

Cisco
OL-27172-01
C H A P T E R 4

CPE Management Overview

This chapter describes the management of customer premises equipment (CPE) by using the CPE WAN
Management Protocol for Cisco Broadband Access Center (BAC).

This chapter includes the following sections:

• CWMP Overview, page 4-1

• Cisco BAC Device Object Model, page 4-2

• Discovering CPE Parameters, page 4-4

• Multi-Instance Object Support, page 4-5

• Instruction Generation and Processing, page 4-14

• Device Deployment in Cisco BAC, page 4-16

• Initial Provisioning Flows, page 4-18

• Assigning Devices to Provisioning Groups, page 4-20

• Device Diagnostics, page 4-21

• Configuring SNMP Trap for CPEs, page 4-21

CWMP Overview
Cisco BAC communicates with CPE through the CPE WAN Management Protocol (CWMP) according
to parameters described in the TR196, TR-069, and other related data model specifications. CWMP
encompasses secure management of CPE, including:

• Autoconfiguration and dynamic service provisioning

• Firmware management

• Device diagnostics

• Performance and status monitoring

Cisco BAC supports devices based on the TR-069, TR-098, TR-104, TR-106, TR-181, and TR-196
standards. This support includes Ethernet and ADSL gateway devices, wireless gateways, VoIP ATAs,
and other devices compliant with CWMP. This release also provides for runtime-extensible data models
to support any upcoming data-model standards or any vendor-specific data models.
4-1
 Broadband Access Center 3.8 Administrator Guide

Chapter 4 CPE Management Overview
Cisco BAC Device Object Model
Cisco BAC Device Object Model
The Cisco BAC device object model is crucial in controlling the configuration and firmware rules that
are generated as instructions for the DPE to manage devices. This process occurs at the RDU, and is
controlled through named attributes and relationships.

The main objects in the device object model are:

• IPDevice—Represents a network entity that requires provisioning.

• Owner ID—Represents an external identifier for a subscriber.

• Device Type—Represents the type of the device.

• ProvGroup—Represents a logical grouping of devices serviced by a specific set of DPEs.

• Class of Service—Represents the configuration profile to be assigned to a device.

• File—Serves as a container for files used in provisioning that include templates and firmware
images.

• Group—Is a customer-specific mechanism for grouping devices.

Common among the various objects in the Cisco BAC device data model are:

• Name. For example, Gold Class of Service

• Attributes. For example, Device ID and a fully qualified domain name (FQDN)

• Relationships. For example, the relationship of a device to a Class of Service

• Properties. For example, a property which specifies that a device must be in a provisioning group.

See Figure 4-1 for a description of the interaction between the various objects in the device data model.

Figure 4-1 Device Object Model

In the Cisco BAC device object model, the IPDevice is related to the Class of Service, the Provisioning
Group, and the Device Type. The Class of Service is then related to the Configuration Template and the
Firmware Rules Template. Files can be related to one another, such as the firmware rules template being
related to the firmware image.

15
82

69

Prov Group Class of Service
0..*

0..*

0..*

0..*

File

Device Type Owner ID

0..*

0..*

0..* 0..21..1

Group
0..* 0..n

1..1

1..1

0..*

1..*

0..1

Group Type

0..n

1..1

IPDevice
4-2
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Cisco BAC Device Object Model
Table 4-1 describes the attributes and relationships unique to each object in the data model.

Class of Service

Class of Service is an RDU abstraction that represents the configuration to be handed to the device in
the form of templates. It enables you to group devices into configuration sets, which are service levels
or different packages that are to be provided to the CPE.

The different Classes of Service are:

• Registered—Specified by the user when the device is registered. This Class of Service is explicitly
added to the device record using the application programming interface (API).

• Selected—Selected by the RDU for a device that, for one reason or another, cannot retain its
registered Class of Service.

• Related—Related to the device by being registered, selected, or both.

If the selected Class of Service for a device is changed, the Instruction Generation Service regenerates
instructions for the device configuration.

Table 4-1 Device Object Relationships

Object Related to ...

IP Device

• Could be preregistered or unregistered (See Device
Deployment in Cisco BAC, page 4-16).

• Attributes include Device ID (OUI-Serial) and FQDN

• Owner ID

• Provisioning Group

• Class of Service

• Device Type

Owner ID

• Is associated with devices and, therefore, cannot exist
without a device related to it.

• Enables grouping; for example, you can group all devices
belonging to Joe.

IP Device

Device Type

• Stores defaults common to all devices of a technology,
specifically CWMP.

• Enables grouping; for example, you can group all CWMP
devices.

IP Device

File

• Stores files used in provisioning; for example,
configuration template and firmware rules template

Class of Service

Class of Service

• Attributes include Type, Name, and Properties. (For
details, see Class of Service, page 4-3.)

• IP Device

• File

• Configuration Template
(optional)

• Firmware Rules Template
(optional)
4-3
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Discovering CPE Parameters
If the registered Class of Service for a device is changed, it regenerates instructions for the generated
device configuration even if it is not the selected Class of Service, since it could impose a policy that
would change the selected Class of Service.

Other concepts related to the device data model are:

• Property Hierarchy, page 4-4

• Custom Properties, page 4-4

Property Hierarchy
While processing configuration templates for substitutable parameters, Cisco BAC searches objects for
this property using a certain order called Property Hierarchy.

Cisco BAC properties allow you to access and store data in Cisco BAC using the API. Preprovisioned,
discovered, and status data can be retrieved through the properties of corresponding objects, using the
API. Properties also enable you to configure Cisco BAC at the appropriate level of granularity (from
system level to device groups and to individual devices).

The Cisco BAC property hierarchy gives you the flexibility to define system-wide or service class
defaults that can be overridden by individual devices.

Cisco BAC allows you to store any number of properties on objects in its data model. You can reference
these properties in configuration templates or firmware rules. You can use properties in this property
hierarchy:

1. Device

2. Group (priority is set through the Group Type, see Managing Group Types, page 16-18)

3. Provisioning Group

4. Class of Service

5. Device Type

6. System Defaults

Custom Properties
Custom properties allow for the definition of new properties, which can then be stored on any object via
the API.

Custom properties are variable names defined in the RDU, and must not contain any spaces. The
template parser works from bottom up when locating properties in the hierarchy and converts the
template option syntax. For detailed information, see Custom Properties, page 5-15.

