

1 port OC-48/STM-16 or 4 port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4 port T3/E3 CEM Interface Module Configuration Guide, Cisco IOS XE 17 (ASR 920 Series Routers)

First Published: 2019-11-14 **Last Modified:** 2024-08-14

Americas Headquarters

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2024 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1 Fe

Feature History 1

CHAPTER 2

Configuring Support of 1 port OC-48/STM-16 or 4 port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4 port T3/E3 CEM Interface Module 3

Restrictions of Feature Support on 4 Port OC48/OC12/OC3 + 12 Port T1/E1 + 4 Port T3/E3 CEM

Interface Module 3

Port Licensing 4

Information About Port Licensing 4

Installing a License 5

Enabling a License 5

Verifying License Configuration 6

Disabling a License 6

Uninstalling a License 6

Enabling T1 Controller 6

Configuring the Controller 7

Enabling T3 Controller 7

Enabling SONET Controller 7

Associated Commands 7

Additional References 8

CHAPTER 3

Configuring CEM 9

Circuit Emulation 9

Structure-Agnostic TDM over Packet 10

CEM pseudowire Scale 10

How to Configure CEM 10

Configuring CEM Classes 11

```
Configuring CEM Parameters 11
         Configuring Payload Size (Optional) 11
         Setting the Dejitter Buffer Size 11
         Shutting Down a CEM Channel 12
         Configuring DS1 CT3 SAToP Mode on OCx Ports 12
         Configuring VT DS1 SAToP Mode 12
         Configuring STS-Nc CEP 12
         Configuring CEP 12
         Configuring Unidirectional APS 13
         Configuring CEM APS 14
     Overview of DS3 CEP 14
       Asynchronous Mapping for T3 or E3 CEP 15
       Restrictions 16
       Alarms for T3 or E3 CEP 16
       Configuring DS3 CEP 17
         Verification of DS3 CEP Configuration 18
     Associated Commands 19
     Additional References for Configuring CEM 20
Configuring T1 Interfaces 23
     Information About T1 Interfaces 23
       Overview of T1 Interfaces 23
       Configuring the Controller 23
         Verifying Controller Configuration 23
     Performance Monitoring 24
     Configuring Structure-Agnostic TDM over Packet - T1 Interfaces 26
       Verifying CEM Configuration for SAToP 26
     Framed Structure-Agnostic TDM over Packet (SAToP) 26
       Configuring Framed SAToP 28
         Verifying CEM Configuration for Framed SAToP 28
     Troubleshooting T1 Controllers 29
       Running Bit Error Rate Testing 29
         BERT Patterns on T1 or E1 Interface Module 30
         Configuring BERT 31
```

CHAPTER 4

```
Associated Commands 35
CHAPTER 5
                     Configuring T3 Interfaces 37
                           Information About T3 Interfaces
                             Overview of T3 Interfaces 37
                             Benefits of T3 Interfaces 37
                           Enabling T3 Controller 37
                             Configuring the Controller - Clear Channel T3 Interfaces 38
                               Verifying Controller Configuration of Clear Channel T3 Interfaces
                             Configuring the Controller - Channelized T3 or E3 Interfaces 39
                               Verifying the Controller Configuration of Channelized T3/T1 Interfaces
                             Configuring SAToP - Clear Channel T3 Interfaces 41
                               Verifying CEM Configuration of Clear Channel T3 Interfaces for SAToP 42
                             Configuring SAToP - Channelized T3/T1 Interfaces 42
                               Verifying the CEM Configuration of Channelized T3 or T1 Interfaces 42
                           Configuring Framed SAToP - Channelized T3/T1 Interfaces 43
                             Verifying the CEM Configuration of Channelized T3/T1 Interfaces for Framed SATOP
                           Performance Monitoring
                           Troubleshooting T3 Controllers 51
                             Running Bit Error Rate Testing 52
                               BERT Patterns on T3/E3 Interface Module 52
                               Configuring BERT for Clear and Channelized T3 Interfaces 53
                             Loopback Remote on T1 and T3 Interfaces
                               Restrictions for Loopback Remote 57
                               Configuring Loopback Remote on T1 and T3 Interface 57
                               Verifying the Loopback Remote Configuration on T1 or T3 Interfaces 57
                           Associated Commands 60
CHAPTER 6
                     CEM Pseudowire 63
                           Information About CEM Pseudowire
                             Overview of CEM Pseudowire 63
                             Circuit Emulation 63
```

Loopback on T1 Interfaces 32

Loopback Remote on T1 Interfaces

CHAPTER 7

```
Structure-Agnostic TDM over Packet
       How to Configure Pseudowire 64
         How to Configure CEM 64
         Associated Commands 68
     System CESoP NxDS0 BERT 69
       Restrictions for System CESoP NxDS0 BERT 70
       Configuring System CESoP NxDS0 BERT 70
       Verifying System CESoP NxDS0 BERT 75
     Additional References for Configuring Pseudowire 76
Clock Recovery System for SAToP 77
     Information About Clock Recovery
       Adaptive Clock Recovery (ACR) 77
       Differential Clock Recovery (DCR) 78
       Benefits of Clock Recovery 78
       Prerequisites for Clock Recovery 79
       Restrictions for Clock Recovery 79
     How to Configure ACR and DCR 79
       Configuring Adaptive Clock Recovery of T1 Interfaces for SAToP
       Configuring Adaptive Clock Recovery of T3 Interfaces for SAToP
         Verifying Adaptive Clock Recovery Configuration of T3 Interfaces for SAToP
       Configuring Differential Clock Recovery of T3 Interfaces for SAToP 81
       Configuring Clock Recovery on STS-1e Controller for Framed SAToP 82
     Associated Commands
     Additional References for Clock Recovery
CEM over MPLS QoS
     Information About CEM over MPLS QOS 87
       Classifying and Marking MPLS EXP Overview
                                                   87
       Prerequisites for CEM over MPLS QoS
       Restrictions for CEM over MPLS QoS 88
     How to Classify and Mark MPLS EXP 88
       Classifying MPLS Encapsulated Packets
       Marking MPLS EXP on Imposed Labels
```

CHAPTER 8

```
Configuration Examples 89
       Example: Defining an MPLS EXP Class Map 89
       Example: Defining a Policy Map and Applying the Policy Map to an Ingress Interface 90
       Example: Defining a Policy Map and Applying the Policy Map to an Egress Interface 90
       Example: Applying the MPLS EXP Imposition Policy Map to a Main Interface 90
       Example: Defining an MPLS EXP Label Switched Packets Policy Map 91
       Example: Applying the MPLS EXP Label Switched Packets Policy Map to a Main Interface 91
Configuring SONET 93
     Overview of SONET
     Restrictions for SONET 94
     SONET Switching
     SONET Hierarchy
       Section 96
       Line
             96
       Path 96
     STS-1 and STS-3 Frames
     SONET Line and Section Configuration Parameters 98
     BERT 99
       BERT Restrictions 99
       BERT Patterns on 1-Port OC-48 or 4-Port OC-12/OC-3 CEM Interface Module 100
     BERT Error Injection 101
       Prerequisites of BERT Error Injection
       Restrictions of BERT Error Injection 102
       Configuring BERT Error Injection for SONET
          Verifying BERT Error Injection for SONET
                                                   103
     Concatenated SONET Frames 104
     SONET Path Level Configuration Parameters 105
     Channelized SONET Frames 105
     SONET T1 Configuration Parameters
     SONET T3 Configuration Parameters
     SONET VT Configuration Parameters
     Automatic Protection Switching
```

Classifying and Marking MPLS EXP 89

CHAPTER 9

```
1+1 APS 108
    Benefits of APS
                     108
    APS 1+1 for SONET Layer 1 traffic
    Restrictions for APS 109
    UPSR Path Protection 110
How to Configure SONET 112
  Prerequisites for Configuring SONET 112
  Configuring MediaType Controller 113
  Configuring SONET Ports 113
  Managing and Monitoring SONET Line 113
    Configuring Line and Section Overhead 113
    Configuring Line Loopback 113
    Configuring AIS Shut 114
    Configuring Shut 114
    Configuring Alarm Reporting 114
    Configuring Clock 114
    Configuring STS-1 Modes 115
    Verification of SONET Configuration 120
  Configuring CEM Group for Framed SAToP 126
  Configuring VT-15 mode of STS-1 for Framed SAToP 126
  Configuring DS1/T1 CT3 mode of STS-1 for Framed SAToP
  Configuring CEM APS for Framed SAToP 126
    Verifying SONET Configuration for Framed SAToP 127
 Provisioning APS 1+1 128
  Deprovisioning APS 1+1 128
  Performance Monitoring Use Cases or Deployment Scenarios for SONET 129
  Monitoring Protection Switching Count for Protected SONET Interface 147
Configuring Port Rate and Verifying Pluggables 153
  Configuring Port Rate for SONET 153
  Verifying the Pluggables 153
Loopback Remote on T1 and T3 Interfaces
                                        155
  Restrictions for Loopback Remote 156
  Configuring Loopback Remote in Sonet 156
  Verifying the Loopback Remote Configuration 156
```

Associated Commands 157

```
CHAPTER 10
                   Configuring SDH 161
                         Overview of SDH 161
                           Basic SDH Signal 162
                           SDH Hierarchy 162
                           SDH Frame Structure
                             VC 163
                           Modes of CEM 164
                         Services Provided by SDH Configuration 164
                         SDH Multiplexing 167
                           Modes of SDH 167
                           Configuring AUG Mapping 168
                             Configuring AU-3 or AU-4 Mapping 168
                             Configuring Mixed AU-3 and AU-4 Mapping
                             Verifying AUG Mapping Configuration 169
                           Configuring Modes under AU-4 Mapping
                                                                 169
                             Configuring Mode VC-4 CEP 170
                             Configuring Mode TUG-3 170
                             Configuring Mode VC-1x 172
                             Configuring Mode VC-4 Nc 175
                             Configuring AU-3 — VC-3 — DS3 175
                             Configuring AU-3 — VC-3 — E3 176
                           Configuring Modes under AU-3 Mapping 176
                             Configuring Mode VC-1x 176
                         Configuring AU-4 — TUG-3 — TUG-2 — VC-12 for Framed SAToP 178
                         Configuring AU-3 — TUG-2 — VC-11 — T1 for Framed SAToP 178
                         Verifying SDH Configuration for Framed SAToP 178
                         Restrictions for SDH 179
                         Configuring Mediatype Controller 180
                         Configuring Rate on SDH Ports 181
                         SDH Line and Section Configuration Parameters 181
                           Overhead 181
                             Configuring Line and Section Overhead 181
```

```
Threshold 182
    Configuring Line and Section Threshold 182
  Loopback 182
    Configuring Line Loopback
                               182
  AIS-Shut 183
    Configuring AIS Shut 183
  Shutdown 183
    Configuring Shut 183
  Alarm Reporting 183
    Configuring Alarm Reporting 184
  Clock Source 184
    Configuring Clock 184
  Verifying SDH Line and Section Parameters Configuration 185
  Configuring SDH Path Parameters 196
    Path Overhead
                   196
    Path Threshold
                   197
    Path Loopback 198
    Verifying Path Parameters Configuration
Configuring BERT in SDH for SAToP 199
  BERT Patterns on 1-Port OC-48 or 4-Port OC-12/OC-3 CEM Interface Module 200
  Configuring BERT in Modes VC-4 and VC Nc 201
    Verifying BERT Configuration in Modes VC-4 and VC Nc 201
  Configuring E1 Bert 201
  Configuring T1 Bert 202
  Configuring BERT in Mode T3/E3
    Verifying BERT Configuration in Mode T3 or E3 202
  Configuring BERT in Mode VC-1x 203
    Verifying BERT Configuration in Mode VC-1x 203
BERT Error Injection 203
  Prerequisites of BERT Error Injection
  Restrictions of BERT Error Injection 204
  Configuring BERT Error Injection for SDH
                                           205
    Verifying BERT Error Injection for SDH 205
  Configuring BERT Error Injection for SONET
```

Verifying BERT Error Injection for SONET 207 SDH T1/E1 Configuration Parameters Configuring T1/E1 Parameters 208 Verifying T1 or E1 Parameters Configuration 209 SDH T3/E3 Configuration Parameters 209 Configuring SDH T3/E3 Parameters Configuration 209 Verifying SDH T3 or E3 Parameters Configurations 210 SDH VC Configuration Parameters for SAToP 210 Configuring VC Parameters 211 Verifying VC Configuration Parameters Configurations 211 Configuring ACR on SDH 211 Verifying ACR Configuration on SDH 212 Configuring DCR on SDH 213 Verifying DCR Configuration on SDH 213 Loopback Remote on T1 and T3 Interfaces 214 Restrictions for Loopback Remote 214 Configuring Loopback Remote in SDH 214 Verifying the Loopback Remote Configuration 215

