
Integration Developer’s Guide for
Cisco Broadband Access Center
Release 3.5
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-19064-01

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCDE, CCSI, CCENT, Cisco Eos, Cisco HealthPresence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco Nurse Connect, Cisco Stackpower, Cisco StadiumVision,
Cisco TelePresence, Cisco WebEx, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are
service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the
Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without
Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study,
IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar,
PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath,
WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (0903R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the
document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Integration Developer’s Guide for Cisco Broadband Access Center 3.5
© 2009 Cisco Systems, Inc. All rights reserved.

OL-19064-01
C O N T E N T S
Preface v

Audience v

Organization v

Conventions vi

Product Documentation vii

Obtaining Documentation and Submitting a Service Request i-vii

C H A P T E R 1 Introduction 1-1

Overview 1-1

API Functions 1-2

C H A P T E R 2 BAC Architecture 2-1

Regional Distribution Unit 2-1

Device Provisioning Engine 2-1

Provisioning Group 2-2

Client API 2-2

C H A P T E R 3 Client and RDU Communication 3-1

Overview 3-1

Establishing a Connection 3-2

Maintaining a Connection 3-2

Connection Concurrency 3-2

Closing a Connection 3-2

C H A P T E R 4 Batches and Commands 4-1

Overview 4-1

Batch Rules 4-2

Identifying a Batch 4-3

Batch Processing Flags 4-4

Setting the Reliable Flag 4-4

Setting the Activation Flag 4-5

Setting the Confirmation Flag 4-6
iii
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

Contents
Setting the Publishing Flag 4-7

Setting the Optimistic Locking Flag 4-8

Submitting the Batch 4-9

Submitting in Synchronous Mode 4-9

Submitting in Asynchronous Mode 4-9

Batch Processing Modes 4-10

Batch Results 4-10

Queuing a Batch 4-13

Retrying a Batch 4-14

Handling Errors 4-15

Types of Errors 4-16

Connection Errors 4-16

Batch and Command Errors 4-16

Batch Warnings 4-16

C H A P T E R 5 Events 5-1

Overview 5-1

Event Registration 5-1

Event Handling 5-3

Event Reliability 5-3

C H A P T E R 6 Getting Started with the BAC API 6-1

Startup Process for API Client 6-1

Configuring the System 6-1

Executing the API Client 6-2

Creating an API Client 6-3

C H A P T E R 7 Use Cases 7-1

Provisioning Operations 7-1

Device Management Operations 7-4

G L O S S A R Y

I N D E X
iv
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Preface

The Integration Developer’s Guide for Cisco Broadband Access Center, Release 3.5 describes the
Cisco Broadband Access Center (BAC) Application Programming Interface (API), which you can use to
integrate Broadband Access Center with your Business Support Systems (BSS) and Operational Support
Systems (OSS).

This chapter provides an outline of the other chapters in this guide, details information about related
documents that support this BAC release, and demonstrates the styles and conventions used in the guide.

This chapter contains the following sections:

 • Audience, page v

 • Organization, page v

 • Conventions, page vi

 • Product Documentation, page vii

 • Obtaining Documentation and Submitting a Service Request, page viii

Audience
System integrators, network administrators, and network technicians can use this integration guide to
integrate the various BSS and OSS with BAC. Only experienced users should use these instructions. To
use the instructions in this guide, you must be familiar with:

 • BAC architecture.

 • Java programming.

Organization
This guide includes the following sections:

Section Title Description

Chapter 1 Introduction Describes the components that integrate with
BAC.

Chapter 2 BAC Architecture Describes the BAC architecture and the functions
of each component.
v
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Preface

Conventions
This document uses the following conventions:

Note Means reader take note.

Tip Means the following information will help you solve a problem.

Caution Means reader be careful. In this situation, you might perform an action that could result in equipment
damage or loss of data.

Chapter 3 Client and RDU Communication Describes the communication between the BAC
API and the Regional Distribution Unit (RDU).

Chapter 4 Batches and Commands Describes the concepts and rules related to
batches and how you can troubleshoot the errors
or any error that occur during integration.

Chapter 5 Events Describes and explains how to register and handle
BAC events.

Chapter 7 Getting Started with the BAC API Describes how you can get started with the API.

Chapter 8 Use Cases Describes some of the most common provisioning
API use cases.

Section Title Description

Convention Indication

bold font Commands and keywords and user-entered text appear in bold font.

italic font Document titles, new or emphasized terms, and arguments for which you supply
values are in italic font.

[] Elements in square brackets are optional.

{x | y | z } Required alternative keywords are grouped in braces and separated by
vertical bars.

[x | y | z] Optional alternative keywords are grouped in brackets and separated by
vertical bars.

string A nonquoted set of characters. Do not use quotation marks around the string or
the string will include the quotation marks.

courier font Terminal sessions and information the system displays appear in courier font.

< > Nonprinting characters such as passwords are in angle brackets.

[] Default responses to system prompts are in square brackets.

!, # An exclamation point (!) or a pound sign (#) at the beginning of a line of code
indicates a comment line.
vi
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Preface
Product Documentation

Note We sometimes update the printed and electronic documentation after original publication. Therefore,
you should also review the documentation on http://www.cisco.com for any updates.

Table 1 describes the product documentation that is available.

Table 1 Product Documentation

Document Title Available Formats

Release Notes for Cisco Broadband
Access Center, Release 3.5

 • PDF on the product CD-ROM.

 • On Cisco.com at this URL:
http://cisco.com/en/US/products/sw/netmgtsw/ps529/
prod_release_notes_list.html

 • On Software download page.

Installation Guide for Cisco
Broadband Access Center,
Release 3.5

 • PDF on the product CD-ROM.

 • On Cisco.com at this URL:
http://cisco.com/en/US/products/sw/netmgtsw/ps529/
prod_installation_guides_list.html

 • On Software download page.

Cisco Broadband Access Center
Administrator’s Guide, Release 3.5

 • PDF on the product CD-ROM

 • On Cisco.com at this URL:
http://cisco.com/en/US/products/sw/netmgtsw/ps529/
prod_maintenance_guides_list.html

 • On Software download page.

Integration Developer’s Guide for
Cisco Broadband Access Center,
Release 3.5

 • PDF on the product CD-ROM

 • On Cisco.com at this
http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_
command_reference_list.html

 • On Software download page.

Cisco Broadband Access Center
DPE CLI Reference, Release 3.5.

 • PDF on the product CD-ROM

 • On Cisco.com at this
http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_
command_reference_list.html

 • On Software download page.

Cisco Broadband Access Center 3.5
Third Party and Open Source
Copyrights

On Cisco.com at this URL:
http://cisco.com/en/US/products/sw/netmgtsw/ps529/
prod_release_notes_list.html
vii
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_release_notes_list.html
http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_installation_guides_list.html
http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_maintenance_guides_list.html
http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_command_reference_list.html
http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_command_reference_list.html
http://cisco.com/en/US/products/sw/netmgtsw/ps529/prod_release_notes_list.html
http://www.cisco.com

Preface
 Obtaining Documentation and Submitting a Service Request
Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional
information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and
revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed
and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free
service and Cisco currently supports RSS Version 2.0.
viii
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Integration Develo
OL-19064-01
C H A P T E R 1

Introduction

This chapter provides an overview of the Cisco Broadband Access Center (BAC) Application
Programming Interface (API) and the API functions that you can use to perform the Regional
Distribution Unit (RDU) tasks. The chapter describes:

 • Overview, page 1-1

 • API Functions, page 1-2

Overview
BAC automates the tasks of provisioning and managing Customer Premises Equipment (CPE) in a
broadband service-provider network. It enables secure provisioning and management of CPE by using
the Broadband Forum’s CPE WAN Management Protocol (CWMP), a standard defined in the TR-069
specification. BAC integrates the capabilities defined in TR-069 to increase operator efficiency and
reduce network-management problems.

You can integrate BAC into new or existing environments using an API that lets you control how BAC
operates. Using the API, you can integrate various Business Support Systems (BSS) and Operational
Support Systems (OSS) with BAC. The API is a programmatic interface through which the various BSS
and OSS clients connect to the RDU, which is the central server in a BAC deployment.

You can use the BAC API to:

 • Register devices in the RDU database.

 • Assign configuration policies for devices.

 • Execute CWMP operations on the CPE.

 • Configure the BAC provisioning system.

Note Use this guide along with the following resources that are integrated with the BAC software:

 • API Javadocs, located at BPR_HOME/docs/provapi/javadoc.

 • Sample API client code, located at BPR_HOME/rdu/samples/provapi.

BPR_HOME refers to the home directory in which you install BAC. The default home directory is
/opt/CSCObac.
1-1
per’s Guide for Cisco Broadband Access Center 3.5

Chapter 1 Introduction
 API Functions
API Functions
Using the BAC API, you can perform the following operations:

 • Provisioning operations.

You can:

 – Add, modify, search device records in the RDU database.

 – Associate device records with Classes of Service in the RDU database.

 – Associate device records with the groups in the RDU database.

 – Retrieve discovered device data stored in the RDU database.

 – Retrieve device operation history from the RDU database.

