From the Cisco IOS XR Software Release 24.1.1, the new Cisco-IOS-XR-yiny-oper YANG model displays
the OpenConfig configurationwhich is out of sync with the running configuration, including the error associated
with each out of sync configuration.

The Cisco-IOS-XR-yiny-oper operational data is a snapshot of the current system status, rather than a record
of all past failures. That is, if an item of configuration is out of sync and is later resolved, such as through a
resynchronization or another configuration operation, then this configuration is no longer considered out of
sync and is removed from the snapshot.

Operations that Remove Running Configuration

Here are three types of operation that can have the effect of removing running configuration from the system.
Running configurations are either affected because they directly remove configuration in the system or because
they result in configuration failing to be accepted by the system during start-up.

• Install operations: Running configuration can be removed during non-reload and reload install operations.
During non-reload install, running configuration is removedwhen it is incompatible with the new software.
In this case, it is directly removed by the Install infra. The configuration is removed during reload install
operations if the attempt to restore the startup configuration is partially successful.

• Breakout interfaces configuration: When breakout interfaces are configured or de-configured, all the
existing configuration on interfaces is affected. The affect may be creation or deletion of the parent and
child interfaces. This results in an inconsistency between the running configuration and the OpenConfig
datastore for any of the removed configurations that was mapped from OpenConfig configuration.

The automatic restoration of OpenConfig configuration resolves this inconsistency by re-adding that
removed configuration.

• New line card insertion: On insertion of a new line card into the system, any pre-configuration for that
card is verified for the first time and may be rejected, causing it to be removed. This results in an
inconsistency between the running configuration and the OpenConfig datastore.

In any of the above scenarios, if there is a sync issue, system logs are generated and the system tries to reapply
all the OpenConfig configurations. If the re-sync attempt is successful, the configurations which were removed
earlier, are re-applied. If the re-sync attempt fails, this means that some of the OpenConfig configuration is
no longer valid.

The above scenarios are invalid if there are no OpenConfig configuration present in the system.Note

System Logs Indicating Out-of-Sync Configuration

System log messages are generated due to the above operations that can lead to discrepancies in configurations
on the router. Listed are examples of system log messages raised if any such discrepancies occur.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
68

Enhancements to Data Models
Automatic Resynchronization of OpenConfig Configuration

Table 12: Examples of system log messages generated due to Out-of-Sync Configurations :

DescriptionEvent Name Displayed in the System Log

When an unexpected commit errors in case of a SysDB server
crash.

unexpected commit errors

When a configuration rollbacks back to a commit ID created
using a different software version.

config rollback (to a commit ID created
using a different software version)

This system log is generated when an inconsistency alarm is
raised due to failure in restoring the start-up configurations
after activities like system reload or insertion of a new line
card. Re-synchronization of the configuration is triggered
only after the alarm is cleared.

inconsistent configuration

When interface configuration is removed in response to a
change in interface breakout configuration.

configuration removal (triggered on
0/2/CPU0 by the last config operation for
interface GigabitEthernet0/2/0/0 and 6
other interfaces)

Configuration is removed from the system during a non-reload
install operation due to incompatibility with the new software.

configuration removal (to prepare for an
install operation)

Alarms Related to Out-of-Sync OpenConfig Configuration

• Inconsistency alarm: When a there is a failure in restoring the start-up configurations after a system
reload or insertion of a new line card, inconsistency alarm is raised. If the inconsistency alarm is raised,
you can see an informational system log is generated which indicates that the OpenConfig configuration
and running configuration may be out of sync. A re-sync attempt will be made when the configuration
inconsistency alarm is cleared. This system log is an early warning that the system is potentially out of
sync.

Inconsistency alarm message:

NMI OpenConfig configuration is potentially out of sync with the running configuration

(details: system configuration become inconsistent during OIR restore on 0/0/CPU0). An

automatic reapply of the OpenConfig configuration will be performed when the inconsistency

alarm is cleared.

• Missing item in the OpenConfig datastore alarm: If there are missing items in the configurations
which could not be added to the OpenConfig datastore while loading in a snapshot from disk, you can
see an error system log is raised which indicates that there are some items which are absent in the running
OpenConfig configuration. This scenario occurs when the yang schema is changed from the time the
snapshot was created.

Item missing alarm message:

gNMI OpenConfig configuration is potentially out of sync with the running configuration:

3 failed to be applied to the system (details: snapshot 2 was created with a different

schema version). The system may contain config items mapped from OC that no longer exist

in the OC datastore. Automatic attempts to reapply OC will not remove these items, even

if they otherwise succeed. Config should be replaced manually using a GNMI Replace

operation.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
69

Enhancements to Data Models
Automatic Resynchronization of OpenConfig Configuration

System Logs Generated During Configuration Resynchronization:

When an attempt to re-apply OpenConfig (resynchronization) is complete, the following informational system
logs are generated to indicate the user that the OpenConfig and running configuration were out of sync, and
whether the attempt to resolve this was successful.

