cisco.

Troubleshooting Guide for Cisco NCS 1002, IOS XR Releases 6.0.x, 6.1.x, and 6.2.x $\,$

First Published: 2015-12-21 Last Modified: 2024-07-24

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2018 Cisco Systems, Inc. All rights reserved.

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software.

© 2018 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1

General Troubleshooting 1

Validating and Troubleshooting Installation of the Software Packages 2 Troubleshooting Problems with Node 4 Node is Unreachable 4 Console and Node are Not Responsive 4 Verifying the Status of Hardware Modules 4 Verifying the Software Version 8 Troubleshooting the Management Interface 9 Troubleshooting Slice Provisioning 10 Troubleshooting Environmental Parameters 11 Troubleshooting Firmware Upgrade Failure 14 Verifying the Firmware Version 16 Troubleshooting Optical Connectivity 18 Using Loopbacks 18 Using Link Layer Discovery Protocol Snooping 21 Using Trail Trace Identifier **22** Troubleshooting the Trunk Port 23 Troubleshooting Breakout Ports 25 Troubleshooting Breakout Patch Panel 27 Troubleshooting a Failed Commit Configuration 27 Removing and Re-inserting DIMMs on the Controller Card 27 Verifying Wavelength and Channel Mapping for Optics Controllers 28 Verifying the Performance Monitoring Parameters of Controllers 29 Verifying and Troubleshooting Headless State Settings 31 Monitoring Headless Statistics 33 Using SNMP for Troubleshooting 35

Using Netconf for Troubleshooting 36 Verifying Alarms 38 Using Onboard Failure Logging 39 Capturing Logs 40 Verifying Process Details and Crash Dump 42

CHAPTER 2 Alarm Troubleshooting 45

Alarm Logical Objects 45 Alarm Severity 46 Alarms 46 ALL-FAN-TRAY-REMOVAL Alarm 46 Clear the ALL-FAN-TRAY-REMOVAL Alarm 46 CD Alarm 46 Clear the CD Alarm 47 DAISYDUKE-CPU-FPGA-PCIE-ERROR Alarm 47 Clear the DAISYDUKE-CPU-FPGA-PCIE-ERROR Alarm 47 DAISYDUKE-CPU-PROCESSOR-HOT Alarm 47 Clear the DAISYDUKE-CPU-PROCESSOR-HOT Alarm 47 DGD Alarm 48 Clear the DGD Alarm 48 EQPT-FAIL-SLICE Alarm 48 Clear the EQPT-FAIL-SLICE Alarm 48 FAN FAIL Alarm 49 Clear the FAN FAIL Alarm 49 FAN MISSING Alarm 49 Clear the FAN MISSING Alarm 49 FAN-TRAY-INSERT Alarm 49 Clear the FAN-TRAY-INSERT Alarm 50 FAN-TRAY-REMOVAL 50 Clear the FAN-TRAY-REMOVAL Alarm 50 HI-LASERBIAS Alarm 50 Clear the HI-LASERBIAS Alarm 50 HI-RXPOWER Alarm 51 Clear the HI-RXPOWER Alarm 51

HI-TXPOWER Alarm 51 Clear the HI-TXPOWER Alarm 52 HIBER Alarm 52 Clear the HIBER Alarm 52 **IMPROPRMVL Alarm** 52 Clear the IMPROPRMVL Alarm 53 LO-RXPOWER Alarm 53 Clear the LO-RXPOWER Alarm 53 LO-TXPOWER Alarm 54 Clear the LO-TXPOWER Alarm 54 LOCAL-FAULT Alarm 54 Clear the LOCAL-FAULT Alarm 54 LOM Alarm 55 Clear the LOM Alarm 55 LOS-P Alarm 55 Clear the LOS-P Alarm 56 LOWER-CTRL-FPGA-PCIE-ERROR 56 Clear the LOWER-CTRL-FPGA-PCIE-ERROR Alarm 56 MEA Alarm 56 Clear the MEA Alarm 56 MIXED-AC-DC-PTS Alarm 57 Clear the MIXED-AC-DC-PTS Alarm 57 MKA-LOCALLY-SECURED Alarm 57 Clear the MKA-LOCALLY-SECURED Alarm 57 MKA-START-FAIL-MISSING-PSK Alarm 58 Clear the MKA-START-FAIL-MISSING-PSK Alarm 58 MKA-UNSECURE-MISSING-PSK Alarm 58 Clear the MKA-UNSECURE-MISSING-PSK Alarm 58 MORE-THAN-ONE-FAN-TRAY-REMOVED Alarm 58 Clear the MORE-THAN-ONE-FAN-TRAY-REMOVED Alarm 58 NM-I2C-ACCESS-ERROR Alarm 59 Clear the NM-I2C-ACCESS-ERROR Alarm 59 NM-SHUTDOWN-CARD Alarm 59 Clear the NM-SHUTDOWN-CARD Alarm 59

NOT ABLE TO COMMUNICATE WITH PATCH-PANEL Alarm 59
Clear the NOT ABLE TO COMMUNICATE WITH PATCH-PANEL Alarm 59
OSNR Alarm 60
Clear the OSNR Alarm 60
OTUK-AIS Alarm 60
Clear the OTUK-AIS Alarm 60
OTUK-BDI Alarm 61
Clear the OTUK-BDI Alarm 61
OTUK-LOF Alarm 61
Clear the OTUK-LOF Alarm 61
OTUK-SD Alarm 62
Clear the OTUK SD Alarm 62
OTUK-SF Alarm 62
Clear the OTUK SF Alarm 62
OTUK-TIM Alarm 62
Clear the OTUK-TIM Alarm 62
PATCH-PANEL POWER REDUNDANCY LOST ALARM 63
Clear the PATCH-PANEL POWER REDUNDANCY LOST Alarm 63
PEM-MODULE-INSERT Alarm 63
Clear the PEM-MODULE-INSERT Alarm 63
PEM-MODULE-REMOVAL Alarm 63
Clear the PEM-MODULE-REMOVAL Alarm 63
POWER MODULE OUTPUT DISABLED Alarm 64
Clear the POWER MODULE OUTPUT DISABLED Alarm 64
PEM-PWR-TRAY-LVL-RED-LOST 64
Clear the PEM-PWR-TRAY-LVL-RED-LOST Alarm 64
PLL-FAIL-SLICE Alarm 64
Clear the PLL-FAIL-SLICE Alarm 64
PPM FAIL Alarm 65
Clear the PPM FAIL Alarm 65
PKG-K9SEC-REQ Alarm 65
Clear the PKG-K9SEC-REQ Alarm 65
PSU FAIL Alarm 65
Clear the PSU FAIL Alarm 66

I

PSU INSERTED Alarm 66 Clear the PSU INSERTED Alarm 66 PSU REDUNDANCY LOST Alarm 66 Clear the PSU REDUNDANCY LOST Alarm 66 REMOTE-FAULT Alarm 66 Clear the REMOTE-FAULT Alarm 67 RM-DEVICE-OUT-OF-TOL Alarm 67 Clear the RM-DEVICE-OUT-OF-TOL Alarm 67 SIGLOSS Alarm 67 Clear the SIGLOSS Alarm 67 SYNCLOSS Alarm 68 Clear the SYNCLOSS Alarm 68 SQUELCHED Alarm 68 Clear the SQUELCHED Alarm 69 **TEMPERATURE Alarm** 69 Clear the TEMPERATURE Alarm 70 TX-POWER-PROV-MISMATCH Alarm 70 Clear the TX-POWER-PROV-MISMATCH Alarm 71 UNC-WORD Alarm 71 Clear the UNC-WORD Alarm 71 UPPER-CTRL-FPGA-PCIE-ERROR Alarm 71 Clear the UPPER-CTRL-FPGA-PCIE-ERROR Alarm 72 VOLTAGE Alarms 72 Clear the VOLTAGE Alarms 72 WVL-OUT-OF-LOCK Alarm 72 Clear the WVL-OUT-OF-LOCK Alarm 73

Contents

General Troubleshooting

Certain software releases have reached end-of-life status. For more information, see the End-of-Life and End-of-Sale Notices.

This chapter provides procedures for troubleshooting the most common problems encountered when operating an NCS 1002. To troubleshoot specific alarms, see Alarm Troubleshooting, on page 45. If you cannot find what you are looking for, contact Cisco Technical Support (1 800 553-2447).

This chapter includes the following sections:

- Validating and Troubleshooting Installation of the Software Packages, on page 2
- Troubleshooting Problems with Node, on page 4
- Troubleshooting the Management Interface, on page 9
- Troubleshooting Slice Provisioning, on page 10
- Troubleshooting Environmental Parameters, on page 11
- Troubleshooting Firmware Upgrade Failure, on page 14
- Troubleshooting Optical Connectivity, on page 18
- Troubleshooting the Trunk Port, on page 23
- Troubleshooting Breakout Ports, on page 25
- Troubleshooting Breakout Patch Panel, on page 27
- Troubleshooting a Failed Commit Configuration, on page 27
- Removing and Re-inserting DIMMs on the Controller Card, on page 27
- Verifying Wavelength and Channel Mapping for Optics Controllers, on page 28
- Verifying the Performance Monitoring Parameters of Controllers, on page 29
- Verifying and Troubleshooting Headless State Settings, on page 31
- Using SNMP for Troubleshooting, on page 35
- Using Netconf for Troubleshooting, on page 36
- Verifying Alarms, on page 38
- Using Onboard Failure Logging, on page 39
- Capturing Logs, on page 40
- Verifying Process Details and Crash Dump, on page 42

Validating and Troubleshooting Installation of the Software Packages

Step 1 show version

Displays the software version and details such as system uptime.

Example:

```
RP/0/RP0/CPU0:ios# show version
Wed Nov 11 06:08:46.785 UTC
Cisco IOS XR Software, Version 6.0.0.22I
Copyright (c) 2013-2015 by Cisco Systems, Inc.
```

```
Build Information:
Built By : xxxxx
Built On : Fri Nov 13 17:08:39 IST 2015
Build Host : agl-ads-111
Workspace : /nobackup/xxxx/idprom
Version : 6.0.0.22I
Location : /opt/cisco/XR/packages/
```

cisco NCS1K () processor System uptime is 3 hours, 3 minutes

Step 2 show install repository

Displays a list of all the installed software packages on the NCS 1002.

Example:

```
RP/0/RP0/CPU0:ios# show install repository
Wed Nov 11 06:05:33.699 UTC
1 package(s) in XR repository:
    ncslk-xr-6.0.0.221
```

Step 3 show install active

Displays a list of all the installed and active software packages on the NCS 1002.

The following sample output displays active software packages in the EXEC mode.

Example:

```
RP/0/RP0/CPU0:ios# show install active
Wed Nov 11 06:06:40.221 UTC
Node 0/RP0/CPU0 [RP]
Boot Partition: xr_lv0
Active Packages: 1
ncs1k-xr-6.0.0.221 version=6.0.0.221 [Boot image]
```

The following sample output displays active software packages in the system admin EXEC mode.

```
sysadmin-vm:0_RP0# show install active
Wed Nov 11 06:06:47.804 UTC
Node 0/RP0 [RP]
Active Packages: 1
ncs1k-sysadmin-6.0.0.221 version=6.0.0.221 [Boot image]
```

Step 4 show install committed

Displays a list of all committed software packages on the NCS 1002.

The committed software packages are the software packages that are booted on an NCS 1002 reload. Committed packages are the packages that are persistent across reloads. If you install and activate a package, it remains active until the next reload. If you commit a package set, all packages in that set remain active across reloads until the package set is replaced with another committed package set.

The following sample output displays the committed software packages in the EXEC mode.

Example:

The following sample output displays the committed software packages in the system admin EXEC mode.

```
sysadmin-vm:0_RP0# show install committed
Wed Nov 11 06:08:02.409 UTC
Node 0/RP0 [RP]
Committed Packages: 1
    ncs1k-sysadmin-6.0.0.22I version=6.0.0.22I [Boot image]
```

Step 5 show install log

Displays information on the history of the installation operations. This command provides information about both successful and failed installation operations on the NCS 1002. You can also verify a Service Maintenance Update (SMU) installation using this command.

Example:

```
RP/0/RP0/CPU0:ios# show install log 49 detail
Wed Dec 9 01:19:18.680 UTC
Dec 09 01:19:07 Install operation 49 started by root:
    install add source tftp://10.105.236.167 ncslk-k9sec.rpm
Dec 09 01:19:08 Action 1: install add action started
Dec 09 01:19:08 ERROR! Either file is not proper or error in getting rpm metadata from rpm file
Dec 09 01:19:08 ERROR!! failed to complete install add precheck
Dec 09 01:19:09 Install operation 49 aborted
Dec 09 01:19:10 Ending operation 49
```

In the above example, either a wrong rpm package is used or the rpm package is corrupted.

For failure on install add source, check that the package is correctly named and is available at the location.

What to do next

If the expected active software packages are not displayed, install the packages (if required) and activate the packages using the **install activate** *package_name* command.

Troubleshooting Problems with Node

Node is Unreachable

- **Step 1** Verify cable connectivity.
- **Step 2** Verify that the power supply is on.
- **Step 3** Reboot the NCS 1002.
- **Step 4** Verify the hardware module and inventory data. For more information, see Verifying the Status of Hardware Modules, on page 4.

Console and Node are Not Responsive

Console problems occur when the NCS 1002 becomes unresponsive to an input at the console port. If the console is not responsive, it means that a high priority process prevents the console driver from responding to input.

- **Step 1** Verify cable connectivity.
- **Step 2** Verify that the power supply is on.
- **Step 3** Verify the NCS 1002 LED status. If all LEDs are down, it might be an issue with the power supply.
- **Step 4** Verify that the CPU is inserted properly.
- Step 5 Reboot the NCS 1002.

Verifying the Status of Hardware Modules

You can verify the state of the hardware modules in the following scenarios:

- Node is not reachable.
- Node recovers from a problem.
- Node had a power cycle.
- Node reboot.
- Node upgrade.
- Node settles down after the Cisco IOS XR has continuously reloaded.

Step 1 show platform

When you execute this command from the Cisco IOS XR EXEC mode, the status of the Cisco IOS XR is displayed.

L

Verify that the node state is Operational and the admin state is UP.

Example:

RP/0/RP0/CPU0:io	s# show platform			
Wed Nov 11 01:22	:28.953 UTC			
Node name	Node type	Node state	Admin state	Config state
0/RP0	NCS1K-CNTLR-K9	OPERATIONAL	UP	NSHUT

a) If the Cisco IOS XR is not operational, no output is shown in the result. In this case, verify the state of service domain router (SDR) on the node using the **show sdr** command.

The following example shows sample output from the **show sdr** command in Cisco IOS XR EXEC mode.

P/0/RP0/CPU0:ios# show sdr						
P/0/RP0/CPU0:ios#sh sdr						
Tue Nov 10 22:57:20.9	21 UTC					
Туре	NodeName	NodeState	RedState	PartnerName		
 RP	0/RP0/CPU0	IOS XR RUN	ACTIVE	NONE		
NCS1K-CNTLR-K9	0/RP0	OPERATIONAL		N/A		

The following example shows sample output from the **show sdr** command in system admin EXEC mode.

```
sysadmin-vm:0_RPO# show sdr
Tue Nov 10 22:56:41.225 UTC
sdr default-sdr
location 0/RP0/VM1
sdr-id 2
IP Address of VM 198.51.100.1
MAC address of VM E2:3A:DD:0A:8D:03
VM State RUNNING
start-time 2020-11-06T10:41:52.340092+00:00
Last Reload Reason FIRST_BOOT
Reboot Count 1
```

Step 2 admin

Enters system admin EXEC mode.

Example:

RP/0/RP0/CPU0:ios# admin

Step 3 show platform

Displays information and status for each node in the system.

Verify that all the modules of the NCS 1002 are displayed in the result. The software state and the hardware state must be OPERATIONAL.

The various hardware and software states are:

Hardware states:

- OPERATIONAL—Node is operating normally and is fully functional
- POWERED_ON—Power is on and the node is booting up
- FAILED—Node is powered on but has experienced some internal failure
- PRESENT—Node is in the shutdown state
- OFFLINE—User has changed the node state to OFFLINE. The node is accessible for diagnostics

Software states:

- OPERATIONAL—Software is operating normally and is fully functional
- SW_INACTIVE—Software is not completely operational
- FAILED—Software is operational but the card has experienced some internal failure

Step 4 show platform detail

Displays the hardware and software states, and other details of the node.

Example:

```
sysadmin-vm:0 RPO# show platform detail
Wed Aug 5 09:49:06.521 UTC
Platform Information for 0/0
PID : NCS1002
Description : "Network Convergence System 1000 Controller"
VID/SN : V01
HW Oper State : OPERATIONAL
SW Oper State : N/A
Configuration : "NSHUT RST"
HW Version : 0.1
Last Event : HW_EVENT_OK
Last Event Reason : "HW Event OK"
Platform Information for 0/RP0
PID : NCS1002--RP
Description : "Network Convergence System 1000 Controller"
VID/SN : V01
HW Oper State : OPERATIONAL
SW Oper State : OPERATIONAL
Configuration : "NSHUT RST"
HW Version : 0.1
Last Event : UNKNOWN
Last Event Reason : UNKNOWN
```

Step 5 show inventory

Displays the details of the physical entities of the NCS 1002 along with the details of QSFPs and CFPs when you execute this command in the Cisco IOS XR EXEC mode.

You can verify if any QSFP or CFP has been removed from the NCS 1002.