 – Retrieve device faults from the BAC servers.

 • Device management operations.

You can:

 – Retrieve live data, such as statistics, from a device.

 – Execute diagnostics on a device.

 – Reboot the device.

 – Reset the device settings to default configuration.

 – Perform individual sets on a device.

 – Execute any TR-069 remote procedure calls (RPC) in pass-through mode.

 • System configuration and management operations.

You can:

 – Configure Class of Service objects in the RDU.

 – Manage firmware rules, configuration templates, and other files.

 – Configure device grouping objects in the RDU.

 – Configure licenses.

 – Configure users.

 – Configure system settings for BAC.

 – Retrieve BAC server status and statistics.

Note You can perform all system configuration and management operations from the BAC administrator user
interface as well. For details on how to perform these operations, see the Cisco Broadband Access Center
Administrator's Guide 3.5.

For more details on how to perform provisioning and device management operations, see Use Cases.
1-2
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
C H A P T E R 2

BAC Architecture

This chapter describes the basic BAC architecture and includes the following sections:

 • Regional Distribution Unit, page 2-1

 • Device Provisioning Engine, page 2-1

 • Client API, page 2-2

 • Provisioning Group, page 2-2

For more information on each of the components, see the Cisco Broadband Access Center
Administrator’s Guide 3.5.

Regional Distribution Unit
The Regional Distribution Unit (RDU) is the primary server in the BAC provisioning system. It is
installed on a server running Solaris 10 operating system.

The functions of the RDU include:

 • Managing preprovisioned and discovered data from devices.

 • Generating instructions for DPEs and distributing them to DPE servers for caching.

 • Cooperating with DPEs to keep them up to date.

 • Processing API requests for all BAC functions.

 • Managing the BAC system.

The RDU supports the addition of new technologies and services through an extensible architecture.

Device Provisioning Engine
The Device Provisioning Engine (DPE) communicates with the CPE on behalf of the RDU to perform
any provisioning or management functions.

The RDU generates instructions that the DPE must carry out on the device. These instructions are
distributed to the relevant DPE servers, on which they are cached. These instructions are then used
during interactions with the CPE to accomplish tasks such as device configuration, firmware upgrade,
and data retrieval.
2-1
per’s Guide for Cisco Broadband Access Center 3.5

Chapter 2 BAC Architecture
 Provisioning Group
The DPE manages the following tasks:

 • Synchronization with the RDU to retrieve the latest set of instructions for caching.

 • Communication with the CPE using CWMP and HTTP for file download services.

 • Authentication and encryption of communication with the CPE.

Provisioning Group
A provisioning group is a logical (typically geographic) grouping of servers that usually consist of one
or more DPEs. Each DPE in a given provisioning group caches identical sets of instructions from the
RDU, thus enabling redundancy and load balancing.

Client API
The client API provides total client control over BAC capabilities. The API enables the client on a
remote host to communicate with the RDU.

The API client library exposes the client to a single logical interface. For information on the objects and
functions of this interface, see the API Javadocs in the BAC installation directory. Figure 2-1 shows three
remote clients accessing the RDU via the API client library.

Figure 2-1 Embedded Client Library

The API client library is packaged in the bpr.jar and bacbase.jar files, located at BPR_HOME/lib, where
BPR_HOME refers to the home directory on which you install BAC.

Note For client communication with the RDU to be successful, ensure that both the .jar files are available in
the Java classpath and compile against these libraries using the standard Java compilation process.

We recommend that you use Java version 1.6.0_05 or later to support the client API in BAC 3.5.
2-2
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
C H A P T E R 3

Client and RDU Communication

This chapter details the communication between the client library and the RDU and describes on how to
establish, maintain, and close the connection between the client library and the RDU.

This chapter has the following sections:

 • Overview, page 3-1

 • Establishing a Connection, page 3-2

 • Maintaining a Connection, page 3-2

 • Connection Concurrency, page 3-2

 • Closing a Connection, page 3-2

Overview
The BAC API communicates with the RDU in a BAC deployment over TCP/IP.

The API client library initiates the connection between the API and the RDU. The RDU does not try to
establish a connection between itself and the API.

Though the client library initiates and establishes connectivity between the API and the RDU,
information flows in both directions, with the client library submitting requests to the RDU, and the
RDU responding to those requests. The bilateral heartbeat messages enable the API client and the RDU
to maintain a bidirectional connection.

Note The network administrator must ensure that:

 • IP connectivity exists between the client and the RDU.

 • The TCP port that the RDU listens on is opened through a firewall between the client API and the
RDU. The default TCP port that the RDU listens on is 49187. The RDU uses this TCP port to bind
itself to all network interfaces.
3-1
per’s Guide for Cisco Broadband Access Center 3.5

Chapter 3 Client and RDU Communication
 Establishing a Connection
Establishing a Connection
The client establishes a connection with the RDU by passing the following parameters:

 • Hostname of the RDU; for example, rdu.mso.com

 • Port for communication with the RDU; the default port is 49187.

 • Administrator username; the default administrator username is bacadmin.

 • Administrator password; the default administrator password is changeme.

You can use the following code to establish a connection between the RDU and the client library:

final PACEConnection connection =
 PACEConnectionFactory.newInstance(

 "rdu.mso.com", 49187, "bacadmin", "changeme");

The connection between the client library and RDU is maintained until it is explicitly closed. See Closing
a Connection, page 3-2 on how to close a connection.

Maintaining a Connection
The client library automatically maintains the connection between the client and RDU. In case the
connection breaks in the network layer because of congestion, routing problems, or other issues, the
client library automatically reconnects to the RDU. The client library tries to reconnect to the RDU until
the connectivity is restored.

The reconnection process is automatic and does not impact your code while the RDU interacts with the
library. For example, a synchronous call to submit a batch blocks the thread and returns the results when
the results are available as usual; even if the client library had to automatically reconnect to the RDU.

Connection Concurrency
The client library maintains a single TCP connection to the RDU. This connection can be used for any
number of requests and responses. Multiple threads can use the same single connection object.

While there is only a single underlying TCP connection, many Provisioning API Command Engine
(PACE) connection instances can be created. If there is a need for multiple BAC users in a single client,
then multiple PACE connections are required.

Closing a Connection
The connection between the RDU and the client library is maintained until you explicitly close the
connection. You can use the following code to close the connection:

 connection.releaseConnection();
3-2
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
C H A P T E R 4

Batches and Commands

This chapter provides an overview of batches and the commands contained in the batch. This chapter has
the following sections:

 • Overview, page 4-1

 • Batch Rules, page 4-2

 • Identifying a Batch, page 4-3

 • Batch Processing Flags, page 4-4

 • Submitting the Batch, page 4-9

 • Batch Processing Modes, page 4-10

 • Batch Results, page 4-10

 • Queuing a Batch, page 4-13

 • Retrying a Batch, page 4-14

 • Handling Errors, page 4-15

Overview
A batch object:

 • Is a container for commands that the RDU must execute.

 • Contains methods that control how the RDU executes the commands and returns results.

A command represents an operation that is performed on an object in the RDU database. For example,
to add a new device, the client issues an add command via the API to the RDU. To delete a device, the
client issues the delete command to the RDU via the API.

The batch lifecycle (create, post, execute, return results) demands two entities to communicate over a
network. For this communication, a provisioning client in BAC submits API requests to the RDU in the
form of batches that contain single or multiple commands.
4-1
per’s Guide for Cisco Broadband Access Center 3.5

Chapter 4 Batches and Commands
 Batch Rules
Figure 4-1 illustrates the concept of batch processing.

Figure 4-1 API Batch Object

Batches are atomic units; either all the commands in the batch succeed or none of the commands
succeeds. If the batch fails, the RDU restores changes that were made to its database. The RDU executes
the commands in the same sequence in which they are added to the batch. For more information on batch
identification, see Identifying a Batch, page 4-3. For more information on batch flags, see Batch
Processing Flags, page 4-4.

Batch Rules
To execute a batch successfully, ensure that you follow rules listed below:

 • A batch must contain between 1 and 100 commands. You cannot execute a batch with no commands,
or one with more than 100 commands.

 • Commands in a batch must either be read or write. You cannot combine read and write commands
in a batch. For example, the same batch cannot contain a get device details command (read) as well
as an add device command (write).

Note Commands that perform device operations (such as a connection request) are write
commands.

 • Batch commands must relate to device or system configuration. You cannot combine device-related
and system-related commands in a batch. For example, you cannot combine a modify Class of
Service command (system) and an add device command (device) in the same batch.

 • When a batch includes a command that interacts with a device via a device operation or an automatic
activation flag, all commands in the batch must relate to the same device. For example, you cannot
submit a batch containing two connection request operations for two different devices.
4-2
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Identifying a Batch
 • On-connect commands and immediate device operation commands must not be submitted in the
same batch.

Identifying a Batch
Every batch that the RDU executes has a unique batch identifier. The batch identifier that the client
library generates includes the hostname of the local client server and a random number that increments.

The batch identifier helps you to:

 • Retrieve batch status from the RDU.

 • Correlates the respective batch events in the RDU.