• Successful re-sync:

As a result of configuration removal (to prepare for an install operation), the gNMI

OpenConfig configuration has been successfully reapplied.

• Unsuccessful re-sync:

As a result of configuration removal (to prepare for an install operation), an attempt

to reapply the gNMI OpenConfig configuration was made, but some items remain out of

sync with the running configuration. Out of sync configuration can be viewed using the

Cisco-IOS-XR-yiny-oper model.

• Re-sync failure during mapping of OpenConfig configurations to XR configurations:

As a result of configuration removal (to prepare for an install operation), the attempt

to reapply the gNMI OpenConfig configuration failed, and the out of sync configuration

could not be updated. gNMI OpenConfig configuration is potentially out of sync with the

running configuration. Configuration should be reapplied manually using a GNMI Replace

operation

Re-sync failure during mapping of OpenConfig configurations to XR configurations is a rare scenario. When
there is a failure in the re-sync process while mapping the OpenConfig configuration to XR items, it causes
the re-sync request to aborted. This scenario is only possible after an install which changes the OpenConfig
mappings such that some configuration is no longer supported.

Resolve Out of Sync Configuration

An automatic resynchronization fails if the out-of-sync scenario is unresolved or the OpenConfig configuration
and running XR configuration are out of sync.

Here are the two scenarios with steps to resolve the out-of-sync configuration if an attempt for automatic
resynchronization fails.

Resync Fails Partially:

1. Query the items of configuration which are out of sync using the Cisco-IOS-XR-yiny-operYANGmodel

2. For each out-of-sync configuration item:

• Delete the OpenConfig items that are out of sync.

• Re-add the deleted OpenConfig items in a separate request.

Resync Fails Completely:

Perform a full replace of the OpenConfig configuration using Netconf or gNMI.

By successfully completing these steps, you can now ensure that all configurations are in sync.

YANG Model Data for Inconsistent Configuration

Each configuration of the Cisco-IOS-XR-yiny-oper YANG model has a list entry with the following fields:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
70

Enhancements to Data Models
Automatic Resynchronization of OpenConfig Configuration

• Path: The path of the XR configuration, in YPath format.

• Input paths: The OpenConfig paths of the items from which the XR configuration is mapped.

Activity: If last occurrence of this failure was:

• in a user-initiated commit operation.

• in a system-initiated resynchronization attempt, after an install operation, breakout interfaces being
configured, or line card insertion.

• Operation: If a configuration being set or delete:

For a configuration that is out of sync because it failed during a resynchronization attempt, the operation
is always set, but for a user-initiated commit operation, the operation is whichever the user was attempting
during the commit.

• Latest failure type: If the latest failure is a verify failure or an apply failure.

Only verify errors are currently tracked as out of sync and reported in the operational data, but this field
is present in the model for potential future usage if apply errors are also tracked.

• For configuration that fails during startup, both verify and apply failures canmake the configurations
out of sync.

• For configuration that fails during a commit operation, only apply failures canmake the configuration
out of sync. This is because configuration is not allowed in the datastore if verify failures occur
during a commit operation.

• Latest error: The latest error message describing the error.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
71

Enhancements to Data Models
Automatic Resynchronization of OpenConfig Configuration

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
72

Enhancements to Data Models
Automatic Resynchronization of OpenConfig Configuration

C H A P T E R 5
Unified Configuration Models

Table 13: Feature History Table

DescriptionRelease InformationFeature Name

Use the
Cisco-IOS-XR-um-script-server-cfg.yang

unified data model to map script file to the custom
OID.

Release 7.5.3Unified DataModel to map script
file to the custom OID

Unified models are CLI-based YANG models
that are designed to replace the native
schema-basedmodels. UMmodels are generated
directly from the IOS XR CLIs and mirror them
in several ways. This results in improved usability
and faster adoption of YANG models.

You can access the new unified models from the
Github repository.

Release 7.4.1Transitioning Native Models to
Unified Models (UM)

The following table lists the unified models supported on Cisco IOS XR routers.

Table 14: Unified Models

Introduced in ReleaseUnified Models

Release 7.5.3Cisco-IOS-XR-um-script-server-cfg

Release 7.5.3Cisco-IOS-XR-um-script-cfg

Release 7.5.1Cisco-IOS-XR-um-if-ipsubscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-session-redundancy-cfg

Release 7.5.1Cisco-IOS-XR-um-subscriber-accounting-cfg

Release 7.5.1Cisco-IOS-XR-um-subscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-subscriber-redundancy-cfg

Release 7.5.1Cisco-IOS-XR-um-dyn-tmpl-opendns-cfg

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
73

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

Introduced in ReleaseUnified Models

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-cfg

Release 7.5.1Cisco-IOS-XR-um-lpts-profiling-cfg

Release 7.5.1Cisco-IOS-XR-um-ppp-cfg

Release 7.5.1Cisco-IOS-XR-um-pppoe-cfg

Release 7.5.1Cisco-IOS-XR-um-vpdn-cfg

Release 7.5.1Cisco-IOS-XR-um-aaa-subscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-ipv4-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-ipv6-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-vrf-cfg