RP/0/RP0/CPU0:ios# show inventory RP/0/RP0/CPU0:ios#show inventory Fri May 18 10:46:51.323 UTC NAME: "0/0", DESCR: "Network Convergence System 1002 20 QSFP28/QSFP+ slots" , VID: V03, SN: CAT2116B170 PID: NCS1002-K9 NAME: "0/0-Optics0/0/0/1", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" , VID: 01 , SN: G9I2011804 PID: SPQCELRCDFB NAME: "0/0-Optics0/0/0/4", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" , VID: 01 , SN: INGAJ0930306 PID: TR-FC13L-N00 NAME: "0/0-Optics0/0/0/6", DESCR: "Cisco CFP2 DWDM Pluggable Optics" PID: ONS-CFP2-WDM , VID: V01 , SN: OUK1936006S NAME: "0/0-Optics0/0/0/7", DESCR: "Cisco 4x10GE QSFP+ LR-S Pluggable Optics Module" PID: QSFP-4X10G-LR-S , VID: V02 , SN: INL20410069 NAME: "0/0-Optics0/0/0/8-LANE1", DESCR: "Cisco 10G SFP LR Pluggable Optics Module" , VID: V01 , SN: SPC1907074R PID: SFP-10G-LR NAME: "0/0-Optics0/0/0/9", DESCR: "Cisco 40GE QSFP+ SR4 Pluggable Optics Module" , VID: V03 , SN: JFQ20332088 PID: QSFP-40G-SR4 NAME: "0/0-Optics0/0/0/10", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" , VID: 01 , SN: GAV2008935 PID: SPOCELRCDFB NAME: "0/0-Optics0/0/0/11-LANE1", DESCR: "Cisco 10G SFP LR Pluggable Optics Module" PID: SFP-10G-LR , VID: V01 , SN: SPC190707YP NAME: "0/0-Optics0/0/0/17-LANE1", DESCR: "Cisco 10G SFP SR Pluggable Optics Module" PID: SFP-10G-SR , VID: V03 , SN: JUR1904073P NAME: "0/0-Optics0/0/0/18", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" , VID: A0 , SN: UVE1C6C PID: FTLC1151RDPL NAME: "0/0-Optics0/0/0/19", DESCR: "Cisco CFP2 DWDM Pluggable Optics" PID: ONS-CFP2-WDM , VID: V05 , SN: OVE204404PA NAME: "0/0-Optics0/0/0/21", DESCR: "Cisco 4x10GE QSFP+ LR-S Pluggable Optics Module" PID: QSFP-4x10G-LR-S , VID: V01 , SN: INL20200012 NAME: "0/0-Optics0/0/0/22-LANE1", DESCR: "Cisco 10G SFP LR Pluggable Optics Module" , VID: V01 , SN: SPC190707YS PID: SFP-10G-LR NAME: "0/0-Optics0/0/0/23", DESCR: "Cisco 40GE QSFP+ SR4 Pluggable Optics Module" PID: OSFP-40G-SR4 , VID: V03 , SN: JFQ2033201H NAME: "0/0-Optics0/0/0/24", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" PID: FTLC1151RDPL , VID: A0 , SN: UWD2QMM NAME: "0/0-Optics0/0/0/25-LANE1", DESCR: "Cisco 10G SFP ER Pluggable Optics Module" , VID: V02 , SN: ONT213100BW PID: SFP-10G-ER NAME: "0/RP0", DESCR: "Network Convergence System 1000 Controller" PID: NCS1K-CNTLR , VID: V04, SN: CAT2052B0FZ NAME: "Rack 0", DESCR: "Network Convergence System 1002 20 QSFP28/QSFP+ slots" , VID: V03, SN: CAT2116B170 PID: NCS1002-K9 NAME: "0/FT0", DESCR: "Network Convergence System 1000 Fan" PID: NCS1K-FTA , VID: V01, SN: N/A NAME: "0/FT1", DESCR: "Network Convergence System 1000 Fan"

PID: NCS1K-FTA , VID: V01, SN: N/A
NAME: "0/FT2", DESCR: "Network Convergence System 1000 Fan"
PID: NCS1K-FTA , VID: V01, SN: N/A
NAME: "0/PM0", DESCR: "Network Convergence System 1000 2KW AC PSU"
PID: NCS1K-2KW-AC , VID: V01, SN: POG2041J0EW
NAME: "0/PM1", DESCR: "Network Convergence System 1000 2KW AC PSU"
PID: NCS1K-2KW-AC , VID: V01, SN: POG2041J01C

What to do next

Verify the software version of the NCS 1002. For more information, see Verifying the Software Version, on page 8

Verifying the Software Version

The NCS 1002 is shipped with a pre-installed Cisco IOS XR software. Verify that the latest version of the software is installed. If a newer version is available, perform a system upgrade. This will install the newer version of the software and provide the latest feature set on the NCS 1002.

show version

Displays the software version and details such as system uptime in the Cisco IOS XR EXEC mode.

Example:

```
RP/0/RP0/CPU0:ios# show version
Tue Nov 10 23:02:37.683 UTC
Cisco IOS XR Software, Version 6.0.0.26I
Copyright (c) 2013-2015 by Cisco Systems, Inc.
Build Information:
Built By : xxxx
Built On : Tue Dec 1 17:02:18 PST 2015
Build Host : build-lnx-100
Workspace : /auto/build-lnx-106-san1/r60x-ws6/nightly_r60x/151201B_ncs1k/workspace
Version : 6.0.0.26I
Location : /opt/cisco/XR/packages/
cisco NCS1K () processor
System uptime is 4 days, 12 hours, 20 minutes
```

What to do next

Verify the result to ascertain whether a system upgrade is required. If the upgrade is required, see the *System Setup and Software Installation Guide for Cisco NCS 1000 Series.*

Troubleshooting the Management Interface

Before you begin

Management interface should be configured.

Step 1 show interfaces mgmtEth *instance*

Displays the management interface configuration.

Example:

General Troubleshooting

```
RP/0/RP0/CPU0:ios# show interfaces MgmtEth 0/RP0/CPU0/0
Fri Nov 13 19:42:29.716 UTC
MgmtEth0/RP0/CPU0/0 is administratively down, line protocol is administratively down
  Interface state transitions: 0
 Hardware is Management Ethernet, address is badb.adba.d098 (bia badb.adba.d098)
  Internet address is 10.58.227.183/24
 MTU 1514 bytes, BW 100000 Kbit (Max: 100000 Kbit)
    reliability 255/255, txload 0/255, rxload 0/255
 Encapsulation ARPA,
  Full-duplex, 100Mb/s, CX, link type is autonegotiation
  loopback not set,
 ARP type ARPA, ARP timeout 04:00:00
  Last input never, output never
  Last clearing of "show interface" counters never
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     O packets input, O bytes, O total input drops
     0 drops for unrecognized upper-level protocol
     Received 0 broadcast packets, 0 multicast packets
             0 runts, 0 giants, 0 throttles, 0 parity
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 total output drops
     Output 0 broadcast packets, 0 multicast packets
     0 output errors, 0 underruns, 0 applique, 0 resets
     0 output buffer failures, 0 output buffers swapped out
     0 carrier transitions
```

a) In the above result, the management interface is administratively down. Use the **no shut** command to enable the management interface.

The following example shows sample output from the **show running-config interface mgmtEth** command when the management interface is in the no shut state.

```
RP/0/RP0/CPU0:ios#show running-config interface mgmtEth 0/RP0/CPU0/0
Fri Nov 13 19:42:54.368 UTC
interface MgmtEth0/RP0/CPU0/0
ipv4 address 10.58.227.183 255.255.255.0
!
```

You can also use the **show interfaces summary** and **show interfaces brief** commands in the Cisco IOS XR EXEC mode to verify the management interface status.

• The following example shows sample output from the show interfaces summary command.

```
RP/0/RP0/CPU0:ios# show interfaces summary
Sun Nov 15 19:31:46.469 UTC
```

Interface Type	Total	UP	Down	Admin Down
ALL TYPES	2	2	0	0
IFT_ETHERNET	1	1	0	0
IFT_NULL	1	1	0	0

• The following example shows sample output from the **show interfaces brief** command.

RP/0/RP0/CPU0:ios# show interfaces brief Sun Nov 15 19:31:41.806 UTC

Intf	Intf	LineP	Encap	MTU	BW
Name	State	State	Type	(byte)	(Kbps)
Nu0	up	up	Null	1500	0
Mg0/RP0/CPU0/0	up	up	ARPA	1514	100000

Step 2 When the line protocol is down, you must verify the Layer 3 connectivity. You can perform the following steps.

- a) Check the Ethernet cable connection and physical connectivity of the NCS 1002 to get the line protocol up.
- b) Ensure ARP connectivity.
- c) Use the **ping** command to check reachability and network connectivity on the IP network.
- d) Verify the static IP and default gateway configuration.

Troubleshooting Slice Provisioning

Step 1 show hw-module slice slicenumber

Displays details of the slice provisioning.

Example:

```
RP/0/RP0/CPU0:ios# show hw-module slice 3
Fri Nov 6 10:12:16.684 UTC
Slice ID: 3
Status: Provisioning Failed [ETNA Config Failure]
Client Bitrate: 100
Trunk Bitrate: 100
```

In the above example, the slice provisioning has failed because of an ETNA configuration failure.

Some of the failure reasons that can appear in the command output are:

- CFG INIT Config Failure—Indicates DP FPGA download issue.
- PPM Config Failure—Indicates PPM Driver failure.
- CDR Config Failure—Indicates CDR failure.
- ETNA Config Failure—Indicates ETNA device or programming failure.
- DP FPGA Config Failure—Indicates DP FPGA programming failure.

Step 2upgrade hw-module slice slice_number re-provisionReprovisions the slice.

Step 3 Reload the Cisco IOS-XR if reprovisioning the slice does not work.

Troubleshooting Environmental Parameters

Some of the common environmental problems are listed below.

- Fan failure
- · Fan not detected
- · Fan speed problem
- Power module fails
- Power module not detected
- · Temperature of the device exceeds a threshold value
- · Voltage of the device exceeds a threshold value

Step 1 admin

Enters system admin EXEC mode.

Example:

RP/0/RP0/CPU0:ios# admin

Step 2 show environment [all | fan | power | voltages | current | temperatures] [location | location] Displays the environmental parameters of the NCS 1002.

Example:

The following example shows sample output from the show environment command with the fan keyword.

Location	FRU Type	Fan	speed FA	(rpm N_0
 0/FT0	NCS1K-FTA		4	800
0/FT1	NCS1K-FTA		4	800
0/FT2	NCS1K-FTA		4	680
0/PM1	NCS1K-2KW-2	AC	8	064

The table below lists the temperature threshold values for the different fan speeds.

Fan speed (rpm)	Rising Min Temperature (°C)	Rising Max Temperature (°C)	Falling Max Temperature (°C)	Falling Min Temperature (°C)
4800	-127	28	27	-127
5500	29	30	29	28
8500	31	36	35	30
10500	37	41	40	36
12500	42	44	43	41
14500	45	127	127	44

The following example shows sample output from the **show environment** command with the **temperatures** keyword.

sysadmin-vm:0_RP0# show environment temperatures location 0/RP0 Tue Feb 27 10:32:38.967 UTC

Location	TEMPERATURE Sensor	Value (deg C)	Crit (Lo)	Major (Lo)	Minor (Lo)	Minor (Hi)	Major (Hi)	Crit (Hi)
0/RP0								
	Thermistor 1	27	-10	0	0	55	55	85
	Thermistor 2	28	-10	0	0	55	55	85
	Hot Spot Temperature	26	-10	0	0	55	55	85

The following example shows sample output from the **show environment** command with the **power** keyword.

```
sysadmin-vm:0 RPO# show environment power
Tue Feb 13 15:29:54.827 UTC
_____
CHASSIS LEVEL POWER INFO: 0
Total output power capacity (Group 0 + Group 1) : 0W + 2000W
 Total output power required
                      : 225W
                          :
                             895W
 Total power input
 Total power output
                              833W
                          :
Power Group 1:
Power Supply -----Input---- ----Output--- Status
Module Type Volts Amps Volts Amps
             Volts Amps Volts Amps
       Туре
_____
 0/PM1
      2kW-AC
             229.5 3.9 12.0 69.4 OK
Total of Power Group 1: 895W/ 3.9A 833W/ 69.4A
_____
 Location Card Type
                  Power Power Status
                  Allocated Used
                  Watts Watts
0/0 S-L-NCS1K-P0 70
                           -
                               RESERVED
       S-L-MOSILI
NCS1002--RP 35
NCS1K-FTA 40
40
 0/RP0
                           _
                               ON
      NCS1K-FTA
                          -
 0/FT0
                               ON
 0/FT1 NCS1K-FTA
0/FT2 NCS1K-FTA
                    40
                           -
                                ON
                     40
 0/FT2
       NCS1K-FTA
                           -
                                ON
```

The following example shows sample output from the show environment command with the voltages keyword.

Thu Aug	6 09:35:09.211 0TC						
Location	VOLTAGE Sensor	Value (mV)	Crit (Lo)	Minor (Lo)	Minor (Hi)	Crit (Hi)	
0/RPO							
!	VP1P0 CPU	1200	900	950	1050	1100	
!	CPU CORE VCC	1200	900	950	1050	1100	
!	CPU_CORE_VNN	1200	900	950	1050	1100	
!	VP1P1	1200	990	1050	1160	1210	
	VP1P2	1200	1080	1140	1260	1320	
!	VP1P35 DDR	1200	1220	1280	1420	1490	
!	VP1P35	1200	1220	1280	1420	1490	
!	VP1P5	1200	1350	1430	1580	1650	
!	VP1P8 CPU	1200	1620	1710	1890	1980	
!	VP3P3 STBY	1200	2970	3140	3470	3630	
!	VP3P3	1200	2970	3140	3470	3630	
!	VP5P0	1200	4500	4750	5250	5500	
!	VP12P0	1200	10800	11400	12600	13200	
!	VREF	1200	2430	2570	2840	2970	
!	12V Input Voltage	1200	8000	10000	14000	16000	

sysadmin-vm:0_RP0# show environment voltages location 0/RP0
Thu Aug 6 09:35:09.211 UTC

Step 3 show inventory

Displays inventory information for all the physical entities of the NCS 1002.

RP/0/RP0/CPU0:ios# show inventory RP/0/RP0/CPU0:ios#show inventory Fri May 18 10:46:51.323 UTC NAME: "0/0", DESCR: "Network Convergence System 1002 20 QSFP28/QSFP+ slots" PID: NCS1002-K9 , VID: V03, SN: CAT2116B170 NAME: "0/0-Optics0/0/0/1", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" PID: SPQCELRCDFB , VID: 01 , SN: G9I2011804 NAME: "0/0-Optics0/0/0/4", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" , VID: 01 , SN: INGAJ0930306 PID: TR-FC13L-N00 NAME: "0/0-Optics0/0/0/6", DESCR: "Cisco CFP2 DWDM Pluggable Optics" PID: ONS-CFP2-WDM , VID: V01 , SN: OUK1936006S NAME: "0/0-Optics0/0/0/7", DESCR: "Cisco 4x10GE QSFP+ LR-S Pluggable Optics Module" PID: QSFP-4X10G-LR-S , VID: V02 , SN: INL20410069 NAME: "0/0-Optics0/0/0/8-LANE1", DESCR: "Cisco 10G SFP LR Pluggable Optics Module" PID: SFP-10G-LR , VID: V01 , SN: SPC1907074R NAME: "0/0-Optics0/0/0/9", DESCR: "Cisco 40GE QSFP+ SR4 Pluggable Optics Module" PID: QSFP-40G-SR4 , VID: V03 , SN: JFQ20332088 NAME: "0/0-Optics0/0/0/10", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" , VID: 01 , SN: GAV2008935 PID: SPQCELRCDFB NAME: "0/0-Optics0/0/0/11-LANE1", DESCR: "Cisco 10G SFP LR Pluggable Optics Module" PID: SFP-10G-LR , VID: V01 , SN: SPC190707YP NAME: "0/0-Optics0/0/0/17-LANE1", DESCR: "Cisco 10G SFP SR Pluggable Optics Module" PID: SFP-10G-SR , VID: V03 , SN: JUR1904073P NAME: "0/0-Optics0/0/0/18", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" PID: FTLC1151RDPL , VID: A0 , SN: UVE1C6C NAME: "0/0-Optics0/0/0/19", DESCR: "Cisco CFP2 DWDM Pluggable Optics" PID: ONS-CFP2-WDM , VID: V05 , SN: OVE204404PA

NAME: "0/0-Optics0/0/0/21", DESCR: "Cisco 4x10GE QSFP+ LR-S Pluggable Optics Module" PID: QSFP-4x10G-LR-S , VID: V01 , SN: INL20200012 NAME: "0/0-Optics0/0/0/22-LANE1", DESCR: "Cisco 10G SFP LR Pluggable Optics Module" , VID: V01 , SN: SPC190707YS PID: SFP-10G-LR NAME: "0/0-Optics0/0/0/23", DESCR: "Cisco 40GE OSFP+ SR4 Pluggable Optics Module" PID: QSFP-40G-SR4 , VID: V03 , SN: JFQ2033201H NAME: "0/0-Optics0/0/0/24", DESCR: "Non-Cisco QSFP28 100G LR4 Pluggable Optics Module" , VID: A0 , SN: UWD2QMM PID: FTLC1151RDPL NAME: "0/0-Optics0/0/0/25-LANE1", DESCR: "Cisco 10G SFP ER Pluggable Optics Module" PID: SFP-10G-ER , VID: V02 , SN: ONT213100BW NAME: "0/RP0", DESCR: "Network Convergence System 1000 Controller" PID: NCS1K-CNTLR , VID: V04, SN: CAT2052B0FZ NAME: "Rack 0", DESCR: "Network Convergence System 1002 20 QSFP28/QSFP+ slots" PID: NCS1002-K9 , VID: V03, SN: CAT2116B170 NAME: "0/FT0", DESCR: "Network Convergence System 1000 Fan" , VID: V01, SN: N/A PID: NCS1K-FTA NAME: "0/FT1", DESCR: "Network Convergence System 1000 Fan" PID: NCS1K-FTA , VID: V01, SN: N/A NAME: "0/FT2", DESCR: "Network Convergence System 1000 Fan" PID: NCS1K-FTA , VID: V01, SN: N/A NAME: "0/PM0", DESCR: "Network Convergence System 1000 2KW AC PSU" , VID: V01, SN: POG2041J0BW PID: NCS1K-2KW-AC NAME: "0/PM1", DESCR: "Network Convergence System 1000 2KW AC PSU" PID: NCS1K-2KW-AC , VID: V01, SN: POG2041J01C

What to do next

Environment parameter anomalies are logged in the syslog. Hence, if an environment parameter displayed in the **show environment** command output is not as expected, check the syslog using the **show logging** command. The syslog provides details on any logged problems.