While the client library automatically generates a batch identifier, you can specify your own batch
identifier based on your requirements.

Note We recommend that you use the batch identifiers that the client library generates for you.

If you generate your own batch identifier, ensure that you clearly identify the local client server.

Tip If you have a global transaction identifier, it can be a good idea to include it in the batch identifier
in order to monitor the transaction throughout the entire system.

If the RDU detects a duplicate batch identifier, it rejects that batch. Submitting batches with batch
identifiers that have already been processed may lead to failure and unexpected results.

You can generate a batch identifier in one of two following ways:

 • Using the client library —To use the client library, use the newBatch methods on the Provisioning
API Command Engine (PACE) connection object for a batch without the batch identifier parameter.

Use the following code to generate a batch identifier using a client library:

 public Batch newBatch()

 public Batch newBatch(ActivationMode activation)

 public Batch newBatch(PublishingMode publishing)

 public Batch newBatch(ActivationMode activation, ConfirmationMode confirmation)

 public Batch newBatch(ActivationMode activation, ConfirmationMode confirmation,
 PublishingMode publishing)

 public Batch newBatch(ActivationMode activation,
 PublishingMode publishing)

 • By specifying your own identifier — To generate your own batch identifier, use the newBatch
methods on the PACE connection object containing the batch identifier parameter.

Use the following code to generate a batch identifier by specifying your own identifier:

 public Batch newBatch(String batchId)

 public Batch newBatch(String batchId,
 ActivationMode activation)
4-3
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Processing Flags
 public Batch newBatch(String batchId,
 PublishingMode publishing)

 public Batch newBatch(String batchId,
 ActivationMode activation,
 ConfirmationMode confirmation)

 public Batch newBatch(String batchId,
 ActivationMode activation,
 ConfirmationMode confirmation,
 PublishingMode publishing)

 public Batch newBatch(String batchId,
 ActivationMode activation,
 PublishingMode publishing)

Batch Processing Flags
Batch processing flags control:

 • Batch interaction with a device.

 • Notifications of batches to external systems. These notifications detail the changes that are made by
various operations in a batch.

BAC supports the following processing flags, each of which is described in subsequent sections:

 • Reliable, see Setting the Reliable Flag, page 4-4.

 • Activation, see Setting the Activation Flag, page 4-5.

 • Confirmation, see Setting the Confirmation Flag, page 4-6.

 • Publishing, see Setting the Publishing Flag, page 4-7.

 • Optimistic Locking, see Setting the Optimistic Locking Flag, page 4-8.

Setting the Reliable Flag
Communication between the client and the RDU breaks if:

 • The client restarts after posting a batch.

 • The RDU restarts after receiving a batch.

 • The network connection breaks when the results are being sent. Subsequently, the results are lost.

To handle such issues, BAC provides a reliable batch flag. When you enable the reliable flag for a batch,
the RDU stores the batch on receiving it, and even if the RDU restarts, the batch is guaranteed to be
executed after the restart.

Note You can enable the reliable batch flag for batches that contain write commands, such as add,
change, or delete.
4-4
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Processing Flags
After the batch is executed, the RDU stores the results in its database. Subsequently, the client can obtain
results for the batches even after an RDU restart. To obtain the results, the client uses a join operation
and the thread blocks till the results are returned or a timeout occurs. If the RDU did not receive the
batch, or cleared the results from its database, an error appears. At a time, the RDU stores the results of
2000 reliable batches that were last executed.

Note We recommend that you store all batch identifiers of reliable batches to the disk, before you post
a batch. By storing the batch identifiers, the client library can query for results even if a client
restart occurs.

 • To join a reliable batch with a batch identifier using the PACE Connection object:

 – With a timeout:

final BatchStatus batchStatus = connection.join(batchId, 5000);

Note We recommend that you use a timeout value when using the join feature for reliable batches.
Also, because reliable batches add a significant load to the RDU, use it only when client and
network reliability outweigh the performance impact.

 – Without a timeout:

final BatchStatus batchStatus = connection.join(batchId);

 • To force a batch to be reliable before submitting a synchronous or asynchronous post, use the
following code:

// make it reliable
batch.forceBatchReliable();

For information on synchronous and asynchronous batches, see Batch Processing Modes, page 4-10.

Setting the Activation Flag
You can use the activation flag in batches that contain write commands and operate on a single device.
The activation flag is of two types:

 • No Activation—Executes by updating the RDU database and the appropriate DPE caches.

Batches that include commands for on-connect device operations must use the no-activation flag.

 • Automatic Activation—Executes by persisting the changes in the RDU database and by trying to
establish contact with the device to obtain the latest configuration; for CWMP devices, this contact
involves sending a connection request to the device and obtaining a connection.

Batches that include commands for all immediate device operations must use the
automatic-activation flag.

You can mark a batch using the no-activation flag or the automatic-activation flag.

For example, consider a batch that contains a change Class of Service command for a device. If you
execute the batch with the no-activation flag, the device’s Class of Service is changed and the resulting
new configuration is sent to the DPEs in the provisioning group. The new data is available in the
appropriate DPEs for the next device session. On the other hand, if you execute the same batch with an
automatic-activation flag, the RDU not only sends the new configuration to the provisioning group, but
also issues a connection request to the device to start a new session.
4-5
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Processing Flags
Activation only involves making a connection request; it does not verify if the configuration was
successfully applied on the device. When you execute a batch with the automatic-activation flag, the
batch becomes reliable. Also, as activation involves both updating the RDU database and generating a
connection request to the DPE, the batch may then return a warning, indicating that the database was
successfully updated but that the connection request did not occur, if the device is offline. For details on
controlling this behavior using the Confirmation flag, see Setting the Confirmation Flag, page 4-6.

Note You can augment or replace the activation logic in the RDU during deployment using an
extension. For more information, see the Cisco Broadband Access Center Administrator's Guide
3.5.

 • You can create a batch with no activation in one of two following ways:

 – Without specifying the flag. Because no-activation is the default, batches are created with the
no-activation flag.

final Batch batch = connection.newBatch();

 – By explicitly setting the flag.

final Batch batch = connection.newBatch(
 ActivationMode.NO_ACTIVATION);

 • You can create a batch with automatic activation using the following code:

final Batch batch = connection.newBatch(
 ActivationMode.AUTOMATIC);

Setting the Confirmation Flag
You can use the confirmation flag to control the behavior of batch activation. You must use the
confirmation flag only in batches that have the automatic-activation flag set.

The confirmation flag communicates with the RDU on how the processing of a batch should proceed if
there are warnings or errors during activation. For more information on warnings or errors during
activation, see Batch Warnings, page 4-16.

BAC supports two types of confirmation flags:

 • No confirmation

 • Custom confirmation.

Unless you specify otherwise, a batch is created with the no confirmation flag.

When you execute a batch with the no-confirmation flag, warnings or errors during activation do not
cause the batch to fail. Instead, the batch results contain a warning indicating that activation issues
occurred. The batch proceeds and database updates are committed.

When you execute a batch with the custom-confirmation flag and a warning occurs during activation, the
batch results contain the warning. The batch proceeds, committing the database updates. However, if an
error occurs during activation, and the batch results contain the error, the batch fails, and the database
updates get rolled back.

Note You can replace or augment the activation code in the RDU so that the errors or warnings that
appear depend on the code in use. In case a connection request to a device fails, the default
CWMP code does not produce any warnings; it, however, returns errors.
4-6
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Processing Flags
You can create a batch with a no-confirmation flag or a custom-confirmation flag.

 • You can create a batch with the no-confirmation flag, using the following code:

final Batch batch = connection.newBatch(
 ActivationMode.AUTOMATIC);

 • You can create a batch with the custom-confirmation flag, using the following code:

final Batch batch = connection.newBatch(
 ActivationMode.AUTOMATIC,
 ConfirmationMode.CUSTOM_CONFIRMATION);

Setting the Publishing Flag
You can use publishing plug-ins to include custom code that helps notify the external entities of changes
the batch make to the RDU database. For information on creating publishing plug-ins in the RDU, see
the Cisco Broadband Access Center Administrator's Guide 3.5.

You can set the publishing flag in one of three ways:

 • No publishing—The publishing plug-in is not called within the batch.

 • Publishing with no confirmation—The publishing plug-in is executed. If an error occurs, the batch
proceeds and any database change is updated.

 • Publishing with confirmation—The publishing plug-in is executed. If an errors occurs, the batch
fails and the database updates are rolled back.

Note When you mark a batch with the publishing with confirmation flag, the batch automatically
becomes reliable.

You must explicitly specify if a batch is to be created with publishing; otherwise, batches are created
using the no-publishing flag.

 • You can create a batch with the no-publishing flag in one of two following ways:

 – Without setting any flag. Because the no-publishing flag is the default setting, a batch is thus
created:

final Batch batch = connection.newBatch();

 – By explicitly setting the no-publishing flag:

final Batch batch = connection.newBatch(
 PublishingMode.NO_PUBLISHING);

 • You can create a batch with the publishing no-confirmation flag using:

final Batch batch = connection.newBatch(
 PublishingMode.PUBLISHING_NO_CONFIRMATION);

 • You can create a batch with the publishing-with-confirmation flag using:

final Batch batch = connection.newBatch(
 PublishingMode.PUBLISHING_CONFIRMATION);
4-7
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Processing Flags
Setting the Optimistic Locking Flag
Because the API client executes in a client-server model, a time interval occurs between a get and a
modify cycle. You can use the optimistic locking flag to prevent inconsistent changes being made to
devices by different clients, simultaneously.