Release 7.5.1Cisco-IOS-XR-um-mibs-subscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-dyn-tmpl-monitor-session-cfg

Release 7.5.1Cisco-IOS-XR-um-l2tp-class-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-dhcpv6d-cfg

Release 7.5.1Cisco-IOS-XR-um-dyn-tmpl-service-policy-cfg

Release 7.5.1Cisco-IOS-XR-um-snmp-server mroutemib send-all-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-diameter-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-nacm-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-tacacs-server-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-task-user-cfg

Release 7.4.1Cisco-IOS-XR-um-banner-cfg

Release 7.4.1Cisco-IOS-XR-um-bfd-sbfd-cfg

Release 7.4.1Cisco-IOS-XR-um-call-home-cfg

Release 7.4.1Cisco-IOS-XR-um-cdp-cfg

Release 7.4.1Cisco-IOS-XR-um-cef-accounting-cfg

Release 7.4.1Cisco-IOS-XR-um-cfg-mibs-cfg

Release 7.4.1Cisco-IOS-XR-um-cli-alias-cfg

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
74

Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.4.1Cisco-IOS-XR-um-clock-cfg

Release 7.4.1Cisco-IOS-XR-um-config-hostname-cfg

Release 7.4.1Cisco-IOS-XR-um-cont-breakout-cfg

Release 7.4.1Cisco-IOS-XR-um-cont-optics-cfg

Release 7.4.1Cisco-IOS-XR-um-control-plane-cfg

Release 7.4.1Cisco-IOS-XR-um-crypto-cfg

Release 7.4.1Cisco-IOS-XR-um-domain-cfg

Release 7.4.1Cisco-IOS-XR-um-ethernet-cfm-cfg

Release 7.4.1Cisco-IOS-XR-um-ethernet-oam-cfg

Release 7.4.1Cisco-IOS-XR-um-exception-cfg

Release 7.4.1Cisco-IOS-XR-um-flowspec-cfg

Release 7.4.1Cisco-IOS-XR-um-frequency-synchronization-cfg

Release 7.4.1Cisco-IOS-XR-um-hostname-cfg

Release 7.4.1Cisco-IOS-XR-um-hw-module-port-range-cfg

Release 7.4.1Cisco-IOS-XR-um-hw-module-profile-cfg

Release 7.4.1Cisco-IOS-XR-um-ip-virtual-cfg

Release 7.4.1Cisco-IOS-XR-um-ipsla-cfg

Release 7.4.1Cisco-IOS-XR-um-l2vpn-cfg

Release 7.4.1Cisco-IOS-XR-um-line-cfg

Release 7.4.1Cisco-IOS-XR-um-line-exec-timeout-cfg

Release 7.4.1Cisco-IOS-XR-um-line-general-cfg

Release 7.4.1Cisco-IOS-XR-um-line-timestamp-cfg

Release 7.4.1Cisco-IOS-XR-um-lldp-cfg

Release 7.4.1Cisco-IOS-XR-um-location-cfg

Release 7.4.1Cisco-IOS-XR-um-logging-cfg

Release 7.4.1Cisco-IOS-XR-um-logging-correlator-cfg

Release 7.4.1Cisco-IOS-XR-um-lpts-pifib-cfg

Release 7.4.1Cisco-IOS-XR-um-lpts-pifib-domain-cfg

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
75

Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.4.1Cisco-IOS-XR-um-lpts-pifib-dynamic-flows-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-cbqosmib-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-fabric-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-ifmib-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-rfmib-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-sensormib-cfg

Release 7.4.1Cisco-IOS-XR-um-monitor-session-cfg

Release 7.4.1Cisco-IOS-XR-um-mpls-oam-cfg

Release 7.4.1Cisco-IOS-XR-um-ntp-cfg

Release 7.4.1Cisco-IOS-XR-um-pce-cfg

Release 7.4.1Cisco-IOS-XR-um-pool-cfg

Release 7.4.1Cisco-IOS-XR-um-priority-flow-control-cfg

Release 7.4.1Cisco-IOS-XR-um-rcc-cfg

Release 7.4.1Cisco-IOS-XR-um-router-hsrp-cfg

Release 7.4.1Cisco-IOS-XR-um-router-vrrp-cfg

Release 7.4.1Cisco-IOS-XR-um-service-timestamps-cfg

Release 7.4.1Cisco-IOS-XR-um-ssh-cfg

Release 7.4.1Cisco-IOS-XR-um-tcp-cfg

Release 7.4.1Cisco-IOS-XR-um-telnet-cfg

Release 7.4.1Cisco-IOS-XR-um-tpa-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-bridgemib-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-config-copy-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-entity-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-entity-redundancy-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-entity-state-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-flash-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-fru-ctrl-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-ipsec-cfg