Troubleshooting Firmware Upgrade Failure

Step 1 show hw-module fpd

Verify the firmware version. Displays the firmware information of various hardware components of the NCS 1002.

The following example is for Release 6.0.1:

```
RP/0/RP0/CPU0:ios# show hw-module fpd
Tue Apr 12 09:04:14.935 UTC
FPD Versions
```

Location Card type HWver FPD device ATR Status Running Programd _____ 0/0 NCS1002 2.4 CDSP PORT 05 CURRENT 3.56 3.56 NCS1002 2.4 CDSP PORT 06 0/0 CURRENT 3.56 3.56 CURRENT 3.56 3.56 NCS1002 2.4 CDSP_PORT_12 0/0 CURRENT 3.56 3.56 **UPGD FAIL** CURRENT 3.56 3.56 NCS1002 2.4 CDSP PORT 13 0/0 NCS1002 CDSP PORT 19 0/0 NCS1002 2.4 CDSP PORT 20 0/0 CURRENT 3.56 3.56 NCS1002 2.4 CDSP PORT 26 0/0 0/0 NCS1002 2.4 CDSP_PORT_27 CURRENT 3.56 3.56 NOT READY 0/0 NCS1002 CFP2_PORT_05 CURRENT 4 NOT READY NCS1002 2.0 CFP2 PORT 06 0/0 CURRENT 4.38 4.38 NCS1002 2.0 CFP2_PORT_12 0/0 NCS1002 CFP2 PORT 13 NOT READY 0/0 NOT READY CURRENT 5.19 5.19 NOT READY NOT READY 0/0 NCS1002 CFP2 PORT 19 NCS1002 2.1 CFP2_PORT_20 0/0 0/0 NCS1002 CFP2_PORT_26 CFP2 PORT 27 0/0 NCS1002 NOT READY NCS1002 0.1 CTRL_BKP_LOW B CURRENT 1.22 NCS1002 0.1 CTRL_BKP_UP B CURRENT 1.22 0/0 0/0 CURRENT 1.22 1.22 NCS1002 0.1 CTRL FPGA LOW 0/0 CURRENT 1.22 1.22 0/0 NCS1002 0.1 CTRL_FPGA_UP 0/RP0 NCS1K-CNTLR-K9 0.1 BIOS Backup BS CURRENT 13.10 0/RP0 NCS1K-CNTLR-K9 0.1 BIOS Primary S CURRENT 13.10 13.10 0/RP0 NCS1K-CNTLR-K9 0.1 Daisy Duke BKP BS CURRENT 0.15 0/RP0 NCS1K-CNTLR-K9 0.1 Daisy Duke FPGA S CURRENT 0.15 0.15

In the above output, the Status of the CDSP_PORT_19 is UPGD FAIL. For more information on the different states of the firmware, see Verifying the Firmware Version, on page 16.

Step 2 show hw-module slice *slice_number*

Displays the slice and Datapath FPGA (DP FPGA) information of the NCS 1002.

The following example is for Release 6.0.1:

Example:

```
RP/0/RP0/CPU0:ios# show hw-module slice 2
Tue Apr 12 09:09:24.527 UTC
Slice ID: 2
Status: Provisioned
Client Bitrate: 40
Trunk Bitrate: 200
DP FPGA Version: F-203
HW Status: CURRENT
Client Port - Trunk Port CoherentDSP0/0/0/20
Traffic Split Percentage
FortyGigECtrlr0/0/0/14 100
FortyGigECtrlr0/0/0/15 100
FortyGigECtrlr0/0/0/15 100
FortyGigECtrlr0/0/0/17 100
FortyGigECtrlr0/0/0/18 100
```

In the above output, DP FPGA Version indicates the image of the datapath FPGA. Here, F-203 is the image version of the 40 G image. The CURRENT value of the HW Status parameter indicates that the firmware version is the latest.

T indicates 10 G and H indicates 100 G image versions. If Need UPG appears in the output, you must upgrade the slice to get the updated DP FPGA using the **upgrade hw-module slice** *slice_number* **re-provision** command.

What to do next

Upgrade the required firmware by using the **upgrade hw-module location 0/0 fpd** *fpd_device_name* command or update all the FPDs using the **upgrade hw-module location all fpd** *fpd_device_name* command in the Cisco IOS XR EXEC mode. After an upgrade is completed, the Status column shows RLOAD REQ if the ISO image requires reload.

If Reload is Required

If the FPGA location is 0/RP0, use the **admin hw-module location 0/RP0 reload** command. This command reboots only the CPU. Hence, the traffic is not impacted. If the FPGA location is 0/0, use the **admin hw-module location all reload** command. This command reboots the chassis. Hence, the traffic is impacted. After the reload is completed, the new FPGA runs the current version.

Verifying the Firmware Version

The firmware on various hardware components of the NCS 1002 must be compatible with the installed Cisco IOS XR image. Incompatibility might cause the NCS 1002 to malfunction.

Step 1 show hw-module fpd

Verify the firmware version. Displays the firmware information of various hardware components of the NCS 1002.

In Release 6.0.1, the following example displays the firmware information of various hardware components of the NCS 1002.

```
RP/0/RP0/CPU0:ios# show hw-module fpd
Tue Apr 12 09:04:14.935 UTC
FPD Versions
_____
Location Card type HWver FPD device ATR Status Running Programd
      _____
0/0
       NCS1002 2.4 CDSP PORT 05 CURRENT 3.56 3.56
0/0
       NCS1002 2.4 CDSP PORT 06
                                  CURRENT 3.56 3.56
       NCS1002 2.4 CDSP PORT 12
                                  CURRENT 3.56 3.56
0/0
       NCS1002 2.4 CDSP_PORT_13
0/0
                                  CURRENT 3.56 3.56
       NCS1002 2.4 CDSP_PORT_19
                                   CURRENT 3.56 3.56
0/0
0/0
       NCS1002 2.4 CDSP PORT 20
                                    CURRENT 3.56 3.56
                                    CURRENT 3.56 3.56
0/0
       NCS1002 2.4 CDSP PORT 26
0/0
       NCS1002 2.4 CDSP PORT 27
                                   CURRENT 3.56 3.56
0/0
       NCS1002 CFP2 PORT 05
                                   NOT READY
       NCS1002 2.0 CFP2 PORT 06
                                   CURRENT 4.38 4.38
0/0
       NCS1002 CFP2_PORT_12
                                    NOT READY
0/0
0/0
       NCS1002
                 CFP2 PORT
                           13
                                    NOT READY
0/0
       NCS1002 CFP2 PORT 19
                                    NOT READY
0/0
       NCS1002 2.1 CFP2 PORT 20
                                   CURRENT 5.19 5.19
0/0
       NCS1002 CFP2 PORT 26
                                   NOT READY
0/0
       NCS1002
                 CFP2 PORT 27
                                    NOT READY
       NCS1002 0.1 CTRL BKP_LOW B
0/0
                                    CURRENT 1.22
0/0
       NCS1002 0.1 CTRL_BKP_UP B
                                    CURRENT 1.22
0/0
       NCS1002 0.1 CTRL FPGA LOW
                                   CURRENT 1.22 1.22
```

```
0/0 NCS1002 0.1 CTRL_FPGA_UP CURRENT 1.22 1.22
0/RP0 NCS1K-CNTLR-K9 0.1 BIOS_Backup BS CURRENT 13.10
0/RP0 NCS1K-CNTLR-K9 0.1 BIOS_Primary S CURRENT 13.10 13.10
0/RP0 NCS1K-CNTLR-K9 0.1 Daisy_Duke_BKP BS CURRENT 0.15
0/RP0 NCS1K-CNTLR-K9 0.1 Daisy_Duke_FPGA S CURRENT 0.15 0.15
```

In the above output, some of the significant fields are:

- FPD Device—Name of the hardware component such as FPD, CFP, and so on.
- ATR—Attribute of the hardware component. Some of the attributes are:
 - B—Backup Image
 - S—Secure Image
 - P-Protected Image
- Status—Upgrade status of the firmware. The different states are:
 - CURRENT—The firmware version is the latest version.
 - READY—The firmware of the FPD is ready for an upgrade.
 - NOT READY—The firmware of the FPD is not ready for an upgrade.
 - NEED UPGD—A newer firmware version is available in the installed image. It is recommended that an upgrade be performed.
 - RLOAD REQ—The upgrade has been completed, and the ISO image requires a reload.
 - UPGD DONE—The firmware upgrade is successful.
 - UPGD FAIL—The firmware upgrade has failed.
 - BACK IMG—The firmware is corrupted. Reinstall the firmware.
 - UPGD SKIP—The upgrade has been skipped because the installed firmware version is higher than the one available in the image.
- Running—Current version of the firmware running on the FPD.
- **Note** CFP2 upgrade is not supported in 6.0.

Step 2 show hw-module slice *slice_number*

Displays the slice and Datapath FPGA (DP-FPGA) information of the NCS 1002.

In Release 6.0.1, the following example displays the slice and DP-FPGA of the NCS 1002.

```
RP/0/RP0/CPU0:ios# show hw-module slice 2
Tue Apr 12 09:09:24.527 UTC
Slice ID: 2
Status: Provisioned
Client Bitrate: 40
Trunk Bitrate: 200
DP FPGA Version: F-203
HW Status: CURRENT
```

```
Client Port - Trunk Port CoherentDSP0/0/0/20
Traffic Split Percentage
FortyGigECtrlr0/0/0/14 100
FortyGigECtrlr0/0/0/15 100
FortyGigECtrlr0/0/0/16 100
FortyGigECtrlr0/0/0/17 100
FortyGigECtrlr0/0/0/18 100
```

In the above output, DP FPGA Version indicates the image of the datapath FPGA. Here, F-203 is the image version of the 40 G image. The CURRENT value of the HW Status parameter indicates that the firmware version is the latest.

T indicates 10 G and H indicates 100 G image versions. If Need UPG appears in the output, you must upgrade the slice to get the updated DP FPGA using the **upgrade hw-module slice** *slice_number* **re-provision** command.

The different Status are:

- Provisioned—Indicates slice is provisioned
- Provisioning in progress—Indicates slice provisioning is in progress
- Not provisioned—Indicates slice is not provisioned
- Provisioning Failed—Indicates slice provisioning has failed. For more information, see Troubleshooting Slice Provisioning, on page 10.

Troubleshooting Optical Connectivity

The following topics are discussed:

Using Loopbacks

Use loopbacks to test newly created circuits before running live traffic or to logically locate the source of a network failure.

Note Internal and line loopback modes are supported only on 10 G client Ethernet and trunk Coherent DSP ports.

Line loopback

A line loopback tests the line interface unit (LIU) of the device, the electrical interface assembly (EIA), and related cabling. After applying a line loopback on a port, use a test set to run traffic over the loopback. A successful line loopback isolates the LIU, the EIA, or the cabling plant as the potential cause of a network problem. You can verify issues related to the fiber and pluggables using this loopback.

Internal loopback

An internal loopback tests the data path as it passes through various components of the device and loops back. After applying an internal loopback on a port, use a test set to run traffic over the loopback. You can verify issues related to the programming of the device using this loopback.

You can use loopback to troubleshoot some of the following problems in the client or trunk ports.

- No incoming traffic
- Link is down
- Incoming cyclic redundancy check (CRC) errors
- · No outgoing traffic
- LOS at the trunk port

For 10 G mode, individual ports can be put in loopback (internal or line) on a per lane basis by applying the corresponding configuration on the 10G controller.

Before you begin

To create a loopback on a port, the port must be in the maintenance administrative state.

Step 1 configure Enters the configuration mode. Example: RP/0/RP0/CPU0:ios# configure Step 2 controller controllertype R/S/I/P Enters the Ethernet controller configuration mode. Example: RP/0/RP0/CPU0:ios(config)# controller TenGigECtrlr 0/0/0/11/1 Step 3 sec-admin-state maintenance Configures the Ethernet controller in the maintenance administrative state. Example: RP/0/RP0/CPU0:ios(config-eth-ctrlr)# sec-admin-state maintenance Step 4 commit Saves the configuration changes and remains within the configuration session. Example: RP/0/RP0/CPU0:ios(config-eth-ctrlr)# commit Step 5 You can configure either terminal (internal) loopback or facility (line) loopback. a) loopback internal Configures internal loopback. Example: RP/0/RP0/CPU0:ios(config-eth-ctrlr)# loopback internal b) loopback line Configures line loopback.

Example:

RP/0/RP0/CPU0:ios(config-eth-ctrlr)# loopback line

Step 6 commit

Saves the configuration changes and remains within the configuration session.

Example:

RP/0/RP0/CPU0:ios(config-eth-ctrlr)# commit

Step 7 You can verify the internal or line loopback configuration using the following show commands.

a) show controllers controllertype R/S/I/P

Displays status and configuration information about the controller.

Note In the maintenance mode, all alarms are suppressed and the **show alarms** command will not show the alarms details. Use the **show controllers** *controllertype R/S/I/P* to view the client and trunk alarms.

Example:

The following example shows the line loopback configured on the Ethernet controller.

```
RP/0/RP0/CPU0:ios# show controllers TenGigECtrlr 0/0/0/1/1
Tue Dec 1 19:19:47.620 UTC
Operational data for interface TenGigECtrlr0/0/0/1/1:
```

State:

```
Administrative state: enabled
   Operational state: Down (Reason: State undefined)
    LED state: Red On
   Maintenance: Enabled
   AINS Soak: None
   Laser Squelch: Disabled
Phy:
   Media type: Not known
   Alarms:
       Current:
           Loss of Frequency Sync Data
Autonegotiation disabled.
Operational values:
   Speed: 10Gbps
    Duplex: Full Duplex
   Flowcontrol: None
   Loopback: Line
    Inter-packet gap: standard (12)
```

b) show running-config

Displays the NCS 1002 configuration.

```
RP/0/RP0/CPU0:ios# show running-config
...
<snip>
controller TenGigECtrlr0/0/0/1/1
loopback line
sec-admin-state maintenance
```

L

... <snip>

Using Link Layer Discovery Protocol Snooping

LLDP snooping is enabled on the Ethernet controllers when you provision the controllers. You can use LLDP snooping to troubleshoot problems in the client ports. For example, to verify the far end device connected to the client interface. You can troubleshoot connectivity issues using LLDP snooping using the following procedure.

show controllers controller lldp-snoop

Displays the MAC address. Verify that the MAC address displayed is same as the MAC address of the traffic generating port. In Release 6.0.1, you can view more details about the LLDP neighbor.

RP/0/RP0/CPU0:ios# sho Thu Aug 30 02:47:18.2	ow controllers fortyGigECtrlr 0/0/0/7 lldp-snoop 208 UTC				
LLDP Neighbor	LLDP Neighbor Snoop Data				
Capability codes: (R) Router, (H (W) WLAN Acces	B) Bridge, (T) Telephone, (C) DOCSIS Cable Device SS Point, (P) Repeater, (S) Station, (O) Other				
Local Controller:	fortyGigECtrlr0/0/0/7				
Source MAC Address:	0010.9400.0001				
Chassis ID:	198.51.100.2				
Port ID:	0010.9400.0001				
Port Description:	Spirent Port				
System Name:	not advertised				
System Description:	Spirent Test Center				
Hold Time(TTL):	99 seconds				
System Capabilities:	N/A				
Enabled Capabilities:	N/A				
Management Address:	not advertised				
LLDP Packet Drop enabled:	FALSE				
RX LLDP Packet Count:	88				
RP/0/RP0/CP0:	ios#				

Using Trail Trace Identifier

A Trail Trace Identifier (TTI) is used for verifying the optical connection on the trunk side.

Use the following procedure to configure and verify the TTI.

Step 1 controller coherentDSP *R/S/I/P* **tti** {**sent** | **expected**} **ascii** *string*

Configures the transmit and expected TTI strings. The ASCII text string can be a maximum of 64 characters. The TTI string has to be configured on both the trunk ports that are inter-connected to each other. If a pattern mismatch occurs, a TIM alarm is raised.

Note Source Access Point Identifier (SAPI), Destination Access Point Identifier (DAPI), and operator inputs are not supported.