When you perform a get operation for an object (such as a device), the details map contains the
GenericObjectKeys.OID_REVISION_NUMBER key. The value for this key is an object identifier that
is encoded with the current revision number for the object. You can add this revision number to the batch
to ensure that the object is not changed before the changes in your batch are applied. If the object has
changed, as indicated by a different revision number, the batch returns the following error:
BatchStatusCodes.BATCH_NOT_CONSISTENT.

For example, consider a batch that retrieves a device and change its Class of Service using optimistic
locking:

Note This example uses the CWMP device identifier 00000C-1234567890.

final DeviceID deviceId = new CWMPDeviceID("00000C-1234567890");

final Batch batchForGet = connection.newBatch();
batchForGet.getDetails(deviceId, null);

final BatchStatus batchStatusForGet = batchForGet.post(10000);

if (batchStatusForGet.isError())
{

// handle error
}

// we know that we only submitted one command in the
// batch so we can get the first command status

final CommandStatus commandStatus =

 batchStatusForGet.getCommandStatus(0);

// we know we submitted a get details command so we are
// expecting a result of a map
if (commandStatus.getDataTypeCode != CommandStatus.DATA_MAP)
{

 // throw an exception or log a message
 // we are expecting a map and didn't get one

}

final Map<String, Object> result =
(Map<String, Object>)commandStatus.getData();

final Object consistencyValue = result.get(
 GenericObjectKeys.OID_REVISION_NUMBER);

// change the class of service
final Batch batchForMod = connection.newBatch();
batchForMod.changeClassOfService(deviceId, "gold");

4-8
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Submitting the Batch
// now do the optimistic locking
final List<Object> list = new ArrayList<Object>();
list.add(consistencyValue);
batchForMod.ensureConsistency(list);

// now when we post we know the device has not been changed
// since our get and our change
// if it has it will be an error

Submitting the Batch
The API client submits batches to the RDU synchronously or asynchronously. The API submits batches
to the RDU in two modes:

 • Submitting in Synchronous Mode, page 4-9

 • Submitting in Asynchronous Mode, page 4-9

Submitting in Synchronous Mode
When the API client submits a synchronous batch, the batch blocks the current thread till:

 • The RDU returns the results on the batch.

 • The batch times out before the RDU returns results.

If the client library does not receive a response from the RDU within the specified timeout, a
ProvTimeoutException is thrown. The error message in the exception indicates that the client library did
not receive the batch result in the specified time but that the batch execution did not necessarily fail.

You can submit your batch to the RDU in synchronous mode with or without a timeout.

 • You can submit a synchronous batch on a PACE connection object with a timeout, using:

// posting with timeout (in milliseconds)
final BatchStatus batchStatus = connection.postBatch(batch, 5000);

Note We recommend that you post a batch in synchronous mode with a timeout configured. For
batches that read or update the database, you can configure a timeout of 30,000 milliseconds
(msec). For batches that perform operations on live devices, you can configure a timeout of
60,000 msec.

 • You can submit a synchronous batch on a PACE connection object without a timeout, using:

// posting with no timeout
final BatchStatus batchStatus = connection.postBatch(batch);

Submitting in Asynchronous Mode
When the client submits an asynchronous batch, the client library thread that posts a batch to the RDU
becomes active again. The client library obtains the results using the batch events or, if preferred, does
not obtain results at all.

You can submit an asynchronous batch on a PACE connection object, using:

// posting async
4-9
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Processing Modes
connection.postBatchNoStatus(batch);

To obtain batch results via batch events, the client library registers a listener class that implements batch
listener via the PACE connection with an appropriate qualifier. The batch listener interface exposes a
completed method that has a batch event as its argument, and this method is called for each qualified
batch when it completes. The batch event, in turn, provides access to the batch status object, which
contains the results of the batch. To correlate between the submitted batch and the results, use the batch
identifier.

To receive the results, ensure that the listener is registered before the batch is submitted. See Events to
view the various events posted by BAC.

Batch Processing Modes
Depending on the commands contained in the batch, the RDU executes the batch in one of two following
modes:

 • Concurrent

 • Nonconcurrent

The concurrent and nonconcurrent modes provide higher throughput at the RDU, without losing data
integrity.

When the RDU receives a batch, the commands in the batch determine the mode in which a batch is
executed. The RDU executes most batches in concurrent mode. A batch must include either concurrent
or nonconcurrent commands; the RDU does not process a mix of concurrent and nonconcurrent
commands in a single batch. When running one concurrent batch, you can execute other concurrent
batches as well.

If the RDU has to process a batch in nonconcurrent mode, all the batches currently being run in the RDU
must have completed execution, and no new batches must have started. Batches you submit at this time
are queued. The RDU executes the new batches in the mode in which they are marked, after completing
the processing of the nonconcurrent batch; by so doing, the RDU avoids lock conflicts and consistency
issues.

Only a few commands cause a batch to run in nonconcurrent mode. These commands relate to the
following system configuration operations:

 • Configuring Class of Service objects in the RDU.

 • Managing firmware rules, configuration templates and other files.

 • Configuring device grouping objects in the RDU.

 • Configuring licenses.

 • Configuring users.

 • Configuring system settings.

Batch Results
A batch result is the outcome of a batch that the RDU executes. Results are returned either as exceptions
or as batch status objects.

When posting a batch, an exception is thrown if:
4-10
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Results
 • The batch has already been posted.

 • A connection to the RDU cannot be established.

 • A timeout occurred when submitting a batch in synchronous mode.

Note These exceptions are rare and are raised as a ProvisioningException object.

If there is no ProvisioningException thrown, a batch status object is returned. Similar to batches and
commands, there are batch status objects and command status objects. A batch status object contains
command status entries for each of the commands in the corresponding batch object that was executed.
The order of the command status entries matches that of the commands in the batch object.

Figure 4-2 illustrates the structure of a batch status object.

Figure 4-2 Batch Status Object

The batch status object, like a batch, serves as a container. If a single command fails, you can query the
batch status to determine if there was a failure and to obtain the command status that contains the details.
You can also check the batch status to determine if all the commands succeeded.

Note A batch status object does not always contain a command status. An invalid batch construction,
for example, one with a combination of read and write commands, returns a batch status object
without command status objects.

 • You can query the batch status object to determine:

 – If a single command in a batch failed.

 – The success of all commands in the batch.

 • You can query the command status object to determine the details of a command failure. For more
information on the status objects, see Batch and Command Errors, page 4-16.
4-11
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Batch Results
To check whether the batch successfully passes, and to handle errors, if any, use the following code:

final BatchStatus batchStatus = connection.post(batch); if (!batchStatus.isError())
 {
 // batch passed so all commands passed
 }
 else
 {
 // we need to determine if it was a batch error or a
 // command error that caused this failure

 if (batchStatus.getFailedCommandIndex() == -1)
 {
 // this is a batch only error
 // get the error code and get the error message
 final StringBuilder msg = new StringBuilder(128);
 msg.append(“Batch with ID [“);
 msg.append(batchStatus.getBatchID());
 msg.append(“] failed with error code [“);
 msg.append(batchStatus.getStatusCode());
 msg.append(“]. [“);
 msg.append(batchStatus.getErrorMessage());
 msg.append(“].“);

 // throw an exception or log the message
 }
 else
 {
 // this is a batch error caused by a command
 final CommandStatus commandStatus =
 batchStatus.getFailedCommandIndex();

 // get the error code and get the error message
 final StringBuilder msg = new StringBuilder(128);
 msg.append(“Batch with ID [“);
 msg.append(batchStatus.getBatchID());
 msg.append(“] failed with command error code [“);
 msg.append(commandStatus.getStatusCode());
 msg.append(“]. [“);
 msg.append(commandStatus.getErrorMessage());
 msg.append(“].“);

 // throw an exception or log the message
 }
 }

If a batch successfully passed and you want to view the results before retrieving the details of a device,
use the following code.

final BatchStatus batchStatus = connection.post(batch); if (batchStatus.isError())
 {
 // handle error
 }
 else
 {
 // we know that we only submitted one command in the
 // batch so we can get the first command status

 final CommandStatus commandStatus =
 batchStatus.getCommandStatus(0);

 // we know we submitted a get details command so we are
 // expecting a result of a map
4-12
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Queuing a Batch
 if (commandStatus.getDataTypeCode !=
 CommandStatus.DATA_MAP)
 {
 // throw an exception or log a message
 // we are expecting a map and didn’t get one
 }
 else
 {
 final Map<String, Object> result =
 (Map<String, Object>)commandStatus.getData();
 // now handle the result
 }
 }

Queuing a Batch
When the RDU receives a batch from a client, it queues the batch for execution. The priority of a batch
determines the queue that the RDU uses for a successful execution of the batch. In case the selected
queue is full, the batch is dropped, and the client notified.