CHAPTER 11 STS-1 Electricals 219

Restrictions for STS-1e **220**

Prerequisites for Configuring STS-1e 221

Configuring MediaType Controller 221

Configuring STS-1e Modes 221

Configuring VT-15 Mode of STS-1e 221

Configuring T1 CT3 mode of STS-1e 222

Configuring T3 mode of STS-1e 222

Configuring Unframed Mode of STS-1e 222

Configuring Line and Section Overhead 223

Configuring Line Loopback 223

Configuring AIS Shut 223

Configuring Shut 224

Configuring Clock 224

Verifying STS-1e Configuration 224

controller sts-1e 240 mode sts-1e 241

CHAPTER 12 Unidirectional Path Switching Ring Over HDLC 243

Unidirectional Path Switching Ring Over HDLC Overview 243

Limitations for HDLC UPSR 243

How to Configure UPSR over HDLC 244

Configuring Protection Group 244

Configuring Channel Group 244

Creating Protection Group Serial Interface for VT 1.5 T1 Mode 244

Creating Protection Group Serial Interface for T3 or STS-3c Mode 244

Creating Protection Group Serial Interface for VT 1.5 T1 Mode 245

Creating Protection Group Serial Interface for T3 or STS-3c Mode 245

Adding Protection Group to Controller Under VT 1.5 Mode 246

Adding Protection Group to Controller Under T3 Mode 246

Adding Protection Group to Controller Under STS-3c Mode 246

Configuring Cross-Connect Under Protection Group Serial Interface Pseudowire 246

Verifying UPSR Over HDLC Configuration 247

Configuration Examples for HDLC UPSR 247

Use Case 1 247

Use Case 2 248

CHAPTER 13 Interworking Multiservice Gateway Access Circuit Redundancy 25

SONET Supported Modes 251

SDH Supported Modes 252

Restrictions for iMSG ACR 253

How to Configure iMSG ACR 253

Creating ACR Group 253

Configuring ACR Group on APS 253

Creating Serial Interface for SONET ACR 255

Creating Serial Interface for SONET ACR on VT 1.5 Mode 255

Creating Serial Interface for SONET ACR on CT3 Mode 255

Creating Serial Interface for SONET ACR on T3 Mode 256

Creating Serial Interface for SONET ACR on PoS Mode 256

Creating Serial Interface for SDH ACR on PoS Mode 258 Creating Serial Interface for SDH non-ACR on PoS Mode 258 Modifying Encapsulation to PPP 258 Configuring IPv4 and IPv6 Interworking Pseudowire 258 Configuring Cross-Connect on Serial Interface 259 Verifying iMSG ACR 259 Verifying iMSG ACR with HDLC Encapsulation 259 Verifying iMSG ACR with PPP Encapsulation 261 Verifying iMSG ACR with HDLC Encapsulation on PoS Mode 262 Verifying iMSG ACR with PPP Encapsulation on PoS Mode **Serial Interfaces** 265 Serial Interface Supported Modes Interworking Multiservice Gateway Support Matrix 269 Creating T1 or E1 Serial Interfaces on T1 or E1 Ports 270 Creating T3 or E3 Serial Interfaces on T3 or E3 Ports 271 Creating an E1 Serial Interface in Unframed Mode 273 Creating Serial Interfaces on SDH **273** Creating Serial Interfaces on SONET 275 Modifying Encapsulation to PPP 277 IPv4 Interworking Pseudowire over HDLC or PPP 277 L2VPN Interworking Multiservice Gateway 277 L2VPN iMSG Mode 277 IP Interworking Mode 277 HDLC or PPP to Ethernet IPv4 or IPv6 iMSG Pseudowire 278 IPv4 or IPv6 iMSG Pseudowire Supported Modes 278 Limitations of IPv4 or IPv6 iMSG Pseudowire on HDLC or PPP Serial Interfaces 278 How to Configure IPv4 or IPv6 iMSG Pseudowire on HDLC or PPP Interface 279 Configuring L2VPN iMSG 279 Configuring Cross-Connect Under Attachment Circuit 280 Verifying IPv4 or IPv6 iMSG Pseudowire over HDLC or PPP Configuration 280 IPv4 or IPv6 Interworking Multiservice Gateway Pseudowire over Frame Relay 283

Creating Serial Interface for SONET non-ACR on PoS Mode 256

Creating Serial Interface for SDH ACR 257

CHAPTER 14

Frame Relay for iMSG 283
Limitations of IPv4 or IPv6 iMSG Pseudowire on Frame Relay Serial Interfaces 283
Scale Supported for iMSG Pseudowire on Frame Relay Serial Interfaces 284
How to Configure IPv4 or IPv6 iMSG Pseudowire on Frame Relay Serial Interface 285
Modifying Encapsulation to Frame Relay 285
Configuring Frame Relay 285
Configuring L2VPN iMSG Using Local Connect for Frame Relay 287
Configuring L2VPN iMSG Using Cross Connect for Frame Relay 287
Verifying IPv4 or IPv6 iMSG Pseudowire over Frame Relay Configuration 289
Configuring Frame Relay for APS Protection 291
Configuring Frame Relay for UPSR Protection 291
Configuring Frame Relay L2VPN iMSG for APS Protection 292
Configuring Frame Relay L2VPN iMSG for UPSR Protection 292
Verifying Frame Relay for APS Protection 292
Verifying Frame Relay for UPSR Protection 293
Scenario 1–Configure L2VPN iMSG Using Local Connect for Frame Relay 295
Scenario 2–Configure L2VPN iMSG Using Cross Connect for Frame Relay 296
IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces 298
IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces 298
Restrictions for IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces 298
How to Configure IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces 298
Configuring Protocols 298
Configuring VRF 299
Configuring IPv4 Unicast Layer 3 Termination on HDLC or PPP Interfaces 299
Verifying IPv4 Layer 3 Termination on HDLC or PPP 300
Layer 3 Termination for Frame Relay 300
Layer 3 Termination on Frame Relay Serial Interfaces 300
Restrictions for Layer 3 Termination on FR Serial Interfaces 301
How to Configure Layer 3 Termination on Frame Relay Serial Interfaces 301
Configuring Layer 3 Termination on Frame Relay Interfaces 301
Verifying Layer 3 Termination on Frame Relay 302

Feature History

The following table lists the new and modified features supported in the 1 port OC-48/STM-16 or 4 port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4 port T3/E3 CEM Interface Module Configuration Guide in Cisco IOS XE 17 releases.

Feature	Description						
Cisco IOS XE Cupertino 17.8.1							
Frame Relay Support for IP Interworking	Support for frame relay encapsulation on iMSG serial interface for the following interface modules:						
	• 1-port OC-48/STM-16 or 4-port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4-port T3/E3 CEM interface module						
	Frame Relay being a streamlined protocol facilitates higher performance and greater efficiency.						
Cisco IOS XE Beng	aluru 17.5.1						
Unframed Framing Support on E1 and Channel STM links	In this release, a new framing mode unframed is supported for the 1 port OC-48/STM-16 or 4 port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4 port T3/E3 CEM Interface Module. With the unframed mode, you can create serial interfaces under the electrical E1 mode.						
Cisco IOS XE Beng	aluru 17.4.1						
STS1E Framed SAToP Support on IMA3G	Support on clock recovery on STS-1e controller for framed SAToP on the following modes: • T3						
	• CT3						
	• VT-15						
Cisco IOS XE Amst	terdam 17.3.1						

Feature	Description
IMA3G 1+1 OC3/12 Single Card APS Support	Automatic protection switching (APS) is a protection mechanism for SONET networks that enables SONET connections to switch to another SONET circuit when a circuit failure occurs. This protection schemes allows a pair of SONET lines or paths to be configured for line or path redundancy. In the event of a fiber cut, the active line or path switches automatically to the standby line or path. In the 1+1 architecture, there is one working interface (circuit) and one protection interface, and the same payload from the transmitting end is sent to both the receiving ends. The receiving end decides which interface to use.
Interworking Support for nxDS0	Interworking function (IWF) for PPP/HDLC is supported on Ethernet for E1/STM1 ports. This support is extended at nxDS0 level to speed up the GSR TDM migration.

Configuring Support of 1 port OC-48/STM-16 or 4 port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4 port T3/E3 CEM Interface Module

The 1 port OC-48/STM-16 or 4 port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4 port T3/E3 CEM Interface Module has 12XDS1, 4XDS3, electrical interfaces, and 4XSFP ports that can provide multiple functions such as 1XOC-48/12/3 and 3XOC-12/3. The maximum speed supported on OCx ports is OC-48. The interface module supports a maximum of 3G CEM traffic.

Note

In addition to support on RSP2 module, the IM is supported on RSP3 from the Cisco IOS XE 16.9.x release.

- Restrictions of Feature Support on 4 Port OC48/OC12/OC3 + 12 Port T1/E1 + 4 Port T3/E3 CEM Interface Module, on page 3
- Port Licensing, on page 4
- Uninstalling a License, on page 6
- Enabling T1 Controller, on page 6
- Enabling T3 Controller, on page 7
- Enabling SONET Controller, on page 7
- Associated Commands, on page 7
- Additional References, on page 8

Restrictions of Feature Support on 4 Port OC48/OC12/OC3 + 12 Port T1/E1 + 4 Port T3/E3 CEM Interface Module

- Mixed mode support, for example, DS1 and E1 or DS3 and E3 or SONET and SDH simultaneously on different ports is not available.
- E1/E3, Unidirectional Path Switching Ring (UPSR), and Data Communication Channel (DCC) are not supported.
- Multiservice functionality: MLPPP, FR, and MLFR are not supported.
- EoS and EoPDH are not supported.

- The **configure replace** command is *not* supported.
- A combination of T1/T3/SONET with E1/E3/SDH modes are not supported.
- When IM is used with RSP3 module, then it is not allowed in slots 0 and 1 on chassis.
- Synchronization Status Message (SSM) is not supported on T3 ports.

Port Licensing

The Cisco Software License Activation feature is a set of processes and components to activate Cisco IOS-XE software feature sets by obtaining and validating fee-based Cisco software licenses. You should enable the license *only* for OCx ports. License is not required for the ports 0-15 (DSx ports).

You should associate a required license to a port. Many licenses can be configured for a port. Only one license can be associated with a port as only one rate can be configured at a time. Other licenses are not required unless rate is changed frequently.

No license is enabled on the port by default. Same port license (OC-3 or OC-12) can be used for Legacy OC-3 IM. A port can be enabled with any one of the following license types:

- OC-3
- OC-12
- OC-48

On each IM, OCx port can be configured on ports 16-19. For example, a maximum of four OC-3 ports can be configured on ports 16-19. A maximum of four OC-12 ports can be configured on ports 16-19. A maximum of one OC-48 port can be configured on ports 16-19.

Information About Port Licensing

Scenario of IM Removal

- All licenses enabled on the IM ports are removed.
- The free licenses can be associated with the same or different IM ports.

Scenario of IM Re-insertion

- When IM is inserted back in the same slot, the IM ports require the licenses based on the configurations.
- The available free licenses are used and old configurations are retained.
- When free licenses are not available, the controller port moves to "shut" state and the following error message is displayed:

```
configure terminal
controller mediatype 0/1/19
mode sonet
rate oc3
controller sonet 0/1/19
rate oc3
license is not enabled for this rate
```

```
% Unable to configure this rate.
end
```

- To remove the "shut" state, perform any one of the following actions:
 - Remove all the configurations present at rate level and beyond.
 - Enable the license on the port that has the same rate as that of the configured controller. For example, enable OC3 license for any OC3 configuration to remove the "shut" state.

Thus, port configurations remain intact and controller port re-configuration is not required.

Installing a License

To install or upgrade a license by using the **license install** command, you must have already received the license file from the Cisco Product License Registration portal at http://www.cisco.com go license (or you already backed up the license by using the **license save** command).

To install the license:

```
enable
    show license udi
Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License
    Registration portal: http: www.cisco.com go license
license install stored-location-url
show license detail
end
```

Enabling a License

Use the **platform enable controller Mediatype** <*slot/bay/port>* <*port rate>* to enable a particular license type on the controller port. Providing a particular license type is mandatory to enable the license on the IM.

Note

This command is not applicable for DSx ports (0-15).

Note

You should configure controller mediatype and controller SONET before enabling the license on the port. License enabling is allowed when the license with the same rate is configured on the port. The configuration fails if the license with a different rate is configured on the port.

To enable port licensing:

```
enable
configure terminal
platform enable controller MediaType 0/4/16 oc3
controller MediaType 0/4/16
mode sonet
exit
controller sonet 0/4/16
rate oc3
exit.
```

Verifying License Configuration

Use the **show license detail** command to verify the license configuration:

```
Router#show license detail
Index: 15 Feature: oc3 Version: 1.0
License Type: Permanent
License State: Active, In Use
License Count: 1/1/0 (Active/In-use/Violation)
License Priority: Medium
Store Index: 4
Store Name: Primary License Storage
```

Disabling a License

Use the **no platform enable controller Mediatype** <*slot/bay/port>* <*port rate>* to disable a particular license type on the controller port.

Note

Disabling a license is not successful if a rate is configured on the controller that requires the license. Hence, you should first remove the controller configuration before disabling the license.

To disable port licensing:

```
enable
configure terminal
controller sonet 0/4/16
sts-1 1
no vtg 1 t1 1 cem-group 23 unframed
no mode vt-15
controller MediaType 0/4/16
no mode sonet
exit
no platform enable controller MediaType 0/4/16 oc3
```

Uninstalling a License

To uninstall a license:

```
enable
configure terminal
no platform enable controller MediaType slot/bay/port OC3
end
license clear feature-name
```

Enabling T1 Controller

Note

T1/T3 or E1/E3 does not require any license.