Example:

```
RP/0/RP0/CPU0:ios(config)# controller coherentDSP 0/0/0/12 tti sent ascii abc
RP/0/RP0/CPU0:ios(config)# controller coherentDSP 0/0/0/12 tti expected ascii abc
```

Step 2 show controller coherentDSP *R/S/I/P*

Displays details of the coherent DSP controller. Verify the transmit and expected TTI strings.

```
RP/0/RP0/CPU0:ios# show controll coherentDSP 0/0/0/6
Tue Nov 17 22:57:20.724 UTC
Port
                                             : CoherentDSP 0/0/0/6
Controller State
                                             : Down
Secondary State
                                             : Normal
Derived State
                                             : In Service
Loopback mode
                                             : None
BER Thresholds
                                             : SF = 1.0E-5 SD = 1.0E-7
Performance Monitoring
                                             : Enable
Alarm Information:
LOS = 2 LOF = 1 LOM = 2
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0 SF BER = 0
SD BER = 0 BDI = 0 TIM = 0
FECMISMATCH = 0 FEC-UNC = 0
Detected Alarms
                                             : LOS
OTU TTI Sent
    OPERATOR SPECIFIC ASCII
                                             : abc
                                             :
                                             : 6162630000000000000000000000000
    OPERATOR SPECIFIC HEX
                                             OTU TTI Received
    OPERATOR SPECIFIC ASCII
                                             : abc
                                             :
```

L

OPERATOR SPECIFIC HEX	:	6162630000000000000000000000000000000000
OTU TTI Expected		
OPERATOR SPECIFIC ASC	: II	abc
	:	
OPERATOR SPECIFIC HEX	:	61626300000000000000000000000000
	:	000000000000000000000000000000000000000
FEC mode	:	Soft-Decision 7
Network SRLG values	:	Not Configured

Step 3 show alarms brief card location *R/S/I/P* active

Displays details of the alarms in brief. Verify the transmit and expected TTI strings.

Example:

```
RP/0/RP0/CPU0:ios# show alarms brief card location 0/RP0/CPU0 active
Sat Feb 17 11:45:24.590 UTC
```

Active Alarms		
Location Severity Group	Set Time	Description
0/0 Minor OTN Indentifier Mismatch	02/17/2015 11:44:22	CoherentDSP0/0/0/13 - Section Monitoring Trail Trace

What to do next

- 1. If the transmit or expected string was changed, restore the original string.
- 2. Use a loopback. For more information, see Using Loopbacks, on page 18.

Troubleshooting the Trunk Port

Step 1 show controller coherentDSP R/S/I/P

Displays details of the coherent DSP controller.

```
RP/0/RP0/CPU0:ios# show controller coherentDSP 0/0/0/6

Tue Nov 17 22:57:20.724 UTC

Port : CoherentDSP 0/0/0/6

Controller State : Down

Secondary State : Normal

Derived State : In Service

Loopback mode : None

BER Thresholds : SF = 1.0E-5 SD = 1.0E-7
```

```
Performance Monitoring
                                     : Enable
Alarm Information:
LOS = 2 LOF = 1 LOM = 2
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0 SF BER = 0
          BDI = 0 TIM = 0
SD BER = 0
\overline{FECMISMATCH} = 0 \overline{FEC-UNC} = 0
Detected Alarms
                                     : LOS
OTU TTI Sent
   OPERATOR SPECIFIC ASCII
                                     :
   OPERATOR SPECIFIC HEX
                                     OTU TTI Expected
   OPERATOR SPECIFIC ASCII
                                     :
    OPERATOR SPECIFIC HEX
                                     FEC mode
                                     : Soft-Decision 7
Network SRLG values
                                     : Not Configured
```

In the above output, you can verify the state of the controller and also verify the alarms related to the trunk port.

Step 2 show controller optics *R/S/I/P*

Displays details of the optics controller.

```
RP/0/RP0/CPU0:ios# show controller optics 0/0/0/6
Tue Nov 17 22:54:38.244 UTC
Controller State: Down
Transport Admin State: In Service
Laser State: On
LED State: Red
Optics Status
        Optics Type: DWDM optics
        DWDM Carrier Info: C-Band, MSA ITU Channel=69, Frequency=192.70THz,
        Wavelength=1555.747nm
        Alarm Status:
         _____
        Detected Alarms: None
        LOS/LOL/Fault Status:
        ------
        Detected LOS/LOL/FAULT: None
        Alarm Statistics:
        HIGH-RX-PWR = 1
                                 LOW-RX-PWR = 0
        HIGH-TX-PWR = 0
                                 LOW-TX-PWR = 2
        HIGH-LBC = 5
                                 HIGH-DGD = 0
        OOR-CD = 0
                                  OSNR = 0
        WVL-OOL = 0
        Laser Bias Current = 3.0 %
        Actual TX Power = -0.76 dBm
        RX Power = -40.00 dBm
<truncated>
        Chromatic Dispersion 65 ps/nm
        Configured CD-MIN -70000 ps/nm CD-MAX 70000 ps/nm
        Second Order Polarization Mode Dispersion = 259.00 \text{ ps}^2
        Optical Signal to Noise Ratio = 29.50 dB
        Polarization Dependent Loss = 0.00 dB
```

Polarization Change Rate = 3.00 rad/s Differential Group Delay = 7.30 ps

In the above output, you can verify the state of the controller, LED state, wavelength, TX power, RX power, OSNR, and the alarms.

Step 3 If there is an LOS alarm on the trunk port:

- a) Verify the fiber continuity to the port of the NCS 1002 and fix the fiber connection.
- b) Verify the wavelength and the channel mapping of the optics controllers. For more information, see Verifying Wavelength and Channel Mapping for Optics Controllers, on page 28.

What to do next

- 1. Verify the performance monitoring parameters of the Optics, and coherent DSP controllers. For more information, see Verifying the Performance Monitoring Parameters of Controllers, on page 29.
- 2. Use loopbacks. For more information, see Using Loopbacks, on page 18.
- 3. Use TTI. For more information, see Using Trail Trace Identifier, on page 22.

Troubleshooting Breakout Ports

The client port can be enabled in normal mode or breakout mode. When the client bit rate is 10G, the mode is breakout mode. You must map a lane to a 10G port.

Before you begin

All the five client ports of the slice need to be configured with the same bit rate.

Step 1 show controllers optics *R/S/I/P* pm current 15-min optics *lanenumber*

Displays the PM data for the optics controller.

In the following example, Lane 1 is monitored within the Optics 0/1/0/0 corresponding to the 10G Ethernet controller 0/1/0/0/1.

Example:

```
RP/0/RP0:ios# show controllers optics 0/1/0/0 pm current 15-min optics 1
Tue Feb 10 14:59:06.945 UTC
Optics in the current interval {14:45:00 - 14:59:05 Tue Feb 15 2015]
Optics current bucket type : Valid
                       MAX Threshold (Min) TCA (enable) Threshold (Max) TCA (enable)
         MIN AVG
LBC[mA] : 735
                      735
                735
                              0
                                              NO
                                                          0
                                                                        NO
OPT[dBm]:-1.23
                -1.23 -1.23
                             2.5
                                              NO
                                                         3.5
                                                                        NO
               -1.07 -1.07 -23.98
OPR[dBm]:-1.07
                                              NO
                                                         -7.5
                                                                        NO
```

In the following example, Lane 2 is monitored within the Optics 0/1/0/0 corresponding to the 10G Ethernet controller 0/1/0/0/2.

RP/0/RP0:ios# show controllers optics 0/1/0/0 pm current 15-min optics 2 Tue Feb 10 14:59:10.936 UTC Optics in the current interval {14:45:00 - 14:59:11 Tue Feb 15 2015] Optics current bucket type : Valid MIN AVG MAX Threshold(Min) TCA(enable) Threshold(Max) TCA(enable) LBC[mA] : 770 770 770 0 NO 0 NO OPT[dBm]:-1.25 -1.25 -1.25 2.5 3.5 NO NO OPR[dBm]:-1.41 -1.41 -1.41 -23.98 NO -7.5 NO

Step 2 show controllers optics*R/S/I/P*

Displays details about the optics controller.

In the following example, you can view the parameters for each lane of the Optics 0/2/0/0 controller.

Example:

RP/0/RP0/CPU0:ios# show controllers optics 0/2/0/0 Tue Feb 13 15:35:34.051 UTC optics: Driver is not sending wave channel number and grey wavelength. Controller State: Administratively Down Transport Admin State: Out Of Service Laser State: Off LED State: Off Optics Status Optics Type: Grey optics Alarm Status: Detected Alarms: None LOS/LOL/Fault Status: Detected LOS/LOL/FAULT: None Alarm Statistics: HIGH-RX-PWR = 0 LOW-RX-PWR = 0 HIGH-TX-PWR = 0 LOW-TX-PWR = 0 HIGH-LBC = 0Performance Monitoring: Enable Rx Low Threshold = -12.0 dBm Rx High Threshold = 4.9 dBm Tx Low Threshold = -10.1 dBm Tx High Threshold = 3.5 dBm Configured Tx Power = 0.00 dBm LBC High Threshold = 98 percentage Polarization parameters not supported by optics Network SRLG values: Not Configured Lane Laser Bias TX Power RX Power ---- ------1 18.9 % -1.04 dBm -7.44 dBm 2 19.2 % -1.05 dBm -10.84 dBm 3 24.3 % -1.16 dBm -8.45 dBm 4 19.3 % -1.09 dBm -10.50 dBm

Step 3 show tech-support ncs1k

Collects the output logs.
What to do next

Verify the PM parameters of the Ethernet Controller. For more information on these parameters, see Verifying the Performance Monitoring Parameters of Controllers, on page 29.

Troubleshooting Breakout Patch Panel

Step 1 show tech-support ncs1k

Collects the output logs to troubleshoot breakout patch panel.

Step 2Collect the logs of the following files to troubleshoot breakout patch panel. These files are present under XR bash prompt./var/log/pp_srv.log and /var/log/pp_client.log

Troubleshooting a Failed Commit Configuration

Use the following command to troubleshoot a configuration failure.

1. Solution Use the show configuration failed command to get information on why the configuration failed.

```
RP/0/RP0/CPU0:ios(config)# show configuration failed
Wed Dec 9 06:05:39.694 UTC
!! SEMANTIC ERRORS: This configuration was rejected by
!! the system due to semantic errors. The individual
!! errors with each failed configuration command can be
!! found below.
controller Optics0/0/0/13
dwdm-carrier 100MHz-grid frequency 1911500
!!% Invalid argument: Wavelength change is allowed only in shutdown or maintenance state
!
end
```

Removing and Re-inserting DIMMs on the Controller Card

There are two DIMMs on the controller card (NCS1K-CNTLR=). If one DIMM is displaced, BIOS will boot; however, Cisco IOS XR does not boot due to insufficient memory. If both DIMMs are displaced, BIOS will not boot. In both the scenarios, it is recommended to remove and re-insert DIMMs on the controller card.

Before you begin

Follow the standard electrostatic discharge (ESD) rules according to local site practice before replacing DIMMs.

- **Step 1** Remove DIMMs Push the connector latches down.
- **Step 2** Re-insert DIMMs Push DIMM down into the connector by pressing on two points close to the far ends of DIMM.
- **Step 3** Verify correct insertion The two connector latches must be closed if DIMM has been correctly inserted. Pull DIMM up to verify.

Figure 1: Remove and Re-insert DIMMs

1	Push connector latches down
2	Pull DIMM up
3	Align when installing DIMM

Verifying Wavelength and Channel Mapping for Optics Controllers

Some of the troubleshooting scenarios where you need to verify the wavelength and channel mapping of the optics controllers are:

- Verify the connection between the NCS 1002 and a line system.
- Troubleshoot problems with the traffic.
- Clear an LOS.

show controllers optics R/S/I/P dwdm-carrrier-map

Displays the wavelength and channel mapping for optics controllers.

RP/0/RP0/CPU0:ios# show controllers optics 0/0/0/11 dwdm-carrrier-map Thu Aug 27 15:59:00.385 UTC DWDM Carrier Band:: C-Band MSA ITU channel range supported: 1~97 DWDM Carrier Map table ITU Ch G.694.1 Frequency Wavelength Num Ch Num (THz) (nm) 1 60 196.10 1528.773 _____ 2 59 196.05 1529.163 _____ 3 58 196.00 1529.553 _____ 4 57 195.95 1529.944 5 56 195.90 1530.334 _____ 6 55 195.85 1530.725 _____ 7 54 195.80 1531.116 _____ 8 53 195.75 1531.507 9 52 195.70 1531.898 _____ 10 51 195.65 1532.290 11 50 195.60 1532.681 _____ 12 49 195.55 1533.073 _____ 13 48 195.50 1533.465 _____ 14 47 195.45 1533.858 15 46 195.40 1534.250 _____ 16 45 195.35 1534.643 _____ 17 44 195.30 1535.036 _____ 18 43 195.25 1535.429 19 42 195.20 1535.822 ------20 41 195.15 1536.216 _____ <snip>

Verifying the Performance Monitoring Parameters of Controllers

Performance monitoring (PM) parameters are used by service providers to gather, store, set thresholds for, and report performance data for early detection of problems. The user can retrieve both current and historical PM counters for the various controllers in 15 minutes and 1 day intervals.

show controllers controllertype R/S/I/P {pm {current | history} {15-min | 24-hour} {optics | ether
| fec | otn } linenumber }

Note For Ethernet controllers, only ingress statistics are supported.

The following sample output displays the current performance monitoring parameters of the Optics controller in 15 minute intervals.

Example:

```
RP/0/RP0:ios# show controllers optics 0/1/0/0 pm current 15-min optics 1
Tue Feb 10 14:59:06.945 UTC
Optics in the current interval {14:45:00 - 14:59:05 Tue Feb 15 2015]
Optics current bucket type : Valid
               AVG
                     MAX Threshold(Min) TCA(enable) Threshold(Max) TCA(enable)
        MIN
LBC[mA] : 735
               735
                     735 0
                                            NO
                                                        0
                                                                      NO
OPT[dBm]:-1.23 -1.23 -1.23 2.5
                                                       3.5
                                            NO
                                                                      NO
OPR[dBm]:-1.07 -1.07 -1.07 -23.98
                                            NO
                                                       -7.5
                                                                      NO
```

The following sample output displays the historical performance monitoring parameters of the Ethernet controller in 24 hour intervals.

Example:

```
RP/0/RP0/CPU0:ios# show controllers HundredGigECtrlr 0/0/0/11 pm current 24-hour ether
Thu Nov 12 04:16:40.598 UTC
ETHER in the current interval [00:00:00 - 04:16:40 Thu Nov 12 2020]
ETHER current bucket type : Invalid
RX-UTIL[%]:
                 98.49 Threshold : 0.00
                                            TCA(enable) : NO
RX-PKT : 46296223036 Threshold : 0 TCA(enable) : NO
STAT-PKT :
                   0 Threshold : 0 TCA(enable) : NO
OCTET-STAT : 60897581359118
                            Threshold : 0 TCA(enable) : NO
OVERSIZE-PKT :
                   0 Threshold :
                                  0 TCA(enable) : NO
FCS-ERR :
                   0 Threshold : 0 TCA(enable) : NO
LONG-FRAME :
                   0 Threshold : 0 TCA(enable) : NO
JABBER-STATS :
                   0 Threshold : 0 TCA(enable) : NO
64-OCTET :
                   0 Threshold :
                                  0 TCA(enable) : NO
65-127-OCTET :
                   0 Threshold : 0 TCA(enable) : NO
128-255-OCTET :
                   0 Threshold : 0 TCA(enable) : NO
256-511-OCTET :
                   0 Threshold : 0 TCA(enable) : NO
<snip>
```

The following sample output displays the current performance monitoring parameters of the coherent DSP controller in 15 minute intervals.

Example:

```
RP/0/RP0/CPU0:ios# show controllers coherentDSP 0/0/0/13 pm current 15-min otn
Thu Nov 12 04:14:50.475 UTC
g709 OTN in the current interval [ 4:00:00 - 04:14:50 Thu Nov 12 2020]
OTN current bucket type : Valid
   ES-NE
         : 0
                    Threshold : 500
                                      TCA(enable) : YES
   ESR-NE : 0.00000 Threshold : 0.00000 TCA(enable) : NO
   SES-NE : 0 Threshold : 500 TCA(enable) : YES
   SESR-NE : 0.00000 Threshold : 0.00000 TCA(enable) : NO
   UAS-NE: 0Threshold : 500TCA(enable): YESBBE-NE: 0Threshold : 10000TCA(enable): YES
   BBER-NE : 0.00000 Threshold : 0.00000 TCA(enable)
                                                    : NO
                    Threshold : 10 TCA(enable) : YES
   FC-NE : 0
                    Threshold : 500 TCA(enable) : YES
   ES-FE : 0
          : 0.00000 Threshold : 0.00000 TCA(enable) : NO
   ESR-FE
   SES-FE : 0
                     Threshold : 500 TCA(enable)
                                                    : YES
   SESR-FE: 0.00000 Threshold: 0.00000 TCA(enable) : NO
   UAS-FE : 0 Threshold : 500 TCA(enable) : YES
   BBE-FE : 0
                     Threshold : 10000 TCA(enable) : YES
   BBER-FE : 0.00000 Threshold : 0.00000 TCA(enable) : NO
   FC-FE
          : 0
                     Threshold : 10
                                        TCA(enable)
                                                    : YES
```

The following sample output displays the current performance monitoring parameters of the coherent DSP controller for FEC in 15 minute intervals.

Example:

```
RP/0/RP0/CPU0:ios# show controllers coherentDSP 0/0/0/26 pm current 15-min fec
Thu Nov 12 01:22:48.953 UTC
g709 FEC in the current interval [ 1:15:00 - 01:22:49 Thu Nov 12 2020]
FEC current bucket type : Valid
   EC-BITS : 619592625 Threshold : 903330
                                                  TCA(enable) : YES
   UC-WORDS : 0
                           Threshold : 5
                                                   TCA(enable) : YES
                        AVG
               MIN
                                  MAX
                                      Threshold TCA
                                                         Threshold TCA
                                         (min) (enable) (max) (enable)
PreFEC BER : 4.7E-06 6.2E-06 8.5E-06
                                          0
                                                 NO
                                                           0
                                                                   NO
PostFEC BER : <1.0E-15 <1.0E-15 <1.0E-15
                                           0
                                                 NO
                                                            0
                                                                   NO
```

Verifying and Troubleshooting Headless State Settings

NCS 1002 has a CPU that can be removed. It can carry traffic for at least 72 hours without the CPU. The functioning of the data path without CPU is termed as a headless operation.