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
76

Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.4.1Cisco-IOS-XR-um-traps-l2tun-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-otn-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-power-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-selective-vrf-download-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-syslog-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-system-cfg

Release 7.4.1Cisco-IOS-XR-um-udp-cfg

Release 7.4.1Cisco-IOS-XR-um-vty-pool-cfg

Release 7.4.1Cisco-IOS-XR-um-xml-agent-cfg

Release 7.3.1Cisco-IOS-XR-um-conflict-policy-cfg

Release 7.2.1Cisco-IOS-XR-um-flow-cfg

Release 7.2.1Cisco-IOS-XR-um-if-access-group-cfg

Release 7.2.1Cisco-IOS-XR-um-if-ipv4-cfg

Release 7.2.1Cisco-IOS-XR-um-if-ipv6-cfg

Release 7.2.1Cisco-IOS-XR-um-if-service-policy-qos-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv4-access-list-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv6-access-list-cfg

Release 7.2.1Cisco-IOS-XR-um-l2-ethernet-cfg

Release 7.2.1Cisco-IOS-XR-um-multicast-routing-cfg

Release 7.2.1Cisco-IOS-XR-um-object-group-cfg

Release 7.2.1Cisco-IOS-XR-um-policymap-classmap-cfg

Release 7.2.1Cisco-IOS-XR-um-router-igmp-cfg

Release 7.2.1Cisco-IOS-XR-um-router-pim-cfg

Release 7.2.1Cisco-IOS-XR-um-statistics-cfg

Release 7.2.1Cisco-IOS-XR-um-ethernet-services-access-list-cfg

Release 7.2.1Cisco-IOS-XR-um-if-l2transport-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv4-prefix-list-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv6-prefix-list-cfg

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
77

Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.2.1Cisco-IOS-XR-um-router-amt-cfg

Release 7.2.1Cisco-IOS-XR-um-router-mld-cfg

Release 7.2.1Cisco-IOS-XR-um-router-msdp-cfg

Release 7.1.1Cisco-IOS-XR-um-router-bgp-cfg

Release 7.1.1Cisco-IOS-XR-um-mpls-te-cfg

Release 7.1.1Cisco-IOS-XR-um-router-isis-cfg

Release 7.1.1Cisco-IOS-XR-um-router-ospf-cfg

Release 7.1.1Cisco-IOS-XR-um-router-ospfv3-cfg

Release 7.0.1Cisco-IOS-XR-um-grpc-cfg

Release 7.0.1Cisco-IOS-XR-um-if-bundle-cfg

Release 7.0.1Cisco-IOS-XR-um-if-ethernet-cfg

Release 7.0.1Cisco-IOS-XR-um-if-ip-address-cfg

Release 7.0.1Cisco-IOS-XR-um-if-vrf-cfg

Release 7.0.1Cisco-IOS-XR-um-interface-cfg

Release 7.0.1Cisco-IOS-XR-um-mpls-l3vpn-cfg

Release 7.0.1Cisco-IOS-XR-um-netconf-yang-cfg

Release 7.0.1Cisco-IOS-XR-um-router-rib-cfg

Release 7.0.1Cisco-IOS-XR-um-router-static-cfg

Release 7.0.1Cisco-IOS-XR-um-snmp-server-cfg

Release 7.0.1Cisco-IOS-XR-um-telemetry-model-driven-cfg

Release 7.0.1Cisco-IOS-XR-um-vrf-cfg

Release 7.0.1Cisco-IOS-XR-um-arp-cfg

Release 7.0.1Cisco-IOS-XR-um-if-arp-cfg

Release 7.0.1Cisco-IOS-XR-um-if-mpls-cfg

Release 7.0.1Cisco-IOS-XR-um-if-tunnel-cfg

Release 7.0.1Cisco-IOS-XR-um-mpls-ldp-cfg

Release 7.0.1Cisco-IOS-XR-um-mpls-lsd-cfg

Release 7.0.1Cisco-IOS-XR-um-rsvp-cfg

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
78

Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.0.1Cisco-IOS-XR-um-traps-mpls-ldp-cfg

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
79

Unified Configuration Models

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
80

Unified Configuration Models

P A R T I
Automation Scripts

• Achieve Network Operational Simplicity Using Automation Scripts, on page 83
• EEM Scripts, on page 85

C H A P T E R 6
Achieve Network Operational Simplicity Using
Automation Scripts

Network automation is imperative to deploy and manage the networks with large-scale cloud-computing
architectures. The automation can be achieved through standard model-driven data models. To cater to the
automation requirements, you leverage the Cisco IOS XR infrastructure to make API calls and run scripts
from an external controller. These off-box scripts take advantage of the exposed interfaces such as NETCONF,
SNMP, SSH to work on the network element. However, there is need to maintain an external controller to
interact with the router.

To simplify the operational infrastructure, the automation scripts can be run on the router, eliminating the
need for an external controller. The execution of the different types of scripts are faster and reliable as it is
not dependent on the speed or network reachability of the external controller. Most script types interact with
IOS XR Software using standard protocols such as NETCONF. You can download script to the router,
configure scripts, view operational data, and set responses to events in the router.