There are seven batch queues, each with the capacity to hold 1000 batches in the order that they were
received. Each queue has a different priority. Each queue could contain batches that originate internally
or externally. Internal batches are those designated from the DPE and the RDU, and the batches
submitted to the client library. External batches are those designated from the API client.

Of the seven batch queues:

 • Two queues are meant for RDU API client batches (for example, those relating to the administrator
user interface and the OSS).

 • Five queues are meant for internal batches that relate to:

 – Configuration generation of Cisco Network Registrar DHCP extensions.

 – BAC server registration.

 – DPE cache synchronization.

 – DPE configuration regeneration.

 – Legacy IP updates.

The RDU has 100 threads dedicated to execute batches. At a time, the server can execute a maximum
number of threads as defined in Table 4-1.

PACE also processes batches from the Instruction Generation Service (IGS) and a maximum of one IGS
batch is executed for every five batches from the RDU batch queues.

Table 4-1 lists the various batch queues, with the maximum executing threads for each queue.

Table 4-1 Batch Queue

Queue Batch Origin

Maximum
Executing
Threads

No Activation External 50

Automatic Activation 25
4-13
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Retrying a Batch
Retrying a Batch
If you are unable to receive results, you will have to retry the batch posting. You will not receive results
if:

 • A timeout occurred.

 • Issues exist in batch submission.

 • The client that posted the batch restarts.

Though the client library allows you to submit batches only once, you can create a copy of the original
batch and re-post it.

There are four basic groups of commands for retrying a batch. Commands that:

 • Add new objects to the RDU, such as add a device or a Class of Service.

 • Delete objects from the RDU, such as delete a device or a Class of Service.

 • Manipulate existing objects in the RDU, such as change the Class of Service for a device, get device
details, or get details on a Class of Service.

 • Communicate with a live device without manipulating any objects in the RDU, such as CWMP
device operations including add object, delete object, and set parameter values.

Note While batches support running commands across groups, mixing commands from different
groups adversely impacts batch retrying.

Configuration Generation Internal 25

Configuration Regeneration 25

DPE Synchronization 1

Server Registration 1

IP Update 10

Table 4-1 Batch Queue (continued)

Queue Batch Origin

Maximum
Executing
Threads
4-14
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Handling Errors
Table 4-2 describes the four different command groups for retrying a batch.

Handling Errors
Troubleshooting integration issues involve handling errors and warnings.

Integration errors may occur because of a:

 • Failed client library connection to the RDU.

 • Failed batch posted in the RDU.

Table 4-2 Command Groups for Retrying a Batch

Command Group Description

Add new objects to
the RDU

For batches that contain commands to add new objects to the RDU, retrying
causes issues if the original batch succeeds. You will get a command error code
that the object already exists.

For example, if you try to add objects that already exist, the following batch and
command status codes are returned:

Batch status code: BatchStatusCodes.BATCH_FAILED_WRITE

Command status code: CommandStatusCodes.CMD_ERROR_DEVICEID_EXISTS

Note Any other errors that you receive indicates a validate error that is not
related to retrying the original batch.

Delete objects in
the RDU

For batches that contain commands to delete objects existing in the RDU, retrying
is acceptable even if the original batch succeeds. You will get a command error
code that the object is unknown.

For example, if you try to delete an object that has already been deleted, the
following batch and command status codes are returned:

Batch status code: BatchStatusCodes.BATCH_FAILED_WRITE

Command status code: CommandStatusCodes.CMD_ERROR_DEVICEID_UNKNOWN

Note Any other errors that you receive indicate a validate error that is not
related to retrying the original batch.

Manipulate objects
in the RDU

For batches that contain commands that manipulate objects existing in the RDU,
retrying does not make any difference.

Note Any errors that you receive indicate a validate error that is not related to
retrying the original batch.

Communicate with
live devices

For batches that contain commands that perform operations on live devices,
retrying depends on the operation. For example, if an operation adds a new object
to the device, deletes an object from the device, or modifies an object from the
device, retrying may cause a problem, similar to what an add device command
does with the RDU.

Note When retrying a batch for which you created your own batch identifier, ensure that you use the
identifier of the original batch. In case you receive a Duplicate BatchID error, wait until the
original batch has finished execution (for example, using the batch join feature), then submit
the batch, if required.
4-15
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Handling Errors
When the connection between the client library and the RDU fails, the client library tries to reconnect
to the RDU. When a batch fails, all database changes are rolled back; a batch status object is returned,
indicating that an error occurred.

Batch warnings indicate that the batch succeeded and the changes were committed to the database.

Types of Errors
The two types of errors that occur while integrating the OSS and BSS components to
Cisco Broadband Access Center are:

 • Connection Errors, page 4-16.

 • Batch and Command Errors, page 4-16.

Connection Errors

Connection errors are those that occur when the API client library tries to restore a broken connection
with the RDU. In general, you can ignore connection errors because the client library tries to reconnect
to the RDU until the connection is restored. After a connection is restored, processing continues as usual.

You must, however, explicitly address authentication connection errors, such as an
RDUAuthenticationException. BAC does not automatically recover from an authentication error. As an
administrator, you must confirm the authentication credentials of the user (username and password).

Batch and Command Errors

To check batch and command errors, see Step 5 in Getting Started with the BAC API.

The status objects, BatchStatus and CommandStatus, have methods to return the error code along with
a detailed error message. See the API constants BatchStatusCodes.java and CommandStatusCodes.java
in the API Javadocs in the installation directory of the product for the methods that return the error code
along with the detailed error message.

Batch Warnings
A warning indicates that:

 • The batch has succeeded and the changes have been committed.

 • Something of interest has occurred.

The RDU may return warnings for successful batches in two instances:

 • When the batch has altered high-level RDU objects, such as a Class of Service or a group. The
devices related to these objects must have instructions regenerated (via the Instruction Generation
Service). The warning indicates the need for instruction regeneration and that this activity will
occur. The RDU automatically regenerates instructions for these devices.
4-16
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Handling Errors
 • During the activation stage of a batch marked with the default no-confirmation batch flag, if an error
(such as a connection request failure because the device is offline) occurs, the error appears as a
warning, and the batch succeeds.

 • When you execute a batch with the custom-confirmation flag and a warning occurs during
activation, the batch results contain the warning. The batch proceeds, committing the database
updates. However, if an error occurs during activation, and the batch results contain the error, the
batch fails, and the database updates get rolled back.
4-17
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 4 Batches and Commands
 Handling Errors
4-18
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
C H A P T E R 5

Events

This chapter provides an overview of the events that the RDU and DPEs provide and explains how to
register and handle these events. The sections in this chapter are:

 • Overview, page 5-1

 • Event Registration, page 5-1

 • Event Handling, page 5-3

 • Event Reliability, page 5-3

Overview
Using the BAC client library, you can register for numerous types of events, which are sourced from the
RDU and the DPEs. The events that are sourced include:

 • Device notification.

 • TR-069 session events.

 • Asynchronous operation notification.

 • Batch status events.

 • Custom extension events.

 • Policy related events.

Event Registration
Events are registered by implementing the appropriate event listener interface. The resulting class is then
registered via the PACE connection along with a qualifier.

The qualifier further filters the events that the client receives. If the client wants to receive all events,
you can use the QualifyAll qualifier. If an object can be modified in the RDU, a corresponding event will
be available in the API. For a complete list of available events, see the
package.com.cisco.provisioning.cpe.events section in the API Javadocs.

Each event class has a specific qualifier with methods that allow you to refine the events that are to be
delivered to the registered listener.
5-1
per’s Guide for Cisco Broadband Access Center 3.5

Chapter 5 Events
 Event Registration
Note You can use only the qualifiers that the client library provides. BAC does not support implementing your
own qualifiers.

For example, to handle all asynchronous operation events that are fired when an on-connect device
operation completes:

Step 1 Create the listener class using:

public class AsyncEventHandler implements AsyncOperationListener
{
 private boolean m_isOneShot;

 /**
 * The method invoked when a {@link AsyncOperationEvent
 * AsyncOperationEvent} arrives as a result of an async
 * operation completing.
 *
 * <P>
 * @param ev The object containing the {@link AsyncOperationEvent
 * AsyncOperationEvent} data.
 */
 public void completed(final AsyncOperationEvent ev)
 {
 // handle the incoming event
 }

 /**
 * Gets oneShot mode value, specifying whether or not the listener
 * is registered for just one occurrence of the Event.
 *
 * <P>
 * @return <TT>true</TT> if oneShot mode has been set.
 */
 public boolean getOneShot()
 {
 return m_isOneShot;
 }

 /**
 * Sets oneShot mode, specifying that the registration request is
 * for just one occurrence of the Event.
 *
 * <P>
 * @param flg <TT>true</TT> if oneShot mode is being set.
 */
 public void setOneShot(final boolean flg)
 {
 m_isOneShot = flg;
 }
}

Step 2 Register the created listener class using the PACE connection:

final AsyncEventHandler handler = new AsyncEventHandler();
// use a qualifier that filters all events
final Qualifier qualifier = new QualifyAll();

// register the listener, this will contact the RDU
// and from now on we will start receiving events
connection.addAsyncOperationLister(handler, qualifier);
5-2
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 5 Events
 Event Handling
Note If the connection breaks after the listener is registered, you do not have to reregister the listener.
The client library automatically registers the listener again.