Use the following commands to verify or troubleshoot headless state settings or hitless restart problems.

Step 1 show hw-module slice *slice_number* internal

Displays internal details of the slice and verifies if hitless restart is enabled on the slice. If hitless restart is enabled, the slice is initialized in the stateful (hitless restart) mode during the next CPU Online Insertion and Removal (OIR), or reload

operation and traffic is not impacted. If hitless restart is not enabled, the slice is initialized in the stateless mode and traffic is impacted.

Example:

```
RP/0/RP0/CPU0:ios# show hw-module slice 1 internal
Thu Nov 19 03:46:35.968 UTC
Slice ID: 1
Status: Provisioned
Client Bitrate: 10
Trunk Bitrate: 100
Headless Internal Information:
State data: 0xA1B2C3D4
```

In the above example, the State data is 0xA1B2C3D4. If the value of the State data is 0xA1B2C3D4, the slice starts in the stateful mode and there is no impact on the traffic during the device CPU OIR or reload operation.

Example:

```
RP/0/RP0/CPU0:ios#show hw-module slice 1 internal

Fri Dec 4 09:52:08.823 UTC

Slice ID: 1

Status: Not Provisioned

Client Bitrate: 32767

Trunk Bitrate: 0

Headless Internal Information:

State data: 0x0
```

In the above example, the State data is 0x0. Hence, the slice restarts in stateless mode.

After you provision the slice and the ports, use the above command to check if stateful mode is enabled on the slice.

The system can restart due to one of the following conditions:

- CPU OIR
- Device reload
- IOS-XR reload
- System admin reload
- mxp driver process restart

Hitless restart or the headless functionality is enabled only if the slice is successfully provisioned. This mode is disabled if any one of the following configurations are in progress or have failed on the slice:

- shutdown or no shutdown of optics, Ethernet, or coherent DSP controllers.
- Transmit power configurations
- DWDM carrier frequency configuration
- Client and trunk loopback configurations
- FEC mode configuration
- Transmit TTI configuration
- Expected TTI configuration

During CPU OIR, or a reload operation, if a slice is initialized in the stateful mode and any datapath hardware component is not accessible, the headless feature cancels the reprovisioning of the slice to prevent any traffic impact.

Example:

```
RP/0/RP0/CPU0:ios# show hw-module slice 0 internal

Tue Feb 9 05:24:48.075 UTC

Slice ID: 0

Status: Reprovisioning Aborted [DP Access Failure - hitless reload]

Client Bitrate: 10

Trunk Bitrate: 100

Headless Internal Information:

State data: 0xA1B2C3D4
```

Step 2 show alarm brief card location location active

Displays active alarms. You can verify if the equipment fail alarm is raised on the slice. This alarm is raised on the slice if the slice is not in a proper state or any hardware component is not accessible.

Example:

```
RP/0/RP0/CPU0:ios#show alarms brief card location 0/RP0/CPU0 active
Fri Jan 29 06:25:06.919 UTC
    _____
Active Alarms
_____
Location Severity Group
                           Set Time
                                           Description
_____
0/0
         Critical Slice
                           01/29/2016 06:23:46 Equipment Failure Slice 2
0/0
         Critical
               Controller
                           01/29/2016 05:58:28
                                          Optics0/0/0/0 - Improper Removal
```

What to do next

Collect the output of the show tech ncs1k detail command if any the following conditions occur:

- Equipment fail alarm is raised.
- Stateful mode is disabled for an unknown reason.

Monitoring Headless Statistics

In the headless mode, the data path and statistics are maintained for at least 72 hours. These statistics are automatically cleared during the next reload or CPU-OIR operation.

Use this procedure to display the statistics collected during the last headless operation.

show controllers controllertype R/S/I/P headless-stats

Displays the statistics collected during the last headless operation. The collected statistics are preserved for a slice until the hardware module configuration is removed or changed on that slice.

Example:

The following example displays the statistics collected for the Ethernet controller during the last headless operation.

```
RP/0/RP0/CPU0:ios# show controllers fortyGigECtrlr 0/0/0/7 headless-stats
Thu Aug 30 06:32:58.936 UTC
```

```
Started in Stateful mode: Yes
Headless Start Time: Thu Aug 30 06:31:09 2018
Headless End Time: Thu Aug 30 06:32:34 2018
Ethernet Headless Statistics
                        : 0
   RxPktsOverSized
                        : 0
   RxPktsBadFcs
   RxErrorJabbers
                       : 0
   RxPktsMulticast
                       : 3
   RxPktsBroadcast
                       : 0
   RxPktsUnicast : 20
RxPktsUnderSized : 0
                        : 2020282144
   RxPkts
                       : 2020282147
   RxBytesGood
                       : 387949441048
                       : 2020282147
   RxPktsGood
   RxRecvFragments
                        : 0
   RxPkts64Bytes
                        : 0
   RxPkts65To127Bytes : 3
   RxPkts128to255Bytes : 2004490979
   RxPkts256To511Bytes : 15791165
   RxPkts512To1023Bytes : 0
RxPkts1024To1518Bytes : 0
   RxTotalBytes
                        : 387949441096
   RxPktsDrop
                       : 0
   RxPause
                       : 0
                       : 2020283895
   TxPkts
   TxTotalBytes
                        : 387949776554
   TxPktsUndersized
                        : 0
   TxPktsOversized
                        : 0
   TxPktsFragments
                        : 0
   TxPktsJabber
                        : 0
   TxPktsBadFcs
                        : 0
   TxPause
                         : 0
                         : 3
   RxLldpkts
```

The following example displays the statistics collected for the coherent DSP controller during the last headless operation.

RP/0/RP0/CPU0:ios# show controllers coherentDSP 0/0/0/12 headless-stats

Fri Dec 11 12:06:23.831 UTC

```
Started in Stateful mode: Yes
Headless Start Time: Fri Dec 11 11:21:23 2015
Headless End Time: Fri Dec 11 11:23:59 2015
OTN Headless Statistics
    SmBip : 0
    SmBei : 0
    Fec EC : 4294967295
    Fec UC : 0
```

In the above example, the important fields are:

Started in Stateful Mode—Indicates whether the slice corresponding to the controller port is in a stateful or stateless
mode during the last CPU OIR, or reload operation.

- Headless Start Time—Time at which the NCS 1002 entered the headless mode of operation.
- Headless End Time—Time at which the NCS 1002 came out of the headless mode.
- SmBip—Section Monitoring Backward Error Indicator
- SmBei-Section Monitoring Bit Interleaved Parity
- Fec EC—Forward error correction Errors Corrected
- Fec UC—Forward Error Correction Uncorrected Words

Slices that start in the stateful mode are not reset during the last CPU OIR, or reload operation. Hence, the traffic is not interrupted on these slices. Slices that start in the stateless mode are reset. Hence, the traffic is interrupted on these slices. Slices that are successfully provisioned are in stateful mode. Headless start time and end time values are valid only if the slice corresponding to the controller is in a stateful mode.

Using SNMP for Troubleshooting

The supported MIBs in NCS 1002 are:

- CISCO-CONFIG-MAN-MIB
- CISCO-ENHANCED-MEMPOOL-MIB
- CISCO-PROCESS-MIB
- CISCO-SYSLOG-MIB
- ENTITY-MIB
- CISCO-ENTITY-FRU-CONTROL-MIB
- CISCO-IF-EXTENSION-MIB
- RMON-MIB
- CISCO-ENTITY-SENSOR-MIB
- CISCO-OPTICAL-MIB
- CISCO-OTN-IF-MIB
- LLDP-MIB

The CISCO-OTN-IF-MIB defines the managed objects for physical layer characteristics and the performance statistics of the OTN interfaces.

The CISCO-OPTICAL-MIB defines the managed objects for physical layer characteristics and the performance statistics of the optical interfaces.

For information on Cisco IOS XR SNMP Best Practices, see http://www.cisco.com/c/en/us/td/docs/ios_xr_sw/iosxr_r3-9-1/mib/guide/crs-gsr_appe.html.

Use the following commands in EXEC mode to verify and monitor the SNMP for network monitoring and management.

- show snmp—Displays the status of SNMP communications.
- show snmp mib access—Displays the counters per OID that indicate the number of times an operation was done on an OID.
- show snmp mib access time—Displays the timestamp of the last operation on an OID.
- show snmp trace requests—Displays a log of the high level PDU processing trace points.
- debug snmp packet—Displays information about every SNMP packet sent or received by the NCS 1002.
- debug snmp requests—Displays information about every SNMP request made by the SNMP manager.

Using Netconf for Troubleshooting

Netconf provides mechanisms to install, manipulate, and delete the configuration of network devices. The Netconf protocol provides a set of operations to manage device configurations and retrieve device state information.

Use the following commands in EXEC mode to retrieve device state information.

Before you begin

- Verify the installation of k9sec package.
- · Generate the crypto key for SSH using the crypto key generate dsa command.

Note If you access NCS 1002 after regenerating the crypto key, you must remove the ~/.ssh/known_hosts file as there will be a key mismatch between the host and the NCS 1002.

Configure SSH.

```
RP/0/RP0/CPU0:ios# configure
RP/0/RP0/CPU0(config)# ssh server v2
RP/0/RP0/CPU0(config)# ssh server netconf port 830
RP/0/RP0/CPU0(config)# ssh server netconf vrf default
```

Note Port 830 is the default Netconf port.

· Configure Netconf.

```
RP/0/RP0/CPU0:ios# configure
RP/0/RP0/CPU0(config)# netconf-yang agent ssh
```

Step 1 show netconf-yang clients

Displays the client details for netconf-yang.

Example:

RP/0/RP0/CPU0:ios# sh	low netconf-yang	clients		
Tue Dec 8 07:49:14.8	46 UTC			
Netconf clients				
client session ID	NC version	client connect time	last OP time	last OP type
<lock> </lock>				
1188487019	1.1	0d 16h 56m 50s	01:17:13	get
No				
3445210079	1.1	0d 16h 56m 38s	01:16:54	get
No				
3027026318	1.1	0d 16h 56m 1s	01:16:50	get
No				
2653293062	1.1	0d 16h 56m 33s	01:16:53	get
No				
96573454	1.1	0d 16h 56m 15s	01:17:13	get
No				
2771481091	1.1	0d 16h 56m 45s	01:17:14	get
No				

Step 2 show netconf-yang statistics

Displays the statistical details for netconf-yang.

Example:

RP/0/RP0/CPU0:ios# show netconf-yang statistics

Tue Dec 8 07:49:45.506 UTC Summary statistics

				#	request	sl		t	tota	l time	min	tim	e pe	r re	quest	max	tim	e per
rec	quest avg	tim	e pe	r re	equest													
othe	er					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		Oh	Om
0s	Oms	Oh	Om	0s	0ms													
clos	se-session					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		Oh	Om
0s	Oms	Oh	Om	0s	0ms													
kill	l-session					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		Oh	Om
0s	Oms	0h	Om	0s	0ms													
get-	-schema					0	0h	Om	0s	0ms		0h	0m	0s	0ms		Oh	Om
0s	Oms	Oh	Om	0s	0ms													
get					1116	1	0h	Om	48s	332ms		0h	0m	0s	0ms		Oh	Om
0s	27ms	0h	Om	0s	0ms													
get-	-config					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		0h	Om
0s	Oms	0h	Om	0s	0ms													
edit	c-config					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		Oh	Om
0s	Oms	0h	Om	0s	0ms													
com	nit					0	0h	Om	0s	0ms		0h	0m	0s	0ms		Oh	Om
0s	Oms	0h	Om	0s	0ms													
cand	cel-commit					0	0h	Om	0s	0ms		0h	0m	0s	0ms		Oh	Om
0s	Oms	Oh	Om	0s	0ms													
loc}	C C					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		0h	Om
0s	Oms	0h	Om	0s	0ms													
unlo	ock					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		0h	Om
0s	Oms	0h	Om	0s	0ms													
disc	card-changes					0	0h	Om	0s	0ms		0h	0m	0s	0ms		Oh	Om
0s	Oms	0h	Om	0s	0ms													
vali	ldate					0	Oh	Om	0s	0ms		0h	0m	0s	Oms		0h	Om
0s	Oms	0h	Om	0s	0ms													
xml	parse				1116	1	0h	Om	5s	717ms		0h	0m	0s	0ms		Oh	Om
0s	2ms	0h	Om	0s	0ms													
neto	conf process	or			1116	1	Oh	Om	48s	332ms		0h	0m	0s	Oms		0h	Om
0s	27ms	Oh	Om	0s	0ms													
YFW					1116	1	0h	7m	32s	350ms		0h	0m	0s	10ms		Oh	Om
0s	97ms	0h	Om	0s	0ms													
pend	ding request	S				0	Oh	Om	0s	0ms		0h	0m	0s	Oms		Oh	Om

```
Os Oms| Oh Om Os Oms|
Statistics for session with ID: 1188487019
<snip>
```

Step 3 show netconf-yang trace

Debugs and verifies Netconf.

Example:

```
RP/0/RP0/CPU0:ios# show netconf-yang trace
Tue Dec 8 07:50:54.590 UTC
[12/08/15 07:30:37.851 UTC 1046d3 4942] TRC: nc sm session find session id:1386 Found session 3027026318
0x1852f68
[12/08/15 07:30:37.851 UTC 1046d4 4942] DBG: nc_sm_yfw_response_cb:2816 Received OK response for
session-id '3027026318', for message-id '856615', which has 'NO ERROR' and 'DATA'
[12/08/15 07:30:37.851 UTC 1046d5 4942] TRC: nc_sm_yfw_response_complete:2700 DATA element in chunk
state: CONTINUE
[12/08/15 07:30:37.851 UTC 1046d6 4942] TRC: nc pxs send:223 SERVER->CLIENT 688 (iov: 0x1ae7bd8)
[12/08/15 07:30:37.851 UTC 1046d7 4942] TRC: nc_sm_yfw_response_handle:2638 malloc_trim called (rc
= 1)
[12/08/15 07:30:37.851 UTC 1046d8 4942] TRC: nc sm yfw response cb:2906 More responses to come for
msg id '856615'
[12/08/15 07:30:37.852 UTC 1046d9 13229] TRC: nc px fdout handler:563 SSH PIPE OUTPUT cond: 0x2, fd
129, ctx 0x60d800
[12/08/15 07:30:37.859 UTC 1046da 4942] TRC: nc_sm_session_find_session_id:1386 Found session 3027026318
0x1852f68
[12/08/15 07:30:37.859 UTC 1046db 4942] DBG: nc_sm_yfw_response_cb:2816 Received OK response for
session-id '3027026318', for message-id '856615', which has 'NO ERROR' and 'DATA'
[12/08/15 07:30:37.859 UTC 1046dc 4942] TRC: nc sm yfw response complete:2700 DATA element in chunk
state:
<snip>
```

Verifying Alarms

show alarms show alarms	brief [card [detail [card [location location location location] rack system] [1] rack system]	active clients history stats]] [active clients history stats]]
Displays alarn	ns in brief or deta	il.		
Example:				
RP/0/RP0/CPU Mon Dec 14 0	0:ios# show al 00:01:29.499 UT	arms brief card 3 C	location 0/RP0/CPU0 act	live
Active Alarm	າຣ			
Location	Severity	Group	Set Time	Description
0/0 Receive Powe	Minor	Controller	12/10/2015 07:49:41	. Optics0/0/0/0 - Optics Low
0/0	Critical	Controller	02/13/2001 13:34:32	Optics0/0/0/7 - Improper Removal
0/0	Critical	Controller	02/13/2001 13:34:32	Optics0/0/0/8 - Improper Removal
0/0	Critical	Controller	02/13/2001 13:34:32	Optics0/0/0/9 - Improper Removal
0/0	Critical	Controller	02/13/2001 13:34:32	Optics0/0/0/10 - Improper Removal

0/0			Critical	Controller
0/0			Major	Ethernet
Loss	On	The	LAN	

02/13/2001 13:34:32 Optics0/0/0/20 - Improper Removal 02/13/2001 13:34:34 HundredGigECtrlr0/0/0/14 - Carrier

Note In the maintenance mode, all alarms are suppressed and the **show alarms** command will not show the alarms details. Use the **show controllers** *controllertype R/S/I/P* command to view the client and trunk alarms.

What to do next

For more information about alarms and steps to clear them, see the Alarm Troubleshooting, on page 45.

Using Onboard Failure Logging

Onboard Failure Logging (OBFL) collects and stores boot, environmental, and critical hardware data in the nonvolatile flash memory of the CPU controller card. This information is used for troubleshooting, testing, and diagnosis if a failure or other error occurs. This data provides improved accuracy in hardware troubleshooting and root cause isolation analysis. The data collected includes field-replaceable unit (FRU) serial number, OS version, total run time, boot status, temperature and voltage at boot, temperature and voltage history, and other board specific errors.

show logging onboard {fmea | inventory | temperature | uptime | voltage}

Displays OBFL data.