To enable T1 controller:

```
enable
configure terminal
controller mediatype 0/4/0
mode t1
end
```

Configuring the Controller

To configure T1 interface, use the following commands:

```
enable configure terminal controller mediatype 0/4/0 mode t1 exit controller t1 0/4/0 clock source internal framing esf cablelength short 110 linecode b8zs no shutdown exit
```

Enabling T3 Controller

To enable T3 controller:

```
enable
configure terminal
controller mediatype 0/4/12
mode t3
end
```

Enabling SONET Controller

To enable SONET controller:

```
enable
configure terminal
controller mediatype 0/0/16
mode sonet
end
```

Associated Commands

The following table shows the commands for the IM configuration:

Command	Link
platform enable controller Mediatype	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/
<slot bay="" port=""> <port rate=""></port></slot>	interface/command/ir-cr-book/
	ir-o1.html#wp3145726977

Additional References

Related Documents

Related Topic	Document Title						
Cisco IOS commands	Cisco IOS Master Commands List, All Releases						
Compact-SFP	Cisco SFP Modules for Gigabit Ethernet Applications Data Sheet						

Standards and RFCs

Standard/RFC	Title
_	There are no standards and RFCs for this feature.

MIBs

MIB	MIBs Link
_	There are no MIBs for this feature.
	http://www.cisco.com/go/mibs

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/cisco/web/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Configuring CEM

This module describes how to configure Circuit Emulation (CEM).

- Circuit Emulation, on page 9
- How to Configure CEM, on page 10
- Overview of DS3 CEP, on page 14
- Associated Commands, on page 19
- Additional References for Configuring CEM, on page 20

Circuit Emulation

Circuit Emulation (CEM) is a technology that provides a protocol-independent transport over IP/MPLS networks. It enables proprietary or legacy applications to be carried transparently to the destination, similar to a leased line.

CEM provides a bridge between a Time-Division Multiplexing (TDM) network and a Multiprotocol Label Switching (MPLS) network. The router encapsulates the TDM data in the MPLS packets and sends the data over a CEM pseudowire to the remote Provider Edge (PE) router. As a result, CEM functions as a physical communication link across the packet network.

The router supports the pseudowire type that utilizes CEM transport: Structure-Agnostic TDM over Packet (SAToP) and Circuit Emulation Service over Packet-Switched Network (CESoPSN).

L2VPN over IP/MPLS is supported on the interface modules.

Note

We recommend that you configure the controller in the administratively up mode. Configuration under the administratively down mode is not recommended and it might cause configuration errors.

Note

The default behaviour of the CEM pseudowire is always UP irrespective of the controller alarms.

Structure-Agnostic TDM over Packet

Structure-Agnostic TDM over Packet (SAToP) encapsulates Time Division Multiplexing (TDM) bit-streams as pseudowires over public switched networks. It disregards any structure that may be imposed on streams, in particular the structure imposed by the standard TDM framing.

The protocol used for emulation of these services does not depend on the method in which attachment circuits are delivered to the Provider Edge (PE) chassis. For example, a T1 attachment circuit is treated the same way for all delivery methods, including copper, multiplex in a T3 circuit, a virtual tributary of a SONET circuit, or unstructured Circuit Emulation Service (CES).

In SAToP mode, the interface is considered as a continuous framed bit stream. The packetization of the stream is done according to IETF RFC 4553. All signaling is carried out transparently as a part of a bit stream.

CEM pseudowire Scale

Effective from the 16.12.1 release,

- 21504 CEM pseudowires without protection (with SONET)
- 10752 CEM pseudowires with protection

is supported on the router.

Currently the Cisco A900-IMA3G-IMSG support a maximum of 1344 CEM pseudowires.

Note

The 21K CEM pseudowire's can be achieved on the router by using the combination of the Cisco A900-IMA1Z8S-CX and A900-IMA3G-IMSG interface modules in multiple slot combinations.

Restrictions for pseudowire Scale Increase

- CEM pseudowire scale is supported **only** on the SONET mode.
- When configured for scale beyond 21504 CEM pseudowire, a syslog is printed as:

Cannot allocate CEM group, maximum CEM group exceeded, but the configurations will not be rejected. For example, when a 215xxth CEM pseudowire is configured, the configuration fails even though the CLI is not rejected with the mentioned syslog notification.

- While performing ISSU with 21504 CEM pseudowire, sufficient delay must be provided for each interface module.
- After SSO and successful bulk sync, run the **show platform software tdm-combo cem ha-stray-entries** command. If the output of this command displays no entries, then the next SSO can be performed. You must wait until **show platform software tdm-combo cem ha-stray-entries** has no entries.

How to Configure CEM

This section provides information about how to configure CEM. CEM provides a bridge between a Time Division Multiplexing (TDM) network and a packet network, MPLS. The chassis encapsulates the TDM data in the MPLS packets and sends the data over a CEM pseudowire to the remote Provider Edge (PE) chassis.

Configuring CEM Classes

A CEM class allows you to create a single configuration template for multiple CEM pseudowires. Follow these steps to configure a CEM class:

Note

- The CEM parameters can be configured either by using CEM class or on CEM interface directly.
- The CEM parameters at the local and remote ends of a CEM circuit must match; otherwise, the pseudowire between the local and remote PE chassis does not come up.

```
enable
configure terminal
class cem mycemclass
payload-size 512
dejitter-buffer 12
exit
interface cem 0/4/0
cem 0
cem class mycemclass
xconnect 10.10.10.10 200 encapsulation mpls
exit
```

Configuring CEM Parameters

The following sections describe the parameters you can configure for CEM circuits.

Configuring Payload Size (Optional)

To specify the number of bytes encapsulated into a single IP packet, use the pay-load size command. The size argument specifies the number of bytes in the payload of each packet. The range is from 32 to 1312 bytes.

Default payload sizes for an unstructured CEM channel are as follows:

```
• T1 = 192 bytes
```

Default payload sizes for a structured CEM channel depend on the number of time slots that constitute the channel. Payload size (L in bytes), number of time slots (N), and packetization delay (D in milliseconds) have the following relationship: L = 8*N*D. The default payload size is selected in such a way that the packetization delay is always 1 millisecond.

The payload size must be an integer of the multiple of the number of time slots for structured CEM channels.

Setting the Dejitter Buffer Size

Dejitter Buffer is a buffering mechanism to account for a delay variation in the CEM packet stream. The buffer size is the amount of time you allocate to compensate for the network filter. The configured dejitter-buffer size is converted from milliseconds to packets and rounded up to the next integral number of packets. To set the size of the dejitter-buffer (in milliseconds), use the **dejitter-buffer** *value* command. The value range is from 1 to 32; the default is 5.

Shutting Down a CEM Channel

To shut down a CEM channel, use the **shutdown** command in CEM configuration mode. The **shutdown** command is supported only under CEM mode and not under the CEM class.

Configuring DS1 CT3 SAToP Mode on OCx Ports

To configure DS1 CT3 SAToP mode on OCx ports, use the following commands:

```
enable
configure terminal
controller MediaType 0/4/16
mode sonet
controller sonet 0/4/16
rate oc12
sts-1 1
mode ct3
t1 1 cem-group 100 unframed
t1 1 framing unframed
interface cem 0/4/16
cem 100
xconnect 10.2.2.2 10 encapsulation mpls
```

Configuring VT DS1 SAToP Mode

To configure VT DS1 SAToP mode, use the following commands:

```
enable
configure terminal
controller MediaType 0/4/16
mode sonet
controller sonet 0/4/16
rate oc12
sts-1 1
mode vt-15
vtg 1 t1 1 framing unframed
vtg 1 t1 1 cem-group 0 unframed
```

Configuring STS-Nc CEP

To configure STS-Nc CEP, use the following commands:

```
enable
configure terminal
controller MediaType 0/4/16
mode sonet
controller sonet 0/4/16
rate oc12
sts-1 1 - 3 mode sts-3c
cem-group 100 cep
interface cem 0/4/16
cem 100
xconnect 10.2.2.2 10 encapsulation mpls
end
```

Configuring CEP

To configure CEP, use the following commands:

```
enable
configure terminal
controller MediaType 0/4/16
mode sonet
controller sonet 0/4/16
sts-1 1
mode unframed
cem-group 100 cep
end
```

Configuring VT-15 CEP

To configure VT-15 CEP, use the following commands:

```
enable
configure terminal
controller MediaType 0/4/16
mode sonet
controller sonet 0/4/16
rate oc12
sts-1 1
mode vt-15
vtg 1 vt 1 cem-group 100 cep
end
```

Configuring DS3 SAToP

To configure DS3 SAToP, the STS-1 needs to be configured in mode T3::

```
enable
configure terminal
controller MediaType 0/4/16
mode sonet
controller sonet 0/4/16
rate oc12
sts-1 1
mode t3
cem-group 100 unframed
interface cem 0/4/16
cem 100
xconnect 10.2.2.2 10 encapsulation mpls
```

Configuring Unidirectional APS

To configure unidirectional ACR (SONET Framing), use the following commands:

```
enable
configure terminal
controller sonet 0/4/16
clock source internal
aps group acr 1
aps working 1
aps unidirectional
exit
controller sonet 0/4/16
aps group acr 1
aps protect 1 10.7.7.7
aps revert 3
aps adm
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Note

Ensure that you use same interface modules for both work and protect links.

Configuring Bi-directional ACR (SONET Framing)

To configure bi-directional ACR (SONET Framing), use the following commands:

```
enable
configure terminal
controller sonet 0/4/16
clock source internal
aps group acr 1
aps working 1
exit
controller sonet 0/4/16
aps group acr 1
aps protect 1 10.7.7.7
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring CEM APS

To configure CEM APS:

```
enable
configure terminal
controller MediaType 0/4/16
mode sonet
controller sonet 0/4/16
controller sonet-acr acr_no
sts-1 1
vtg 1 t1 1 cem-group 100 unframed
end
```

Overview of DS3 CEP

Effective Cisco IOS XE Fuji 16.8.1, DS3 CEP feature is introduced to achieve CEP configuration on DS3 ports of the interface module. Here, T3 or E3 is mapped to STS-1 or VC4 that is emulated on a packet network.

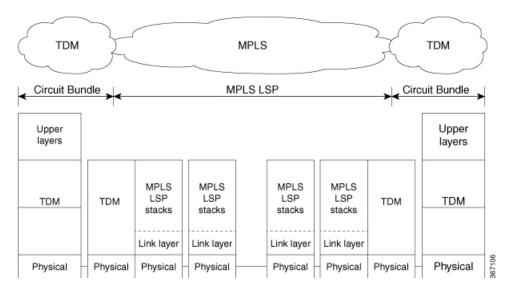


Figure 1: Network Reference Model and Protocol Layers for TDM-MPLS User Plane Interworking

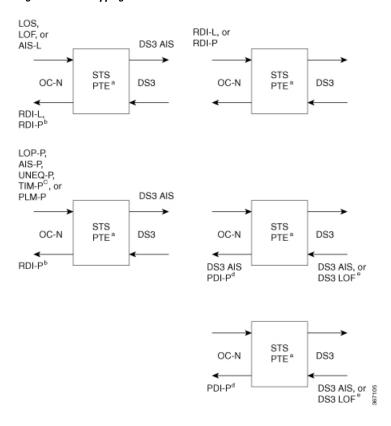
Asynchronous Mapping for T3 or E3 CEP

An asynchronous mapping for a T3 or E3 in the payload capacity of an STS-1 signal is defined for clear-channel transport of T3 or E3 signals that meet the T3 or E3 requirements in GR-499-CORE. The asynchronous T3 or E3 mapping consists of nine subframes each of 125 μ s. Each subframe contains 621 information (I) bits, a set of five stuff control (C) bits, one stuff opportunity (S) bit, and two overhead communication channel (O) bits. The remaining bits of the STS-1 payload capacity are fixed stuff (R) bits. The O-bits are reserved for future overhead communication purposes. The values of the R and O bits are undefined. In each subframe, the set of five C-bits are used to control the S-bit. CCCCC = 00000 is used to indicate that the S-bit is an information bit, while CCCCC = 11111 is used to indicate that the S-bit is a stuff bit. The value of the S-bit (if it is stuff bit) is undefined.

Figure 2: Asynchronous Mapping for T3 or E3 CEP

	•	_:	28 B	ytes		•	- 2	28 B	ytes		•	_ 28	Ву	tes
	R	R	C1	25 I		R	C2	T	25 I		R	СЗ	T	25 I
	R	R	C1	25		R	C2	1	25 I		R	СЗ	1	25 I
	R	R	C1	25 I		R	C2	T	25 I		R	СЗ	1	25 I
ᅵᆴ	R	R	C1	25 I	Stuff	R	C2	T	25	₹	R	СЗ	1	25 I
SPOH	R	R	C1	25	Sp	R	C2	1	25 I	S P	R	СЗ	1	25
ST	R	R	C1	25 I	Fixed	R	C2	T	25 I	Fixed	R	СЗ	1	25 I
	R	R	C1	25 I		R	C2	T	25		R	СЗ	1	25 I
	R	R	C1	25		R	C2	1	25 1		R	СЗ	1	25 I
	R	R	C1	25 I		R	C2	1	25 1		R	СЗ	T	25 I

Bytes I = ii ii ii ii B = rrrrrrr r: fixed stuff bit c: stuff control bit s: stuff opportunity bit o: overhead communications channel bit C2 = ccrrrrr C3 = ccrroors


Restrictions

- BERT for both line and system directions is *not* supported until Cisco IOS XE Fuji 16.9.5 release.
- Card Protection is *not* supported.
- E3 CEP is not supported on optical or SDH controller.

