Configure Model-driven Telemetry

Model-driven Telemetry (MDT) provides a mechanism to stream data from an MDT-capable device to a
destination. The data to be streamed is defined through subscription.

The data to be streamed is subscribed from a data set in a YANG model. The data from the subscribed data
set is streamed out to the destination either at a configured periodic interval or only when an event occurs.

This behavior is based on whether MDT is configured for cadence-based telemetry or event-based telemetry
(EDT).

The configuration for event-based telemetry is similar to cadence-based telemetry, with only the sample
interval as the differentor. Configuring the sample interval value to zero sets the subscription for event-based
telemetry, while configuring the interval to any non-zero value sets the subscription for cadence-based
telemetry.

The following YANG models are used to configure and monitor MDT:

+ Cisco- OS-XR-telemetry-model-driven-cfg.yang and openconfig-telemetry.yang: configure MDT
using NETCONF or merge-config over grpc.

* Cisco-l OS-XR-telemetry-model-driven-oper.yang: get the operational information about MDT.
For the nodes that support event-driven telemetry (EDT), the YANG model is annotated with the statement

xr:event-telemetry. For example, the interface that supports EDT has an annotation as shown in the following
example:

leaf interface-name {
xr:event-telemetry "Subscribe Telemetry Event";
type xr:Interface-name;
description "Member's interface name";

}
The process of streaming MDT data uses these components:
« Destination: specifies one or more destinations to collect the streamed data.

* Sensor path: specifies the YANG path from which data has to be streamed.

« Subscription: binds one or more sensor-paths to destinations, and specifies the criteria to stream data.
In cadence-based telemetry, data is streamed continuously at a configured frequency. In event-based
telemetry, data is streamed only when a change in the state or data for the configured model occurs.

* Transport and encoding: represents the delivery mechanism of telemetry data.

The options to initialize a telemetry session between the router and destination is based on two modes:

Configure Model-driven Telemetry .

Configure Model-driven Telemetry |
. Configure Dial-out Mode

* Dial-out mode: The router initiates a session to the destinations based on the subscription.

« Dial-in mode: The destination initiates a session to the router and subscribes to data to be streamed.

N

Note Dial-in mode is supported only over gRPC.

Streaming model-driven telemetry data to the intended receiver involves these tasks:

* Configure Dial-out Mode, on page 2

* Configure Dial-in Mode, on page 9

* Event-driven Telemetry for Terminal-device Models, on page 13

* Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables, on page 14
» gRPC Network Management Interface, on page 25

* 25 Telemetry Based on GNMI Subscribe, on page 26

» gNMI Heartbeat Interval, on page 27

Configure Dial-out Mode

In a dial-out mode, the router initiates a session to the destinations based on the subscription.

All 64-bit IOS XR platforms (except for NCS 6000 series routers) support gRPC , UDP and TCP protocols.
All 32-bit IOS XR platforms support only TCP.

For more information about the dial-out mode, see Dial-out Mode.

The process to configure a dial-out mode involves:

Create a Destination Group

The destination group specifies the destination address, port, encoding and transport that the router uses to
send out telemetry data.

1. Identify the destination address, port, transport, and encoding format.
2. Create a destination group.
Router (config) #telemetry model-driven
Router (config-model-driven) #destination-group <group-name>
Router
Router

Router
Router

config-model-driven-dest) #address family ipv4 <IP-address> port <port-number>
config-model-driven-dest-addr) #encoding <encoding-format>
config-model-driven-dest-addr) #protocol <transport>
config-model-driven-dest-addr) #commit

Example: Destination Group for TCP Dial-out

The following example shows a destination group pcroup1 created for TCP dial-out configuration with
key-value Google Protocol Buffers (also called self-describing-gpb) encoding:

Router (config) #telemetry model-driven
Router (config-model-driven) #destination-group DGroupl

. Configure Model-driven Telemetry

b-telemetry-cg-ncs1000_chapter3.pdf#nameddest=unique_10

| Configure Model-driven Telemetry
Create a Destination Group .

Router (config-model-driven-dest) #address family ipv4 172.0.0.0 port 5432
Router (config-model-driven-dest-addr) #encoding self-describing-gpb

Router (config-model-driven-dest-addr) #protocol tcp
Router (config-model-driven-dest-addr) #commit

Example: Destination Group for UDP Dial-out

The following example shows a destination group pGroup1 created for UDP dial-out configuration with
key-value Google Protocol Buffers (also called self-describing-gpb) encoding:

Router (config) #telemetry model-driven

Router (config-model-driven) #destination-group DGroupl

Router (config-model-driven-dest) #address family ipv4 172.0.0.0 port 5432
Router (config-model-driven-dest-addr) #encoding self-describing-gpb
Router (config-model-driven-dest-addr) #protocol udp

Router (config-model-driven-dest-addr) #commit

The UDP destination is shown as Act ive irrespective of the state of the collector because UDP is connectionless.

Model-driven Telemetry with UDP is not suitable for a busy network. There is no retry if a message is dropped
by the network before it reaches the collector.

Example: Destination Group for gRPC Dial-out

\)

Note gRPC is supported in only 64-bit platforms.

gRPC protocol supports TLS and model-driven telemetry uses TLS to dial-out by default. The certificate must
be copied to /misc/config/grpc/dialout/. To by-pass the TLS option, use protocol grpc no-tls.