In summary, on-box scripting is similar to off-box scripting, with the exception that the management software
that runs in an external controller is now part of the router software. The scripts programmatically automate
configuration and operational tasks on the network devices. You can create customized scripts that are based
on your network requirement and execute scripts on routers running Cisco IOS XR operating system. The
packages that support scripting are provided in the software image.

You can create scripts using Python 3.5.Note

• Explore the Types of Automation Scripts, on page 83

Explore the Types of Automation Scripts
There are four types of on-box automation scripts that you can leverage to automate your network operations:

• Configuration (Config) scripts

• Execution (Exec) scripts

• Process scripts

• EEM scripts

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
83

The following table provides the scope and benefit of on-box scripts:

Table 15: On-Box Automation Scripts

EEM ScriptsProcess ScriptsExec ScriptsConfig Scripts

Run operational
commands or RPCs,
generate, and
determine the next
steps like logging
the root cause or
changing device
configuration. Event
policies can upload
the output of event
scripts to an on-box
or off-box location
for further analysis.

Daemonize to
continuously run as
an agent on the
router to execute
additional checks
outside traditional
ZTP. Daemonized
scripts are similar to
exec scripts but run
continuously. The
script executes
operational
commands on the
router and analyzes
the output.

Run operational
commands or RPCs,
process the output,
generate syslogs,
configure system,
perform system
action commands
such as system
reload, process
restarts, and collect
logs for further
evaluation.

Enforce contextual
and conditional
changes to
configurations,
validate
configurations
before committing
the changes to detect
and notify potential
errors. If
configuration does
not comply with the
rules that are defined
in the script, an
action can be
invoked. For
example, generate a
warning, syslog
message, or halt a
commit operation.

What is the scope of
the script?

Event scripts are
invoked by defined
event policies in
response to a system
event and allow for
immediate action to
take effect.

Process script is
activated via
configuration CLI
command.

Exec script is
invoked manually
via CLI command or
RPC.

All config scripts are
processed
automatically when
commit command is
executed on the
router.

How to invoke the
script?

Automates log
collection upon
detecting error
conditions that are
defined by event
policies.

Uploads the output
of event scripts to an
on-box or off-box
location for further
analysis.

Runs scripts as a
daemon to
continuously
perform tasks that
are not transient.

Collects operational
information, and
decreases the time
that is involved in
troubleshooting
issues.

Provides flexibility
in changing the
input parameters for
every script run.
This fosters dynamic
automation of
operational
information.

Simplifies complex
configurations and
averts potential
errors before a
configuration is
committed.

Ensures that the
network
configuration
complies with rules
and policies that are
defined in the script.

What are the main
benefits of using the
script?

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
84

Automation Scripts
Explore the Types of Automation Scripts

C H A P T E R 7
EEM Scripts

Table 16: Feature History Table

DescriptionRelease InformationFeature Name

Embedded Event Manager (EEM),
a Cisco IOS XR software
component, tracks and monitors
events on your Cisco device and
then executes specific predefined
actions. You can create an action
using Python scripts and trigger it
when a specified event occurs.

Using EEM and Python, you can
automate tasks, build small
functionalities, and create
workarounds. The EEM Scripts
have the advantage of executing the
scripts on the local device,
eliminating the need to use an
external scripting engine or
monitoring device.

Release 24.3.1EEM Scripts

Cisco IOS XR Embedded Event Manager (EEM) scripts are also known as event scripts that are triggered
automatically in response to events on the router. An event can be any significant occurrence, not limited to
errors, that has happened within the system. You can use these scripts to detect issues in the network in real
time, program certain conditions in response to the event, detect and generate an action when those conditions
are met, and execute policy (script) when an event is generated. The script acts in response to the events and
reduces the troubleshooting time involved in resolving the issues. For example, you can enforce LACP
dampening if a bundle interface has flapped 5 times in less than 30 secs, and define the script to disable the
interface for 2 minutes.

You can programmatically define the event and actions separately and map them using a policy map via CLI
or NETCONF RPCs. Whenever the configured event occurs, the action that is mapped to it is executed. The
same event and action can be mapped to multiple policy maps. You can map the same event and action in 64
policy maps, and add a maximum of 5 different actions in a policy map.

You can create event scripts using Python 3.5 programming language. For the list of supported Python packages.
You can also configure the EEM policies using Tool Command Language (TCL) scripts. To knowmore about

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
85

TCL scripts, seeConfiguring and Managing Embedded Event Manager PoliciesChapter in SystemMonitoring
Configuration Guide.

This chapter gets you started with provisioning your Python automation scripts on the router.

This section does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

Note

• Workflow to Run Event Scripts, on page 86
• Example: Shut Inactive Bundle Interfaces Using EEM Script, on page 94

Workflow to Run Event Scripts
Complete the following tasks to provision eem scripts:

• Download the script—Store the eem script on an HTTP server or copy to the harddisk of the router. Add
the eem script from the HTTP server or harddisk to the script management repository on the router using
the script add eem command.