Alarms for T3 or E3 CEP

If an alarm is detected in the DS3 end, the C2 bytes are used to inform the remote Provider Edge (PE). For this, the alarm mapping table has to be followed as shown in the figure below.

Figure 3: Alarm Mapping Table

Configuring DS3 CEP

Pre-requisites:

The default mode is channelized mode. Use **no channelized** command to change to non-channelized mode.

To configure DS3 CEP for mode T3:

```
enable
controller MediaType 0/4/15
mode t3
controller t3 0/4/15
no channelized
cem-group 0 cep

To configure DS3 CEP for mode E3:
enable
controller MediaType 0/4/15
mode e3
controller e3 0/4/15
no channelized
cem-group 0 cep
```

Configuration of Overhead C2 and J1 Bytes:

You can configure overhead C2 and J1 bytes after you configure DS3 CEP.

```
enable
controller MediaType 0/4/15
```

```
mode e3
controller e3 0/4/15
threshold sd-ber 6
threshold sf-ber 3
no channelized
framing g751
cablelength short
cem group 0 cep
overhead j1 tx length 16
overhead j1 expected length 16
```

For loopback configuration, see *Loopback on T3/E3 Interfaces* section.

Verification of DS3 CEP Configuration

Use **show controller t3** *0/4/15 path* to verify DS3 CEP configuration:

```
router#show controller t3 0/4/15 path
T3 0/1/20 PATH 1.
Asynchronous Mapping for DS3 into STS-1
TX : TDM to PSN direction
RX : PSN to TDM direction
Clock Source is internal
 AIS = 0
             RDI = 0
                         REI = 349
                                     BIP(B3) = 22
            PSE = 0
                         NSE = 0
 LOP = 0
                                      NEWPTR = 0
 LOM = 0
             PLM = 0
                         UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: None
TCA threshold: B3 = 10e-6
Rx: C2 = FF
Tx: C2 = 01
Tx J1 Length: 64
Tx J1 Trace
 72 74 72 32 20 30 2F 31 2F 32 30 2E 31 00 00 00 rtr2 0/1/20.1...
 . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 72 74 72 32 20 30 2F 31 2F 32 30 2E 31 00 00 00
                                       rtr2 0/1/20.1...
 . . . . . . . . . . . . . . . .
 PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 64
Rx J1 Trace
 72 73 70 32 20 30 2F 35 2F 31 32 2E 31 00 00 00
                                     rsp2 0/5/12.1...
```

router#

Note

The verification output does not provide the details for alarms.

Associated Commands

The following commands are used to configure CEM:

Commands	URL
cem	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2184138077
cem group cem-group-number unframed	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2440628600
cem-group cem-group-number cep	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2440628600
class cem	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp7199841750
controller t1	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp1472647421
mode ct3	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp5913349630
mode t3	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp5688885940
mode vt-15	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp1137973905
payload-size dejitter-buffer	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp3946673156
rate	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp4442889730

Commands	URL
show cem circuit	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s2.html#wp1086825073
sts-1	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s6.html#wp2423232697
t1 t1-line-number cem-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp2399838226
t1 t1-line-number framing	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp2623191253
t1 t1-line-number clock source	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp3480850667
vtg vtg-number vt vt-line-number cem-group cem-group-number cep	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t2.html#wp3494199143
xconnect	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t2.html#wp8578094790
show controllers t3	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s3.html#wp1987423547

Additional References for Configuring CEM

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases

Standards

Standards	Title
_	There are no standards for this feature.

MIBs

MIB	MIBs Link
_	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
_	There are no RFCs for this feature.

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/cisco/web/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Additional References for Configuring CEM

Configuring T1 Interfaces

This chapter provides information about configuring the T1 interfaces:

- Information About T1 Interfaces, on page 23
- Performance Monitoring, on page 24
- Configuring Structure-Agnostic TDM over Packet T1 Interfaces, on page 26
- Framed Structure-Agnostic TDM over Packet (SAToP), on page 26
- Troubleshooting T1 Controllers, on page 29
- Associated Commands, on page 35

Information About T1 Interfaces

The following sections provide information about T1 interfaces.

Overview of T1 Interfaces

The 12-port T1 interface module on CEM line card supports generic single or dual-port T1 trunk interfaces for voice, data, and integrated voice or data applications.

Configuring the Controller

To configure T1 interface, use the following commands:

enable
configure terminal
controller mediatype 0/4/0
mode t1
exit
controller t1 0/4/0
clock source internal
framing esf
cablelength short 110
linecode b8zs
no shutdown
exit.

Verifying Controller Configuration

Use **show controllers** command to verify the controller configuration:

```
#show controller t1 0/4/0
T1 0/4/0 is up
 Applique type is
  Cablelength is short 110
 No alarms detected.
  alarm-trigger is not set
  Soaking time: 3, Clearance time: 10
 AIS State:Clear LOS State:Clear LOF State:Clear
  Framing is ESF, FDL is ansi, Line Code is B8ZS, Clock Source is Line.
 BER thresholds: SF = 10e-3 SD = 10e-6
  Data in current interval (230 seconds elapsed):
  Near End
    O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs, O Unavailable Secs
     O Path Failures, O SEF/AIS Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavailable Secs
    0 Path Failures
  Data in Interval 1:
   Near End
    O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins
    0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
     1 Path Failures, 0 SEF/AIS Secs
   Far End Data
    O Line Code Violations, O Path Code Violations
    O Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, O Degraded Mins
     4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
    0 Path Failures
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O Path Code Violations,
     O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins,
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs, 15 Unavailable Secs
     1 Path Failures, 0 SEF/AIS Secs
   Far End
    O Line Code Violations, O Path Code Violations,
    O Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, O Degraded Mins,
     4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
     0 Path Failures
```

Performance Monitoring

The performance monitoring result displays the statistics or error count generated on the TDM lines for DS1.

To view the performance monitoring error details, use the **show controller t1** command:

```
PE2#show controller t1 0/4/0
T1 0/4/0 is up
Applique type is
Cablelength is short 110
No alarms detected.
alarm-trigger is not set
Soaking time: 3, Clearance time: 10
AIS State:Clear LOS State:Clear LOF State:Clear
Framing is ESF, FDL is ansi, Line Code is B8ZS, Clock Source is Line.
BER thresholds: SF = 10e-3 SD = 10e-6
Data in current interval (230 seconds elapsed):
Near End
```

```
O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs, O Unavailable Secs
  O Path Failures, O SEF/AIS Secs
Far End
   O Line Code Violations, O Path Code Violations
  O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
  0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavailable Secs
  0 Path Failures
Data in Interval 1:
Near End
  O Line Code Violations, O Path Code Violations
  O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins
  0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
  1 Path Failures, 0 SEF/AIS Secs
Far End Data
   O Line Code Violations, O Path Code Violations
  O Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, O Degraded Mins
  4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
  0 Path Failures
Total Data (last 1 15 minute intervals):
Near End
   O Line Code Violations, O Path Code Violations,
  O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins,
  0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
  1 Path Failures, 0 SEF/AIS Secs
Far End
   O Line Code Violations, O Path Code Violations,
   O Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, O Degraded Mins,
   4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
   0 Path Failures
```

Table 1: Feature History

Feature Name	Release Information	Description
GR-820-CORE specific Performance Monitoring	Cisco IOS XE Bengaluru 17.5.1	The show controller tabular enables you to view the performance monitoring details in tabular form as per GR-820-Core standards.

To view the performance monitoring details on T1 interface, use the **show controller t1 tabular** command:

Router#show controllers t1 0/7/0 tabular

```
T1 0/7/0 is down
 Applique type is
 Receiver has loss of signal.
 alarm-trigger is not set
 Soaking time: 3, Clearance time: 10
 Framing is ESF, Line Code is B8ZS, Clock Source is Line.
 BER thresholds: SF = 10e-3 SD = 10e-6
 Near End Data
 INTERVAL CV-L ES-L CV-P ES-P SES-P CSS-P SAS-P UAS-P
                                                               FC-P
 10:48-10:57
              0 530
                           0
                                  0
                                         0
                                               0
 Far End Data
            ES-LFE ES-PFE SES-PFE SEFS-PFE CSS-PFE UAS-PFE FC-PFE
 INTERVAL
 10:48-10:57
                0
                       0
                                0
                                         0
                                                 0
                                                          0
PE2#
```

Configuring Structure-Agnostic TDM over Packet - T1 Interfaces

To configure Structure-Agnostic TDM over Packet (SAToP):

```
enable
configure terminal
controller t1 0/4/0
cem-group 0 unframed
exit
interface cem 0/4/0
cem 0
xconnect 10.2.2.2 10000 encapsulation mpls
```

Verifying CEM Configuration for SAToP

Use the following command to verify the CEM configuration for T1 interfaces:

```
#show cem ci interface cem 0/4/0
CEM 0/4/0, ID: 0, Line: UP, Admin: UP, Ckt: ACTIVE
Mode : T1, CEM Mode: T1-SAToP
Controller state: up, T1 state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 6 (In use: 0)
Payload Size: 192
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 6463477
                                     Dropped:
Egress Pkts:
               5132190
                                     Dropped:
CEM Counter Details
Input Errors: 0
                                     Output Errors:
Pkts Missing:
                                    Pkts Reordered:
Misorder Drops: 0
                                    JitterBuf Underrun: 0
Error Sec:
                                    Severly Errored Sec: 0
Unavailable Sec: 0
                                     Failure Counts:
Pkts Malformed: 0
                                     JitterBuf Overrun:
Generated Lbits: 0
                                    Received Lbits:
Generated Rbits: 0
                                     Received Rbits:
```

Framed Structure-Agnostic TDM over Packet (SAToP)

Framed Structure-Agnostic TDM over Packet (SAToP) is required to detect an incoming AIS alarm in the DS1 SAToP mode. An AIS alarm indicates a problem with the line that is upstream from the DS1 network element connected to the interface. Framed SAToP further helps in the detection of a packet drop.

In case of unframed mode of SAToP, data received from the Customer Edge (CE) device is transported ove the pseudowire. If the Provider Edge (PE) device receives a Loss of Frame (LOF) signal or Remote Alarm Indication (RAI) signal from a CE, the PE can only transmit the signal that is detected by the CE device. With the introduction of Framed SAToP, when the PE device receives the LOF or RAI signal, the PE device can

detect the alarm for SAToP. Thus, the alarm can be detected earlier in the network. This helps in enhanced performance.

Note

Framing type should be maintained same in all routers end to end.

Difference between Framed and Unframed SAToP:

- **1.** For unframed SAToP, the incoming signal is transmitted to the far end. This signal is not analyzed by the PE device. Hence, no alarm is reported.
- **2.** For framed SAToP, the incoming signal is analyzed but is not terminated. If a LOF or RAI signal is detected, the remote PE detects the signals and transmits towards the remote CE.

Difference between Framed SAToP and CESoP:

Table 2: Behaviour Difference between Unframed SAToP, Framed SAToP, and CESoP on LOF Alarm

Modes	Alarm Detected at PE	Controller Status at PE	Alarm Detected at CE (Remote)	Framing Bits Generationat PE (Remote)	Framing Bits Terminated at PE (Remote)
Unframed SAToP	None	Up	LOF	No	No
Framed SAToP	LOF	Down (Data path remians up)	AIS ¹²	Yes	No
CESOP	LOF	Down (Data path remians up)	AIS	Yes	Yes

¹ AIS—Cisco IOS XE Amsterdam 17.3.1 to later releases

Table 3: Behaviour Difference between Unframed SAToP, Framed SAToP, and CESoP on RDI Alarm

Modes	Alarm Detected at PE	Controller Status at PE	Alarm Detected at CE (Remote)	Framing Bits Generation at PE (Remote)	Framing Bits Terminated at PE (Remote)
Unframed SAToP	None	Up	RDI	No	No
Framed SAToP	RDI	Down (data path remains up)	RDI	No	No
CESOP	RDI	Down (data path remains up)	RDI	M-bit is set into control word	Yes

² LOF—Support until Cisco IOS XE Amsterdam 17.2.1

Table 4: Behaviour Difference between Unframed SAToP, Framed SAToP, and CESoP on AIS alarm

Modes	Alarm Detected at PE	Controller Status at PE	Alarm Detected at CE (Remote)	Framing Bits Generation at PE (Remote)	Framing Bits Terminated at PE (Remote)
Unframed SAToP	AIS	Down (data path remains up)	AIS	No	No
Framed SAToP	AIS	Down (data path remains up)	AIS	No	No
CESOP	AIS	Down (data path remains up)	AIS	L-bit is set into control word	Yes

Remote Loopback from CE to PE Detection:

Framed SAToP does not detect any loopback.