The following is an example of a certificate to which the server certificate is connected:

RP/0/RPO/CPUO:ios#run

Wed Aug 24 05:05:46.206 UTC

[xr-vm_node0 RPO CPUO:~]$ls -1 /misc/config/grpc/dialout/
total 4

-rw-r—--r-- 1 root root 4017 Aug 19 19:17 dialout.pem
[xr-vm node0 RPO _CPUO:~]$

The CN (CommonName) used in the certificate must be configured as protocol grpc tls-hostname <>.

The following example shows a destination group pGroup2 created for gRPC dial-out configuration with
key-value GPB encoding, and with tls disabled:

Router
Router
Router
Router
Router
Router

config) #telemetry model-driven

config-model-driven) #destination-group DGroup2
config-model-driven-dest) #address family ipv4 172.0.0.0 port 57500
config-model-driven-dest-addr) #encoding self-describing-gpb
config-model-driven-dest-addr) #protocol grpc no-tls
config-model-driven-dest-addr) #commit

The following example shows a destination group pGroup2 created for gRPC dial-out configuration with
key-value GPB encoding, and with tls hostname:

Configuration with tls-hostname:
Router (config) #telemetry model-driven

Configure Model-driven Telemetry .

. Create a Sensor Group

Configure Model-driven Telemetry |

Router (config-model-driven) #destination-group DGroup2
Router (config-model-driven-dest) #address family ipv4 172.0.0.0 port 57500

Router (config-model-driven-dest-addr) #protocol grpc tls-hostname hostname.com

(
(
Router (config-model-driven-dest-addr) #encoding self-describing-gpb
(
(

Router (config-model-driven-dest-addr) #commit

\)

Note

If only the protocol grpc is configured without tls option, tls is enabled by default and tls-hostname defaults
to the IP address of the destination.

What to Do Next:

Create a sensor group.

Create a Sensor Group

The sensor-group specifies a list of YANG models that are to be streamed.

1
2.

Identify the sensor path for XR YANG model.

Create a sensor group.

Router (config) #telemetry model-driven

Router (config-model-driven) #sensor-group <group-name>

Router (config-model-driven-snsr-grp) # sensor-path <XR YANG model>
Router (config-model-driven-snsr-grp) # commit

Example: Sensor Group for Dial-out

)

Note

gRPC is supported in only 64-bit platforms.

The following example shows a sensor group scGroup1 created for dial-out configuration with the YANG
model for optics controller:

Router (config) #telemetry model-driven

Router (config-model-driven) #sensor-group SGroupl

Router (config-model-driven-snsr—-grp) # sensor-path
Cisco-I0S-XR-controller-optics-oper:optics—-oper/optics-ports/optics-port/optics-info
Router (config-model-driven-snsr—-grp) # commit

What to Do Next:

Create a subscription.

Create a Subscription

The subscription associates a destination-group with a sensor-group and sets the streaming method -
cadence-based or event-based telemetry.

A source interface in the subscription group specifies the interface that will be used for establishing the session
to stream data to the destination. If both VRF and source interface are configured, the source interface must
be in the same VRF as the one specified under destination group for the session to be established.

. Configure Model-driven Telemetry

| Configure Model-driven Telemetry
Create a Subscription .

Router (config) #telemetry model-driven
Router (config-model-driven) #subscription <subscription-name>
Router (config-model-driven-subs) #sensor-group-id <sensor-group> sample-interval <interval>

Router (config-model-driven-subs) #destination-id <destination-group>
Router (config-model-driven-subs) #source-interface <source-interface>
Router (config-mdt-subscription) #commit

Example: Subscription for Cadence-based Dial-out Configuration

The following example shows a subscription sub1 that is created to associate the sensor-group and
destination-group, and configure an interval of 30 seconds to stream data:

Router (config) #telemetry model-driven

Router (config-model-driven) #subscription Subl

Router (config-model-driven-subs) #sensor-group-id SGroupl sample-interval 30000
Router (config-model-driven-subs) #destination-id DGroupl

Router (config-mdt-subscription) # commit

Example: Configure Event-driven Telemetry for Optics Controller and Performance Monitoring

telemetry model-driven
destination-group 1
address family ipv4 <ip-address> port <port-number>
encoding self-describing-gpb
protocol grpc no-tls
|
!
sensor-group 1
sensor-path
Cisco-IO0S-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/optics-info
|
sensor-group 2
sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-second30-history
|
subscription 1
sensor-group-id 1 sample-interval 0
sensor-group-id 2 sample-interval 0
destination-id 1

Example: Subscription for Event-based Dial-out Configuration

The following example shows a subscription sub1 that is created to associate the sensor-group and
destination-group, and configure event-based method to stream data:

Router (config) #telemetry model-driven

Router (config-model-driven) #subscription Subl

Router (config-model-driven-subs) #sensor-group-id SGroupl sample-interval O
Router (config-model-driven-subs) #destination-id DGroupl

Router (config-mdt-subscription) # commit

What to Do Next:

Validate the configuration.

Configure Model-driven Telemetry .

Configure Model-driven Telemetry |
. Validate Dial-out Configuration

Validate Dial-out Configuration

Use the following command to verify that you have correctly configured the router for dial-out.
Router#show telemetry model-driven subscription <subscription-group-name>
Example: Validation for TCP Dial-out

Router#show telemetry model-driven subscription Subl
Thu Jul 21 15:42:27.751 UTC
Subscription: Subl State: ACTIVE
Sensor groups:
Id Interval (ms) State
SGroupl 30000 Resolved

Destination Groups:

Id Encoding Transport State Port Ip
DGroupl self-describing-gpb tcp Active 5432 172.0.0.0

Example: Validation for gRPC Dial-out

\}

Note gRPC is supported in only 64-bit platforms.