Discovering CPE Parameters
Cisco BAC is enabled to read CPE parameters using Remote Procedure Calls (RPCs) as defined in
CWMP. This is made possible through the Data Synchronization Instruction. This instruction discovers
data from the CPE device, reports it to the RDU, and keeps the RDU up-to-date when CPE device data
changes.
4-4
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
This instruction can be used to keep the RDU up-to-date on such key parameters as the software version
and the model name. These parameters may, in turn, be used to generate other instructions, such as
configuration instructions specific to a given device type.

Table 4-2 lists the default parameters that Cisco BAC discovers.

These parameters can be updated using the API (using the /server/acs/discover/parameters property) or
via the administrator user interface (see Discovering Data from Devices, page 12-11).

Note Even if the device has a different root object, such as Device, instead of InternetGatewayDevice, the
parameters are still discovered.

Multi-Instance Object Support
In this release, the multi-instance object support introduces the ability to discover the multi-instance
object parameters from the device without specifying the actual instance number. Multi-instance object
support is available as an usability improvement in the following BAC modules to aid deployment:

• Configuration Template

• Firmware Rules Template

• Parameter Discovery

• Display Live Data Operation

This feature will be functional only when the RDU and all the DPEs are upgraded to Cisco BAC 3.8. To
configure the configuration template and the firmware template with multi-instance objects the value of
the newly introduced templateVersion attribute value should be 3.0.

Table 4-2 Default Discovered Parameters

Parameter Description

Inform.DeviceId.Manufacturer Identifies the manufacturer of the CPE.

Inform.DeviceId.ManufacturerOUI Identifies the unique identifier of the CPE manufacturer.

Inform.DeviceId.ProductClass Identifies the product or class of product over which the
manufacturer’s SerialNumber parameter is unique.

InternetGatewayDevice.DeviceInfo.
HardwareVersion

Identifies the hardware version of the CPE.

InternetGatewayDevice.DeviceInfo.
SoftwareVersion

Identifies the software version currently installed on the
CPE.

InternetGatewayDevice.DeviceInfo.
ModelName

Identifies the model name of the CPE.

InternetGatewayDevice.
ManagementServer.ParameterKey

Specifies the value of the ParameterKey from the most
recent SetParameterValues, AddObject, or DeleteObject
call from the server.
4-5
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
Configuration Template
Earlier to this release of BAC, the scope of configuration template represented only the possible set
parameter values and set parameter attributes that could be performed. There was no mechanism to
discover object names.

In this release, the template scope is extended to include the following:

• The ability to discover object names

• The ability to discover parameter values

• The ability to delete object instances

• The ability to add object instances

A new attribute sync-method is introduced in the configuration template. The sync-method instructs the
configuration sync process to interact with the device to discover the object instances. For the discovered
object instances the ACS has total control to configure the parameters available in the object’s sub-tree.
The following are the available sync-methods.

Any one of the following instance attribute must be mandatorily used with discovered and delete
sync-method:

• all() - This option indicates BAC to discover all the instances

• last() - This option indicates BAC to discover the last instance

• compare(parameterName operation matchValue) - This option indicates BAC to discover the object
instances in which the parameter and the value are in accordance with the operation.

Note Valid compare operators are: equals, equalsIgnoreCase, notEquals, lessThan, lessThanEquals,
greaterThanEquals, greaterThan.

Sync-method Description

discovered If this condition is specified, BAC discovers the object instances based on the
instance attribute value specified for the object instance.

replace-all If this condition is specified, BAC first discovers the parameter value for the
specified parameter name from all the object instances. For the discovered object
instances the following operations are possible:

• If a matching object instance is found with the specified parameter value, it
updates the object instance with the new parameter value.

• If no matching instance is found, BAC creates an object instance with the new
parameter value.

• If an object instance is found with the different parameter value, that object
instance is deleted.

replace-augment This operates same as replace-all, except that BAC retains the instances that does
not match the parameters configured.

delete-all If this condition is specified, BAC simply deletes all the available instances at that
level.

delete If this condition is specified, BAC deletes the instance that match the value specified
in the instance attribute.
4-6
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
• Index - This option can be used for direct indexing and accepts a valid positive integer. This is the
index into the returned instance names. For example, index value 1 returns the first instance.

In configuration template, the expression parameters in pre-requisites can also be configured with
multi-instance object parameters, with any of the discovered options. For more information on
prerequisites, see Prerequisites, page 5-9.

Example 4-1 Multi-Instance Object Using replace-all in Configuration Template

The following example illustrates usage of multi-instance object using replace-all in configuration
template:

<Configuration templateVersion="3.0">
<ParameterDictionaries>

<ParameterDictionary>tr196-cwmp-dictionary-v2.0.xml</ParameterDictionary>
</ParameterDictionaries>
<ObjectInstance name="Device">

<ObjectInstance name="Services">
<ObjectInstance name="FAPService">

<ObjectInstance name="{i}" sync-method="discovered" instance="all()">
<ObjectInstance name="CellConfig">

<ObjectInstance name="UMTS">
<ObjectInstance name="RAN">

<ObjectInstance name="NeighborList">
<ObjectInstance name="IntraFreqCell"

sync-method="replace-all" primary-keys="PLMNID,LAC,RNCID">
<ObjectInstance name="{i}">

<Parameter>
<Name>RAC</Name>
<Value>10</Value>

</Parameter>
<Parameter>

<Name>PLMNID</Name>
<Value>VAR(name=FC-PLMN-ID,

defaultValue=123452)</Value>
</Parameter>
<Parameter>

<Name>LAC</Name>
<Value>65532</Value>

</Parameter>
<Parameter>

<Name>RNCID</Name>
<Value>18</Value>

</Parameter>
</ObjectInstance>
<ObjectInstance name="">

<Parameter>
<Name>RAC</Name>
<Value>11</Value>

</Parameter>
<Parameter>

<Name>PLMNID</Name>
<Value>123452</Value>

</Parameter>
<Parameter>

<Name>LAC</Name>
<Value>65533</Value>

</Parameter>
<Parameter>

<Name>RNCID</Name>
<Value>21</Value>

</Parameter>
</ObjectInstance>
4-7
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
</ObjectInstance>
</ObjectInstance>

 </ObjectInstance>
 </ObjectInstance>
 </ObjectInstance>

</ObjectInstance>
</ObjectInstance>

</ObjectInstance>
</ObjectInstance>

</Configuration>

The behavior of BAC to apply the above template configuration during configuration sync is explained

below:

1. BAC retrieves GetParameterNames RPC data for the object Device.Services.FAPService. with next
level option set to true.