• Define events—Configure the events with the trigger conditions using the event manager event-trigger
command.

• Define actions to the events—Setup the actions that must be performed in response to an event using
event manager action command.

• Create policy map—Put together the events and the actions in a policy map using event manager
policy-map command.

An eem script is invoked automatically when the event occurs. With the event,
the event-trigger invokes the corresponding policy-map to implement the actions
in response to the event.

Note

• View operational status of the event—Retrieve the operational data using the show event-manager
action | event-trigger | policy-map command.

The following image shows a workflow diagram representing the steps involved in using an event script:

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
86

Automation Scripts
Workflow to Run Event Scripts

The following sections cover the steps to run event scripts:

1. Download the Script to the Router

2. Define Trigger Conditions for an Event

3. Create Actions for Events

4. Create a Policy Map of Events and Actions

5. View Operational Status of Event Scripts

Download the Script to the Router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
87

Automation Scripts
Download the Script to the Router

Download LocationScript Type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

The scripts are added to the script management repository using two methods:

• Method 1: Add script from a server

• Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add eem-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add eem <script-location> <script.py>

The following example shows a process script eem-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add eem http://192.0.2.0/scripts eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add eem <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.
Router#script add eem http://192.0.2.0/scripts eem-script.py checksum SHA256 <checksum-value>

For multiple scripts, use the following syntax to specify the checksum:
Router#script add eem http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Only SHA256 checksum is supported.Note

• Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/eem-script.py /harddisk:/

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
88

Automation Scripts
Download the Script to the Router

b. Add the script from the harddisk to the script management repository.
Router#script add eem /harddisk:/ eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
Wed Aug 25 23:10:50.453 UTC
==
Name | Type | Status | Last Action | Action Time
--
eem-script.py | eem | Config Checksum | NEW | Tue Aug 24 10:44:53 2021
==

Script eem-script.py is copied to harddisk:/mirror/script-mgmt/eem directory on the router.

Define Trigger Conditions for an Event
You define the event, and create a set of instructions that trigger a match to this event. You can create multiple
events.

Before you begin

Ensure that the script is added to the script management repository..

Step 1 Register the event.

Example:
Router(config)#event manager event-trigger eventT10

You can configure more options to trigger an event:

DescriptionKeyword

Number of occurrences before the event is raised.

The occurrence keyword is supported only for syslog events.Note

occurrence

Time interval during which configured occurrence should take place.

The period keyword is supported only for syslog events.Note

period

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
89

Automation Scripts
Define Trigger Conditions for an Event

DescriptionKeyword

Configure the type of event.

• Rate limit—Configure rate limit in seconds or milliseconds. After the event is triggered,
the event trigger does not happen even if the event occurs any number of times, till this
time has elapsed.

• Syslog—Configure syslog pattern, severity.

• Timer—Configure watch dog timer in seconds; cron timer as a text string with five
fields separated by a space.

• Track—Configure event-trigger for track (object tracking), track state (UP, DOWN, or
ANY). If event-trigger is configured for track state UP, then it gets triggered when the
track state changes from DOWN to UP, and vice-versa.

• Telemetry—Define events based on telemetry data. With this feature, you can perform
the following operations:

a. Monitor any operational state such as interface status, and trigger an action when
the state changes to a specific value.

b. Monitor any counter or statistics in an operational data, and trigger an action when
it reaches a threshold.

c. Monitor rate of change of any operational attribute, and trigger an action based on
threshold.

exact match supported on string and threshold or rate limit is supported only
for integer type telemetry data

Note

Configure sensor path for exact match, threshold or rate depending on the telemetry
data type. The exact match is supported on string data type, and threshold and rate limit
is supported only for interger data type. Use the following command to verify the sensor
path or query before configuring the event trigger.
Router#event manager telemetry sensor-path
<sensor-path> json-query <query>

It is mandatory to enable model-driven telemetry using the command:
Router#telemetry model-driven

type

Step 2 Configure the type for the event.

Example

Example: The following example shows the configuration for syslog event type. If severity is
configured, the event gets triggered only if both the syslog severity and the syslog pattern match with
the syslog generated on the router. If severity is not configured, it is set to all, where only pattern
match is considered for the event to trigger.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
90

Automation Scripts
Define Trigger Conditions for an Event

Router(config)#event manager event-trigger eventT10
type syslog pattern "<pattern-to-match>" severity <value>

Router(config)#event manager event-trigger eventT10
rate-limit seconds <time-in-seconds>
type syslog pattern "<pattern-to-match>" severity <value>

The severity values are:

alert Syslog priority 1
critical Syslog priority 2
debug Syslog priority 7 (lowest)
emergency Syslog priority 0 (highest)
error Syslog priority 3
info Syslog priority 6
notice Syslog priority 5
warning Syslog priority 4

The following example shows a syslog pattern L2-BM-6-ACTIVE with severity value critical:
Router(config)#event manager event-trigger eventT10
type syslog pattern "L2-BM-6-ACTIVE" severity info

The event gets triggered, if both the syslog pattern L2-BM-6-ACTIVE and severity value info match.