Router#show telemetry model-driven subscription Sub2
Thu Jul 21 21:14:08.636 UTC
Subscription: Sub2 State: ACTIVE
Sensor groups:
Id Interval (ms) State
SGroup?2 30000 Resolved

Destination Groups:
Id Encoding Transport State Port Ip
DGroup?2 self-describing-gpb grpc ACTIVE 57500 172.0.0.0

The telemetry data starts steaming out of the router to the destination.

Example: Configure model-driven telemetry with different sensor groups

RP/0/RPO/CPUO:ios#sh run telemetry model-driven
Wed Aug 24 04:49:19.309 UTC

telemetry model-driven
destination-group 1
address family ipv4 10.1.1.1 port 1111

protocol grpc
|

destination-group 2
address family ipv4 10.2.2.2 port 2222
|

. Configure Model-driven Telemetry

| Configure Model-driven Telemetry
Validate Dial-out Configuration .

destination-group test

address family ipv4 172.0.0.0 port 8801
encoding self-describing-gpb
protocol grpc no-tls

|

address family ipv4 172.0.0.0 port 8901
encoding self-describing-gpb

protocol grpc tls-hostname chkptl.com
|

sensor-group 1
sensor-path
Cisco-IO0S-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/optics-info
|

sensor—-group mdt

sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-second30-history

|

sensor-group generic

sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-minutel5-history

|

sensor-group if-oper

sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-hour24-history

|

subscription mdt
sensor-group-id mdt sample-interval 10000

subscription generic

sensor-group-id generic sample-interval 10000
|

subscription if-oper
sensor-group-id if-oper sample-interval 10000
destination-id test

|

|

A sample output from the destination with TLS certificate chkpt1.com:

RP/0/RPO/CPUO:ios#sh telemetry model-driven dest

Wed Aug 24 04:49:25.030 UTC
Group Id Ip Port Encoding Transport State

1 10.1.1.1 1111 none grpc ACTIVE

TLS:10.1.1.1
2 10.2.2.2 2222 none grpc ACTIVE

TLS:10.2.2.2
test 172.0.0.0 8801 self-describing-gpb grpc Active

test 172.0.0.0 8901 self-describing-gpb grpc Active
TLS:chkptl.com

A sample output from the subscription:

Configure Model-driven Telemetry .

. Validate Dial-out Configuration

RP/0/RPO/CPUO:ios#sh telemetry model-driven subscription

Wed Aug 24 04:49:48.002 UTC

Configure Model-driven Telemetry |

Subscription: mdt State: ACTIVE
Sensor groups:
Id Interval (ms) State
mdt 10000 Resolved
Subscription: generic State: ACTIVE
Sensor groups:
Id Interval (ms) State
generic 10000 Resolved
Subscription: if-oper State: ACTIVE
Sensor groups:
Id Interval (ms) State
if-oper 10000 Resolved
Destination Groups:
Id Encoding Transport State Port IP
test self-describing-gpb grpc ACTIVE 8801 172.0.0.0
No TLS
test self-describing-gpb grpc Active 8901 172.0.0.0
TLS chkptl.com

RP/0/RPO/CPUO:ios#sh telemetry model-driven subscription if-oper

Wed Aug 24 04:50:02.295 UTC

Subscription: if-oper
State: ACTIVE
Sensor groups:

Id: if-oper

Sample Interval:
Sensor Path:

10000 ms

Cisco-I0S-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-hour24-history

Sensor Path State:

Destination Groups:
Group Id: test
Destination IP:
Destination Port:
Encoding:
Transport:
State:
No TLS
Destination IP:
Destination Port:
Encoding:
Transport:
State:
TLS :
Total bytes sent:
Total packets sent:
Last Sent time:

Collection Groups:

. Configure Model-driven Telemetry

Resolved

172.0.0.0

8801
self-describing-gpb
grpc

ACTIVE

172.0.0.0

8901

self-describing-gpb

grpc

ACTIVE

chkptl.com

120703

11

2016-08-24 04:49:53.52169253 +0000

| Configure Model-driven Telemetry
Configure Dial-in Mode .

Id: 1

Sample Interval: 10000 ms

Encoding: self-describing-gpb

Num of collection: 11

Collection time: Min: 69 ms Max: 82 ms

Total time: Min: 69 ms Avg: 76 ms Max: 83 ms
Total Deferred: 0

Total Send Errors: 0

Total Send Drops: 0

Total Other Errors: 0

Last Collection Start:2016-08-24 04:49:53.52086253 +0000

Last Collection End: 2016-08-24 04:49:53.52169253 +0000

Sensor Path:
Cisco-IOS-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/optics-info

Configure Dial-in Mode

In a dial-in mode, the destination initiates a session to the router and subscribes to data to be streamed.

N\

Note Dial-in mode is supported over gRPC in only 64-bit platforms.

For more information about dial-in mode, see Dial-in Mode.
The process to configure a dial-in mode involves these tasks:
* Enable gRPC
» Create a sensor group
* Create a subscription

* Validate the configuration

Enable gRPC

Configure the gRPC server on the router to accept incoming connections from the collector.

1. Enable gRPC over an HTTP/2 connection.

Router# configure
Router (config)# grpc

2. Enable access to a specified port number.
Router (config-grpc)# port <port-number>
The <port-number> range is from 57344 to 57999. If a port number is unavailable, an error is displayed.

3. In the configuration mode, set the session parameters.

Router (config)# grpc{ address-family | dscp | max-request-per-user | max-request-total
| max-streams | max-streams-per-user | no-tls | service-layer | tls-cipher | tls-mutual
| tls-trustpoint | vrf }

where:

Configure Model-driven Telemetry .