2. Since all() option is configured, it uses all of the returned instances for further processing.

3. BAC searches the PLMNID, LAC and RNCID by issuing GetParameterValues RPC for the
parameter
Device.Services.FAPService.{all()}.CellConfig.UMTS.RAN.NeighborList.IntraFreqCell.{i}.PLM
NID,
Device.Services.FAPService.{all()}.CellConfig.UMTS.RAN.NeighborList.IntraFreqCell.{i}.LAC
and
Device.Services.FAPService.{all()}.CellConfig.UMTS.RAN.NeighborList.IntraFreqCell.{i}.RNC
ID for all the instances.

4. For all the matching instances that have a value of PLMNID equals 123452, LAC equals 65532 and
RNCID equals 18, SetParameterValues is performed with the configured RAC value 10.

5. For all the matching instances that have a value of PLMNID equals 123452, LAC equals 65533 and
RNCID equals 21, SetParameterValues is performed with the configured RAC value 11.

6. If a matching instance is not found for the configured PLMNID, LAC, RNCID values, a new
instance is created using AddObject RPC and the configured values of PLMNID, LAC, RNCID and
RAC are applied on the new instance.

7. If there are instances available on the device that does not match the PLMNID, LAC and RNCID,
they are deleted using DeleteObject Message.

Example 4-2 Multi-Instance Object Using delete-all in Configuration Template

The following example illustrates usage of multi-instance object using delete-all in configuration
template:

<Configuration templateVersion="3.0">
<ParameterDictionaries>

<ParameterDictionary>tr196-cwmp-dictionary.xml</ParameterDictionary>
</ParameterDictionaries>
<ObjectInstance name="Device">
<ObjectInstance name="Services">

<ObjectInstance name="FAPService">
<ObjectInstance sync-method="discovered" instance="last()">

<ObjectInstance name="REM.UMTS.GSM.Cell" sync-method="delete-all" >
</ObjectInstance>

</ObjectInstance>
</ObjectInstance>

</ObjectInstance>
</Configuration>
4-8
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
The behavior of BAC to push the above template configuration during configuration sync is explained
below:

1. BAC discovers the instances in the object Device.Services.FAPService. by issuing
GetParameterNames RPC with next level set to true.

2. Since last() method is used, it gets the last instance and discovers the instances in the next level by
issuing GetParameterNames RPC for the parameter
Device.Services.FAPService.{last()}.REM.UMTS.GSM.Cell.{i}. with next level set to true.

3. BAC performs DeleteObject one by one on all the instances returned.

Example 4-3 Multi-Instance Object Using delete in Pre-requisites of Configuration Template

The following example illustrates usage of multi-instance object using delete in pre-requisites of
configuration template:

<Configuration templateVersion="3.0">
<ParameterDictionaries>

<ParameterDictionary>tr196-cwmp-dictionary.xml</ParameterDictionary>
</ParameterDictionaries>
<Prerequisites>

<MaintenanceWindow>
<StartTime>00:00:00</StartTime>
<Duration>15:00</Duration>

</MaintenanceWindow>
<Expression>

<ParameterName>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.{i}.BSIC
</ParameterName>
<InstanceConfiguration>

<Instance>
<Path>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.</Path>
<Value>compare(LAC lessThanEquals 65534)</Value>

</Instance>
<Instance>

<Path>Device.Services.FAPService.</Path>
<Value>last()</Value>

</Instance>
<MatchCondition>OR</MatchCondition>

</InstanceConfiguration>
<Value>18</Value>
<Operator>matchAllIgnoreCase</Operator>

</Expression>
</Prerequisites>
<ObjectInstance name="Device">
<ObjectInstance name="Services">

<ObjectInstance name="FAPService">
<ObjectInstance sync-method="discovered" instance="last()">

<ObjectInstance name="REM.UMTS.GSM.Cell" sync-method="delete" instance="2">
</ObjectInstance>

</ObjectInstance>
</ObjectInstance>

</ObjectInstance>
</Configuration>

The behavior of BAC to apply the above template configuration during configuration sync is explained
below:

1. During configuration sync execution, BAC validates the time to ensure that the configuration sync
falls in the maintenance window
4-9
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
2. Next, BAC validates the expression. Since the expression parameters are configured with
multi-instance object parameters, BAC first discovers and identify the instances to evaluate the
expression.

3. After the expression is evaluated to true, BAC discovers the instance for
Device.Services.FAPService. by using GetParameterNames RPC with next level set to true.

4. To discover the multi-instance object at next level, it issues GetParameterNames RPC for
Device.Services.FAPService.{last()}.REM.UMTS.GSM.Cell.

5. Finally, BAC issues DeleteObject Message for the instance in the second index in the returned array.

Example 4-4 Invalid Example-Adding a Template Without Instance Attribute

The following example illustrates adding a template without the instance attribute.

<tc:Template
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tc="urn:com:cisco:bac:common-template"
 xmlns="urn:com:cisco:bac:cwmp-template"
 xsi:schemaLocation="urn:com:cisco:bac:common-template CommonTemplateConstructs.xsd">

<Configuration templateVersion="3.0">
 <ParameterDictionaries>
 <ParameterDictionary>tr196-parameter-dictionary.xml</ParameterDictionary>
 </ParameterDictionaries>

<ObjectInstance name="Device">
<ObjectInstance name="Services">

 <ObjectInstance name="FAPService">
 <ObjectInstance name="{i}" sync-method="discovered"
instance="compare(DeviceType equals CWMP1)">
 <ObjectInstance name="AccessMgmt">
 <ObjectInstance name="MemberDetail">

<ObjectInstance name="{i}" sync-method="discovered">
 <Parameter>
 <Name>Enable</Name>
 <Value>true</Value>
 </Parameter>
 <Parameter>
 <Name>IMSI</Name>
 <Value>310410268739757</Value>
 </Parameter>
 </ObjectInstance>
 </ObjectInstance>
 </ObjectInstance>
 </ObjectInstance>
 </ObjectInstance>

</ObjectInstance>
</ObjectInstance>

</Configuration>
</tc:Template>

When this template is added through API or admin UI, the following validation error is displayed:
Error: Template file validation has failed with the following error.