Example:

The following example shows the uptime information.

```
sysadmin-vm:0 RP0# show logging onboard uptime
Sat Nov 28 17:53:24.796 UTC
OBFL Uptime Information For : 0/RP0
 NOTE: Read Operation in progress; Incomplete Data Displayed
     * indicates incomplete time-sync while record was written
     ! indicates time reset backwards while system was running
 _____
     UPTIME CARD INFORMATION
       _____
    Entity Name
                        : Value
 _____
    Previous Chassis SN : ABC CHA SN
    Current Chassis SN
                       : CHANGE-ME-
                       : 0/0/0
    Previous R/S/I
    Current R/S/I
                         : 0/0/0
    Write Interval
                        : 15 (min)
                       : 10/08/2015 06:47:10
    First Power On TS
    Last Erase TS
                        : --/--/ ---:--:--
    Rack Change Count
                        : 1
    Slot Change Count
                         : 4
    UPTIME INFORMATION
  _____
                 _____
                                                 _____
  Start Time Stamp | End Time Stamp | Card Uptime info
  mm/dd/yyyy hh:mm:ss | mm/dd/yyyy hh:mm:ss | Weeks.Days.Hrs.Min.Sec
```

```
11/27/2015 20:44:32 | 11/27/2015 22:11:18 | 0.0.1.26.46
11/27/2015 22:11:18 | 11/28/2015 17:21:59 | 0.0.19.10.41
11/28/2015 17:21:59 | 11/28/2015 17:51:59 | 0.0.0.30.0
```

Capturing Logs

Step 1 show logging

Displays the contents of the logging buffers. You can also view details of FPD upgrade failures.

Example:

```
RP/0/RP0/CPU0:ios# show logging
Sat Nov 28 22:12:45.450 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
        Console logging: level debugging, 2720 messages logged
        Monitor logging: level debugging, 281 messages logged
        Trap logging: level informational, 0 messages logged
        Buffer logging: level debugging, 3332 messages logged
        Log Buffer (2097152 bytes):
```

```
<snip>
```

a) logging buffered size

Configures the size of the logging buffer. The range is from 2097152 to 125000000 bytes.

Example:

RP/0/RP0/CPU0:ios(config)#logging buffered 3000000

Step 2 show tech-support and show tech-support ncs1k

Creates a .tgz file that contains the dump of the configuration and show command outputs. This file provides system information for the Cisco Technical Support.

Example:

```
RP/0/RP0/CPU0:ios# show tech-support ncs1k
Fri Nov 13 17:31:23.360 UTC
++ Show tech start time: 2015-Nov-13.173123.UTC ++
Fri Nov 13 17:31:25 UTC 2015 Waiting for gathering to complete
.
Fri Nov 13 17:33:32 UTC 2015 Compressing show tech output
Show tech output available at 0/RP0/CPU0 : /harddisk:/showtech/showtech-ncs1k-2015-Nov-13.173123.UTC.tgz
```

Step 3 show tech-support alarm-mgr

Collects the Cisco support file for the alarm manager component.

Example:

```
RP/0/RP0/CPU0:ios#show tech-support alarm-mgr
Sat Jan 30 21:41:53.894 UTC
```

++ Show tech start time: 2016-Jan-30.214154.UTC ++
Sat Jan 30 21:41:56 UTC 2016 Waiting for gathering to complete
Sat Jan 30 21:44:02 UTC 2016 Compressing show tech output
Show tech output available at 0/RP0/CPU0 :
/harddisk:/showtech/showtech-alarm_mgr-2016-Jan-30.214154.UTC.tgz
++ Show tech end time: 2016-Jan-30.214402.UTC ++

Step 4 show tech-support ptah

Collects the Cisco support file for the Physical Transport Alarm Hardware (PTAH) component.

Example:

```
RP/0/RP0/CPU0:ios#show tech-support ptah file disk0:
Sat Jan 30 21:50:33.016 UTC
++ Show tech start time: 2016-Jan-30.215033.UTC ++
Sat Jan 30 21:50:35 UTC 2016 Waiting for gathering to complete
Sat Jan 30 21:52:41 UTC 2016 Compressing show tech output
Show tech output available at 0/RP0/CPU0 : /harddisk:/showtech-ptah-2016-Jan-30.215033.UTC.tgz
++ Show tech end time: 2016-Jan-30.215242.UTC ++
```

Step 5 show proc mxp_driver | inc Job

Captures the job ID of the mxp driver process, which is the NCS 1002 muxponder driver process.

Example:

```
RP/0/RP0/CPU0:ios#show proc mxp_driver | inc Job
Sat Jan 30 21:46:26.584 UTC
Job Id: 189
```

Step 6 show ptah trace all jid *job_id*

Captures the interaction traces between the mxp driver process and PTAH.

Example:

```
RP/0/RP0/CPU0:ios#show ptah trace all jid 189 location 0/RP0/CPU0 | file
disk0:show ptah trace 189 job.log
Sat Jan 30 21:47:29.633 UTC
[OK]
RP/0/RP0/CPU0:ios#dir disk0:
Sat Jan 30 21:47:47.661 UTC
Directory of disk0:
8114 drwxr-xr-x 2 4096 Jan 30 00:12 ztp
  12 lrwxrwxrwx 1
                    12 Jan 30 00:09 config -> /misc/config
16225 drwxr-xr-x 2
                    4096 Jan 30 21:44 showtech
  11 drwxr-xr-x 2 4096 Jan 30 00:09 core
  23 -rwx----- 1 295238 Jan 30 21:47 show_ptah_trace_189_job.log
 8115 drwxr-xr-x 2 4096 Jan 30 01:05 nvgen traces
 8113 drwx----- 2 4096 Jan 30 00:10 clihistory
1005620 kbytes total (935528 kbytes free)
```

What to do next

You should gather the above information before calling the Cisco Technical Assistance Center (TAC).

Verifying Process Details and Crash Dump

Step 1 show processes

Displays information about active processes.

Example:

The following example shows the output of the **show processes** command in the EXEC mode.

סס/∩/סס	D0 / CD	IIO.ioe#	show	processes		
	10/01	00.103#	SHOW	processes		
!! Fil€	e sav	ed at 17	7:22:	13 UTC Fri	Nov 13 2015 by root	
JID	TID	Stack	pri	state	NAME	rt_pri
1	1	0K	20	Sleeping	init	0
66449	913	0K	20	Sleeping	oom.sh	0
66470	934	0K	20	Sleeping	cgroup_oom.sh	0
66471	935	0K	20	Sleeping	oom.sh	0
66495	959	0K	0	Sleeping	cgroup_oom	0
66495	997	0K	0	Sleeping	lwm debug threa	0
66495	998	0K	0	Sleeping	cgroup oom	0
<snip></snip>					_	

The following example shows the output of the **show processes** command in the system admin EXEC mode.

LAST STARTED	STATE	RE- START	MANDA- TORY	MAINT- MODE	NAME(IID) ARGS
11/28/2015 17:21:29.000	Run	1			aaad(0)
11/28/2015 17:21:32.000	Run	1			ael mgbl(0)
11/28/2015 17:21:29.000	Run	1	М		calv alarm mgr(0)
11/28/2015 17:21:29.000	Run	1	М		cm (0)
11/28/2015 17:21:29.000	Run	1	М		confd helper(0) -t token -v -d -w 400 -b 30
-p 600 -r 10 -f 10					_
11/28/2015 17:21:29.000	Run	1			ctrl_driver(0) -i atom -u 1f10:1.0 -l
1f11:2.0					
11/28/2015 17:21:29.000	Run	1			dd_driver(0)
<snip></snip>					

Step 2 show processes *process-name*

Displays detailed information about a process.

Example:

```
RP/0/RP0/CPU0:ios#show processes mxp_driver
Sat Feb 11 03:05:49.468 UTC
Job Id: 148
PID: 3795
Executable path: /opt/cisco/XR/packages/ncslk-os-support-2.0.0.0-r611011/rp/bin/mxp_driver
Instance #: 1
Version ID: 00.00.0000
Respawn: ON
Respawn count: 1
Last started: Fri Feb 10 11:59:20 2017
Process state: Run
Package state: Normal
core: MAINMEM
```

		Max	. cor	re: 0		
			Leve	el: 200		
		Pla	cemer	nt: None		
		startu	p_pat	h:		
/opt/c	cisco/X	R/pack	ages/	/ncs1k-os-su	pport-2.0.0.0-r6110	1I/rp/startup/mxp_driver.startup
			Read	dy: 134.140s	3	
	Proc	ess cp	u tin	ne: 0.000 us	ser, 15061.040 kerne	l, 15061.040 total
JID	TID	Stack	pri	state	NAME	rt_pri
148	3795	0K	20	Sleeping	Infra Agent	0
148	4176	0K	20	Sleeping	lwm_debug_threa	0
148	4177	0K	20	Sleeping	mxp_driver	0
148	4181	0K	20	Sleeping	lwm_service_thr	0
148	4182	0K	20	Sleeping	qsm_service_thr	0
148	4223	0K	20	Sleeping	mxp driver	0
148	4351	0K	20	Sleeping	pm ui thread	0
148	4353	0K	20	Sleeping	Infra Agent	0
148	4366	0K	20	Sleeping	Infra Agent	0
148	4378	0K	20	Sleeping	ptah common eve	0
148	4439	0K	20	Sleeping	async –	0
148	4522	0K	20	Sleeping	Infra Agent	0
148	4543	0K	20	Sleeping	Infra Agent	0
148	4554	0K	20	Sleeping	Infra Agent	0
148	5110	0K	20	Sleeping	PrvAgt Slice 0	0
148	5111	0K	20	Sleeping	PrvAqt Slice 1	0
148	5112	0K	20	Sleeping	PrvAgt Slice 2	0
148	5113	0K	20	Sleeping	PrvAgt Slice 3	0
148	5114	0K	20	Sleeping	Fmea Agent	0
148	5115	0K	20	Sleeping	Pm Agent	0
148	5116	0K	20	Sleeping	Sw Poller Agent	0
148	5117	0K	20	Sleeping	Alarm Agent	0
148	5118	0K	20	Sleeping	Infra Agent	0
148	5119	0K	20	Sleeping	Squelch Agent	0
148	5120	0K	20	Sleeping	Dap Server	0
148	5121	0K	20	Sleeping	Infra Agent	0
148	5122	0K	20	Sleeping	Infra Agent	0

Step 3 show context

Displays information about process crashes.

Example:

```
RP/0/RP0/CPU0:ios# show context
Thu Apr 23 08:42:32.328 UTC
Location : 0/RP0
Core location: 0/RP0:/misc/disk1
Core for pid = 1463 (aaad)
Core for process: aaad_1463.by.11.20150423-083922.sysadmin-vm:0_RP0.009d5.core.gz
Core dump time: 2015-04-23 08:39:23.058000000 +0000
Process:
Core was generated by `/opt/cisco/calvados/bin/aaad'.
Build information:
### XR Information
User = aaaa
Host = agl-ads-2232
Workspace = /nobackup/aaaa/xspeed-new
Lineup = proj:xspeed
XR version = 6.0.0.011
```

```
[...]
Signal information:
Program terminated with signal 11, Segmentation fault.
Faulting thread: 1463
Registers for Thread 1463
rax: 0xfffffffffffff
rbx: 0x23a34e0
[...]
Backtrace for Thread 1463
#0 0x00007falfdlc8b43 in epoll_wait+0x33 from /lib64/libc-2.12.so
#1 0x00007falff6992f6 in ?? () from /usr/lib64/libevent-2.0.so.5.0.1
[...]
<snip>
```


Alarm Troubleshooting

This chapter gives a description, severity, and troubleshooting procedure for each commonly encountered Cisco NCS 1002 alarm and condition. When an alarm is raised, refer to its clearing procedure.

- Alarm Logical Objects, on page 45
- Alarm Severity, on page 46
- Alarms, on page 46

Alarm Logical Objects

Alarms are raised against logical objects. These logical objects represent physical objects such as cards, ports, and logical objects such as trunk.

The table below lists all logical alarm objects used in this chapter.

Table	1: Alarm	Logical	Object	Туре	Definitions
-------	----------	---------	--------	------	-------------

Logical Object	Definition
FT	Fan-tray assembly.
РРМ	Pluggable port module (PPM, also called SFP), referring to MXP and TXP cards.
PSU	Power Supply Unit.
Chassis	Chassis equipment.
Client	Ethernet.
Temp Sensor	Temperature Sensor.
Voltage Sensor	Voltage Sensor.
Trunk	DWDM

Alarm Severity

The DWDM system uses Telcordia-devised standard severities for alarms and conditions: Critical (CR), Major (MJ), Minor (MN), Not Alarmed (NA), and Not Reported (NR). These are described below:

- Critical (CR) alarm—Indicates severe, service-affecting trouble that needs immediate correction.
- Major (MJ) alarm—Indicates a serious alarm, but the trouble has less impact on the network.
- Minor (MN) condition-Indicates alarms that do not affect service.
- Not Alarmed (NA) condition-Indicates conditions that are information indicators.
- Not Reported (NR) condition—Indicates a condition that occurs as a secondary result of another event.

Alarms

This section lists the NCS 1002 alarms alphabetically. The severity, description, and troubleshooting procedure accompany each alarm.

ALL-FAN-TRAY-REMOVAL Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: FT

The ALL-FAN-TRAY-REMOVAL alarm is raised on the NCS 1002 when all the fan trays are removed from the chassis.

Clear the ALL-FAN-TRAY-REMOVAL Alarm

Insert all three fans into the chassis.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

CD Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: TRUNK

The Chromatic Dispersion (CD) alarm is raised on the NCS 1002 when the detected chromatic dispersion value is above or below the configured threshold values. You can configure the chromatic dispersion threshold values using the **controller optics** *R/S/I/P* **cd-high-threshold** and **controller optics** *R/S/I/P* **cd-low-threshold**

commands in the config mode. The range is -70000 to +70000 ps/nm when the trunk bit rate is 100G. The range is -20000 to +20000 ps/nm when the trunk bit rate is 200G or 250G.

Clear the CD Alarm

- **Step 1** Verify the value of the chromatic dispersion threshold of the NCS 1002 using the **show controller optics** *R/S/I/P* command.
- **Step 2** If the value is not within the threshold range, configure the chromatic dispersion threshold using the **controller optics** *R/S/I/P* **cd-high-threshold** and **controller optics** *R/S/I/P* **cd-low-threshold** command in the config mode.
- **Step 3** If the value is within the range of the chromatic dispersion threshold, contact Cisco Technical Assistance Center (TAC).

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

DAISYDUKE-CPU-FPGA-PCIE-ERROR Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The DAISYDUKE-CPU-FPGA-PCIE-ERROR alarm occurs when the Daisy Duke CPU FPGA is unable to communicate with the CPU controller due to a Peripheral Component Interconnect Express (PCIe) error.

Clear the DAISYDUKE-CPU-FPGA-PCIE-ERROR Alarm

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

DAISYDUKE-CPU-PROCESSOR-HOT Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: EQUIPMENT

The DAISYDUKE-CPU-PROCESSOR-HOT alarm occurs when the daisyduke FPGA detects that the temperature of the CPU processor is high.

Clear the DAISYDUKE-CPU-PROCESSOR-HOT Alarm

Verify if all the fans are functioning properly.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

DGD Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: TRUNK

The Differential Group Delay (DGD) alarm is raised on the NCS 1002 when the value of the differential group delay read by the pluggable port module exceeds the configured threshold value. You can configure the threshold value using the **controller optics** *R/S/I/P* **dgd-high-threshold** command in the config mode.

Clear the DGD Alarm

- **Step 1** Verify the value of the differential group delay threshold of the NCS 1002 using the **show controller optics** *R/S/I/P* command.
- **Step 2** If the value is not within the threshold range, configure the differential group delay threshold using the **controller optics** *R/S/I/P* **dgd-high-threshold** command in the config mode. The range is from 0 to 18000 (in units of 0.01 ps).
- **Step 3** If the value is within the range of the differential group delay threshold, contact Cisco TAC.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

EQPT-FAIL-SLICE Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: Slice

The Equipment Fail (EQPT-FAIL) slice alarm is raised on the NCS 1002 when any component or device within the slice fails. The alarm is tagged as Not Service Affecting (NSA) if the device is not in the service path. The failed device is on a port that is not provisioned.

Clear the EQPT-FAIL-SLICE Alarm

- Step 1 Reload the host using the hw-module location 0/RP0 reload command.
- **Step 2** If the alarm does not clear, do a traffic-impacting system reload using the **hw-module location all reload** command.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/cisco/web/support/index.html for more information or call Cisco TAC (1 800 553-2447).

FAN FAIL Alarm

Default Severity: Major (MJ), Service-Affecting (SA))

Logical Objects: FT

The FAN FAIL alarm is raised on the NCS 1002 when one of the three fans fail. When any fan fails, the temperature of the NCS 1002 can rise above its normal operating range. This condition can trigger the TEMP THRESHOLD alarm.

Clear the FAN FAIL Alarm

Verify that a fan is correctly inserted. The fan should run immediately when correctly inserted.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

FAN MISSING Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: FT

The FAN MISSING alarm is raised on the NCS 1002 when one of the three fans is missing or is not correctly inserted. When any fan is missing, the temperature of the NCS 1002 can rise above its normal operating range. This condition can trigger the TEMP THRESHOLD alarm.

Clear the FAN MISSING Alarm

- **Step 1** Verify that a fan is missing or is not correctly inserted.
- **Step 2** Insert a fan. The fan should run immediately when correctly inserted.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

FAN-TRAY-INSERT Alarm

Default Severity: Minor(MN), Non-Service Affecting (NSA)

Logical Objects: FT

The FAN-TRAY-INSERT alarm is raised on the NCS 1002 when the fan tray is detected in the chassis.

Clear the FAN-TRAY-INSERT Alarm

This alarm clears automatically.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

FAN-TRAY-REMOVAL

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: FT

The FAN-TRAY-REMOVAL alarm is raised on the NCS 1002 when any of the three fans is removed from the chassis.