	Loopback Detected at PE	Controller Status at PE (Remote)	Controller Status at CE (Remote)
Unframed SAToP	No	Not in Loopback	Loopback
Framed SAToP	No	Not in Loopback	Loopback
CESOP	Yes	Loopback	Not in loopback

Configuring Framed SAToP

Note

Framing type should be maintained same in all routers end to end.

To configure Framed Structure-Agnostic TDM over Packet (SAToP):

```
enable
configure terminal
controller t1 0/4/0
framing esf
cem-group 0 framed
exit
interface cem 0/4/0
cem 0
xconnect 10.2.2.2 10000 encapsulation mpls
```

Verifying CEM Configuration for Framed SAToP

Use **show cem ci interface** to verify CEM configuration for Framed SAToP:

```
#show cem ci interface cem 0/4/0

CEM 0/4/0, ID: 0, Line: UP, Admin: UP, Ckt: ACTIVE
Mode :T1, CEM Mode: T1-SAToP
Controller state: up, T1 state: up
```

```
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 6 (In use: 0)
Payload Size: 192
Framing: Framed SAToP
CEM Defects Set
Signalling: No CAS
RTP: No RTP
Ingress Pkts:
                6463477
                                     Dropped:
Egress Pkts:
                6463477
                                     Dropped:
                                                          0
CEM Counter Details
Input Errors: 0
                                     Output Errors:
                0
                                     Pkts Reordered:
Pkts Missing:
                                                          0
Misorder Drops: 0
                                     JitterBuf Underrun:
Error Sec:
                                     Severly Errored Sec: 0
Unavailable Sec: 0
                                     Failure Counts:
Pkts Malformed: 0
                                     JitterBuf Overrun:
                                     Received Lbits:
Generated Lbits: 0
                                                          Ω
Generated Rbits: 0
                                     Received Rbits:
```

Troubleshooting T1 Controllers

You can use the following methods to troubleshoot the T1 controllers:

Running Bit Error Rate Testing

Bit error rate testing (BERT) is supported on T1 interfaces.

The interface module contains onboard BERT circuitry. With this, the interface module software can send and detect a programmable pattern that is compliant with CCITT/ITU O.151, O.152, O.153 pseudo-random and repetitive test patterns. BERT allows you to test cables and signal problems in the field.

When running a BERT test, your system expects to receive the same pattern that it is transmitting. To help ensure this, two common options are available:

- Use a loopback somewhere in the link or network
- Configure remote testing equipment to transmit the same BERT test pattern at the same time

The total number of error bits received, and the total number of bits received are available for analysis. You can select the testing period from 1 minute to 24 hours, and you can also retrieve the error statistics anytime during the BERT test.

BERT is supported in two directions:

- Line supports BERT in TDM direction
- System supports BERT in PSN direction

Note

Before starting system side BERT, you must configure CEM. When the BERT is configured towards system direction, it internally loopbacks the TDM side. BERT in system direction is *not* supported for framed SAToP.

BERT Patterns on T1 or E1 Interface Module

Bit error rate testing (BERT) is supported on T1 or E1 interfaces. You can run BERT tests on 16 controllers out of 48T1 or E1 controllers at a time.

Table 5: Feature History

Feature Name	Release Information	Description
Support for all 0s and 1s BERT Patterns	Cisco IOS XE Bengaluru 17.4.1	Support for all 0s and 1s BERT patterns on T1 or E1 interfaces.

The BERT patterns on the 48-port T1 or E1 interface module are:

Table 6: BERT Pattern Descriptions

Keyword	Description
All 1s 3	Pseudo-random binary test pattern consisting of all 1's that is used to test alternating line volt and repeaters.
All 0s	Pseudo-random binary test pattern consisting of all 0's that is used for test line coding.
2^15-1 O.151	Pseudo-random O.151 test pattern consisting of a maximum of 14 consecutive zeros and 15 consecutive ones. The length of this pattern is 32,768 bits.
2^20-O.151	Pseudo-random O.151 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.
2^20-O.153	Pseudo-random O.153 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.
2^23-1 O.151	Pseudo-random 0.151 test pattern consisting of a maximum of 22 consecutive zeros and 23 consecutive ones. The length of this pattern is 8,388,607 bits.
2^9 4	Pseudo-random binary test pattern consisting of a maximum of eight consecutive zeros and nine consecutive ones. The length of this pattern is 511 bits.
2^11 5	Pseudo-random binary test pattern consisting of a maximum of ten consecutive zeros and eleven consecutive ones. The length of this pattern is 2048 bits.

³ Starting with Cisco IOS XE Bengaluru 17.4.1, All Is are supported.

⁴ Starting with Cisco IOS XE Gibraltar 16.12.1, 2⁹ is supported on the T1 mode.

⁵ Starting with Cisco IOS XE Fuji 16.9.5, 2¹1 is supported on the T1 mode.

Note

If All 1's BERT pattern is tested on the system side, then ensure that you need to start all 1's pattern from both sides of the end points.

Configuring BERT on one side and loopback on other side of the end points is not supported. The router treats all 1's pattern as AIS alarm and BERT will not come in sync with the other side configuration of the end point.

Configuring BERT

Before you run BERT test, you must configure card type and controller.

To run a BERT on T1 interface, perform the following tasks in global configuration mode.

```
enable
configure terminal
controller t1 0/4/0
bert pattern 2^11 interval 5 direction [line | system]
evit
```

Verifying BERT Configuration for SAToP

Use the following command to verify the BERT configuration for T1 interfaces:

```
Router# show controllers t1 0/4/0
T1 0/4/0 is up.
Applique type is
Cablelength is short 110
DSX1 BERT pattern : 2^11
DSX1 BERT direction : Line
DSX1 BERT sync : no sync
DSX1 BERT sync count : 0
DSX1 BERT interval : 5
DSX1 BERT time remain : 2
DSX1 BERT total errs : 0
DSX1 BERT total k bits: 0
DSX1 BERT errors (last): 0
DSX1 BERT k bits (last): 0
Last clearing of BERT counters never
No alarms detected.
alarm-trigger is not set
Soaking time: 3, Clearance time: 10
AIS State:Clear LOS State:Clear LOF State:Clear
Framing is unframed, Line Code is B8ZS, Clock Source is Internal.
Data in current interval (230 seconds elapsed):
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs, O Unavailable Secs
     0 Path Failures, 0 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs, O Unavailable Secs
     0 Path Failures
  Data in Interval 1:
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
     1 Path Failures, 0 SEF/AIS Secs
   Far End Data
```

```
0 Line Code Violations, 0 Path Code Violations
0 Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, 0 Degraded Mins
4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
0 Path Failures
Total Data (last 1 15 minute intervals):
Near End
0 Line Code Violations, 0 Path Code Violations,
0 Slip Secs, 0 Fr Loss Secs, 14 Line Err Secs, 0 Degraded Mins,
0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
1 Path Failures, 0 SEF/AIS Secs
Far End
0 Line Code Violations, 0 Path Code Violations,
0 Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, 0 Degraded Mins,
4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
0 Path Failures
```

Loopback on T1 Interfaces

Loopback is supported on both unframed and framed modes. You can use the following loopback on the T1 interfaces.

Loopback	Description
loopback diag	Loops the outgoing transmit signal back to the receive signal. This is done using the diagnostic loopback feature in the interface module's framer. The interface transmits AIS in this mode. Set the clock source command to internal for this loopback mode.
loopback local	Loops the incoming receive signal back out to the transmitter. You can specify whether to use the line or payload.
loopback local line	The incoming signal is looped back in the interface using the framer's line loopback mode. The framer does not reclock or reframe the incoming data. All incoming data is received by the interface driver.
loopback local payload	Loops the incoming signal back in the interface using the payload loopback mode of the framer. The framer reclocks and reframes the incoming data before sending it back out to the network. Note Loopback Local Payload support is available only when framing is ESF.
loopback network line	Loops the incoming signal back in the interface module using the line loopback mode of the framer. The framer does not reclock or reframe the incoming data. All incoming data is received by the interface module driver.

Configuring Loopback

Before you configure loopback, you must configure the controller and the CEM.

To set a loopback local on the T1 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t1 0/4/0
loopback local line
exit
```

To set a loopback diag on the T1 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t1 0/4/0
loopbackdiag
exit
```


Note

To remove a loopback, use the **no loopback** command.

Note

Network payload configuration is not supported on SAToP. To configure loopback network payload when SAToP is configured, you need to remove the CEM configuration and then configure the loopback.

Loopback Remote on T1 Interfaces

The remote loopback configuration attempts to put the far-end T1 into a loopback.

The remote loopback setting loops back the far-end at line or payload, using IBOC (in-band bit-orientated CDE) or the ESF loopback codes to communicate the request to the far-end.

For releases later than Cisco IOS XE Fuji 16.8.x, we recommend that you use ESF loopback codes with ESF framing and IBOC loopback codes with SF framing.

Restrictions for Loopback Remote

- E1 loopback remote is not supported until Cisco IOS XE 16.9.4 Fuji Release. Starting from Cisco IOS XE Fuji 16.9.5 release, E1 loopback remote is supported.
- Loopback remote is not supported when cem-group is configured under T1 until Cisco IOS XE 16.9.4
 Fuji Release.
- IBOC loopcode configuration is not supported when CESoP or SATOP (framed or unframed) is configured.
- ESF loopcode configuration is not supported when SAToP is configured.

Configuring Loopback Remote on a T1 Interface Module

To set T1 loopback remote iboc fac1/fac2/csu for DS1, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t1 0/1/1
```

```
loopback remote iboc {fac1 | fac2 | csu}
exit.
```

To set T1 loopback remote esf line csu/payload on the DS1 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t1 0/1/1
loopback remote esf {line csu | payload}
exit
```


Note

loopback remote esf line niu is not supported.

Verifying the Loopback Remote Configuration

Use the following command to check the loopback remote configuration:

```
router# show running-config | sec 0/1/1
controller T1 0/1/10
threshold sd-ber 6
threshold sf-ber 3
framing sf
linecode b8zs
cablelength short 110
loopback remote iboc fac1
```

Use the following command to verify the loopback remote configuration:

```
router# show controller t1 0/1/1
T1 0/1/1 is up (NIU FAC1 Line Loopback with IBOC)
  Currently in Inband Remotely Line Looped
  Applique type is
  Cablelength is short 110
  Receiver has no alarms.
  alarm-trigger is not set
Soaking time: 3, Clearance time: 10
  AIS State:Clear LOS State:Clear LOF State:Clear
  Framing is ESF, FDL is ansi, Line Code is B8ZS, Clock Source is Line.
  BER thresholds: SF = 10e-3 SD = 10e-6
  Data in current interval (230 seconds elapsed):
   Near End
     {\tt O} Line Code Violations, {\tt O} Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavailable Secs
     O Path Failures, O SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavailable Secs
     0 Path Failures
  Data in Interval 1:
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
    1 Path Failures, 0 SEF/AIS Secs
   Far End Data
     O Line Code Violations, O Path Code Violations
```

```
0 Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, 0 Degraded Mins
4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
0 Path Failures
Total Data (last 1 15 minute intervals):
Near End
0 Line Code Violations, 0 Path Code Violations,
0 Slip Secs, 0 Fr Loss Secs, 14 Line Err Secs, 0 Degraded Mins,
0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
1 Path Failures, 0 SEF/AIS Secs
Far End
0 Line Code Violations, 0 Path Code Violations,
0 Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, 0 Degraded Mins,
4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
0 Path Failures
```

Associated Commands

The commands used to configure the Interfaces.

Commands	URL
cem-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2440628600
payload-size dejitter-buffer	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp3946673156
class cem	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2169323859
controller t1/e1	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp1472647421
xconnect	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t2.html#wp8578094790
linecode	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l1.html#wp2312535965
framing	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-f1.html#wp2853515177
clock source	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp6081785140

Commands	URL
cable length	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2492964151
bert pattern	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp3620978929
channelized	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp7026926390
loopback	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l1.html#wp1033903426
show controller t1	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s3.html#wp2149471094

Configuring T3 Interfaces

T3 interface supports 4 ports. The channels on the T3 interface can be configured as either clear channel mode or channelized mode.

- Information About T3 Interfaces, on page 37
- Enabling T3 Controller, on page 37
- Configuring Framed SAToP Channelized T3/T1 Interfaces, on page 43
- Performance Monitoring, on page 44
- Troubleshooting T3 Controllers, on page 51
- Associated Commands, on page 60

Information About T3 Interfaces

The following sections provide information about T3 interfaces.

Overview of T3 Interfaces

The T3 interface supports two modes, clear channel mode and channelized mode.

Benefits of T3 Interfaces

The following are the benefits of T3 interfaces:

- · Higher bandwidth
- Flexibility by channelization

Enabling T3 Controller

To enable T3 controller:

enable configure terminal controller mediatype 0/4/12 mode t3 end

Configuring the Controller - Clear Channel T3 Interfaces

When the clear channel T3 interface is used for the first time, the running configuration does not show the T3 controller. You can use the **show platform** command to check whether the chassis recognizes the T3 port and initializes the card correctly. After the port is configured for the slot, the respective controller appears in the running configuration and you can configure the clear channel T3 interface.