Step 3 Receive the events. The listener class will be executed when the event arrives.

Step 4 Remove the listener that is created.

You can use any of the following methods to remove a listener:

 – Where the implementing class can specify if the listener is one shot. This means that the listener
will receive only the first qualified event and is removed after receiving its first event.

 – By using the PACE connection with an explicit remove listener call.

To explicitly remove the event listener that was created in Step 1:

// unregister the listener
// note we must use the same references for the handler
// and the qualifier from the addAsyncOperationListener
// method call
connection.removeAsyncOperationLister(handler, qualifier);

Event Handling
When an event is delivered to your registered listener, you must execute any logic that is required.
However, because the thread delivering the event does so from the BAC client library, you must exercise
caution.

When running any logic for handling events:

 • Avoid any complex logic for your registered listener that uses a BAC client library thread. If the
thread is busy processing the listener, the thread may not be able to deliver events to other listeners
or batch results to threads that have completed synchronous posting.

 • Re-accessing the PACE connection can cause a deadlock. For example, if you receive an event and
then try to submit a new batch while handling the event with the current thread, a deadlock can occur
in the client library.

To avoid these issues, we recommend that you:

 • Keep the logic in your listener short.

 • Avoid re-accessing the PACE connection. If you require a more complex logic, you can notify any
one of your threads for the processing.

Event Reliability
The client library receives events when it maintains a connection with the RDU. If the connection is lost
(for example, because of a network crash), events may be lost. You cannot retrieve missed events.

You may also lose events that are generated from the DPE, such as a CWMP inform event. For example,
an interruption in the connection from the DPE to the RDU makes it impossible for the DPE to forward
the events to the RDU, and from there, to the client.
5-3
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 5 Events
 Event Reliability
For more information on how the client library communicates with the RDU, see:

 • Use Cases

 • Getting Started with the BAC API
5-4
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
C H A P T E R 6

Getting Started with the BAC API

This chapter describes the startup process involving system configuration and API execution.

The sections in this chapter are:

 • Startup Process for API Client, page 6-1.

 • Creating an API Client, page 6-3.

Startup Process for API Client
The startup process for an API client interaction involves:

 • Configuring the System, page 6-1.

 • Executing the API Client, page 6-2.

Configuring the System
Before executing a simple client, ensure that you have completed the tasks listed in this section.

Note These tasks are part of an initial configuration workflow that you must complete before executing a
simple client for the first time. Thereafter, you can execute any number of simple clients.

Table 6-1 System Configuration Workflow

Task Refer to

1. Install Java Development Kit version 1.6. Sun Microsystems support site

2. Ensure that files bpr.jar and bacbase.jar are available in the
classpath. These .jar files are located in the BPR_HOME/lib
directory.

—

3. Access the BAC administrator user interface and ensure that the
password that you set for the default bacadmin username
matches the password that you set on the RDU. The default
password is changeme.

Cisco Broadband Access Center
Administrator’s Guide 3.5
6-1
per’s Guide for Cisco Broadband Access Center 3.5

Chapter 6 Getting Started with the BAC API
 Startup Process for API Client
Executing the API Client
To execute a simple API client:

Note This procedure uses the AddDeviceExample.java classfile as an example.

Step 1 Compile the API classfile using the following code:

javac -classpath .:bpr.jar:bacbase.jar class_file

For example:

javac -classpath .:bpr.jar:bacbase.jar AddDeviceExample.java

Note This example assumes that the bpr.jar and bacbase.jar files exist in the local directory.

Step 2 Execute the API classfile using the following code:

java -cp .:bpr.jar:bacbase.jar class_file

For example:

java -cp .:bpr.jar:bacbase.jar AddDeviceExample.java

Step 3 Verify the results.

For example, the AddDeviceExample will print success or failure messages. If there is no error, the
following message appears:

Successfully provisioned device with identifier [OUI-serial-12345]

You can also verify the results for the device record from the administrator user interface from the
Devices > Manage Device page. For more information, see Cisco Broadband Access Center
Administrator’s Guide 3.5.

4. Add a valid license for each technology that you provision,
specifically for the CPE WAN Management Protocol (CWMP)
technology and for the DPE component.

Cisco Broadband Access Center
Administrator’s Guide 3.5

5. From the administrator user interface, ensure if the DPE is
registered with the RDU. To verify if the DPE is registered,
check the DPE status from Servers > DPEs> View Device
Provisioning Engines Details page.

Cisco Broadband Access Center
Administrator’s Guide 3.5

Table 6-1 System Configuration Workflow (continued)

Task Refer to
6-2
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 6 Getting Started with the BAC API
 Creating an API Client
Creating an API Client
This section describes how you can connect to the RDU, create a batch, post the batch to the RDU, and
verify the result.

Note This procedure uses the AddDeviceExample.java classfile as an example.

Step 1 Create a connection to the Provisioning API Command Engine (PACE).

// The PACE connection to use throughout the example. When
// executing multiple batches in a single process, it is advisable
// to use a single PACE connection that is retrieved at the start
// of the application. When done with the connection, YOU MUST
// explicitly close the connection with the releaseConnection()
// method call.
PACEConnection connection = null;

// ---
//
// 1) Connect to the Regional Distribution Unit (RDU).
//
// The parameters defined at the beginning of this class are
// used here to establish the connection. Connections are
// maintained until releaseConnection() is called. If
// multiple calls to getInstance() are called with the same
// arguments, you must still call releaseConnection() on each
// connection you received.
//
// The call can fail for one of the following reasons:
// - The hostname / port is incorrect.
// - The authentication credentials are invalid.
//
// ---
try
{

connection = PACEConnectionFactory.getInstance(
// RDU host
rduHost,
// RDU port
rduPort,
// User name
userName,
// Password
password);

}
catch (PACEConnectionException pce)
{

// failed to get a connection
System.out.println("Failed to establish a PACEConnection to ["
 + userName + "@" + rduHost + ":" + rduPort + "]; " +
 pce.getMessage());
throw new RuntimeException(pce.getMessage());

}
catch (RDUAuthenticationException bae)
{

// failed to get a connection
System.out.println("Failed to establish a PACEConnection to ["
 + userName + "@" + rduHost + ":" + rduPort + "]; " +
 bae.getMessage());
6-3
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 6 Getting Started with the BAC API
 Creating an API Client
 throw new RuntimeException(bae.getMessage());
}
// ---

Step 2 Get a new batch instance.

// ---
//
// 2) Get a new batch instance.
//
// To perform any operations in the Provisioning API, you must
// first start a batch. As you make commands against the batch,
// nothing will actually start until you post the batch.
// Multiple batches can be started concurrently against a
// single connection to the RDU.
//
// ---
Batch myBatch = connection.newBatch(
 // No reset
 ActivationMode.NO_ACTIVATION,
 // No need to confirm activation
 ConfirmationMode.NO_CONFIRMATION,
 // No publisining to external database
 PublishingMode.NO_PUBLISHING);
// ---

Step 3 Register the AddDeviceExample() call with the batch.

// ---
//
// 3) Register the add(...) call with the batch.
//
// Add to the batch the add(...) call. This will make
// the batch add the device during the post() operation. If
// multiple methods are added to a batch, they will be executed
// in the order they are registered. For example, you could
// add a device and then modify it successfully in a batch.
//
// The host name and domain name only needs to be specified if the
// device should have an explicit name assigned to it -- and this is
// only really useful if you have dynamic DNS enabled in DHCP/CNR.
// Properties can be used to store additional information that
// should be maintained by BAC. This data will be returned as a
// response to a query for device details.
//
// ---

// A CWMP device requires the following properties to
// be populated.
//
Map<String, Object> propMap = new HashMap<String, Object>();
propMap.put(IPDeviceKeys.HOME_PROV_GROUP, provisioningGroup);

myBatch.add(
 // Device type
 DeviceType.CWMP,
 // Device identifier
 new CWMPDeviceID(deviceId),
 // Host name - Not used in this example
 null,
 // Domain Name - Not used in this example
 null,
 // ownerID
 ownerId,
6-4
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 6 Getting Started with the BAC API
 Creating an API Client
 // classOfService - Use default COS
 null,
 // properties
 propMap);

// ---

Step 4 Post a batch to the RDU.

//
// 4) Post the batch to the server.
//
// Executes the batch against the RDU. All of the
// methods are executed in the order entered and the data
// changes are applied against the embedded database in RDU.
//
// ---
BatchStatus batchStatus = null;
try
{
 batchStatus = myBatch.post();
}
catch (ProvisioningException pe)
{
 System.out.println("Failed to provision device with identifer ["
 + deviceId + "]; " + pe.getMessage());

 throw new RuntimeException(pe.getMessage());
}

// ---

Step 5 Verify the result of the connection.