[Missing instance attribute for the sync-method 'discovered']

Firmware Rules Template
Earlier to this release, the expression support in the firmware rules was not flexible enough to handle
multi-instance objects in the parameter names. This enhancement is extended to firmware rules template
where BAC discovers the multi-instance parameters to evaluate the expression.
4-10
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
You can specify multi-instance parameter name in the expression, and the discover mechanism of these
objects can be configured using the newly introduce template element InstanceConfiguration.

Example 4-5 Multi-Instance Object in Expression

The following example illustrates usage of multi-instance object in expression:

<Expression>
<ParameterName>Device.Services.FAPService.{i}.REM.GSM.Cell.{i}.LAC

</ParameterName>
<InstanceConfiguration>

<Instance>
<Path>Device.Services.FAPService</ Path>
<Value>last()</Value >

</Instance>
<Instance>

<Path>Device.Services.FAPService.{i}.REM.GSM.Cell</ Path>
<Value>compare(PLMNID equals 123456)</Value >

</Instance>
<MatchCondition>OR</MatchCondition>

</InstanceConfiguration>
<Value>4660</Value>
<Operator>match</Operator>

</Expression>

In the above expression the multi-instance object parameter name
Device.Services.FAPService.{i}.REM.GSM.Cell.{i}.LAC is used. The InstanceConfiguration discovers
the multi-instance object instances Device.Services.FAPService.{i} and
Device.Services.FAPService.{i}.REM.GSM.Cell.{i}. The Value tag supports all the available instance
discover methods like all(), last(), compare(parameterName operation matchValue) and index. The new
tag MatchCondition is available in the instance configuration, which is used to evaluate the multiple
expressions only in case there are multiple instances discovered.

Example 4-6 Multi-Instance Object in Firmware Rule Template

The following example illustrates usage of multi-instance object in firmware rule template:

<tc:Template
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tc="urn:com:cisco:bac:common-template"
 xmlns="urn:com:cisco:bac:firmware-template"
 xsi:schemaLocation="urn:com:cisco:bac:common-template CommonTemplateConstructs.xsd">

 <FirmwareTemplate templateVersion="3.0">
 <ParameterDictionaries>
 <ParameterDictionary>tr196-cwmp-dictionary-v2.0.xml</ParameterDictionary>
 </ParameterDictionaries>

<Prerequisites>
<MaintenanceWindow>

<StartTime>00:00:00</StartTime>
<Duration>15:00</Duration>

</MaintenanceWindow>

<Expression>

<ParameterName>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.{i}.BSIC</ParameterName>
<InstanceConfiguration>

<Instance>
<Path>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.</Path>
<Value>compare(LAC lessThanEquals 65534)</Value>
4-11
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
</Instance>
<Instance>

<Path>Device.Services.FAPService.</Path>
<Value>last()</Value>

</Instance>
<MatchCondition>OR</MatchCondition>

</InstanceConfiguration>
<Value>18</Value>
<Operator>matchAllIgnoreCase</Operator>

</Expression>
<Expression>

<ParameterName>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.{i}.PLMNID</ParameterName>
<InstanceConfiguration>

<Instance>
<Path>Device.Services.FAPService.</Path>
<Value>all()</Value>

</Instance>
<Instance>

<Path>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.</Path>
<Value>2</Value>

</Instance>
<MatchCondition>OR</MatchCondition>

</InstanceConfiguration>
<Value>123451</Value>
<Value>123452</Value>
<Operator>matchIgnoreCase</Operator>

</Expression>
 </Prerequisites>

 <FirmwareRule name="FAPRule">
<Expression>

<InformParameterName>Inform.EventCode</InformParameterName>
<Value>1 BOOT</Value>
<Value>2 PERIODIC</Value>
<Operator>match</Operator>

</Expression>

<Expression>

<ParameterName>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.{i}.BSIC</ParameterName>
<InstanceConfiguration>

<Instance>
<Path>Device.Services.FAPService.{i}.REM.UMTS.GSM.Cell.</Path>
<Value>1</Value>

</Instance>
<Instance>

<Path>Device.Services.FAPService.</Path>
<Value>compare(DeviceType equalsIgnoreCase fap)</Value>

</Instance>
<MatchCondition>OR</MatchCondition>

</InstanceConfiguration>
<Value>18</Value>
<Operator>matchAllIgnoreCase</Operator>

</Expression>

<InternalFirmwareFile>
<FileName>sample-firmware-image.bin</FileName>
<DeliveryTransport>service http 1</DeliveryTransport>

</InternalFirmwareFile>
 </FirmwareRule>
 </FirmwareTemplate>
</tc:Template>
4-12
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Multi-Instance Object Support
Parameter Discovery
Multi-instance object parameters can now be specified in the data discovery. This support is extended
for preregistered and unregistered devices.

Preregistered Devices

For preregistered devices, the multi-instance object parameters can be configured in the parameter
IPDeviceKeys.CWMP_CUSTOM_DISCOVER_PARAMETERS as in the example below:

/IPDevice/custom/discover/parameters= Device.Services.FAPService.{i}.REM.GSM.Cell.{i}.LAC,
Device.Services.FAPService.{i}.REM.GSM.Cell.1.PLMNID

Unregistered Devices

For unregistered devices, the multi-instance object parameters can be configured in the parameter
ServerDefaultsKeys.CWMP_UNKNOWN_CPE_PARAMETERS as in the example below:

/server/acs/unknown/parametersToRetrieve=
Device.Services.FAPService.{i}.REM.GSM.Cell.{i}.LAC,
Device.Services.FAPService.{i}.REM.GSM.Cell.1.PLMNID

Display Live Data Operation
The device operation enables you to view live device parameter values. The parameters retrieved from
the device are selected from a Parameter List file, which is an XML file that details all the parameters.

If the multi-instance object parameters are configured in the Parameter List XML file, the device
operation retrieves the parameter values from all the available instances in the device.

The following example illustrates the usage of multi-instance object support to retrieve live device data.