[l cnable grPC

Configure Model-driven Telemetry |

+ address-family: set the address family identifier type

* dscp: set QoS marking DSCP on transmitted gRPC

* max-request-per-user: set the maximum concurrent requests per user

» max-request-total: set the maximum concurrent requests in total

* max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription
limit is 128 requests. The default is 32 requests

* max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum
subscription limit is 128 requests. The default is 32 requests

* no-tls: disable transport layer security (TLS). The TLS is enabled by default.

* service-layer: enable the grpc service layer configuration

* tls-cipher: enable the gRPC TLS cipher suites

« tlssmutual: set the mutual authentication

« tlstrustpoint: configure trustpoint

* server-vrf: enable server vrf

4. Commit the configuration.

Router (config-grpc) #commit

The following example shows the output of show grpc command. The sample output displays the gRPC
configuration when TLS is enabled on the router.

Router#show grpc

Address family

Port

VRF

TLS

TLS mutual

Trustpoint

Maximum requests

Maximum requests per user
Maximum streams

Maximum streams per user

TLS cipher suites
Default
Enable
Disable

Operational enable

. Configure Model-driven Telemetry

ipv4
57300

: global-vrf
: enabled

: disabled

: none

128
10
32
32

none

¢ none
¢ none

: ecdhe-rsa-chacha20-polyl1305

: ecdhe-ecdsa-chacha20-polyl1305
: ecdhe-rsa-aesl28-gcm-sha256

: ecdhe-ecdsa-aesl28-gcm-sha256
: ecdhe-rsa-aes256-gcm-sha384

: ecdhe-ecdsa-aes256-gcm-sha384
: ecdhe-rsa-aesl28-sha

: ecdhe-ecdsa-aesl28-sha

: ecdhe-rsa-aes256-sha

: ecdhe-ecdsa-aes256-sha

: aesl28-gcm-sha256

| Configure Model-driven Telemetry
Create a Sensor Group .

aes256-gcm-sha384

aesl28-sha

aes256-sha
Operational disable : none

What to Do Next:

Create a sensor group.

Create a Sensor Group

The sensor group specifies a list of YANG models that are to be streamed.

1. Identify the sensor path for XR YANG model.

2. Create a sensor group.

Router (config) #telemetry model-driven

Router (config-model-driven) #sensor-group <group-name>

Router (config-model-driven-snsr-grp) # sensor-path <XR YANG model>
Router (config-model-driven-snsr—-grp) # commit

Example: Sensor Group for gRPC Dial-in
The following example shows a sensor group scroup3 created for gRPC dial-in configuration with the YANG

model for interfaces:

Router (config) #telemetry model-driven

Router (config-model-driven) #sensor-group SGroup3

Router (config-model-driven-snsr-grp)# sensor-path openconfig-interfaces:interfaces/interface
Router (config-model-driven-snsr-grp) # commit

What to Do Next:

Create a subscription.

Create a Subscription

The subscription associates a sensor-group with a streaming interval. The collector requests the subscription
to the sensor paths when it establishes a connection with the router.

Router (config) #telemetry model-driven

Router (config-model-driven) #subscription <subscription-name>

Router (config-model-driven-subs) #sensor-group-id <sensor-group> sample-interval <interval>
Router (config-model-driven-subs) #destination-id <destination-group>

Router (config-mdt-subscription) #commit

Example: Subscription for gRPC Dial-in

The following example shows a subscription sub3 that is created to associate the sensor-group with an interval
of 30 seconds to stream data:

Router (config) telemetry model-driven
Router (config-model-driven) #subscription Sub3

Configure Model-driven Telemetry .

. Validate Dial-in Configuration

Router (config-model-driven
Router (config-mdt-subscrip

What to Do Next:

Validate the configuration.

Validate Dial-in Configuration

Use the following command to

Router#show telemetry mode

Configure Model-driven Telemetry |

-subs) #sensor-group-id SGroup3 sample-interval 30000
tion) #commit

verify that you have correctly configured the router for gRPC dial-in.

l-driven subscription

Example: Validation for gRPC Dial-in

RP/0/RP0O/CPUO:SunCH#show te
Thu Jul 21 21:32:45.365 UT

Subscription: Sub3
State: ACTIVE
Sensor groups:

Id: SGroup3

Sample Interval:
Sensor Path:
Sensor Path State:

Destination Groups:
Group Id: DiallIn 1002
Destination IP:
Destination Port:
Encoding:
Transport:
State:
Total bytes sent:
Total packets sent:
Last Sent time:

Collection Groups:
Id: 2
Sample Interval:
Encoding:
Num of collection:
Collection time:
Total time:
Total Deferred:
Total Send Errors:
Total Send Drops:
Total Other Errors:
Last Collection Start:
Last Collection End:
Sensor Path:

. Configure Model-driven Telemetry

lemetry model-driven subscription Sub3
C

30000 ms
openconfig-interfaces:interfaces/interface
Resolved

172.30.8.4

44841

self-describing-gpb

dialin

Active

13909

14

2016-07-21 21:32:25.231964501 +0000

30000 ms
self-describing-gpb
7
Min:
Min:
0

0

0

0
2016-07-21 21:32:25.231930501 +0000
2016-07-21 21:32:25.231969501 +0000
openconfig-interfaces:interfaces/interface

39 ms
37 ms Max:

32 ms Max:

34 ms Avg: 40 ms

| Configure Model-driven Telemetry
Event-driven Telemetry for Terminal-device Models .