Perform this task to configure clear channel controller as T3.

```
enable
configure terminal
controller t3 0/4/12
no channelized
clock source line
no shut
exit
```


Note

By default, the T3 controller is in C-Bit framing mode. To configure CEM, the framing mode must be set to unframed.

Verifying Controller Configuration of Clear Channel T3 Interfaces

Use the **show controllers** command to verify the controller configuration of clear channel T3 interface:

```
# show controllers t3 0/4/12
T3 0/4/12 is up.
Hardware is
Applique type is Clear Channel T3
No alarms detected.
Framing is Unframed, Line Code is B3ZS, Cablelength is 224
Clock Source is internal
Equipment customer loopback
Data in current interval (240 seconds elapsed):
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
```

```
Total Data (last 1 15 minute intervals):
  Near End
     O Line Code Violations, O P-bit Coding Violations,
    O C-bit Coding Violations, O P-bit Err Secs,
     O P-bit Severely Err Secs, O Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
T1 1 is up
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is ESF, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
    O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    O Unavailable Secs, O Stuffed Secs
     O Path Failures, O SEF/AIS Secs
  Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    O Unavailable Secs O Path Failures
  Data in Interval 1:
  Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
    2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
    O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
  Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
    3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
     O Line Code Violations, O Path Code Violations,
    O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
    O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
   Far End
    O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs, O Path Failures
```

Configuring the Controller - Channelized T3 or E3 Interfaces

When the channelized T3/T1 interface is used for the first time, the running configuration does not show the T3 controller. You can use the show platform command to check if the chassis recognizes the T3 port and initializes the card properly. After the port is configured for the slot, the respective controller appears in the running configuration and you can configure the channelized T3/T1 interface.

Perform this task to configure channelized controller as T3/T1.

enable configure terminal controller t3 0/4/12 channelized clock source line no shut exit

Note

The channelized mode is the default mode for T3 interface.

Verifying the Controller Configuration of Channelized T3/T1 Interfaces

Use the **show controllers** command to verify the controller configuration of channelized T3/T1 interfaces:

```
# show controllers t3 0/4/12
T3 0/4/12 is down.
Hardware is
Applique type is Channelized T3/T1
Receiver has loss of signal.
MDL transmission is disabled
FEAC code received: No code is being received
Framing is C-BIT Parity, Line Code is B3ZS, Cablelength Short less than 225ft
BER thresholds: SF = 10e-10 SD = 10e-10
Clock Source is line
Equipment customer loopback
Data in current interval (240 seconds elapsed):
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
     O P-bit Severely Err Secs, O Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
```

```
20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Sec
T1 1 is down
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is ESF, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
  Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    0 Path Failures, 0 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
  Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
  Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
  Near End
     O Line Code Violations, O Path Code Violations,
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
    O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs, O Path Failures
```

Configuring SAToP - Clear Channel T3 Interfaces

Before Structure-Agnostic TDM over Packet (SAToP) is configured, the controller of clear channel T3 interface must be configured.

```
enable
configure terminal
controller t3 0/4/12
no channelized
cem-group 0 unframed
interface CEM 0/4/12
cem 0
```

```
xconnect 10.10.2.2 204 encapsulation mpls
exit
```

Verifying CEM Configuration of Clear Channel T3 Interfaces for SAToP

Use the **show run interface** command to verify the configuration of xconnect:

```
# show run interface cem 0/4/12
Current configuration : 96 bytes
!
interface CEM 0/4/12
no ip address
cem 0
xconnect 10.10.2.2 204 encapsulation mpls
!
end
```

Use the **show cem circuit interface cem** command to verify the CEM interface configuration of clear channel T3 interface for SAToP:

```
# show cem circuit interface cem 0/4/12
CEM 0/4/12, ID: 0, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: down, T3 state: up
Configuring SAToP - Clear Channel T3 Interfaces
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 1024
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 1321577 Dropped: 0
Egress Pkts: 1321577 Dropped: 0
CEM Counter Details
Input Errors: 0 Output Errors: 0
Pkts Missing: 0 Pkts Reordered: 0
Misorder Drops: 0 JitterBuf Underrun: 0
Error Sec: 0 Severly Errored Sec: 0
Unavailable Sec: 0 Failure Counts: 0
Pkts Malformed: 0 JitterBuf Overrun: 0
```

Configuring SAToP - Channelized T3/T1 Interfaces

Before SAToP is configured, the controller of channelized T3/T1 interface must be configured.

```
enable
configure terminal
controller t3 0/4/12
channelized
t1 1 cem-group 0 unframed
interface CEM 0/4/12
no shut
cem 0
xconnect 10.10.2.2 204 encapsulation mpls
exit
```

Verifying the CEM Configuration of Channelized T3 or T1 Interfaces

Use the **show run controller** command to verify the CEM configuration of channelized T3 or T1 interface:

```
# show run controller t3 0/4/12
Current configuration : 109 bytes
!
Controller T3 0/4/12
framing c-bit
cablelength short
t1 1 cem-group 0 unframed
end
```

Use the **show cem circuit interface cem** command to verify the CEM configuration of channelized T3 or T1 interface:

```
# show cem circuit interface cem 0/4/12
CEM0/4/12, ID: 1, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, T1 state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 192
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 105043259 Dropped: 0
Egress Pkts: 105043387 Dropped: 0
CEM Counter Details
Input Errors: 0 Output Errors: 0
Pkts Missing: 0 Pkts Reordered: 0
Misorder Drops: 0 JitterBuf Underrun: 32
Error Sec: 0 Severly Errored Sec: 0
Unavailable Sec: 0 Failure Counts: 0
Pkts Malformed: 0 JitterBuf Overrun: 0
CEM0/4/12, ID: 28, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, T1 state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 192
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 136303 Dropped: 0
Egress Pkts: 0 Dropped: 0
CEM Counter Details
Input Errors: 0 Output Errors: 0
Pkts Missing: 135682 Pkts Reordered: 0
Misorder Drops: 0 JitterBuf Underrun: 137649
Error Sec: 0 Severly Errored Sec: 0
Unavailable Sec: 0 Failure Counts: 135
Pkts Malformed: 0 JitterBuf Overrun: 0
```

Configuring Framed SAToP - Channelized T3/T1 Interfaces

Note

Framing type should be maintained same in all routers end to end.

To configure the controller of channelized T3/T1 interface for framed SAToP:

```
enable
configure terminal
controller t3 0/4/12
channelized mode
framing c-bit
t1 1 cem-group 0 framed
interface CEM 0/4/12
cem 0
xconnect 10.10.2.2 204 encapsulation mpls
exit
```

Verifying the CEM Configuration of Channelized T3/T1 Interfaces for Framed SAToP

Use the **show run controller** command to verify the CEM configuration of channelized T3/T1 interface for Framed SAToP:

```
# show run controller t3 0/4/12
Current configuration : 109 bytes
!
Controller T3 0/4/12
framing c-bit
cablelength short
t1 1 cem-group 0 framed
end
```

Use the **show cem circuit interface cem** command to verify the CEM configuration of channelized T3/T1 interface for Framed SAToP:

```
# show cem circuit interface cem 0/4/12
CEM0/0/0, ID: 1, Line: UP, Admin: UP, Ckt: ACTIVE
Mode :Channelized-T1, T1: 1, CEM Mode: T1-SATOP
Controller state: down, T1 state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 192
Framing: Framed SATOP
CEM Defects Set
None
```

Performance Monitoring

You can view the statistics or error count generated on the TDM lines for T3 interfaces.

```
enable
configure terminal
controller MediaType 0/4/12
mode t3
controller t3 0/4/12
framing c-bit
cablelength
long 224-450 ft
short 0-224 ft
controller MediaType 0/4/12
mode t3
controller T3 0/4/12
```

framing c-bit cablelength short

To view the performance monitoring result, use the **show controller t3** command:

Router# show controller t3 0/4/12

```
T3 0/4/12 is up.
Hardware is
Applique type is Channelized T3/T1
  No alarms detected.
  MDL transmission is disabled
  FEAC code received: No code is being received
  Framing is C-BIT Parity, Line Code is B3ZS, Cablelength Short less than 225ft
  BER thresholds: SF = 10e-10 SD = 10e-10
  Clock Source is internal
  Equipment customer loopback
  Data in current interval (240 seconds elapsed):
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     0 AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
     0 P-bit Severely Err Secs, 0 Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
T1 1 is up
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is ESF, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
   Near End
     O Line Code Violations, O Path Code Violations
```

```
O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   O Unavailable Secs, O Stuffed Secs
  0 Path Failures, 0 SEF/AIS Secs
Far End
  O Line Code Violations, O Path Code Violations
  O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
  O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   O Unavailable Secs O Path Failures
Data in Interval 1:
Near End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
  2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
  O Unavailable Secs, O Stuffed Secs
  1 Path Failures, 2 SEF/AIS Secs
Far End
  O Line Code Violations, O Path Code Violations
  O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
  3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
   O Unavailable Secs O Path Failures
Total Data (last 1 15 minute intervals):
Near End
  O Line Code Violations, O Path Code Violations,
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
  2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
  O Unavailable Secs, O Stuffed Secs
   1 Path Failures, 2 SEF/AIS Secs
Far End
  O Line Code Violations, O Path Code Violations
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
   O Unavailable Secs, O Path Failures
```

Use Case 1

If your configuration is as follows:

- T1 is up
- No alarms
- Framing is unframed
- · Clock Source is Internal

, then the following performance monitoring result is displayed:

```
Router# show controller t3 0/4/12
T3 0/4/12 is up.
Hardware is
Applique type is Channelized T3/T1
No alarms detected.
MDL transmission is disabled
FEAC code received: No code is being received
Framing is unframedt
Clock Source is internal
Equipment customer loopback
Data in current interval (240 seconds elapsed):
Near End
0 Line Code Violations, 0 P-bit Coding Violations
0 C-bit Coding Violations, 0 P-bit Err Secs
0 P-bit Severely Err Secs, 0 Severely Err Framing Secs
```

```
O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
  Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
  Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
     O P-bit Severely Err Secs, O Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
T1 1 is up
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is unframed, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
  Near End
     O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    O Path Failures, O SEF/AIS Secs
  Far End
     O Line Code Violations, O Path Code Violations
     0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
  Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
  Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
```

```
Near End

O Line Code Violations, O Path Code Violations,
O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
2 Errored Secs, O Bursty Err Secs, 2 Severely Err Secs
O Unavailable Secs, O Stuffed Secs
1 Path Failures, 2 SEF/AIS Secs
Far End
O Line Code Violations, O Path Code Violations
O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
3 Errored Secs, O Bursty Err Secs, 3 Severely Err Secs
O Unavailable Secs, O Path Failures
```

Use Case 2

If your configuration is as follows:

- T1 28 is up
- · No alarm received
- Framing is unframed
- · Clock Source is Internal

, then the following performance monitoring result is displayed:

```
Router# show controller t3 0/4/12
T3 0/4/12 is up.
Hardware is
Applique type is Channelized T3/T1
  No alarms detected.
  MDL transmission is disabled
  FEAC code received: No code is being received
  Framing is unframedt
  Clock Source is internal
  Equipment customer loopback
  Data in current interval (240 seconds elapsed):
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
```

```
O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
     0 P-bit Severely Err Secs, 0 Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     0 C-bit Unavailable Secs, 0 Path Failures
     O Code Violations, O Service Affecting Secs
T1 28 is up
  timeslots:
  FDL per AT&T 54016 spec.
 No alarms detected.
  Framing is unframed, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
  Near End
    O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    0 Path Failures, 0 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
  Near End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     0 Slip Secs, 2 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
   Near End
    O Line Code Violations, O Path Code Violations,
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
    O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
  Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs, O Path Failures
```

The complete output for the T3 **show controller** command is:

```
# show controllers t3 0/4/12
```

```
T3 0/4/12 is down.

Hardware is

Applique type is Channelized T3/T1

No alarms detected.

MDL transmission is disabled

FEAC code received: No code is being received

Framing is C-BIT Parity, Line Code is B3ZS, Cablelength Short less than 225ft

BER thresholds: SF = 10e-10 SD = 10e-10

Clock Source is internal
```

```
Equipment customer loopback
  Data in current interval (240 seconds elapsed):
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
     O P-bit Severely Err Secs, O Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     0 Errored Secs, 0 Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
T1 28 is up
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is unframed, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
  Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     O Path Failures, O SEF/AIS Secs
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
```

```
O Unavailable Secs, O Stuffed Secs
  1 Path Failures, 2 SEF/AIS Secs
Far End
  O Line Code Violations, O Path Code Violations
  O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
   3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
  O Unavailable Secs O Path Failures
Total Data (last 1 15 minute intervals):
  O Line Code Violations, O Path Code Violations,
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
  O Unavailable Secs, O Stuffed Secs
  1 Path Failures, 2 SEF/AIS Secs
Far End
  O Line Code Violations, O Path Code Violations
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
   O Unavailable Secs, O Path Failures
```

Table 7: Feature History

Feature Name	Release Information	Description
GR-820-CORE specific Performance Monitoring	Cisco IOS XE Bengaluru 17.5.1	The show controller tabular enables you to view the performance monitoring details in tabular form as per GR-820-Core standards.