<ParameterList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ParameterListSchema.xsd">
 <ParameterDictionaries>

<ParameterDictionary>tr196-cwmp-dictionary-v2.0.xml</ParameterDictionary>
 </ParameterDictionaries>
 <Parameter>

<Name> Device.Services.FAPService.{i}.REM.GSM.Cell.{i}.LAC</Name>
 </Parameter>

<Parameter>
<Name> Device.Services.FAPService.{i}.REM.GSM.Cell.1.PLMNID </Name>

 </Parameter>
 <Parameter>

<Name>Device.Services.FAPService.{i}.REM.UMTS.GSM.CellNumberOfEntries</Name>
 </Parameter>
</ParameterList>

Instance Sorting
In all the operations, when selecting the instances based on the instance configuration, you sort the list
of instances returned in GetParameterNames RPC call. The discovered object instances can be sorted
when the property ProvGroupKeys.ENABLE_INSTANCE_SORTING (/provGroup/enable/instanceSorting) is
enabled.

This property can be configured at the Provisioning Group level in the object hierarchy. For details, see
Provisioning Group Configuration Workflow, page 3-8.
4-13
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Instruction Generation and Processing
Instruction Generation and Processing
Instruction generation is the process of generating specific instruction sets for CWMP devices. By using
technology extensions, through which device technologies are incorporated into Cisco BAC, device
details are combined with provisioning rules to produce instruction sets appropriate to the CPE. These
instructions are then forwarded to the DPEs in the device’s provisioning group and cached there.

The scriptable extensions are also supported in Cisco BAC. The extension points are defined in DPE for
running the java based extension scripts. These scripts are executed in DPE, whenever the device
establishes connection with the DPE. The extension scripts are added in the RDU database and
forwarded to the DPE cache. For more information on scriptable extension service, see Scripting
Framework, page 18-1.

When a device is activated in a Cisco BAC deployment, it initiates contact with the Cisco BAC server.
After contact is established, the device’s preconfigured policy, based on configuration templates or
firmware rules templates associated with the device, determine the management actions undertaken by
the DPE.

This preconfigured policy determines the device’s level of service, also known as Class of Service.
Device configurations can include customer-required provisioning information, such as authentication
information, periodic inform rate, and Class of Service. This authoritative provisioning information for
the device is forwarded to DPEs from the RDU as device configuration instructions.

Instructions are logical operations which the DPE autoconfiguration server (ACS) performs for a
specific device. The instructions may map directly into a CWMP remote procedure call (RPC), for
example, GetParameterValues; or, they may combine additional logic with multiple CWMP RPCs, such
as firmware rules.

IGS could be controlled using the new API property, ApiCommandKeys.IGS_ENABLE. This property
determines whether IGS should be triggered or not. The API command uses this property to control the
regeneration of device configuration being affected by other API commands.

When this property is set to False in the map of associated properties of an API command, the command
skips the regeneration of the configuration process and it returns immediately with a warning message.
The API commands affected by this property are:

• replaceFile

• changeClassOfServiceProperties

• changeProvGroupProperties

• changeNodeProperties

• changeDefaults

For the list of other API commands see Non-concurrent Commands, page 19-2.

The RDU requests that instructions be processed, by passing “InstructionRecords” to the DPE. The DPE
server then converts these “InstructionRecords” to “Instructions”, and returns the results to the RDU
as “InstructionResponseRecords”.

Cisco BAC generates instructions through:

• The Instruction Generation Extension—Generates “InstructionRecords” for a single device.

• The Instruction Generation Service—Generates “InstructionRecords” for more than one device.

You can access statistics from the Instruction Generation Service from the administrator user
interface at Servers > RDU > View Regional Distribution Unit Details.

Among the various instructions that the RDU generates are:
4-14
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Instruction Generation and Processing
• Data Synchronization Instruction (DataSyncRecord)—Keeps the RDU up-to-date on various CPE
parameters, such as the software version and the model name. These parameters may, in turn, be
used in generating other instructions, such as configuration instructions that are specific to a given
device type.

Some parameters are checked on every connection, while others are checked only when a change in
the firmware version occurs. For details, see Discovering Data from Devices, page 12-11.

• Routable IP Address Instruction (RoutableIPAddressRecord)—Discovers if a particular device is
reachable, enabling the DPE to create a TCP connection with a device in order to service a
connection request. The instruction retrieves the WAN IP address for the device, PPP or DHCP, and
compares it with the source IP address. If the IP addresses are different, the instruction updates the
RDU.

• Firmware Rules Instruction (FirmwareRulesRecord)—Determines the firmware image to be
downloaded to a device. The firmware image files are associated to groups of devices by a firmware
rules template.

Cisco BAC uses the rules in the associated template to evaluate the firmware to be downloaded to
the CPE. This instruction takes effect only if the device has been associated with a firmware rules
template.

• Configuration Synchronization Instruction (ConfigSyncRecord)—Triggers a synchronization of the
CPE configuration that is stored in the DPE cache. This instruction comes into effect only if the
device has been associated with a configuration template. The process of configuration
synchronization is explained in the subsequent section.

When the Signed Configuration feature is enabled, the RDU parses the ToBeSigned tag specified in the
configuration template and sets the corresponding value on the CWMP parameter object.

By default, the ToBeSigned flag on the CWMP parameter object is set to False. For more information
on Signed Configuration, see Signed Configuration for Devices, page 13-20.

Device Configuration Synchronization
During the process of CPE configuration synchronization, a device’s configuration is automatically
synchronized based on the configuration template associated with the device’s Class of Service object.
The process of synchronizing the CPE configuration according to the ConfigSync instruction stored in
the DPE for this device is called Configuration Synchronization.

As part of this process, the DPE configures all parameters values and attributes found in the
configuration template associated with a device through its Class of Service, so that:

• Notifications reflect those configured in the configuration template. For more information on
Notifications, see Notification, page 5-8.

• Access control for all parameters reflects that configured in the configuration template. For more
information on access control, see Access Control, page 5-9.

CPE configuration is associated with a unique configuration key. This configuration key is saved in the
DPE database, and is used as the ParameterKey parameter in RPCs that are forwarded to the CPE.

Every time the CPE establishes a connection with the DPE, the device reports the value for the
ParameterKey—in the form of a configuration revision number—by using the Inform message that the
device forwards to the DPE. The DPE compares this value with the one in its cache for the particular
device. A mismatch of the values, triggers the DPE and the device synchronization process.
4-15
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Device Deployment in Cisco BAC
During the process of configuration synchronization:

1. The DPE receives a ParameterKey from the device. If the value of this ParameterKey matches the
one stored in the DPE, no synchronization is initiated. If the ParameterKey values differs, the
synchronization process continues.