Event-driven Telemetry for Terminal-device Models

In R6.5.2, event-driven telemetry is supported for terminal-device models. When an alarm is received, the
alarm is immediately sent through the telemetry system. The event-driven telemetry is enabled by setting the
sample interval value to 0 in the subscription configuration.

Example: Configure Event-driven Telemetry for Terminal-device Models

RP/0/RPO/CPUO:io0s# show running-config telemetry model-driven

Wed Sep 19 13:57:41.418 IST

telemetry model-driven

destination-group pipeline test
address-family ipv4 198.51.100.3 port 5890
encoding self-describing-gpb

protocol tcp
|

sensor-group gkl 30seconds

sensor-path openconfig-system:system
|

subscription gkl 30seconds
sensor-group-id gkl 30seconds sample-interval 0
destination-id pipeline test

|

|

sensor-path openconfig-system: system means open config sensor path (global).

sample-interval 0 means telemetry is performed instantly for alarm occurrence and clearance.

Verify the Resolution of Sensor Path
Use the following show command to verify whether the sensor path is resolved.

RP/0/RP0O/CPUO:ios# show telemetry model-driven subscription gkl 30s$

Wed Sep 26 09:59:48.326 IST
Subscription: gkl 30seconds

State: Paused
Sensor groups:
Id: gkl _30seconds

Sample Interval: 0 ms
Sensor Path: openconfig-system:system
Sensor Path State: Resolved

Destination Groups:
Group Id: pipeline test

Destination IP: 10.77.132.122
Destination Port: 5900

Encoding: self-describing-gpb
Transport: tcp

State: NA

No TLS

Collection Groups:

Configure Model-driven Telemetry .

Configure Model-driven Telemetry |
. Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

Id: 1

Sample Interval: 0 ms

Encoding: self-describing-gpb

Num of collection: 24

Collection time: Min: 7 ms Max: 15 ms
Total time: Min: 1 ms Avg: 5 ms Max: 15 ms
Total Deferred: 9

Total Send Errors: 0

Total Send Drops: 0

Total Other Errors: 0

No data Instances: 0

Last Collection Start:2018-09-24 18:22:36.1991344829 +0530
Last Collection End: 2018-09-25 12:39:56.3406424389 +0530
Sensor Path: openconfig-system:system

Streaming Event-Driven Telemetry for Online Insertion and
Removal of Pluggables

Table 1: Feature History

Feature Name Release Description

Event Driven Telemetry Support | Cisco IOS XR Release 7.8.1 A new sensor path in the

for Online Insertion and Removal OpenConfig model type is

(OIR) of Pluggables introduced to support EDT in NCS

1004 during OIR of the pluggables.
It triggers telemetry data such as
form factor, SONET-SDH
compliance code, FEC corrected
bits during removal, and state,
channel data during insertion of the
NCS 1004 chassis. This telemetry
data helps you to track the
pluggables present in the NCS 1004
chassis.

Event-driven telemetry in NCS 1004 streams operational data that are related to each lane that is configured
for pluggables when OIR of pluggables occurs. In this section, the output examples show the operational data
for pluggables that are configured with a single lane and four lanes. The
openconfig-platform-transceiver:transceiver sensor path in the OpenConfig RPC model provides
telemetry data of NCS 1004 pluggables that are removed or added in the NCS 1004 chassis.

Enabling EDT for OIR of Pluggables
To enable the event-driven telemetry for the OIR of pluggables, perform the following steps in order.
1. Use the no no-t1s command in the gRPC configuration mode to enable the event-driven telemetry.

2. Run the subscription configuration file and input file together in the following format. Use the following
command in your local machine to which you want to stream the event-driven telemetry data for pluggables
that you remove or add.

. Configure Model-driven Telemetry

| Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables .

<local-file-path>/<client-file> -a <IPv4-address>:<gRPC-portnumber> -insecure
-insecure username <username> -insecure password <password> -<encoding> "$ (cat
<subscription-config file)" -dt <display-type-string>

Table 2: Attribute Description

Attribute Data Type Description

<local-file-path> file path Local file path of the client and subscription configuration file
in your machine.

<client-file> String Name of the client file to enable EDT

<IPv4-address> Decimal [Pv4 address of the NCS 1004 chassis

<gRPC-portnumber> Integer Port number of the gRPC port

<username> String Name of the admin user

<password> Alphanumeric | User password to access the NCS 1004 chassis.

<encoding> String Type of the encoding format

<subscription-config String Name of the configuration file to enable EDT subscription

file>

<display-type-string> Character Format of the output display

The following sample command executes the subscription file to stream the telemetry data for the OIR
of the pluggables.

/ws/achakali-bgl/bh final/bh_devtest/bh_auto/bh_automation/generated files/gnmi_cli latest
-a 10.127.60.146:57400 -insecure -insecure username test2 -insecure password ciscol23
-proto "S$(cat transceiver input)" -dt p

Subscription Configuration File

The following sample configuration file is based on gNMI specifications. It uses the openconfig sensor path
and enables the EDT in NCS 1004 for the OIR of pluggables.

\}

Note Event-driven telemetry is enabled by setting the sample interval value to 0 and mode to ON_CHANGE in
the subscription configuration.

subscribe: <
prefix: <
>
subscription: <

path: <
elem: <
name: "openconfig-platform:components"
>
elem: <
name: "component/openconfig-platform-transceiver:transceiver"
>
>

Configure Model-driven Telemetry .