Clear the FAN-TRAY-REMOVAL Alarm

Insert the fan to clear the alarm.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

HI-LASERBIAS Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: PPM

The Equipment High Transmit Laser Bias (HI-LASERBIAS) current alarm is raised against the NCS 1002 laser performance. This alarm occurs when the physical pluggable port laser detects a laser bias value beyond the configured high threshold. The alarm indicates that the port laser has reached the maximum laser bias tolerance. You can configure the threshold value using the **controller optics** *R/S/I/P* **lbc-high-threshold** command in the config mode.

Laser bias typically starts at about 30 percent of the manufacturer maximum laser bias specification and increases as the laser ages. If the HI-LASERBIAS alarm threshold is set at 100 percent of the maximum, the laser usability has ended. If the threshold is set at 90 percent of the maximum, the card is still usable for several weeks or months before it needs to be replaced.

Clear the HI-LASERBIAS Alarm

Step 1 Verify the value of the laser bias high threshold of NCS 1002 using the **show controller optics** *R/S/I/P* command.

- **Step 2** If the value is not within the high laser bias threshold range, configure the high laser bias threshold using the **controller optics** R/S/I/P **lbc-high-threshold** command in the config mode. The range is from 0 to 100%.
- **Step 3** If the value is within the range of the high laser bias threshold, physically replace the pluggable module. Replacement is not urgent and can be scheduled during a maintenance window.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

HI-RXPOWER Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: PPM

The Equipment High Receive Power (HI-RXPOWER) alarm is an indicator of the received optical signal power of NCS 1002. This alarm occurs on the client optics controller when the measured individual lane optical signal power of the received signal exceeds the default or user-defined threshold. This alarm occurs on the trunk optics controller when the total optical signal power of the received signal exceeds the default or user-defined threshold. This alarm occurs on the trunk optics controller when the total optical signal power of the received signal exceeds the default or user-defined threshold. You can configure the threshold value using the **controller optics** *R/S/I/P* **rx-high-threshold** command in the config mode.

Clear the HI-RXPOWER Alarm

- **Step 1** Verify the value of the high receive power threshold of the NCS 1002 using the **show controller optics** *R/S/I/P* command.
- **Step 2** If the value is not within the high receive power threshold range, configure the high receive power threshold using the **controller optics** *R/S/I/P* **rx-high-threshold** command in the config mode. The range is from -400 to 300 dBm (in units of 0.1 dBm).
- **Step 3** If the value is within the range of the high receive power threshold, physically verify, by using a standard power meter that the optical input power is overcoming the expected power threshold.
- **Step 4** Change the threshold value or use an attenuator to reduce the input power to the desired level.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

HI-TXPOWER Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: PPM

The Equipment High Transmit Power (HI-TXPOWER) alarm is an indicator of the transmitted optical signal power of NCS 1002. This alarm occurs on the client optics controller when the measured individual lane optical signal power of the transmitted signal exceeds the default or user-defined threshold. This alarm occurs on the trunk optics controller when the total optical signal power of the transmitted signal exceeds the default or user-defined threshold. This alarm occurs or user-defined threshold. You can configure the threshold value using the **controller optics** R/S/I/P **tx-high-threshold** command in the config mode.

Clear the HI-TXPOWER Alarm

- **Step 1** Verify the value of the high transmit power threshold of NCS 1002 using the **show controller optics** *R/S/L/P* command.
- **Step 2** If the value is not within the high transmit power threshold range, configure the high transmit power threshold using the **controller optics** *R/S/I/P* **tx-high-threshold** command in the config mode. The range is from -400 to 300 dBm (in units of 0.1 dBm).
- **Step 3** If the value is within the range of the high transmit power threshold, physically verify, by using a standard power meter that the optical output power is overcoming the expected power threshold. If so, the pluggable module should be replaced at first opportunity.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

HIBER Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: Client

The High Bit Error Rate (HIBER) alarm is raised on the NCS 1002 when the client and trunk ports receive 16 or more invalid sync-headers in 125 microseconds. This alarm occurs when the NCS 1002 is configured with 10 GE or 10 GE Fibre Channel (FC) payloads.

Limitation:

HIBER alarm is detected on Rx for 0.5 seconds. After 0.5 secs, the link is brought down automatically leading to loss of block lock(SYNCLOSS). Due to this limitation, the end user cannot be able to potentially see HIBER through CLI, since Ncs1k/XR Alarm reporting soak time is only 2 seconds (for raising).

Clear the HIBER Alarm

The alarm clears under the following conditions:

- When the card port does not receive a high bit error rate.
- When the optical connectors are cleaned.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/ en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

IMPROPRMVL Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: PPM

The Improper Removal (IMPROPRMVL) alarm occurs when a physical pluggable is absent on a service-provisioned port of the NCS 1002.

Clear the IMPROPRMVL Alarm

Step 1 Verify if the pluggable is plugged into the port of the NCS 1002 using the show inventory command.

Step 2 If the QSFP or CFP is not plugged into the port, insert the appropriate QSFP or CFP.

Note Before you configure the client data rate of the NCS 1002, ensure that the appropriate QSFP or CFP is plugged into the port of the NCS 1002.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/ en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

LO-RXPOWER Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: PPM

The Equipment Low Receive Power (LO-RXPOWER) alarm is an indicator of the received optical signal power of NCS 1002. This alarm occurs on the client optics controller when the measured individual lane optical signal power of the received signal falls below the default or user-defined threshold. This alarm occurs on the trunk optics controller when the total optical signal power of the received signal falls below the default or user-defined threshold. This alarm occurs or user-defined threshold. You can configure the threshold value using the **controller optics** R/S/I/P **rx-low-threshold** command in the config mode.

Clear the LO-RXPOWER Alarm

Step 1 Verify the value of the receive power of NCS 1002 using the **show controller optics** *R/S/I/P* command.

- **Step 2** If the value is not within the low receive power threshold range, configure the low receive power threshold using the **controller optics** *R/S/I/P* **rx-low-threshold** command in the config mode. The range is from -400 to 300 dBm (in units of 0.1 dBm).
- **Step 3** If the value is within the range of the low receive power threshold, physically verify, by using a standard power meter that the optical input power overcomes the expected power threshold. Ensure that a proper threshold has been provisioned for the receive value. If an incorrect threshold has been set, adjust it to a value within the allowed limits.
- **Step 4** Verify that the Trunk-Rx port is cabled correctly, and clean the fiber connecting the faulty TXP/MXP to the drop port of the DWDM card.
- **Step 5** Determine whether a bulk attenuator is present and if so, verify that a proper fixed attenuation value has been used.
- **Step 6** Using a test set, check the optical power value of the drop port of the DWDM card connected to the faulty TXP/MXP. If the read value is different (+1 dBm or 1 dBm) from the ANS setpoint for Padd&drop-Drop power, move to next step.
- Step 7 Look for any alarm reported by the DWDM cards belonging to the OCHNC circuit whose destination is the faulty TXP/MXP and first troubleshoot that alarm. Possible alarm related include: amplifier Gain alarms, Automatic Power Control (APC) alarms, and LOS-P alarms on the Add or Drop ports belonging to the OCHNC circuit.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

LO-TXPOWER Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: PPM

The Equipment Low Transmit Power (LO-TXPOWER) alarm is an indicator of the transmitted optical signal power of NCS 1002. This alarm occurs on the client optics controller when the measured individual lane optical signal power of the transmitted signal falls below the default or user-defined threshold. This alarm occurs on the trunk optics controller when the total optical signal power of the transmitted signal falls below the default or user-defined threshold. This alarm the default or user-defined threshold. You can configure the threshold value using the **controller optics** *R/S/I/P* **tx-low-threshold** command in the config mode. The range is from -400 to 300 dBm (in units of 0.1 dBm).

Clear the LO-TXPOWER Alarm

- Step 1 Verify the value of the low transmit power threshold of NCS 1002 using the show controller optics *R/S/I/P* command.
- **Step 2** If the value is not within the low transmit power threshold range, configure the low transmit power threshold using the **controller optics** *R/S/I/P* **tx-low-threshold** command in the config mode. The range is from -400 to 300 dBm (in units of 0.1 dBm).
- **Step 3** If the value is within the range of the low transmit power threshold, physically verify, by using a standard power meter that the optical output power is overcoming the expected power threshold. If so, the pluggable module should be replaced at first opportunity.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

LOCAL-FAULT Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: Client

The LOCAL-FAULT alarm is raised on the NCS 1002 client port provisioned with 10 GE, 40 GE, or 100 GE payloads. This alarm occurs when a local fault character sequence is received in the incoming MAC stream as defined in IEEE 802.3.

Clear the LOCAL-FAULT Alarm

Verify that the NCS 1002 receives proper MAC streams from the far-end router or switch.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/

en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

LOM Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: TRUNK

The Optical Transport Unit (OTU) Loss of Multiframe (LOM) alarm is an OTN alarm for the trunk port and occurs when the Multi Frame Alignment Signal (MFAS) is corrupted. This alarm is raised when the MFAS overhead field is invalid for more than five frames and persists for more than 3 milliseconds.

Clear the LOM Alarm

- Step 1 Ensure that the fiber connector for the card is completely plugged in.
 Step 2 If the bit error rate (BER) threshold is correct and at the expected level, use an optical test set to measure the power level of the line to ensure it is within guidelines.
 Step 3 If the optical power level is good, verify that optical receive levels are within the acceptable range.
 Step 4 If receive levels are good, clean the fibers at both ends according to site practice.
 Step 5 If the condition does not clear, verify that single-mode fiber is used.
- **Step 6** If the fiber is of the correct type, verify that a single-mode laser is used at the far-end node.
- **Step 7** Clean the fiber connectors at both ends for a signal degrade according to site practice.
- **Step 8** Verify that a single-mode laser is used at the far end.
- Step 9 If the problem does not clear, the transmitter at the other end of the optical line could be failing and require replacement

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

LOS-P Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: TRUNK

The Loss of Signal Payload (LOS-P) alarm for the trunk layer indicates that the PPM or CFP does not get any incoming payload signal. The purpose of the LOS-P alarm is to alert the user that no optical power is being received from the fiber. A common fault condition signaled by this alarm is a fiber cut. In this case, neither the payload nor the overhead signals are received.

Clear the LOS-P Alarm

- **Step 1** Verify that the trunk port is configured with the proper wavelength. For more information see the *Cisco NCS 1000 Series Configuration Guide*.
- **Step 2** Verify if there is a loss of received optical power. Compare the actual power levels with the expected power range.
- **Step 3** Verify the fiber continuity to the port of the NCS 1002 and fix the fiber connection.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

LOWER-CTRL-FPGA-PCIE-ERROR

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The LOWER-CTRL-FPGA-PCIE-ERROR alarm is raised when a control FPGA of the lower board is unreachable because of a Peripheral Component Interconnect Express (PCIe) error.

Clear the LOWER-CTRL-FPGA-PCIE-ERROR Alarm

If the alarm does not clear it indicates that it is a hardware fault.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

MEA Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: PPM

The Missing Equipment Attributes (MEA) alarm for the PPM or QSFP is raised on a pluggable port of the NCS 1002 when there is a mismatch in the configured client data rate and the supported QSFP physical data rate. For example, if the configured client data rate is 10G and the supported data rate of the QSFP is 100G, then this alarm is raised.

Clear the MEA Alarm

Step 1 Verify the supported physical data rate of the QSFP on the NCS 1002 using the **show inventory** command.

- Step 2 Verify the configured client data rate on the NCS 1002 using the show hw-module slice command.
- **Step 3** If the above values do not match, insert the appropriate QSFP pluggable or configure the required client data rate using the **hw-module location** *location slice slice_number* **client bitrate** [10G | 40G | 100G] command.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

MIXED-AC-DC-PTS Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The MIXED-AC-DC-PTS alarm occurs when both the AC and DC power trays are detected in the chassis.

Clear the MIXED-AC-DC-PTS Alarm

Use either the AC or DC power module.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

MKA-LOCALLY-SECURED Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: Client

The MACsec Key Agreement-Locally-Secured (MKA-LOCALLY-SECURED) alarm is raised, when MKA session becomes locally secured, due to the loss of an active programmed peer.

A node loses its peer under the following conditions:

• When the node shuts down its interface.

When the node issues no macsec command for more than 6 times.

Clear the MKA-LOCALLY-SECURED Alarm

The alarm clears after confirming the macsec configuration and the interface state on the nodes.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

MKA-START-FAIL-MISSING-PSK Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: Client

The MACsec Key Agreement-Start-Fail-Missing-Pre-Shared-Keys alarm is raised on the NCS 1002 interface, when MKA session cannot start due to the application of macsec keychain that has no active keys.

Clear the MKA-START-FAIL-MISSING-PSK Alarm

The alarm clears after configuring the lifetime of the key to current active key and bringing up the mks session.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

MKA-UNSECURE-MISSING-PSK Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: Client

The MACsec Key Agreement-UNSECURE-MISSING-Pre-Shared-Keys alarm is raised, when the existing secured MKA session is brought down. This is due to the insecurity caused by the non-active keys present in the keychain on the NCS 1002 interface.

Clear the MKA-UNSECURE-MISSING-PSK Alarm

The alarm clears after configuring an active key in the keychain for bringing up the mka session. It is also required to have overlapping keys, so that the next key becomes active prior to the expiry of existing key.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

MORE-THAN-ONE-FAN-TRAY-REMOVED Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The MORE-THAN-ONE-FAN-TRAY-REMOVED alarm occurs when more than one fan tray is removed from the chassis.

Clear the MORE-THAN-ONE-FAN-TRAY-REMOVED Alarm

Ensure that all the three fans are inserted and are functioning properly.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/

en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

NM-I2C-ACCESS-ERROR Alarm

Default Severity: Major (MJ), Service Affecting (SA)

Logical Objects: EQUIPMENT

The Node Management Inter-Integrated Circuit Access Error (NM-I2C-ACCESS-ERROR) alarm occurs when there is an I2C error.

Clear the NM-I2C-ACCESS-ERROR Alarm

You must contact TAC if you encounter this alarm.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

NM-SHUTDOWN-CARD Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The NM-SHUTDOWN-CARD alarm occurs when a card shuts down due to a critical error.

Clear the NM-SHUTDOWN-CARD Alarm

If the alarm does not clear contact TAC as there can be a hardware fault.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

NOT ABLE TO COMMUNICATE WITH PATCH-PANEL Alarm

Default Severity: Minor (MN)

Logical Objects: Software

This alarm is raised on NCS 1002 when communication with the breakout patch-panel is lost. The alarm is also raised when the connected interface goes down or the patch panel reloads. Also, it is raised when the connected interface goes down or the panel reloads.

Clear the NOT ABLE TO COMMUNICATE WITH PATCH-PANEL Alarm

The alarm clears after establishing communication with the patch panel. Also, check whether the patch panel is reachable and is not reloaded.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

OSNR Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: TRUNK

The optical signal-to-noise ratio (OSNR) alarm is an indicator of the OSNR of NCS 1002. The OSNR alarm occurs when the measured OSNR falls below the threshold. You can configure the threshold value using the **controller optics** *R/S/I/P* **osnr-low-threshold** command in the config mode.

Clear the OSNR Alarm

- **Step 1** Verify the value of the minimum acceptable OSNR value of NCS 1002 using the **show controller optics** *R/S/L/P* command.
- **Step 2** If the value is not within the OSNR threshold range, configure the minimum acceptable OSNR value using the **controller optics** *R/S/I/P* **osnr-low-threshold** command in the config mode. The range is 0 to 4000 (in units of 0.01db).
- **Step 3** If the value is within the range of the minimum acceptable OSNR, contact TAC.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

OTUK-AIS Alarm

Default Severity: Not Reported (NR), Non-Service-Affecting (NSA)

Logical Objects: TRUNK

An Alarm Indication Signal (AIS) signal communicates to the receiving node when the transmit node does not send a valid signal. AIS is not an error. The OTUK-AIS alarm is raised by the receiving node on each input when it detects the AIS instead of a real signal.

OTUK-AIS is a generic AIS signal with a repeating AIS PN-11 sequence. This pattern is inserted by the card in the ITU-T G.709 frame (Trunk) when a faulty condition is present on the client side.

Clear the OTUK-AIS Alarm

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

OTUK-BDI Alarm

Default Severity: Not Reported (NR), Non-Service-Affecting (NSA)

Logical Objects: TRUNK

The Optical Transport Unit Backward Defect Indication (OTUK BDI) alarm is raised when there is a path termination error in the upstream data. This error is read as a BDI bit in the path monitoring area of the digital wrapper overhead.

Clear the OTUK-BDI Alarm

Step 1 At the near-end node, use site practices to clean trunk transmitting fiber toward the far-end node and the client receiving fiber.

- **Step 2** At the far-end node, determine whether any OTUK-AIS condition, is present on the Trunk-RX. If so, the root cause to be investigated is the Trunk-TX side on the near-end card (the one alarmed for OTUK-BDI) because that is the section where the AIS bit is inserted.
- **Step 3** If there is no OTUK-AIS at the far-end node, continue to investigate performances of the Trunk-Rx: Look for other OTU-related alarms, such as the OTUK-LOF condition or OTUK-SD condition at the far-end Trunk-RX. If either is present, resolve the condition using the appropriate procedure in this chapter.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

OTUK-LOF Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: TRUNK

The Optical Transport Unit Loss of Frame (OTUK-LOF) alarm is raised when a frame loss is detected by an invalid frame alignment in the received frames. This alarm indicates that the card has lost frame delineation on the input data. Loss of frame occurs when the optical transport unit overhead frame alignment (FAS) area is invalid for more than five frames and that the error persists more than three milliseconds.

This alarm is also raised when the FEC settings on trunk ports of the source and destination cards are different.