Create Actions for Events
Define the actions that must be taken when an event occurs.

Before you begin

Ensure that the following prerequisites are met before you configure the action:

•
• Define Trigger Conditions for an Event, on page 89

Step 1 Set the event action.

Example:
Router(config)#event manager action action1

Step 2 Define the type of action. For example, the action is a Python script.

Example:
Router(config)#event manager action action1 type script action1.py

Step 3 Configure the maximum run time of the script for the event.

Example:
Router(config)#event manager action action1 type script action1.py maxrun seconds 30

The default value is 20 seconds.

Step 4 Configure the checksum for the script. This configuration is mandatory. Every script is associated with a checksum hash
value. This value ensures the integrity of the script, and that the script is not tampered. The checksum is a string of numbers
and letters that act as a fingerprint for script.
a) Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
91

Automation Scripts
Create Actions for Events

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/eem/action1.py
407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd
/harddisk:/mirror/script-mgmt/eem/action1.py

b) Configure the checksum for the script.

Example:
Router(config)#event manager action action1 type script action1.py checksum
sha256 407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd

Step 5 Enter the username for the script to execute.

Example:
Router(config)#event manager action action1 username eem_user

Create a Policy Map of Events and Actions
Create a policy to map events and actions. You can configure a policy that associates multiple actions with
an event or use the same action with different events. The policy can be triggered if an event or multiple events
occur at a specified number of times within a specified period of time. The occurrence and period are optional
parameters. You can addmultiple events to a policy-map with boolean (AND or OR) correlation. EEM triggers
the script when the correlation defined in the policy-map for the events is true. For example, a multi-event
policy-map for event1 and event2 with event1 AND event2 boolean operation is triggered only when both
event1 and event2 are true.

Before you begin

Ensure that the following prerequisites are met before you create a policy map:

• Define Trigger Conditions for an Event, on page 89

• Create Actions for Events, on page 91

Step 1 Create a policy map.

Example:

Ensure that the operations when configuring multiple events are within double quotes "".Note

where,

• occurrence: Specifies the number of times the total correlation occurs before an EEM event is raised. If occurrence
is not specified, the policy-map gets triggered on every occurrence of the event. The occurance vale ranges from 1
to 32. An occurrence that is configured with multiple events is considered as only one occurrence if the boolean
logic operations becomes true.

• period: Time interval in seconds, during which the event occurs. The period must be an integer number between 1
to 429496729 seconds.

Step 2 Define the action that must be implemeted when the event occurs. Maximum of 5 actions can be mapped to a policy map.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
92

Automation Scripts
Create a Policy Map of Events and Actions

Example:
Router(config-policy-map)#action action1

Step 3 Configure the name of the event to trigger the policy-map.

Example:
Router(config-policy-map)#trigger event event10

The following example shows the policy-map for multiple events:
event manager policy-map policy001
trigger multi-event “event1 OR (event4 AND event2)”
period 60
action action2
occurrence 2
!

View Operational Status of Event Scripts
Retrieve the operational status of events, actions and policy maps.

Before you begin

Ensure that the following prerequisites are met before you trigger the event:

• Define Trigger Conditions for an Event, on page 89

• Create Actions for Events, on page 91

• Create a Policy Map of Events and Actions, on page 92

Step 1 Run the show event manager event-trigger all command to view the summary of basic data of all events that are
configured.

Example:
Router#show event manager event-trigger all
Tue Aug 24 14:47:35.803 IST
Thu May 20 20:41:03.690 UTC
No. Name esid Type Occurs Period Trigger-Count Policy-Count Status
1 event1 1008 syslog 2 1800 4 1 active
2 event2 1009 syslog 2 1800 4 1 active
3 event3 1010 syslog 2 1800 4 1 active
4 event4 1011 syslog 2 1800 4 1 active
5 event5 1012 syslog 2 1800 4 1 active
6 event6 1013 syslog 2 1800 4 1 active
7 event7 1014 syslog 2 1800 4 1 active
8 event8 1015 syslog 2 1800 4 1 active
9 event9 1016 syslog 2 1800 4 1 active

Use the show event manager event-trigger all detailed command to view the details about the match criteria that you
configured, severity level, policies mapped to the events and so on.

Use the show event manager event-trigger <event-name> detailed command to view the details about the individual
events.

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
93

Automation Scripts
View Operational Status of Event Scripts

Step 2 Run the show event manager policy-map all command to view the summary of all the configured policy maps.

Example:
Router#show event manager policy-map all
Tue Aug 24 14:48:52.153 IST
No. Name Occurs period Trigger-Count Status
1 policy1 NA NA 1 active
2 policy2 NA NA 1 active
3 policy3 NA NA 1 active
4 policy4 NA NA 1 active

Use the show event manager policy-map all detailed command to view the details about mapping of associated events
and actions in the policy maps.