To view the performance monitoring details on T3 interface, use the show controller t3 tabular command:

```
Router#show controllers t3 0/7/12 tabular
T3 0/7/12 is down.
 Hardware is
  Applique type is Subrate T3
 Receiver has loss of signal.
 MDL transmission is disabled
  FEAC code received: No code is being received
  Framing is C-BIT Parity, Line Code is B3ZS, Cablelength Short less than 225ft
 BER thresholds: SF = 10e-3 SD = 10e-6
 Clock Source is internal
 Equipment customer loopback
 Near End Data
 INTERVAL
              CV-L ES-L SES-L LOSS-L CVP-P CVCP-P ESP-P ESCP-P SESP-P SESCP-P SAS-P
 AISS-P FC-P UASP-P UASCP-P
 11:33-11:46 0 779
                                   779
                                           0
                                                         0
                                                                     0
    0 0
               779
                       779
 Far End Data
 INTERVAL
              CVCP-PFE ESCP-PFE SESCP-PFE UASCP-PFE FCCP-PFE SASCP-PFE
 11:33-11:46
                     0
                              0
                                         0
                                                    0
                                                             0
PE2#
```

Troubleshooting T3 Controllers

You can use the following methods to troubleshoot the T3 controllers on the chassis:

Running Bit Error Rate Testing

Bit error rate testing (BERT) is supported on T3 interfaces. You can run 16 BERTs at a time. The test can be either of the T1 or the T3 interface.

The interface contains on board BERT circuitry. With this, the interface software can send and detect a programmable pattern that is compliant with CCITT/ITU O.151, O.152, O.153 pseudo-random, and repetitive test patterns. BERTs allow you to test cables and signal problems in the field.

When running a BERT test, your system must receive the same pattern that it is transmitting. So, ensure the two common options are available:

- Use of a loopback somewhere in the link or network
- Configuration of a remote testing equipment to transmit the same BERT test pattern at the same time

Both the total number of bits and the error bits received are available for analysis. You can select the testing period from 1 minute to 24 hours and you can also retrieve the error statistics anytime during the BERT test.

BERT is supported in two directions:

- Line supports BERT in TDM direction
- System supports BERT in PSN direction

BERT Patterns on T3/E3 Interface Module

Bit error rate testing (BERT) is supported on T3/E3 interfaces.

- You can run 16 BERTs at a time.
- The test can be either of the T1/E1 or the T3/E3 interface.

Table 8: Feature History

Feature Name	Release Information	Description
Support for all 0s and 1s BERT Patterns	Cisco IOS XE Bengaluru 17.4.1	Support for all 0s and 1s BERT patterns on T3 or E3 interfaces.

The BERT patterns on the 48-port T3/E3 interface module are:

Table 9: BERT Pattern Descriptions

Keyword	Description
All 1s 6	Pseudo-random binary test pattern consisting of all 1's that is used to test alternating line volt and repeaters.
All 0s	Pseudo-random binary test pattern consisting of all 0's that is used for test line coding.
2^15-1 O.151	Pseudo-random O.151 test pattern consisting of a maximum of 14 consecutive zeros and 15 consecutive ones. The length of this pattern is 32,768 bits.

Keyword	Description
2^20-O.151	Pseudo-random O.151 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.
2^20-O.153	Pseudo-random O.153 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.
2^23-1 O.151	Pseudo-random 0.151 test pattern consisting of a maximum of 22 consecutive zeros and 23 consecutive ones. The length of this pattern is 8,388,607 bits.
2^9 ⁷	Pseudo-random binary test pattern consisting of a maximum of eight consecutive zeros and nine consecutive ones. The length of this pattern is 511 bits.
2^11 <u>8</u>	Pseudo-random binary test pattern consisting of a maximum of ten consecutive zeros and eleven consecutive ones. The length of this pattern is 2048 bits.

- ⁶ Starting with Cisco IOS XE Bengaluru 17.4.1, All Is are supported on all modes.
- ⁷ Starting with Cisco IOS XE Gibraltar 16.12.1, 2⁹ is supported on both T3 and T1 modes.
- ⁸ Starting with Cisco IOS XE Fuji 16.9.5, 2¹¹ is supported on both T3 and T1 modes.

Note

If All 1's BERT pattern is tested on the system side, then ensure that you need to start all 1's pattern from both sides of the end points.

Configuring BERT on one side and loopback on other side of the end points is not supported. The router treats all 1's pattern as AIS alarm and BERT will not come in sync with the other side configuration of the end point.

Configuring BERT for Clear and Channelized T3 Interfaces

Before you configure BERT for clear channel T3 interfaces, ensure that controller and CEM are configured.

To run a BERT on clear channel T3 interface, perform the following tasks in global configuration mode.

enable configure terminal controller t3 0/4/12 no channelized bert pattern 0s interval 30 direction line exit

Note

To terminate a BERT test during the specified test period, use the **no bert** command.

You can view the results of a BERT test at the following points of time:

- After you terminate the test using the no bert command
- After the test runs completely
- Anytime during the test (in real time)

Verifying the BERT Configuration for T3 Interfaces

Use the **show controller** command to verify the BERT configuration for clear channel T3 interfaces:

```
# show controllers t3 0/4/12 | sec BERT
BERT test result (running)
Running Bit Error Rate Testing
Test Pattern : 2^15, Status : Not Sync, Sync Detected : 0
DSX3 BERT direction : Line
Interval : 5 minute(s), Time Remain : 3 minute(s)
Bit Errors (since BERT started): 0 bits,
Bits Received (since BERT started): 0 Kbits
Bit Errors (since last sync): 0 bits
```

Use the **show controller** command to verify the BERT configuration of channelized T3/T1 interfaces interfaces:

show controllers t3 0/4/12

```
Hardware is
 Applique type is Channelized T3/T1
  No alarms detected.
 MDL transmission is disabled
  FEAC code received: No code is being received
  Framing is C-BIT Parity, Line Code is B3ZS, Cablelength Short less than 225ft
  BER thresholds: SF = 10e-10 SD = 10e-10
  Clock Source is internal
  Equipment customer loopback
  Data in current interval (240 seconds elapsed):
     O Line Code Violations, O P-bit Coding Violations
     0 C-bit Coding Violations, 0 P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
```

```
O P-bit Severely Err Secs, O Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
T1 28 is up
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is unframed, Clock Source is Internal
  BERT test result (running)
  Test Pattern: 2^23, Status: Not Sync, Sync Detected: 0
  DSX1 BERT direction : Line
  Interval : 5 minute(s), Time Remain : 4 minute(s)
  Bit Errors (since BERT started): 0 bits,
  Bits Received (since BERT started): 0 Kbits
  Bit Errors (since last sync): 0 bits
  Bits Received (since last sync): 0 Kbits
  Data in current interval (250 seconds elapsed):
  Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     O Path Failures, O SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O Path Code Violations,
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs, O Path Failures
```

Loopback on T1/T3 Interfaces

You can use the following loopback on the clear and channelized T3/T1 interfaces.

Loopback	Description
loopback local	Loops the transmitting signal back to the receiver.
loopback network line	Loops the incoming signal back to the interface using the line loopback mode of the framer. The framer does not reclock or reframe the incoming data. All incoming data is received by the interface driver.

Configuring Loopback for T3 Interfaces

To set a loopback local on the clear channel T3 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t3 0/4/12
loopback local
exit
```

To set a loopback network on the clear channel T3 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t3 0/4/12
loopback network line
exit
```

To set a loopback local on the channelized channel T3/T1 interface, perform the following tasks in global configuration mode:

```
enable configure terminal controller t3 0/4/12 channelized t1 1 loopback local exit
```

To set a loopback network on the channelized channel T3/T1 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t3 0/4/12
channelized
t1 1 loopback network line
exit
```


Note

To remove a loopback, use the **no loopback** command.

Note

Network payload configuration is not supported on SAToP. To configure loopback network payload when SAToP is configured, you need to remove the CEM configuration and then configure the loopback.

Loopback Remote on T1 and T3 Interfaces

The remote loopback configuration attempts to put the far-end T1 or T3 into a loopback.

The remote loopback setting loops back the far-end at line or payload, using IBOC (inband bit-orientated CDE) or the ESF loopback codes to communicate the request to the far-end.

Restrictions for Loopback Remote

- E1 and E3 loopback remote are not supported until Cisco IOS XE Fuji 16.9.4 release. Starting from Cisco IOS XE Fuji 16.9.5 release, E1 and E3 loopback remote are supported.
- IBOC loopcode configuration is not supported when CESoP or SATOP (framed or unframed) is configured.
- ESF loopcode configuration is not supported when SAToP is configured.

Configuring Loopback Remote on T1 and T3 Interface

To set T3 loopback remote line or payload for T3 or E3 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t3 0/0/1
loopback remote {line | payload}
exit
```

To set T1 loopback remote iboc fac1/fac2/csu for T3 or E3 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t3 0/0/1
t1 1 loopback remote iboc {fac1 | fac2 | csu}
exit
```

To set T1 loopback remote iboc esf line csu/esf payload for T3 or E3 interface, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller t3 0/0/1
t1 1 loopback remote iboc esf {line csu | payload}
```

Verifying the Loopback Remote Configuration on T1 or T3 Interfaces

Use the following command to check the loopback remote configuration on a T3 interface module:

```
router# show running-config | sec 0/0/1
controller MediaType 0/0/1
```

```
mode t3
controller T3 0/0/1
threshold sd-ber 6
threshold sf-ber 3
no channelized
framing c-bit
cablelength short
loopback remote line
```

Use the following command to verify the loopback remote configuration on a T3 interface module:

```
router (config-controller) # do show controller t3 0/0/1
T3 0/0/1 is up. (Configured for Remotely Looped)
  Currently in Remotely Line Looped
  Hardware is
  Applique type is Subrate T3
  Receiver has no alarms.
  MDL transmission is disabled
  FEAC code received: No code is being received
  Framing is C-BIT Parity, Line Code is B3ZS, Cablelength Short less than 225ft
  BER thresholds: SF = 10e-10 SD = 10e-10
  Clock Source is internal
  Equipment customer loopback
  Data in current interval (240 seconds elapsed):
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
     O P-bit Severely Err Secs, O Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     0 C-bit Unavailable Secs, 0 Path Failures
     O Code Violations, O Service Affecting Secs
T1 1 is up
```

```
timeslots:
FDL per AT&T 54016 spec.
No alarms detected.
Framing is ESF, Clock Source is Internal
Data in current interval (250 seconds elapsed):
Near End
  O Line Code Violations, O Path Code Violations
  O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
  O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   O Unavailable Secs, O Stuffed Secs
   0 Path Failures, 0 SEF/AIS Secs
Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
  O Unavailable Secs O Path Failures
Data in Interval 1:
Near End
  O Line Code Violations, O Path Code Violations
  O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
  2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
   O Unavailable Secs, O Stuffed Secs
  1 Path Failures, 2 SEF/AIS Secs
Far End
   O Line Code Violations, O Path Code Violations
  O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
   3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
   O Unavailable Secs O Path Failures
Total Data (last 1 15 minute intervals):
Near End
  O Line Code Violations, O Path Code Violations,
  O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
   O Unavailable Secs, O Stuffed Secs
  1 Path Failures, 2 SEF/AIS Secs
Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
   O Unavailable Secs, O Path Failures
```

Use the following command to check the loopback remote configuration on a T1 interface module:

```
Router#show run | sec 0/4/15
controller MediaType 0/4/15
mode t3
controller T3 0/4/15
threshold sd-ber 6
threshold sf-ber 3
framing c-bit
cablelength short
t1 1 Loopback remote iboc fac1
```

Use the following command to verify the loopback remote configuration on a T1 interface module:

```
Router#show controller t3 0/4/15 | be T1 1
T1 1 is up
timeslots:
FDL per AT&T 54016 spec.
Configured for NIU FAC1 Line Loopback with IBOC
Currently in Inband Remotely Line Looped
Receiver has no alarms.
Framing is ESF, Clock Source is Internal
```

```
Data in current interval (250 seconds elapsed):
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     0 Path Failures, 0 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O Path Code Violations,
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs, O Path Failures
```

Associated Commands

The commands used to configure the interfaces.

Commands	URL
controller mediatype	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp3512725718
mode t3/e3	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp5688885940
controller t1	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp1472647421
controller t3	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp1921350260

Commands	URL
controller e3	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp4240965734
clock source	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp6081785140
channelized	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp7026926390
cem	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2184138077
cem-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2440628600
xconnect	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t2.html#wp8578094790
t1/e1 cem-group	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp8472041760
payload-size dejitter-buffer	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp3946673156
bert pattern	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp3620978929
loopback	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp2513399572
t1/e1 loopback	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp3852360411
show controllers t3	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s3.html#wp1987423547

Associated Commands

CEM Pseudowire

Cisco Pseudowire Emulation Edge-to-Edge (PWE3) allows you to transport traffic by using traditional services such as T1 over a packet-based backhaul technology such as MPLS or IP. A pseudowire (PW) consists of a connection between two provider edge (PE) chassis that connects two attachment circuits (ACs), such as T1 or T3 links.