Clear the OTUK-LOF Alarm

Verify if the FEC settings on trunk ports of the source and destination cards are same.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/ en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

OTUK-SD Alarm

Default Severity: Not Alarmed (NA), Non Service-Affecting (NSA)

Logical Objects: TRUNK

The Optical Transport Unit Signal Degrade (OTUK-SD) alarm occurs when the quality of signal is so poor that the bit error rate on the incoming optical line passed the signal degrade threshold.

Clear the OTUK SD Alarm

Rectify the reason of poor quality signal.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

OTUK-SF Alarm

Default Severity: Not Alarmed (NA), Non Service-Affecting (NSA)

Logical Objects: TRUNK

Both hardware and software can generate the Optical Transport Unit Signal Fail (OTUK-SF) alarm based on the summarization of LOS, LOF, and LOM alarms.

Clear the OTUK SF Alarm

OTUK SF alarm gets cleared when none of the defects LOS, LOF, or, LOM exist.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

OTUK-TIM Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: PORT

The OTUK-TIM alarm or the Trail Trace Identifier (TTI) Mismatch alarm is raised on the NCS 1002 when the expected TTI string does not match the received section trace string.

Clear the OTUK-TIM Alarm

Rectify the reason to have different expected and received TTI strings.
If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

PATCH-PANEL POWER REDUNDANCY LOST ALARM

Default Severity: Minor (MN)

Logical Objects: Power

The PATCH-PANEL POWER REDUNDANCY LOST alarm is raised when one of the power supply units present in the breakout patch-panel is not functional.

Clear the PATCH-PANEL POWER REDUNDANCY LOST Alarm

The alarm clears when the power supply unit is restored.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

PEM-MODULE-INSERT Alarm

Default Severity: Minor(MN), Non-Service Affecting (NSA)

Logical Objects: PEM

The PEM-MODULE-INSERT alarm is raised on the NCS 1002 when the Power Entry Module (PEM) is inserted into the chassis.

Clear the PEM-MODULE-INSERT Alarm

This alarm clears automatically.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

PEM-MODULE-REMOVAL Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: PEM

The PEM-MODULE-REMOVAL alarm is raised on the NCS 1002 when one of the redundant PEM module is removed from the system.

Clear the PEM-MODULE-REMOVAL Alarm

This alarm clears when the redundant PEM module is inserted back into the chassis.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into

http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

POWER MODULE OUTPUT DISABLED Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: PEM

The POWER MODULE OUTPUT DISABLED alarm is raised on the NCS 1002 when the power supply is disabled on the active PEM.

Clear the POWER MODULE OUTPUT DISABLED Alarm

This alarm clears when the power supply is enabled.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

PEM-PWR-TRAY-LVL-RED-LOST

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: PEM

The PEM-PWR-TRAY-LVL-RED-LOST alarm is raised on the NCS 1002 when one of the two active PEMs is removed.

Clear the PEM-PWR-TRAY-LVL-RED-LOST Alarm

This alarm clears when you insert a power supply on the chassis.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

PLL-FAIL-SLICE Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: SLICE

The PLL-FAIL-SLICE alarm is raised on the slice when a fault is detected in the Phase Lock Loop (PLL) device and it becomes inaccessible.

Clear the PLL-FAIL-SLICE Alarm

Remove the slice configuration and reload the Cisco IOS XR.

If the alarm does not clear it indicates that it is a hardware fault.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

PPM FAIL Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: PPM

The PPM FAIL alarm is raised on the physical pluggable when a fault is detected in the PPM and it becomes inaccessible.

Clear the PPM FAIL Alarm

Replace the pluggable.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

PKG-K9SEC-REQ Alarm

Default Severity: Minor (MN)

Logical Objects: Chassis equipment

The PKG-K9SEC-REQ alarm occurs when the encrypted slice is configured without installing the k9sec package or the macsec_mka_aipc_driver library or if the k9sec package is removed when encrypted slice is available. The macsec_mka_aipc_driver library is contained in the k9sec package.

Clear the PKG-K9SEC-REQ Alarm

This alarm clears after you install the k9sec package containing the macsec_mka_aipc_driver library.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

PSU FAIL Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: PSU

The PSU FAIL alarm is raised on the NCS 1002 when one of the power modules fail.

Clear the PSU FAIL Alarm

You must log into the Technical Support Website at http://www.cisco.com/cisco/web/support/index.html for more information or call Cisco TAC (1 800 553-2447) immediately.

PSU INSERTED Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: PSU

The PSU INSERTED alarm is raised on the NCS 1002 when a power supply is inserted to the device.

Clear the PSU INSERTED Alarm

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

PSU REDUNDANCY LOST Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: PSU

The PSU REDUNDANCY LOST alarm is raised on the NCS 1002 when a power supply is removed.

Clear the PSU REDUNDANCY LOST Alarm

The alarm clears when a power supply is inserted on the NCS 1002

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/ en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

REMOTE-FAULT Alarm

Default Severity: Major (MJ), Service-Affecting (SA) Logical Objects: CLIENT The REMOTE-FAULT alarm is raised on the NCS 1002 when a remote fault character sequence is received in the incoming MAC stream as defined in IEEE 802.3.

Clear the REMOTE-FAULT Alarm

- **Step 1** Verify and resolve the client port fault and remote fault errors on the remote or upstream node.
- **Step 2** Verify and resolve loss of signal synchronization error on the remote or upstream node.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

RM-DEVICE-OUT-OF-TOL Alarm

Default Severity: Minor (MN), Non-Service Affecting (NSA)

Logical Objects: FT

The RM-DEVICE-OUT-OF-TOL alarm is raised on the NCS 1002 when the fan is malfunctioned and is not working properly.

Clear the RM-DEVICE-OUT-OF-TOL Alarm

Replace the malfunctioned fan.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

SIGLOSS Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: CLIENT

The Signal Loss on Data Interface alarm is raised on the client-side QSFP of the NCS 1002 when there is a loss of Ethernet signal.

Clear the SIGLOSS Alarm

Step 1 Ensure that the port connection at the near end of the client peer router is operational.

Step 2 Verify fiber continuity to the port.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/

en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

SYNCLOSS Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

Logical Objects: CLIENT

The Loss of Synchronization on Data Interface alarm is raised on the NCS 1002 client and trunk ports when there is a loss of signal synchronization on the port. This alarm is demoted by the SIGLOSS alarm.

Clear the SYNCLOSS Alarm

- **Step 1** Ensure that the data port connection at the near end of the Ethernet link is operational.
- **Step 2** Verify the fiber continuity to the port. To do this, follow site practices.
- **Step 3** For 100 GE, verify that the FEC settings match between the router and NCS 1002.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/ en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

SQUELCHED Alarm

Default Severity: Not Alarmed (NA), Non-Service-Affecting (NSA)

Logical Objects: GE, CLIENT

The client signal squelched condition is raised by the NCS 1002 in the following situations:

• Laser-squelch is configured under the client controller.

Note Laser-squelch is supported only on QSFP+, QSFP28 LR4, and QSFP28 CWDM4 pluggables.

- Laser-squelching occurs on a QSFP pluggable when all the four lanes operating in the 10 GE client mode are turned off after the upstream receive facility has experienced a loss of signal (such as optical LOS, LOF).
- A MXP or TXP client facility detects that an upstream receive facility has experienced a loss of signal (such as optical LOS, LOF). In response, the client facility transmit is turned off (SQUELCHED). The upstream receive facility is the trunk receive on the same slice as the client.
- The client will squelch if the upstream trunk receive (on the trunk port carrying the client payload) experiences a LOS, or LOF (TRUNK) alarm.

• The client will squelch if any one of trunk ports receive LOS, or LOF. In this case, the client port is mapped to two trunk ports. For example, the HundredGigECtrlr 0/0/0/9 is mapped to the CoherentDSP0/0/0/12 and the CoherentDSP0/0/0/13 for a 10 GE to 100 GE hw-module config.

The local client raises a SQUELCHED condition if the local trunk raises one of the following alarms:

- OTUK-LOF Alarm, on page 61
- LOS-P Alarm, on page 55

Far-end Laser Squelch

NCS 1002 supports far-end laser squelch. This feature relays the following:

- Client input signal to the far-end client output signal, especially faults.
- Near-end client-side faults such as SIGOSS, SYNCLOSS, HIBER, and LF to the far-end.

If a near-end QSFP has a fault on its RX side, the far-end QSFP laser is turned off.

The SQUELCHED alarm is raised on the far-end NCS 1002 if laser-squelch is configured on the far-end NCS 1002 and a fault on the near-end NCS 1002 is observed on the client RX side.

Note Far-end client laser squelch does not work on headless events such as a reload, CPU OIR, or an mxp_driver restart.

Clear the SQUELCHED Alarm

Determine whether the associated NCS 1002 trunk port reports an LOF or LOS alarm (for the client trunk). If it does, turn to the relevant section in this chapter and complete the troubleshooting procedure.

TEMPERATURE Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The temperature alarms are raised on the NCS 1002 when the temperature is not within the operating range. When this condition occurs, critical devices like DSP, and ETNA automatically shut down.

The alarm can appear in one of the following formats:

- [sensor name] : high temperature alarm
- [sensor name] : low temperature alarm

The [*sensor name*] : high temperature alarm is raised when the temperature is high and not within the operating range.

The [sensor name]: low temperature alarm is raised when the temperature is low and not within the operating range.

All sensors managed at the CPU level have NM as the prefix. NM denotes Node management. All sensors managed at the rack level have RM as the prefix. RM denotes Rack management. Some alarms that come in this category have the alarm tags as: NM-TEMP, RM-TEMP.

Fan Speed and Chassis Inlet Temperature Thresholds

The table below lists the chassis inlet temperature threshold values for the different fan speeds.

Fan speed (rpm)	Rising Min Temperature (°C)	Rising Max Temperature (°C)	Falling Max Temperature (°C)	Falling Min Temperature (°C)
4800	-127	28	27	-127
5500	29	30	29	28
8500	31	36	35	30
10500	37	41	40	36
12500	42	44	43	41
14500	45	127	127	44

Clear the TEMPERATURE Alarm

This alarm clears when the temperature falls within the operating range.

- **Step 1** Verify the temperature of the NCS 1002.
- **Step 2** Verify that the environmental temperature of the room is not abnormally high.
- **Step 3** If the room temperature is not abnormal, physically ensure that nothing prevents the fan-tray assembly from passing air through the system shelf. You must also check if any fan has failed.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/ en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

TX-POWER-PROV-MISMATCH Alarm

Default Severity: Minor (MN), Non-Service-Affecting (NSA)

Logical Objects: PPM

The Provisioned Optics Transmit Power Not Supported (TX-POWER-PROV-MISMATCH) alarm is raised when the laser transmit power configured is not within the range of output power supported by the CFP2 pluggable. The alarm indicates that the configured Tx power is not supported by the pluggable though the configured power is applied to the Tx laser.

Clear the TX-POWER-PROV-MISMATCH Alarm

- **Step 1** Verify the value of the configured TX power on NCS 1002 using the show controller optics R/S/I/P command.
- **Step 2** If the value is not within the output power range supported by the pluggable type, configure the Tx power using the controller optics R/S/I/P transmit-power command in the Optics Controller configuration mode.

The range is from -11.5dBm to -1.5dBm for ONS-CFP2-WDM,-11.5dBm to -1.5dBm for ONS-CFP2-WDM-1KL and -8dBm to 2dBm for ONS-CFP2-WDM-1KE PID types. The PID information can be obtained from inventory details using show inventory command.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447)

UNC-WORD Alarm

Default Severity: Not Reported (NR), Non-Service-Affecting (NSA)

Logical Objects: TRUNK

The Uncorrected FEC Word condition indicates that the FEC capability cannot correct the frame.

Clear the UNC-WORD Alarm

- **Step 1** Ensure that the fiber connector for the card is completely plugged in.
- **Step 2** Ensure that the ports on the far end and near end nodes have the same port rates and FEC settings.
- **Step 3** If the BER threshold is correct and at the expected level, use an optical test set to measure the power level of the line to ensure it is within guidelines. For specific procedures to use the test set equipment, consult the manufacturer.
- **Step 4** If the optical power level is good, verify that the optical receive levels are within the acceptable range.
- **Step 5** If receive levels are good, clean the fibers at both ends.
- **Step 6** If the condition does not clear, verify that a single-mode fiber is used.
- **Step 7** Verify if the fiber is of single-mode type.
- **Step 8** Clean the fiber connectors at both ends for a signal degrade.
- **Step 9** If the problem does not clear, the transmitter at the other end of the optical line could be failing and requires replacement.

If the condition does not clear, log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or call Cisco TAC (1 800 553-2447).

UPPER-CTRL-FPGA-PCIE-ERROR Alarm

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The UPPER-CTRL-FPGA-PCIE-ERROR alarm is raised when a control FPGA of the upper board is unreachable because of a Peripheral Component Interconnect Express (PCIe) error.

Clear the UPPER-CTRL-FPGA-PCIE-ERROR Alarm

If the alarm does not clear it indicates that it is a hardware fault.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

VOLTAGE Alarms

Default Severity: Critical (CR), Service-Affecting (SA)

Logical Objects: EQUIPMENT

The voltage alarms are raised on the NCS 1002 when the voltage is not within the operating range. When this condition occurs, critical devices like DSP, and ETNA automatically shut down.

The alarm can appear in one of the following formats:

- [sensor name] : high voltage alarm
- [sensor name] : low voltage alarm

The [sensor name] : high voltage alarm is raised when the voltage is high and not within the operating range.

The [sensor name] : low voltage alarm is raised when the voltage is low and not within the operating range.

All sensors managed at the CPU level have NM as the prefix. NM denotes Node management. All sensors managed at the rack level have RM as the prefix. RM denotes Rack management. Some alarms that come in this category have the alarm tags as: FAM-FAULT-NM-L, FAM-FAULT-NM-H, FAM-FAULT-RM-L, FAM-FAULT-RM-H.

Clear the VOLTAGE Alarms

This alarm clears when the voltage falls within the operating range.

Verify the voltage of the power source. The voltage rating value for AC power ranges between 200 V to 240 V depending on the standards in various countries. The voltage rating value for DC power is 48 V, the fuse rating must not exceed 60 A.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/web/tsd-cisco-worldwide-contacts.html to obtain a directory of toll-free Technical Support numbers for your country.

WVL-OUT-OF-LOCK Alarm

Default Severity: Major (MJ), Service-Affecting (SA)

L

Logical Objects: TRUNK

The Wavelength Out of Lock (WVL-OUT-OF-LOCK) alarm is raised when the trunk port detects that the optical input frequency is out of range.

Clear the WVL-OUT-OF-LOCK Alarm

Step 1 Verify the wavelength configuration.

Step 2 Verify if the CFP is inserted properly.

If the alarm does not get cleared, you need to report a Service-Affecting (SA) problem. Log into the Technical Support Website at http://www.cisco.com/c/en/us/support/index.html for more information or log into http://www.cisco.com/c/en/us/support/index.html to obtain a directory of toll-free Technical Support numbers for your country.

INDEX

A

alarms **38** verifying **38** ALL-FAN-TRAY-REMOVAL **46**

В

Breakout Ports 25, 27

C

CD **46** console, node not responsive **4** Core Dumps **42**

D

DAISYDUKE-CPU-FPGA-PCIE-ERROR 47 DAISYDUKE-CPU-PROCESSOR-HOT 47 DGD 48

Ε

EQPT-FAIL SLICE 48

F

Failed Commit Configuration 27 FAN FAIL 49 FAN MISSING 49 FAN-TRAY-INSERT 49 FAN-TRAY-REMOVAL 50

Η

hardware module 4 status 4 headless statistics 33 HI-LASERBIAS 50 HI-RXPOWER 51 HI-TXPOWER 51 HIBER 52

I

IMPROPRMVL 52

L

LLDP snooping 21 LO-RXPOWER 53 LO-TXPOWER 54 LOCAL-FAULT 54 logs 39 LOM 55 loopback 18 LOS-P 55 LOWER-CTRL-FPGA-PCIE-ERROR 56

Μ

Management Interface 9 MEA 56 MIXED-AC-DC-PTS 57 MKA-LOCALLY-SECURED 57 MKA-START-FAIL-MISSING-PSK 58 MKA-UNSECURE-MISSING-PSK 58 MORE-THAN-ONE-FAN-TRAY-REMOVED 58

Ν

Netconf **36** NM-I2C-ACCESS-ERROR NM-SHUTDOWN-CARD Not Able to Communicate with Patch-panel

0

OBFL **39** OSNR **60** OTUK-AIS **60** OTUK-BDI **61** OTUK-LOF **61** OTUK-SD **62** OTUK-SF **62** OTUK-TIM-PM **62**

Ρ

PATCH-PANEL POWER REDUNDANCY LOST 63 PEM-MODULE-INSERT 63 PEM-MODULE-REMOVAL 63 PEM-PWR-TRAY-LVL-RED-LOST 64 PKG-K9SEC-REQ 65 PM parameters 29 verify 29 POWER MODULE OUTPUT DISABLED 64 PPM FAIL 64–65 Process Details 42 PSU FAIL 65 PSU INSERTED 66 PSU REDUNDANCY LOST 66

R

recommended logs 40 REMOTE-FAULT 66 RM-DEVICE-OUT-OF-TOL 67

S

SIGLOSS 67 Slice Provisioning 10 troubleshooting 10 Software Package 2 Troubleshooting 2 SQUELCHED 68 SYNCLOSS 68

Т

TEMPERATURE 69 troubleshoot 31 headless state settings 31 hitless restart 31 trunk port 23 TT1 22 TX-POWER-PROV-MISMATCH 70

U

UNC-WORD 71 unreachable node 4 UPPER-CTRL-FPGA-PCIE-ERROR 71

V

VOLTAGE 72

W

Wavelength and Channel Mapping 28 WVL-OUT-OF-LOCK 72