Configure Model-driven Telemetry |
. Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

mode: ON_CHANGE
sample interval: 0
N —
mode: STREAM
encoding: PROTO
>

The sensor path component/openconfig-platform-transceiver: transceiver enables the
streaming of transceiver data when the pluggable is inserted or removed. The encoding format proto displays
the streamed telemetry data in the . proto format. The mode STREAM enables the stream subscription for
the set of sensory paths. For more information on the gNM | specifications, refer to gRPC Network Management
Interface (gNMI).

Verify the Sensor Path

Use the following command to verify whether the event-driven telemetry sensor path for the OIR of pluggables
in NCS 1004 is enabled.

RP/0/RP0O/CPUO:ios#show telemetry model-driven internal subscription

The following output shows the component/openconfig-platform-transceiver: transceiver
sensor path is active.

Fri Oct 21 15:32:28.785 IST
Subscription: GNMI_10083376335112435231
State: ACTIVE
Sensor groups:
Id: GNMI_10083376335112435231 0
Sample Interval: 0 ms
Heartbeat Interval: NA
Sensor Path:
openconfig-platform:components/component/openconfig-platform-transceiver:transceiver
Sensor Path State: Resolved

Destination Groups:
Group Id: GNMI_ 1001

Destination IP: 198.51.100.3

Destination Port: 60058

Encoding: gnmi-proto

Transport: dialin

State: Active

TLS : True

Total bytes sent: 309553

Total packets sent: 179

Last Sent time: 2022-10-21 15:32:15.2304030650 +0530

Collection Groups:

Id: 1

Sample Interval: 0 ms

Heartbeat Interval: NA

Heartbeat always: False

Encoding: gnmi-proto

Num of collection: 1

Incremental updates: 0

Collection time: Min: 709 ms Max: 709 ms

Total time: Min: 716 ms Avg: 716 ms Max: 716 ms

Total Deferred:
Total Send Errors:
Total Send Drops:
Total Other Errors:

o O O

. Configure Model-driven Telemetry

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

| Configure Model-driven Telemetry

No data Instances:
Last Collection Start:
Last Collection End:
Sensor Path:

Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables .

0
2022-10-21 15:32:14.2303313823 +0530
2022-10-21 15:32:15.2304030650 +0530

openconfig-platform:components/component/openconfig-platform-transceiver:transceiver

Sysdb Path:

/aper/crdays/dl/ac trerseiver/qeranfighlatfom/anporets/arpret. list S/ tassiverdysicl-darels/darel list u ey orday oo taseiver darel/~

Count:

Item Count: 132

1 Method:

FINDDATA Min:
Status:

709 ms Avg: 709 ms Max: 709 ms

Eventing Active

Missed Collections:0 send bytes: 286891 packets: 130 dropped bytes: 0
Missed Heartbeats: 0 Filtered Item Count: 0
success errors deferred/drops
Gets 0 0
List 0 0
Datalist 0 0
Finddata 3 0
GetBulk 0 0
Encode 0 1
Send 0 0
Id: 2
Sample Interval: 0 ms
Heartbeat Interval: NA
Heartbeat always: False
Encoding: gnmi-proto
Num of collection: 1
Incremental updates: 0
Collection time: Min: 691 ms Max: 691 ms
Total time: Min: 694 ms Avg: 694 ms Max: 694 ms
Total Deferred: 0
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0
No data Instances: 0

Last Collection Start:
Last Collection End:
Sensor Path:

2022-10-21 15:32:14.2302824953 +0530
2022-10-21 15:32:15.2303519103 +0530

openconfig-platform:components/component/openconfig-platform-transceiver:transceiver

Sysdb Path:

/oper/overlays/gl/cc transceiver/cpenoonfig-platform/oaponents/camponent. 1ist S/*/transceiver/state bag overlay oo transceiver state

Count:
Item Count:

1 Method:
49 Status: Eventing Active

FINDDATA Min: 691 ms Avg: 691 ms Max: 691 ms

Missed Collections:0 send bytes: 22662 packets: 48 dropped bytes: 0
Missed Heartbeats: 0 Filtered Item Count: 0
success errors deferred/drops
Gets 0 0
List 0 0
Datalist 0 0
Finddata 2 0
GetBulk 0 0
Encode 0 0
Send 0 0

RP/0/RPO/CPUO:ios#

EDT Qutput for the OIR of Pluggables
Output for Inserted Pluggable

Configure Model-driven Telemetry .

Configure Model-driven Telemetry |
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

The following example shows the telemetry data for the addition of a single lane FR-S pluggable optic
transceiver in port 13 ofa 1.2T card in slot 1 in . proto format. The following output is the same for a single
lane LR-S pluggable optic transceiver.

update: <
path: <
elem: <
name: "state"
>
elem: <
name: "present"
>
>
val: <
string val: "PRESENT"
>
>
>
update: <
timestamp: 1667367012319000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"
>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0O_1 0_13"
>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
update: <
path: <
elem: <
name: "physical-channels"
>
elem: <
name: "channel"
key: <
key: "index"
value: "1"
>
>
elem: <
name: "state"
>
elem: <
name: "index"
>
>
val: <
uint_val: 1
>
>
>

The following table describes the highlighted parameters in the preceding example.

. Configure Model-driven Telemetry

| Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables .

Table 3: Parameters Description

Parameters Description

name: Subscribed sensor path
"openconfig-platform-transceiver: transceiver"

update: Addition of the transceiver pluggable
string val: "PRESENT" Indicates the availability of the pluggable
value: "OpticsO_1 0 13" FR pluggable inserted in slot 1 port 13 of 1.2T card

Output for Removed Pluggable

The following example shows the telemetry data for the removal of a single lane LR-S pluggable optic
transceiver in port 13 of a 1.2T card in slot 1 in . proto format. The following output is the same for a single
lane FR-S pluggable optic transceiver.
update: <
timestamp: 1667367004302000000
prefix: <
origin: "openconfig-platform"

elem: <
name: "components"
>
elem: <
name: "component"
key: <

key: "name"
value: "Optics0O_1 0_13"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
delete: <
elem: <
name: "state"
>
elem: <
name: "fec-mode"
>
>

output snipped

delete: <

elem: <
name: "state"
>
elem: <
name: "fec-uncorrectable-words"
>
>
delete: <
elem: <

name: "state"

Configure Model-driven Telemetry .

Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

>
elem: <

name: "fec-corrected-bits"
>

>

update: <
timestamp: 1667367004303000000
prefix: <
origin: "openconfig-platform"

elem: <
name: "components"
>
elem: <
name: "component"
key: <

key: "name"
value: "OpticsO_ 1 0 13"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
delete: <
elem: <
name: "physical-channels"
>
elem: <
name: "channel"
key: <
key: "index"
value: "1"
>
>
elem: <
name: "state"
>
elem: <
name: "index"
>
>
delete: <
elem: <
name: "physical-channels"
>
elem: <
name: "channel"
key: <
key: "index"
value: "1"
>
>
elem: <
name: "state"
>
elem: <
name: "description"
>
>
delete: <
elem: <

name: "physical-channels"

. Configure Model-driven Telemetry

Configure Model-driven Telemetry |

| Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables .

>
elem: <
name: "channel"
key: <
key: "index"
value: "1"
>
>
elem: <
name: "state"
>

>

The following table describes the highlighted parameters in the preceding example.

Table 4: Parameters Description

Parameters Description
name: Subscribed sensor path
"'gpenanfig-platfiom-transosiver: transceiver”!
delete: Removal of the transceiver pluggable
value: "OpticsO_1 0 13" LR pluggable removed in slot 1 port 13 of 1.2T card
key: < Indicates the deleted lane number

key: "index"

value: "1"

The following example shows the telemetry data for the removal of a four-lane LR4-S pluggable optic
transceiver in port 5 of a 1.2T card in slot 0 in . proto format.

update: <
timestamp: 1667367249665000000
prefix: <
origin: "openconfig-platform"

elem: <
name: "components"
>
elem: <
name: "component"
key: <

key: "name"
value: "Optics0_0_0_5"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
delete: <
elem: <
name: "state"
>
elem: <
name: "fec-mode"
>
>

output snipped

Configure Model-driven Telemetry .

Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

delete: <
elem: <
name: "state"

elem: <
name: "fec-uncorrectable-words"
>
>
delete: <
elem: <
name: "state"
>
elem: <
name: "fec-corrected-bits"
>

>

update: <
timestamp: 1667367249666000000
prefix: <
origin: "openconfig-platform"

elem: <
name: "components"
>
elem: <
name: "component"
key: <

key: "name"
value: "Optics0 0 0 5"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
delete: <
elem: <
name: "physical-channels"
>
elem: <
name: "channel"
key: <
key: "index"
value: "1"
>
>
elem: <
name: "state"
>
elem: <
name: "index"
>
>

.output snipped

update: <

. Configure Model-driven Telemetry

Configure Model-driven Telemetry |

Configure Model-driven Telemetry

Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables .

timestamp: 1667367249667000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"
>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0 0 0 5"
>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
delete: <
elem: <
name: "physical-channels"
>
elem: <
name: "channel"
key: <
key: "index"
value: "2"
>
>
elem: <
name: "state"
>
elem: <
name: "index"
>
>

output snipped

update: <
timestamp: 1667367249669000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"
>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0 0 0 5"
>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
delete: <
elem: <
name: "physical-channels"
>

Configure Model-driven Telemetry .

Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

elem: <

name:
key: <
key:

"channel"

"index"

value: "3"

>

elem: <
name:

>

elem: <
name:

"state"

"index"

output snipped

>
>
update: <
timestamp: 1667367249670000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"
>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0 0 0 5"
>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"
>
>
delete: <
elem: <
name: "physical-channels"
>
elem: <
name: "channel"
key: <
key: "index"
value: "4"
>
>
elem: <
name: "state"
>
elem: <
name: "index"
>
>

output snipped

. Configure Model-driven Telemetry

Configure Model-driven Telemetry |

| Configure Model-driven Telemetry
gRPC Network Management Interface .

The following table describes the highlighted parameters in the preceding example.

Table 5: Parameters Description

Parameters Description

name: Subscribed sensor path
"openconfig-platform-transceiver: transceiver"

delete: Removal of the transceiver pluggable
value: "OpticsO_0 0 5" LR4 pluggable removed in slot 0 port 5 of 1.2T card
key: < Indicates the deleted lane number 4

key: "index"
value: "4"

gRPC Network Management Interface

gRPC Network Management Interface is an interface for a network management system to interact with a
network element.

gNMI Services
* Get - Used by the client to retrieve configuration data on the target.
* Set - Used by the client to modify configuration data of the target.

* Telemetry - Used by the client to control subscriptions to the data on the target.

Examplefor GET:
Syntax:

$./gnmi_cli -get --address=mrstn-5502-2.cisco.com:57344 \
-proto "$(cat test.proto)" \
-with user pass \
-insecure \
-ca_crt=ca.cert \
-client crt=ems.pem \
-client key=ems.key \
-timeout=>5s

Examplefor SET:
Syntax:

$./gnmi_cli -set --address=mrstn-5502-2.cisco.com:57344 \
-proto "$(cat test.proto)" \
-with user pass \
-insecure \
-ca_crt=ca.cert \
-client crt=ems.pem \
-client key=ems.key \
-timeout=5s

Examplefor Subscribe;
Syntax:

Configure Model-driven Telemetry .