//
// 5) Check to see if the batch was successfully posted.
//
// Verify if any errors occurred during the execution of the
// batch. Exceptions occur during post() for truly exception
// situations such as failure of connectivity to RDU.
// Batch errors occur for inconsistencies such as no lease
// information for a device requiring activiation. Command
// errors occur when a particular method has problems, such as
// trying to add a device that already exists.
//
// ---
if (batchStatus.isError())
{
 // Batch error occurred.
 // we need to determine if it was a batch error or a
 // command error that caused this failure

 if (batchStatus.getFailedCommandIndex() == -1)
 {
 // this is a batch only error
 // get the error code and get the error message
 final StringBuilder msg = new StringBuilder(128);
 msg.append("Batch with ID [");
 msg.append(batchStatus.getBatchID());
 msg.append("] failed with error code [");
 msg.append(batchStatus.getStatusCode());
 msg.append("]. [");
 msg.append(batchStatus.getErrorMessage());
 msg.append("].");
6-5
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 6 Getting Started with the BAC API
 Creating an API Client
 // throw an exception or log the message
 System.out.println("Failed to add device with identifier ["
 + deviceId + "]; " + msg.toString());
 }
 else
 {
 // this is a batch error caused by a command
 final CommandStatus commandStatus =
 batchStatus.getFailedCommandStatus();

 // get the error code and get the error message
 final StringBuilder msg = new StringBuilder(128);
 msg.append("Batch with ID [");
 msg.append(batchStatus.getBatchID());
 msg.append("] failed with command error code [");
 msg.append(commandStatus.getStatusCode());
 msg.append("]. [");
 msg.append(commandStatus.getErrorMessage());
 msg.append("].");

 // throw an exception or log the message
 System.out.println("Failed to add device with identifier ["

 + deviceId + "]; " + msg.toString());
 }
}
else
{
 // Successfully added device
 System.out.println("Successfully added device with identifier ["
 + deviceId + "]");
}

Step 6 Release the connection to the RDU.

// ---
//
// 6) Release the connection to the RDU.
//
// Once the last batch has been executed, the connection can
// be closed to the RDU. It is important to explictly
// close connections since it helps ensure clean shutdown of
// the Java virtual machine.
//
// ---
connection.releaseConnection();
6-6
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
C H A P T E R 7

Use Cases

This chapter describes the most common Cisco Broadband Access Center (BAC) API use cases. These
use cases are directly related to device provisioning and device management provisioning.

Many system configuration and management operations, such as managing Class of Service, DHCP
Criteria, and licenses, are not addressed here because these operations do not require integration with
BSS and OSS. You can also use the BAC administrator user interface to perform most of these activities.
See the Cisco Broadband Access Center Administrator’s Guide 3.5, for details.

For more details on related API calls and sample API client code segments explaining individual API
calls and features, refer to these resources that are available in the BAC installation directory:

 • API Javadocs, located at BPR_HOME/docs/provapi/javadoc.

 • Sample API client code, located at BPR_HOME/rdu/samples/provapi.

BPR_HOME is the home directory in which you install BAC. The default home directory is
/opt/CSCObac.

This chapter lists various API constants and their functions. To execute any API, you must follow the
steps described in the Getting Started with the BAC API chapter.

This chapter describes:

 • Provisioning Operations, page 7-1

 • Device Management Operations, page 7-4

Provisioning Operations
This section describes the following provisioning operation use cases:

Note The classfiles referenced in these use cases; for example, the AddDeviceExample.java classfile that
illustrates how you can add a device record to the RDU, are only samples that are bundled with the BAC
software.

 • Adding a device record to the RDU—See Table 7-1.

 • Searching device records in the RDU—See Table 7-2.

 • Associating a device record with a Class of Service in the RDU—See Table 7-3.

 • Associating a device record with an owner ID in the RDU—See Table 7-4.

 • Modifying a device record in the RDU—See Table 7-5.
7-1
per’s Guide for Cisco Broadband Access Center 3.5

Chapter 7 Use Cases

 • Retrieving device faults cached in BAC servers—See Table 7-6.

 • Retrieving discovered device data from the RDU—See Table 7-7.

 • Retrieving device operation history from the RDU—See Table 7-8.

 • Deleting device from the RDU— See Table 7-9

Table 7-1 Adding a Device Record to the RDU

Classfile API

AddDeviceExample.java IPDevice.add()

Adds a new device record to the RDU database. Uses the IPDevice.add() API and submits the batch
synchronously with the NO_ACTIVATION flag. This operation causes the RDU to generate
instructions for the device, which are then cached in the DPE. The Figure 7-1 explains
adding/modifying a device record in the RDU with Activation mode = No_ACTIVATION.

Table 7-2 Searching Device Records in the RDU

Classfile API

SearchDeviceExample.java IPDevice.searchDevice()

Searches for a device record in the RDU database. Uses the IPDevice.searchDevice() API and submits
the batch synchronously with the NO_ACTIVATION flag.

Table 7-3 Associating a Device Record with a Class of Service in the RDU

Classfile API

ChangeDeviceCoSExample.java IPDevice.changeClassOfService()

Associates a device to the specified class of service. Uses the IPDevice.changeClassOfService() API
and submits the batch synchronously with the NO_ACTIVATION flag. This operation causes the RDU
to generate instructions for the device, which are then cached in the DPE.
7-2
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 7 Use Cases
Figure 7-1 Change Device Class of Service (Activation mode= NO_ACTIVATION)

Table 7-4 Associating a Device Record with an Owner in the RDU

Classfile API

ChangeDeviceOwnerIdExample.java IPDevice.changeOwnerID()

Associates the device record with the owner ID in the RDU. Uses the IPDevice.changeOwnerID() API
and submits the batch synchronously with the NO_ACTIVATION flag. This operation causes the RDU
to generate instructions for the device, which are then cached in the DPE.

Table 7-5 Modifying a Device Record in the RDU

Classfile API

ModifyDeviceExample.java IPDevice.changeProperties()

Changes the properties of a device record stored in the RDU. Uses the IPDevice.changeProperties()
API and submits the batch synchronously with the NO_ACTIVATION flag. This operation causes the
RDU to generate instructions for the device, which are then cached in the DPE.

Table 7-6 Retrieving Device Faults Cached in BAC Servers

Classfile API

RetrieveFaultsExample.java IPDevice.getDetails()

Retrieves the device faults that are stored in the RDU and DPEs. Uses the IPDevice.getDetails() API
and submits the batch synchronously with the NO_ACTIVATION flag.
7-3
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 7 Use Cases

Device Management Operations
This section describes the following device management operation use cases:

Note The classfiles referenced in these use cases; for example, the GetDeviceLiveDataExample.java classfile
that illustrates how you can retrieve live data from a device, are only samples that are bundled with the
BAC software.

 • Retrieving live data, such as statistics, from a device—See Table 7-10.

 • Executing diagnostics on a device—See Table 7-11.

 • Rebooting a device—See Table 7-12.

 • Executing diagnostics on a device on its next connection—See Table 7-13.

Table 7-7 Retrieving Discovered Device Data in the RDU

Classfile API

QueryDeviceExample.java IPDevice.getDetails()

Retrieves the discovered data of a device that is stored in the RDU. Uses the IPDevice.getDetails() API
and submits the batches synchronously using the on-connect mode with the NO_ACTIVATION flag.

Table 7-8 Retrieving Device Operation History from the RDU

Classfile API

GetDeviceHistoryExample.java IPDevice.getDeviceHistory()

Retrieves the history of a device that is stored in the RDU. Uses the IPDevice.getDeviceHistory() API
and submits the batch synchronously with the NO_ACTIVATION flag.

Table 7-9 Delete Device from the RDU

Classfile API

DeleteDeviceExample.java IPDevice.delete()

Deletes a device from the RDU. Uses the IPDevice.delete() API and submits the batch synchronously
with the NO_ACTIVATION flag.

Table 7-10 Retrieving Live Data from a Device

Classfile API

GetDeviceLiveDataImmediateExample.java IPDevice.performOperation()

Retrieves live data directly from a device. Uses the IPDevice.performOperation() API to perform the
TR-069 RPC GetParameterValues operation on the device and submits the batch synchronously using
the immediate operation mode with the AUTOMATIC_ACTIVATION flag (to trigger a session with
the device).

Figure 7-2 explains retrieving live data from devices.
7-4
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 7 Use Cases
Figure 7-2 Retrieving Live Data from a Device

Table 7-11 Executing Diagnostics on a Device

Classfile API

CwmpDiagnosticImmediateExample.java IPDevice.performOperation()

Executes ping diagnostics on a device. Uses the IPDevice.performOperation() API to perform the
TR-069 RPC SetParameterValue and then GetParameterValues operation on the device. Submits the
batches synchronously using the immediate operation mode with the AUTOMATIC_ACTIVATION
flag (to trigger the sessions with the device).

Table 7-12 Rebooting a Device

Classfile API

RebootDeviceImmediateExample.java IPDevice.performOperation()

Reboots a device using the TR-069 RPC Reboot. Uses the IPDevice.performOperation() API in the
batch. Submits the batch synchronously using the immediate connection mode with the
AUTOMATIC_ACTIVATION flag (to trigger a provisioning session with the device).