2. If access control is set in its configuration, the DPE sets the AccessList parameter to ACS-only. The
access control feature is, by default, enabled. For more information on access control, see Access
Control, page 5-9.

3. If you enable the notification feature, the DPE sets notification attributes as specified in the device
configuration. Notifications are, by default, enabled. For more information on notifications, see
Notification, page 5-8.

4. After the DPE configures the parameter values on the device according to the template, it sets a new
configuration revision number in the ParameterKey argument. This revision number is used to
determine if the device configuration is synchronized the next time the device and the DPE establish
a connection.

If the device connection with the DPE times out during the synchronization process, the CPE
attempts to reconnect to the DPE.

In this scenario, the value of the ParameterKey in the Inform message remains the same, because
only a successful synchronization process changes the ParameterKey value. When the CPE
reconnects to the DPE, the DPE initiates another round of synchronization with the original
ParameterKey value.

5. The synchronization process ends with the DPE forwarding the new value for the ParameterKey
attribute in its last update to the CPE.

In some situations, you must update the device even if the ParameterKey on the DPE matches the one on
the device.

To force a configuration synchronization:

Step 1 From the Devices page, locate the device whose configuration you want to synchronize.

Step 2 Click the Operations icon () corresponding to the device.

The Device Operations page appears.

Step 3 From the drop-down list under Perform Device Operation, select Force Configuration Synchronization.

Step 4 Click Submit.

The device configuration is synchronized with the DPE.

Device Deployment in Cisco BAC
A Cisco BAC deployment is divided into provisioning groups, with each provisioning group responsible
only for a subset of the devices. All services provided by the provisioning group are implemented to
provide fault tolerance.

Note A key principle of device management is that the RDU does not directly communicate with
devices. All device interactions are delegated to DPEs in the provisioning group to which the
device belongs.
4-16
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Device Deployment in Cisco BAC
Cisco BAC provides two device deployment options, which can also be used in combination:

• Preregistered—The device record is added to the RDU before the device makes initial contact with
the DPE, also known as the ACS.

• Unregistered—The device makes contact with the DPE, before the device record is added to the
RDU.

Preregistered Devices
In this scenario, device data is preprovisioned into Cisco BAC, and the device is associated with a
specific Class of Service. The Class of Service can correspond to a service that the subscriber registered
for or a default configuration.

A preregistered device is preconfigured with certain parameters specific to the service provider. These
parameters are typically “burnt-in” as factory defaults.

Note If you reset the device to factory defaults, the settings on the device revert to the preburnt configuration,
and the device may go through the reconfiguration process.

Device data is preregistered in Cisco BAC. This is typically done through the API; alternatively, it can
be done using the administrator user interface.

Preconfiguration involves three important issues:

• The device must be able to establish network connectivity. For DSL devices, this typically involves
using auto-detection of ATM PVC and using PPP for authentication. The IP address is obtained
using PPP or using DHCP. Other devices typically use an existing internet connection and local
DHCP for address assignment.

• CPE must contact the configuration servers of the appropriate service provider; in other words, the
CPE must know the ACS URL. The ACS URL can be preburnt into the device (assigned) or
discovered using DHCP from the WAN side.

• The service provider must be able to associate the CPE with a specific subscriber. This process is
typically accomplished by the Operations Support Systems (OSS) application responsible for
subscriber registration. Cisco BAC is updated with appropriate data to provision device
configuration.

Unregistered Devices
In this scenario, no device data is prepopulated into Cisco BAC. Device data is added to Cisco BAC only
when the device first contacts a Cisco BAC server.

Cisco BAC allows unregistered devices (with no preconfigured parameters) to appear on a network and
gain default access. However, the lack of support for preregistering device data into Cisco BAC restricts
authentication options for unregistered devices, to using mechanisms based on certificates as opposed to
shared secrets.

The lack of preregistered data also means that Cisco BAC has to dynamically classify the devices and
determine the default configuration of a device.
4-17
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Initial Provisioning Flows
Note With no preregistered device data available, the chances of a Denial of Service attack increase, as
unknown devices are not authenticated.

Initial Provisioning Flows
This section describes the configuration workflow for a device, which differs based on whether a device
is preregistered or unregistered.

Figure 4-2 shows a common initial configuration flow.

Figure 4-2 Initial CPE Configuration Workflow

For Preregistered Devices
a. From the Cisco BAC API, the RDU is populated with specifically defined configurations and rules

for various types of devices. The device is preconfigured and associated with a Class of Service.

b. The preregistered device finds its provisioning group by contacting the Cisco BAC server at a
preconfigured URL, and initiates autoprovisioning with provisioning group servers (DPEs).

c. The RDU generates instructions appropriate for the device. The resulting device instructions direct
DPE responses to various CPE protocol events, such as a TR-069 Inform and an HTTP file request.

System Operator

Populate Provisioning
Rules

RDU Provisioning Group CPE

Add CPE (optional)

Deliver Instruction Set

CPE Makes Protocol X response

Yes, Send Protocol X response

Do I have Instructions?

15
83

31

Generate Instruction
Set

Store Discovered
Data
4-18
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Initial Provisioning Flows
d. The device instruction set is forwarded to the DPE and cached there. Now, the DPE is programmed
to handle subsequent CPE protocol interactions for this device autonomously from the RDU. After
the device is added to the network and a configuration is generated for the device, the device boots
to allow the DPE to begin its interactions with the preregistered device.

e. During interactions with the device, additional information can be discovered and forwarded to the
RDU. In this case, the RDU may decide to generate new instructions and forward them to all DPEs.

For Unregistered Devices
a. From the Cisco BAC API, the RDU is populated with specifically defined configurations and rules

for various device types.

b. During bootup, when the DPE receives a device request, it performs a local search for instructions
cached for the specific CPE. Because the CPE has never previously contacted the DPE and because
device data was not preregistered into Cisco BAC, no instructions are found.