Configure Model-driven Telemetry |
. 2s Telemetry Based on GNMI Subscribe

$./gnmi_cli --address=mrstn-5502-2.cisco.com:57344 \
-proto "$(cat test.proto)" \
-with user pass \
-insecure \
-ca crt=ca.cert \
-client crt=ems.pem \
-client key=ems.key \
-timeout=5s
-display type string (g, group, s, single, p, proto). (default "group")

Subscription Mode

Subscription Mode is the mode of the subscription, specifying how the target must return values in a
subscription.

M odes of the subscription:

* STREAM =0

*ONCE=1

* POLL =2
ONCE Subscriptions: A subscription operating in the ONCE mode acts as a single request/response channel.
The target creates the relevant update messages, transmits them, and subsequently closes the RPC.

STREAM Subscriptions: Stream subscriptions are long-lived subscriptions which continue to transmit
updates relating to the set of paths that are covered within the subscription indefinitely.

2s Telemetry Based on GNMI Subscribe

gRPC Network Management Interface (GNMI) is a network management protocol used for configuration
management and telemetry. gNMI provides the mechanism to install, manipulate, and delete the configuration
of network devices, and to view operational data. The content provided through gNMI can be modeled using
YANG.

Typically, GNMI client is configured to receive telemetry reports for every 30 seconds. The user can configure
GNMI client with a sample interval of two seconds. However, the system cannot manage this delay between
two collections. Hence, a characterization has been done to evaluate the actual system performance.

The characterization started to identify the maximum system load corresponding to the following scenario:

* The node is configured as a section protection node (EDFA, PSM, and EDFA modules on the three slots).

* Both the EDFA modules are configurated with grid mode=50Ghz.

The grid-mode configuration creates up to 96 additional OTS-OCH controllers for each ots 0/slot/0/0
and ots 0/slot/0/1. The grid-mode S0GHz configuration adds 96 * 2 (number of slots with EDFA module
for section protection) * 2 (bidirectional ports having OTS-OCH controllers for each EDFA module) =
384 controllers to the system.

Measurements have been performed for maximum load and for no_grid mode.

The following sensor paths are supported for telemetry testing in NCS 1001. GNMI client is configured for
the following sensor paths to receive telemetry reports for every two seconds.

. Configure Model-driven Telemetry

| Configure Model-driven Telemetry

gNMI Heartbeat Interval .

Sensor Path

Description

CiolOSXR-aontolkraptics apersublioptics qperpics pasopicspartoptics o

Provides the data of all the OTS and OTS-OCH
controllers for the system.

Characterization is performed with line-rx and com-rx
disconnected on both the EDFA modules. OTS-OCH
controller is in maintenance state by default.

.| OTS-OCH controllers and active alarms.

Provides the controller information of OTS and

The above sensor paths must belong to the same sensor group for which the minimum subscription interval
is measured. Other sensor paths can belong to other sensor groups with subscriptions greater than 30 seconds.

The characterization performed found a value for which a sample interval for telemetry is suggested to 10
seconds for maximum load, whereas subscription time is 5 seconds for grid mode=no grid.

gNMI Heartbeat Interval

Table 6: Feature History

Feature Name

Release Information

Feature Description

gNMI Heartbeat Interval

Cisco IOS XR Release 7.3.2

The gNMI Heartbeat Interval
feature allows you to send
ON_CHANGE subscription data
for each heartbeat interval
regardless of change in value. This
feature enables you to enhance the
network management system.

The gNMI heartbeat interval must be specified along with ON_CHANGE subscription. In this case, the value
of the data items must be resent once for each heartbeat interval regardless of change in value.

Limitation

Enabling the gNMI heartbeat interval using Open Config is not supported.

Examples

The following example uses the openconfig sensor path and enables the gNMI heartbeat interval value of one

hour in nanoseconds.

subscribe: <
prefix: <
>

subscription: <

path: <
origin:
elem: <
name:

"openconfig-system"

"system"

Configure Model-driven Telemetry .

Configure Model-driven Telemetry |
. gNMI Heartbeat Interval

>
elem: <
name: "alarms"
>
>
mode: ON_CHANGE
heartbeat_interval: 3600000000000
>
mode: STREAM
encoding: PROTO
>

The following example shows the enabled gNMI heartbeat interval.

RP/0/RP0O/CPUO:ios#show run telemetry model-driven subscription sub-1
Thu Jun 17 08:41:52.400 UTC
telemetry model-driven
subscription sub-1
sensor-group-id groupl sample-interval 0
sensor-group-id groupl heartbeat interval 3600000000000
sensor-group-id groupl heartbeat always
|
|

The interval attribute sends subscription data for each heartbeat interval when no events have occurred within
the interval. The always attribute sends subscription data for each heartbeat interval even if events have
occurred within the interval. The sample-interval attribute is enabled only with event-driven telemetry. This
attribute value must be set to 0 to enable event-driven telemetry.

. Configure Model-driven Telemetry

	Configure Model-driven Telemetry
	Configure Dial-out Mode
	Create a Destination Group
	Create a Sensor Group
	Create a Subscription
	Validate Dial-out Configuration

	Configure Dial-in Mode
	Enable gRPC
	Create a Sensor Group
	Create a Subscription
	Validate Dial-in Configuration

	Event-driven Telemetry for Terminal-device Models
	Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables
	gRPC Network Management Interface
	2s Telemetry Based on GNMI Subscribe
	gNMI Heartbeat Interval