Table 7-13 Executing Diagnostics on a Device on its Next Connection

Classfile API

CwmpDiagnosticOnConnectExample.java IPDevice.performOperation()

Executes ping diagnostics on a device. Uses the IPDevice.performOperation()API to perform the
TR-069 RPC SetParameterValue and then GetParameterValues on the device.

Submits the batches in synchronous mode using the on connect mode with the NO_ACTIVATION
flag. The Figure 7-3 describes the workflow when submitting a batch to set the ping diagnostic
parameters in the on-connect mode.
7-5
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Chapter 7 Use Cases

Figure 7-3 Executing Diagnostics on a Device on its Next Connection
7-6
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
G L O S S A R Y
A

alert A syslog or SNMP message notifying an operator or administrator of a problem.

API Application programming interface. Specification of function-call conventions that defines an interface
to a service.

audit logs A log file containing a summary of the major changes in the RDU database. This includes the changes
to system defaults, technology defaults, and classes of service.

auto configuration

server (ACS)

A server that provisions a device or a collection of devices. In BAC, ACS refers to the BAC server, and
in some instances, the DPE.

B

broadband Transmission system that multiplexes multiple independent signals onto one cable. In
Telecommunications terminology; any channel having a bandwidth greater than a voice-grade channel
(4 kHz). In LAN terminology; a co-axial cable on which analog signaling is used.

Broadband Access

Center (BAC)

An integrated solution for managing and provisioning broadband home networks. BAC is a scalable
product capable of supporting millions of devices.

Business Support

Systems(BSS)

Components that service providers use to run business operations. The roles of a BSS in a service
provider network include managing products, customers, revenue, and orders.

C

caching Form of replication in which information learned during a previous transaction is used to process later
transactions.

cipher suites A set of cryptographic algorithms that the SSL module requires to perform key exchange,
authentication, and Message Authentication Code.

customer premises

equipment (CPE)

Terminating equipments, such as telephones, computers, and modems, supplied and installed at a
customer location.

CPE WAN

Management

Protocol (CWMP)

A standard defined in the TR-069 specification by the Broadband Forum. CWMP integrates the
capabilities defined in TR-069 to increase operator efficiency and reduce network management
problems.
GL-i
per’s Guide for Cisco Broadband Access Center 3.5

Glossary
D

device provisioning

engine (DPE)

Distributed servers that cache device instructions and perform CWMP services. DPEs automatically
synchronize with the RDU to obtain the latest instructions, and provide BAC scalability and
redundancy.

F

fully qualified

domain name

(FQDN)

FQDN is the full name of a system, rather than just its hostname. For example, cisco is a hostname and
www.cisco.com is an FQDN.

H

HTTPS See Secure Sockets Layer and Transport Layer Security.

I

instruction

generation service

(IGS)

The process of generating instructions at the RDU, for devices defined by a search criteria, and
distributing these instructions to the DPE, which then caches the instructions. The instructions inform
the DPE the actions to be performed on the CPE, which may include configuration, firmware upgrade,
or other operations.

IP address An IP address is a 32-bit number that identifies each sender or receiver of information that is sent in
packets across the Internet.

N

network address

translation (NAT)

Mechanism for reducing the need for globally unique IP addresses. NAT allows an organization with
addresses that are not globally unique to connect to the Internet by translating those addresses into
globally routeable address space.

network

administrator

Person responsible for operation, maintenance, and management of a network. See also network
operator.

network operator Person who routinely monitors and controls a network, performing such tasks as reviewing and
responding to alarms, monitoring throughput, configuring new circuits, and resolving problems. See
also network administrator.

Network Time

Protocol (NTP)

A protocol designed to synchronize server clocks over a network.
GL-ii
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Glossary
O

Operations Support

Systems(OSS)

Computer systems used by telecommunication providers, dealing with telecom network, customers and
support processes.

P

provisioning API A series of BAC functions that programs can use to make the operating system perform various
functions.

provisioning groups Groupings of devices with a defined set of associated DPE servers, based on either network topology
or geography.

publishing Publishing provides provisioning information to an external datastore in real time. Publishing plug-ins
must be developed to write data to a datastore.

PACE Provisioning API Command Engine.

R

redundancy In internetworking, the duplication of devices, services, or connections so that, in the event of a failure,
the redundant devices, services, or connections can perform the work of those that failed.

regional distribution

unit (RDU)

The RDU is the primary server in the BAC provisioning system. It manages generation of device
instructions, processes all API requests, and manages the BAC system.

S

Secure Sockets

Layer (SSL)

A protocol for transmitting private documents via the Internet. SSL uses a cryptographic system that
uses two keys to encrypt data: a public key known to everyone and a private or secret key known only
to the recipient of the message. URLs that require an SSL connection start with https: instead of http:.
BAC 3.5 supports SSLv3.

See Transport Layer Security.

shared secret A character string used to provide secure communication between two servers or devices.

T

template files XML files that contain configuration or firmware rules for devices.
GL-iii
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Glossary
Transport Layer

Security (TLS)

A protocol that guarantees privacy and data integrity between client/server applications communicating
over the Internet. BAC 3.5 supports TLSv1.

See Secure Sockets Layer.

TR-069 A standard which defines the CPE WAN Management Protocol (CWMP). TR-069 enables
communication between CPE and an autoconfiguration server.

V

Voice over IP (VoIP) Mechanism to make telephone calls and send faxes over IP-based data networks with a suitable quality
of service (QoS) and superior cost savings.

W

watchdog agent A watchdog agent is a daemon process that is used to monitor, stop, start, and restart BAC component
processes such as the RDU, JRun, and SNMP agent.
GL-iv
Integration Developer’s Guide for Cisco Broadband Access Center 3.5

OL-19064-01

Integration Develo
OL-19064-01
I N D E X
A

ACS

definition GL-i

add a new device 7-6

AddDeviceExample 7-1

alert messages

alerts, definition GL-i

API 1-1, 2-2, 3-1, 4-1

API, definition GL-i

Associate device record 7-6

atomic 4-2

audit logs, definition GL-i

authentication 3-2

autoconfiguration server

See ACS

B

batch results 4-7

C

caching, definition GL-i

cipher suites

definition GL-i

close connection 3-2

Compile 7-1

configure system 1-2

connection 3-1

connection errors 6-1

connect simple client 7-1

container 4-8
customer premises equipment, definition GL-i

CWMP

definition GL-i

D

deadlock 5-4

deployment 2-3

Device 1-2

documentation

conventions 3-vi

organization 3-v

related documents 3-vii

DPE 2-1

DPE (Device Provisioning Engine)

definition GL-ii

E

event reliability 5-2

executes 4-2

F

FQDN

definition GL-ii

I

instructions

generation, definition GL-ii

IP address

definition GL-ii
IN-1
per’s Guide for Cisco Broadband Access Center 3.5

Index
L

licenses 7-1

lost events 5-2

N

NAT, definition GL-ii

network address translation

See NAT

Network Time Protocol, definition GL-ii

notes

significance of 3-vii

P

PACE Connection Object example 7-2

Provisioning 1-2

provisioning 2-3, 4-1

provisioning API, definition GL-iii

provisioning groups

definition GL-iii

publishing, definition GL-iii

R

RDU 2-1

RDU (Regional Distribution Unit)

definition GL-iii

reconnection 3-2

reconnects 3-2

redundancy, definition GL-iii

register events 5-2

S

Secure Sockets Layer

See SSL
IN-2
Integration Developer’s Guide for Cisco Broadband Access Center
shared secret

definition GL-iii

SSL

definition GL-iii

System 1-2

T

TCP 3-2

template files, developing

template file definition GL-iii

TLS

definition GL-iv

See SSL

TR-069, definition GL-iv

Transport Layer Security

See TLS

V

VoIP, definition GL-iv

W

warning 6-2

watchdog process

agent, definition GL-iv
 3.5
OL-19064-01

	Integration Developer’s Guide for Cisco Broadband Access Center
	Contents
	Preface
	Introduction
	Overview
	API Functions

	BAC Architecture
	Regional Distribution Unit
	Device Provisioning Engine
	Provisioning Group
	Client API

	Client and RDU Communication
	Overview
	Establishing a Connection
	Maintaining a Connection
	Connection Concurrency
	Closing a Connection

	Batches and Commands
	Overview
	Batch Rules
	Identifying a Batch
	Batch Processing Flags
	Setting the Reliable Flag
	Setting the Activation Flag
	Setting the Confirmation Flag
	Setting the Publishing Flag
	Setting the Optimistic Locking Flag

	Submitting the Batch
	Submitting in Synchronous Mode
	Submitting in Asynchronous Mode

	Batch Processing Modes
	Batch Results
	Queuing a Batch
	Retrying a Batch
	Handling Errors
	Types of Errors
	Connection Errors
	Batch and Command Errors

	Batch Warnings

	Events
	Overview
	Event Registration
	Event Handling
	Event Reliability

	Getting Started with the BAC API
	Startup Process for API Client
	Configuring the System
	Executing the API Client

	Creating an API Client

	Use Cases
	Provisioning Operations
	Device Management Operations

	Glossary
	Index