The DPE then packs all relevant CPE information into an “instruction set” generation request, and
forwards the request to the RDU. At the same time, the device request is rejected, forcing the device
to retry. Also, the device receives the configured SOAP request/response extensions from DPE cache
and the extensions are executed for the device. Unknown device extensions are configured in CWMP
defaults and are sent to DPE cache. For more information on configuring extensions for unknown
devices, see Configuring Extensions for Unknown Devices, page 18-4.

c. The RDU generates instructions appropriate for the CPE and distributes it to all DPEs within the
device’s provisioning group. The resulting CPE instructions direct DPE responses to various CPE
protocol events, such as a TR-069 Inform, and an HTTP file request.

d. The CPE is now registered and the details are stored in the RDU. The RDU captures the CPE
registration time. The property to retrieve the registered time is /IPDevice/registeredTime. This
property value can be obtained through the API IPDevice.getDetails() call.

e. The device instruction set is delivered to the DPE and cached there. Now, the DPE is programmed
to handle all subsequent CPE protocol interactions for this device autonomously from the RDU.

The following parameters are discovered by Cisco BAC for unknown devices:

• Whether the device IP address is routable or NAT’ed.

• Inform.DeviceId.Manufacturer.

• Inform.DeviceId.ManufacturerOUI.

• Inform.DeviceId.ProductClass.

• InternetGatewayDevice.DeviceInfo.HardwareVersion.

• InternetGatewayDevice.DeviceInfo.SoftwareVersion.

• InternetGatewayDevice.DeviceInfo.ModelName.

• InternetGatewayDevice.ManagementServer.ParameterKey.

Note You can change the default list of discovered parameters. See Discovering Data from
Devices, page 12-11.

f. The device then reconnects, and receives the configuration instructions generated for it from the
RDU and cached at the DPE.
4-19
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Assigning Devices to Provisioning Groups
Assigning Devices to Provisioning Groups
Devices can be assigned to a provisioning group in three ways: explicitly, automatically, or using a
combination of both.

Explicit Assignment
You can explicitly assign a device to a provisioning group. After devices appear in the default
provisioning group, the provisioning system may, using the API, assign the device to a new provisioning
group. On next contact with the device, Cisco BAC redirects the device.

To set the device to contact the assigned provisioning group, change the URL of the Cisco BAC server
to the URL of the provisioning group URL. The Cisco BAC server URL is stored, and from then on, the
device contacts Cisco BAC at the new address.

To move the device from one provisioning group to another, change the home provisioning group of the
device using the API or the administrator user interface. Each provisioning group has a URL associated
with it. To facilitate the move, on next contact, the ACS URL on the device is changed to the new
provisioning group URL.

Automatic Membership
If a device has not been explicitly assigned to a provisioning group, the device stays in the provisioning
group in which it is brought up. This allows a network-directed assignment of CPE to the provisioning
groups. You can use the automatic membership feature for roaming devices, enabling the local
provisioning group to service these devices when they are moved.

When a device appears in a new provisioning group, it is automatically assigned to the new provisioning
group, and the device data is purged from the old provisioning group. This process involves
communicating with the RDU, which, in turn, updates the DPEs in the old and new provisioning groups.
This is an expensive process; therefore, take care to prevent a large number of device migrations.

Automatic assignment of a device to a provisioning group works only if the DPEs are configured to allow
unknown (unregistered) devices that do not show up in any provisioning group.

If the devices do show up in another provisioning group and the provisioning group is configured to
allow access for unknown devices, Cisco BAC automatically assigns the device to the provisioning
group.

For details on how to configure access for unknown devices, see the Cisco Broadband Access Center 3.8
DPE CLI Reference.

Combined Approach
You can explicitly assign devices and allow automatic membership of devices to a provisioning group.
For example, a generic unregistered device that appears on the network in a provisioning group is
automatically assigned to it. Subsequently, the OSS explicitly assigns the device to another provisioning
group by using the API.
4-20
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

http://www.cisco.com/en/US/products/sw/netmgtsw/ps529/tsd_products_support_reference_guides.html
http://www.cisco.com/en/US/products/sw/netmgtsw/ps529/tsd_products_support_reference_guides.html

Chapter 4 CPE Management Overview
Device Diagnostics
Device Diagnostics
CWMP supports device troubleshooting and diagnostics features that you use to focus on a single device
and collect diagnostics information for further analysis. This feature enables you to query devices for
any data, including:

• Configuration

• Live statistics

• Fault indications

• Log file

• Diagnostics results

Device diagnostics is made possible in Cisco BAC through a set of operations that can be run on the
device. These include:

• Reboot—Reboots the device. This reboot is primarily intended for diagnostic purposes.

• Request Connection—Initiates a connection request with Cisco BAC.

• Factory Reset—Resets a preregistered device settings to its original factory settings, to before a
subscriber-specific configuration was burnt in.

• Display Live Data—Views device parameters directly from a device. You can define the parameters
you want to appear.

• Ping Diagnostic—Enables you to perform an IP ping diagnostics test from the device to any host.

• Force Firmware Upgrade—Forces a CPE to update its firmware.

• Force Configuration Synchronization—Enables you to force an individual CPE to synchronize its
configuration.

For details on performing these device operations, see Performing Operations on Devices, page 16-14.

Cisco BAC also provides the following features to help troubleshooting:

• Device History—Provides a detailed history of significant events that occur in a device provisioning
lifecycle. See Device History, page 8-1.

• Device Faults—Detects devices with recurring faults, which can cause bottlenecks and affect
network performance. See Device Faults, page 8-6.

• Device Troubleshooting—Provides detailed records of device interactions with Cisco BAC servers
for a set of devices that are designated for such troubleshooting. See Device Troubleshooting,
page 8-9.

• Performance Statistics—Provides detailed performance statistics that are related to system
performance across major components. It also provides an analysis of the statistical data to aid
troubleshooting. See Monitoring Performance Statistics, page 11-14.

Configuring SNMP Trap for CPEs
The fault management module of Cisco BAC facilitates CPEs to raise alarms and send events when any
fault occurs. The fault management module can be enhanced to support the SNMP trap facility. With the
SNMP trap facility, DPE receives the events from the CPEs and converts them into SNMP traps. DPE
further sends these SNMP traps to the trap receiver.
4-21
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Configuring SNMP Trap for CPEs
The following components are configured in Cisco BAC for SNMP Trap facility:

• RDU, see Configuration at RDU Level, page 4-22

• DPE and Trap Receiver, see Configuration at DPE Level, page 4-22

• Device, see Configuration at Device Level, page 4-23

Configuration at RDU Level

To configure RDU for SNMP trap facility:

Step 1 Create or update the BAC configuration template to support expedited and queued alarms.