Use the show event manager policy-map <policy-map-name> detailed command to view the details about the individual
policy maps.

Step 3 Run the show event manager action <action-name> detailed commad to view the details of an action.

Example:
Router#show event manager action action1 detailed
Tue Aug 24 16:05:44.298 UTC

Action name: action1
Action type: script
EEM Script name: event_script_1.py
Action triggered count: 1
Action policy count: 1
Username: eem_user
Checksum: 407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd
Last execution status: Success

Policy mapping info
1 action1 policy1

Use the show event manager action all and show event manager action all detailed command to view the summary
and details about all the configured actions.

Example: Shut Inactive Bundle Interfaces Using EEM Script
In this example, you use an EEM event to look for a syslog message and trigger a Python script. The script
does two things:

• Triggers an event on the interface inactive log as part of Bundle-Ether1, and shuts down the interface.

• Runs the show tech-support bundles command to collect debug data.

Step 1 Create an eem script event_script_action_bundle_shut.py. Store the script on an HTTP server or copy the script to
the harddisk of the router.

Example:
from iosxr.xrcli.xrcli_helper import *
from cisco.script_mgmt import xrlog

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
94

Automation Scripts
Example: Shut Inactive Bundle Interfaces Using EEM Script

logger = xrlog.getScriptLogger('sample_script')
syslog = xrlog.getSysLogger('sample_script')
helper = XrcliHelper(debug = True)

syslog.info('Execution of event manager action script event_script_action_bundle_shut.py started')

config = """interface Bundle-Ether1
shutdown"""

cmd = "show tech-support bundles"

if __name__ == '__main__':
res = helper.xr_apply_config_string(config)
if res['status'] == 'success':

syslog.info('OPS_EVENT_SCRIPT_ACTION : Configuration succeeded')
else:

syslog.error('OPS_EVENT_SCRIPT_ACTION : Configuration failed')

res = helper.xrcli_exec(cmd)
if res['status'] == 'success':

syslog.info('OPS_EVENT_SCRIPT_ACTION : show tech started')
else:

syslog.error('OPS_EVENT_SCRIPT_ACTION : show tech failed')

syslog.info('Execution of event manager action script event_script_action_bundle_shut.py ended')

Step 2 Add the script from HTTP server or harddisk to the script management repository..
Step 3 After the configured type matches the syslog pattern, the script is triggered in response to the detected event. You can

view the running configuration for the event manager.

Example:
Router#show running-config event manager
Mon Aug 30 06:23:32.974 UTC
event manager action action1
username eem_user
type script script-name eem_script_bundle_shut.py maxrun seconds 600 checksum sha256

2386d8f71b2d6f6f6e77a7a39d3b4d38cca07f9eaf2a4de7cd40c1b027a4e248
!
event manager policy-map policy1
trigger event event1
action action1

!
event manager event-trigger event1
type syslog pattern "%L2-BM-6-ACTIVE : FortyGigE0/0/0/13 is no longer Active as part of Bundle-Ether1"

!

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
95

Automation Scripts
Example: Shut Inactive Bundle Interfaces Using EEM Script

Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
96

Automation Scripts
Example: Shut Inactive Bundle Interfaces Using EEM Script

	Programmability Configuration Guide for Cisco NCS 540 Series Routers, Cisco IOS XR Release 24.1.x, 24.2.x, 24.3.x
	Contents
	Drive Network Automation Using Programmable YANG Data Models
	YANG Data Model
	Access the Data Models
	CLI to Yang Mapping Tool
	Communication Protocols
	NETCONF Protocol
	gRPC Protocol

	YANG Actions

	Use NETCONF Protocol to Define Network Operations with Data Models
	NETCONF Operations
	Retrieve Default Parameters Using with-defaults Capability
	Retrieve Transaction ID for NSO Operations
	Set Router Clock Using Data Model in a NETCONF Session

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Network Management Interface
	gRPC Network Operations Interface
	gRPC Network Security Interface
	How to Update gRPC-Level Authorization Policy

	gRPC Authentication Modes
	Certificate Common-Name For Dial-in Using gRPC Protocol
	Configure Certificate Common Name For Dial-in

	Configure Interfaces Using Data Models in a gRPC Session

	Enhancements to Data Models
	Improved YANG Input Validator and Get Requests
	OpenConfig Data Model Enhancements
	OAM for MPLS and SR-MPLS in mpls-ping and mpls-traceroute Data Models
	Automatic Resynchronization of OpenConfig Configuration

	Unified Configuration Models
	Automation Scripts
	Achieve Network Operational Simplicity Using Automation Scripts
	Explore the Types of Automation Scripts

	EEM Scripts
	Workflow to Run Event Scripts
	Download the Script to the Router
	Define Trigger Conditions for an Event
	Create Actions for Events
	Create a Policy Map of Events and Actions
	View Operational Status of Event Scripts

	Example: Shut Inactive Bundle Interfaces Using EEM Script