The following parameters must be set in the configuration template:

• For expedited alarms:

– FAPService.{i}.FaultMgmt.SupportedAlarm.{i}.ReportingMechanism=0 {Expedited}

– FAPService.{i}.FaultMgmt.ExpeditedEvent=Active

• For Queued alarms

– FAPService.{i}.FaultMgmt.SupportedAlarm.{i}.ReportingMechanism=1 {Queued}

– FAPService.{i}.FaultMgmt.QueuedEvent=Active

For information on how to author configuration template, see Authoring Configuration Templates,
page 5-14.

Step 2 Add this configuration template to the RDU database:

a. Log into the Cisco BAC admin UI.

b. Choose Configuration on the primary navigation bar.

c. Choose Files on the secondary navigation bar. The View Files page appears.

d. Click Add.

The Add Files page appears.

e. Choose Configuration Template from the File Type drop-down list.

f. Browse for the Source File Name.

g. Add the configuration template name in the File Name field.

h. Click Submit.

Step 3 Associate this configuration template with the required Class of Service. For details, see Configuring
the Class of Service, page 17-1.

Configuration at DPE Level

To configure DPE for SNMP trap facility:

Step 1 Configure the SNMP alarm property values in the DPE. The following alarm property values must be
configured in the DPE to support SNMP trap:

• AlarmIdentifier

• AlarmRaisedTime

• AlarmChangedTime
4-22
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

Chapter 4 CPE Management Overview
Configuring SNMP Trap for CPEs
• ManagedObjectInstance

• EventType

• ProbableCause

• SpecificProblem

• PerceivedSeverity

• AdditionalText

• AdditionalInformation

These SNMP alarm property values can be configured in dpe.properties file through DPE CLI. For
details on DPE CLI, see Cisco Broadband Access Center 3.8 DPE CLI Reference.

Step 2 Customize the /cpeAlarm/alarmParams property in dpe.properties file to include SNMP alarm
property values. The SNMP alarm property values configured for this property are seen in the SNMP
traps.

The default setting for /cpeAlarm/alarmParams property is:

/cpeAlarm/alarmParams=EventTime,AlarmIdentifier,EventType,ProbableCause,PerceivedSeverity

Step 3 Configure the trap receiver to receive the SNMP traps from the DPE. The trap receiver is added as SNMP
host with the required community and listening port. For information on how to add SNMP host and
community, see Using the snmpAgentCfgUtil.sh Tool, page 11-6.

Note You can configure multiple trap receivers to receive SNMP traps from the CPEs.

Configuration at Device Level

To configure the device for SNMP trap facility:

Step 1 Modify the device property hierarchy to include the following properties:

• /IPDevice/cpeAlarmTable

• /IPDevice/cpeAlarm/prefixEID

• /IPDevice/cpeAlarm/prefixCustomProp

Table 4-3 provides the significance of these properties along with the possible and default values.

Table 4-3 Properties - SNMP Trap Facility

Property
Possible
values

Default
Values Description

/IPDevice/cpeAlarmTable None/Queued/
Expedited

None None – BAC will not process any alarms in
the inform.

Queued – BAC will fetch all the alarms
from Queued alarm table in the inform and
send traps.

Expedited – BAC will fetch alarms from
Expedited alarm table in the inform and
send traps.
4-23
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

http://www.cisco.com/en/US/products/sw/netmgtsw/ps529/tsd_products_support_reference_guides.html

Chapter 4 CPE Management Overview
Configuring SNMP Trap for CPEs
For details on how to add these properties in the device property hierarchy, see Modifying Device
Records, page 16-11.

Step 2 Configure these properties to be available in /IPDevice/properties/available/pg.

Step 3 Perform a force synchronization of the device with the DPE to update the device configuration. For
details, see Forcing a Configuration Synchronization, page 16-17.

Step 4 Reboot the device and verify if the trap receiver receives the SNMP traps from the DPE.

The SNMP trap consists of the alarm property values. Table 4-4 describes the OIDs (Object Identifiers)
that are used in device MIB for these SNMP alarm property values.

/IPDevice/cpeAlarm/prefixEID True/False False If set to true, then EID will be prefixed
with ManagedObject Instance and
AlarmIdentifier.

/IPDevice/cpeAlarm/prefixEID Any Custom
Property

- If set, then the custom property will be
prefixed with the ManagedObject Instance
in the SNMP trap.

Table 4-3 Properties - SNMP Trap Facility (continued)

Property
Possible
values

Default
Values Description

Table 4-4 OID mapping

OID .FaultMgmt.ExpeditedEvent.{i}. .FaultMgmt.QueuedEvent.{i}.

cenAlarmInstanceID AlarmIdentifier AlarmIdentifier

cenAlarmTimestamp EventTime EventTime

cenAlarmManagedObject
Class

ManagedObjectInstance ManagedObjectInstance

cenAlarmDescription EventType EventType

cenUserMessage1 ProbableCause ProbableCause

cenUserMessage2 SpecificProblem SpecificProblem

cenAlarmSeverity/cenAlar
mSeverityDefinition

PerceivedSeverity PerceivedSeverity

cenUserMessage3 AdditionalText AdditionalText

cenUserMessage3 AdditionalInformation AdditionalInformation

cenAlarmStatusDefinition NotificationType NotificationType

cenAlarmType unknown(1), direct(2),
indirect(3), mixed(4)

unknown(1), direct(2), indirect(3),
mixed(4)

cenAlarmServerAddress DPE address DPE address
4-24
Cisco Broadband Access Center 3.8 Administrator Guide

OL-27172-01

	CPE Management Overview
	CWMP Overview
	Cisco BAC Device Object Model
	Property Hierarchy
	Custom Properties

	Discovering CPE Parameters
	Multi-Instance Object Support
	Configuration Template
	Firmware Rules Template
	Parameter Discovery
	Display Live Data Operation
	Instance Sorting

	Instruction Generation and Processing
	Device Configuration Synchronization

	Device Deployment in Cisco BAC
	Preregistered Devices
	Unregistered Devices

	Initial Provisioning Flows
	For Preregistered Devices
	For Unregistered Devices

	Assigning Devices to Provisioning Groups
	Explicit Assignment
	Automatic Membership
	Combined Approach

	Device Diagnostics
	Configuring SNMP Trap for CPEs