- Information About CEM Pseudowire, on page 63
- System CESoP NxDS0 BERT, on page 69
- Additional References for Configuring Pseudowire, on page 76

Information About CEM Pseudowire

The following sections describe how to configure pseudowire on the interface module of the chassis.

Overview of CEM Pseudowire

Pseudowires manage encapsulation, timing, order, and other operations in order to make it transparent to users. The pseudowire tunnel acts as an unshared link or circuit of the emulated service. CEM is a way to carry TDM circuits over packet switched network. CEM embeds the TDM circuits into packets, encapsulates them into an appropriate header, and then sends that through Packet Switched Network. The receiver side of CEM restores the TDM circuits from packets.

Circuit Emulation

Circuit Emulation (CEM) is a technology that provides a protocol-independent transport over IP/MPLS networks. It enables proprietary or legacy applications to be carried transparently to the destination, similar to a leased line.

CEM provides a bridge between a Time-Division Multiplexing (TDM) network and a Multiprotocol Label Switching (MPLS) network. The router encapsulates the TDM data in the MPLS packets and sends the data over a CEM pseudowire to the remote Provider Edge (PE) router. As a result, CEM functions as a physical communication link across the packet network.

The router supports the pseudowire type that utilizes CEM transport: Structure-Agnostic TDM over Packet (SAToP) and Circuit Emulation Service over Packet-Switched Network (CESoPSN).

L2VPN over IP/MPLS is supported on the interface modules.

Note

We recommend that you configure the controller in the administratively up mode. Configuration under the administratively down mode is not recommended and it might cause configuration errors.

Note

The default behaviour of the CEM pseudowire is always UP irrespective of the controller alarms.

Structure-Agnostic TDM over Packet

Structure-Agnostic TDM over Packet (SAToP) encapsulates Time Division Multiplexing (TDM) bit-streams as pseudowires over public switched networks. It disregards any structure that may be imposed on streams, in particular the structure imposed by the standard TDM framing.

The protocol used for emulation of these services does not depend on the method in which attachment circuits are delivered to the Provider Edge (PE) chassis. For example, a T1 attachment circuit is treated the same way for all delivery methods, including copper, multiplex in a T3 circuit, a virtual tributary of a SONET circuit, or unstructured Circuit Emulation Service (CES).

In SAToP mode, the interface is considered as a continuous framed bit stream. The packetization of the stream is done according to IETF RFC 4553. All signaling is carried out transparently as a part of a bit stream.

How to Configure Pseudowire

The following sections describe how to configure pseudowire.

CEM Group

CEM group denotes a CEM channel that you can create for one or more time slots for T1/E1 and T3/E3 lines.

How to Configure CEM

This section provides information about how to configure CEM. CEM provides a bridge between a Time Division Multiplexing (TDM) network and a packet network, MPLS. The chassis encapsulates the TDM data in the MPLS packets and sends the data over a CEM pseudowire to the remote Provider Edge (PE) chassis.

CEM pseudowire Scale

Effective from the 16.12.1 release,

- 21504 CEM pseudowires without protection (with SONET)
- 10752 CEM pseudowires with protection

is supported on the router.

Currently the Cisco A900-IMA3G-IMSG support a maximum of 1344 CEM pseudowires.

Note

The 21K CEM pseudowire's can be achieved on the router by using the combination of the Cisco A900-IMA1Z8S-CX and A900-IMA3G-IMSG interface modules in multiple slot combinations.

Restrictions for pseudowire Scale Increase

- CEM pseudowire scale is supported **only** on the SONET mode.
- When configured for scale beyond 21504 CEM pseudowire, a syslog is printed as:

Cannot allocate CEM group, maximum CEM group exceeded, but the configurations will not be rejected. For example, when a 215xxth CEM pseudowire is configured, the configuration fails even though the CLI is not rejected with the mentioned syslog notification.

- While performing ISSU with 21504 CEM pseudowire, sufficient delay must be provided for each interface module.
- After SSO and successful bulk sync, run the **show platform software tdm-combo cem ha-stray-entries** command. If the output of this command displays no entries, then the next SSO can be performed. You must wait until **show platform software tdm-combo cem ha-stray-entries** has no entries.

Configuring CEM Group for SAToP for T1 Interfaces

To configure a CEM group for SAToP:

```
enable configure terminal controller t1 0/4/0 cem-group 0 unframed end
```

Configuring CEM Classes

A CEM class allows you to create a single configuration template for multiple CEM pseudowires. Follow these steps to configure a CEM class:

Note

- The CEM parameters can be configured either by using CEM class or on CEM interface directly.
- The CEM parameters at the local and remote ends of a CEM circuit must match; otherwise, the pseudowire between the local and remote PE chassis does not come up.

```
enable
configure terminal
class cem mycemclass
payload-size 512
dejitter-buffer 12
exit
interface cem 0/4/0
cem 0
cem class mycemclass
xconnect 10.10.10.10 200 encapsulation mpls
exit
```

Configuring CEM Parameters

The following sections describe the parameters you can configure for CEM circuits.

Configuring Payload Size

To specify the number of bytes encapsulated into a single IP packet, use the **payload-size** command. The size argument specifies the number of bytes in the payload of each packet. The range is from 32 to 1312 bytes.

Default payload sizes for an unstructured CEM channel are as follows:

- T1 = 192 bytes
- DS0 = 32 bytes

Default payload sizes for a structured CEM channel depend on the number of time slots that constitute the channel. Payload size (L in bytes), number of time slots (N), and packetization delay (D in milliseconds) have the following relationship: L = 8*N*D. The default payload size is selected in such a way that the packetization delay is always 1 millisecond. For example, a structured CEM channel of 16xDS0 has a default payload size of 128 bytes.

Note

Both payload-size and dejitter-buffer must be configured simultaneously.

Configuring Payload Size for T3 Interfaces

To specify the number of bytes encapsulated into a single IP packet, use the payload-size command. The size argument specifies the number of bytes in the payload of each packet.

Default payload sizes are as follows:

- T3 clear channel= 1024 bytes
- T3 channelized = 192 bytes

Default payload sizes for a structured CEM channel depend on the number of time slots that constitute the channel. Payload size (L in bytes), number of time slots (N), and packetization delay (D in milliseconds) have the following relationship: L = 8*N*D. The default payload size is selected in such a way that the packetization delay is always 1 millisecond.

Note

Both payload-size and dejitter-buffer must be configured simultaneously.

Setting the Dejitter Buffer Size

Dejitter Buffer is a buffering mechanism to account for a delay variation in the CEM packet stream. The buffer size is the amount of time you allocate to compensate for the network filter. The configured dejitter-buffer size is converted from milliseconds to packets and rounded up to the next integral number of packets. To set the size of the dejitter-buffer (in milliseconds), use the **dejitter-buffer** *value* command. The value range is from 1 to 32; the default is 5.

Shutting Down a CEM Channel

To shut down a CEM channel, use the **shutdown** command in CEM configuration mode. The **shutdown** command is supported only under CEM mode and not under the CEM class.

Configuring CEM Parameter on CEM Interface

The CEM parameters can be configured directly on CEM interface. Follow these steps to configure CEM parameters:

```
enable
configure terminal
interface cem 0/4/0
cem 0
payload-size 512 dejitter-buffer 12
xconnect 10.10.10.10 200 encapsulation mpls
exit
```

Verifying the Interface Configuration

Use the following commands to verify the pseudowire configuration:

• **show cem circuit**—Displays information about the circuit state, administrative state, the CEM ID of the circuit, and the interface on which it is configured. If **xconnect** is configured under the circuit, the command output also includes information about the attachment circuit status.

```
Router# show cem circuit

?

<0-504> CEM ID
    detail Detailed information of cem ckt(s)
    interface CEM Interface
    summary Display summary of CEM ckts
    | Output modifiers

Router# show cem circuit

CEM Int. ID Line Admin Circuit AC

CEM 0/4/0 1 UP UP ACTIVE --/--
CEM 0/4/0 2 UP UP ACTIVE --/--
CEM 0/4/0 3 UP UP ACTIVE --/--
CEM 0/4/0 4 UP UP ACTIVE --/--
CEM 0/4/0 5 UP UP ACTIVE --/--
CEM 0/4/0 5 UP UP ACTIVE --/--
CEM 0/4/0 5 UP UP ACTIVE --/--
```

• show cem circuit *cem-id* — Displays the detailed information about that particular circuit.

```
Router# show cem circuit 0
CEM 0/4/0, ID: 0, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: down, T3 state: up
Idle Pattern: 0x55, Idle CAS: 0x8
Dejitter: 10 (In use: 0)
Payload Size: 1024
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 11060
                                   Dropped:
                                                         Ω
Egress Pkts: 11061
                                    Dropped:
CEM Counter Details
Input Errors: 0
                                    Output Errors:
```

```
Pkts Missing: 0 Pkts Reordered: 0
Misorder Drops: 0 JitterBuf Underrun: 0
Error Sec: 0 Severly Errored Sec: 0
Unavailable Sec: 0 Failure Counts: 0
Pkts Malformed: 0 JitterBuf Overrun: 0
```

• show cem circuit summary—Displays the number of circuits which are up or down for each interface.

Router# show cem circuit summary

- **show running configuration**—The **show running configuration** command shows detail on each CEM group.
- show cem circuit description—Displays the CEM interface details with description.

Use the show cem circuit description command

Router#show CEM Int.		cuit des	cription Admin	Circuit	Description
CEM0/3/16 Router#show CEM Int.		cuit int		Active 0/3/16 29 de	escription
CEM0/3/16	29	DOWN	UP	Active	cem29_description
Router#show CEM Int.	ID	Ctrlr	Admin	Circuit	Description
CEM0/3/16	29	DOWN	UP	Active	cem29_description

Associated Commands

The following commands are used to configure pseudowire:

Commands	URL
cem-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2440628600
payload-size dejitter-buffer	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp3946673156
class cem	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2169323859
controller t1	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp1472647421

Commands	URL	
xconnect	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t2.html#wp8578094790	
show controllers t3	https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s3.html#wp1987423547	

System CESoP NxDS0 BERT

Table 10: Feature History

Feature Name	Release Information	Description
System CESoP NxDS0 BERT	Cisco IOS XE Dublin 17.11.1	You can configure BERT patterns at the DS0 level on the following interface modules for both the system and line directions.
		• 48-Port T1 or E1 CEM interface module
		• 48-Port T3 or E3 CEM interface module
		• 1-port OC-48/STM-16 or 4-port OC-12/OC-3 / STM-1/STM-4 + 12-port T1/E1 + 4-port T3/E3 CEM interface module
		You can configure speed with bandwidth of 56 kbps or 64 kbps along with the BERT pattern.
		With DS0 level BERT configuration, you can verify the end-to-end connectivity.

CESoP NxDS0 BERT enables you to configure BERT patterns at the DS0 level under CEM circuits and verify if the traffic is stable along with the configured BERT pattern.

Ensure that both sides should have the same mode configured along with the same BERT pattern with the same speed. For example, in a network where CE is connected to PE through an OCx line or PE1 is connected PE2, ensure that both CE and PE or PE1 and PE2 should have the same mode configured along with the same BERT pattern and same speed. Ensure that when you configure the DS0 BERT pattern, you should configure the speed with the bandwidth of 56 kbps or 64 kbps.

You can configure BERT in the system and line direction with speed on the following controller modes:

• T1 or E1

- T3 or E3 (channelized T1 or E1)
- SONET—CT3, CT3-E1, or VT-15
- SDH—On AU-3 or AU-4, VC-1x (VC-11 or VC-12), CT3-E1 mode

The following example shows that the line BERT is configured with a speed of 64kbps on the SONET controller:

vtg 1 t1 1 bert timeslots 1 pattern 2^15 interval 100 direction line speed 64kbps

Restrictions for System CESoP NxDS0 BERT

- You should configure CESoP BERT at the DS0 level with timeslots and speed.
- Channel Associated Signaling (CAS) is not supported.
- You can configure a total of 16 BERTs at a time for an interface module.

Configuring System CESoP NxDS0 BERT

Scenario 1 - Configuring System CESoP NxDS0 BERT on PE Side

Consider a scenario, where CE is connected to PE through an OCx line. Network loopback is configured on CE and system CESoP NxDS0 BERT in line direction and speed of 64 kbps is configured on PE. Verify the BERT pattern and speed configured on PE. The BERT should be in sync.

Figure 4: Configuring System CESoP NxDS0 BERT on PE

Configuring SONET Controller on CE

```
controller SONET 0/10/1
no snmp trap link-status
rate OC3
no ais-shut
alarm-report all
clock source internal
!
sts-1 1
  clock source internal
  mode vt-15
  vtg 1 t1 1 cem-group 0 timeslots 1
!
sts-1 2
  clock source internal
!
sts-1 3
  clock source internal
interface CEMO/10/1
no ip address
```

```
cem 0
end
```

Configuring Network Loopback on CE

```
enable
configure terminal
controller sonet 0/10/1
loopback network
```

Configuring SONET Controller on PE

```
controller SONET 0/5/1
no snmp trap link-status
rate OC3
no ais-shut
alarm-report all
clock source internal
sts-1 1
 clock source internal
 mode vt-15
 vtg 1 t1 1 cem-group 0 timeslots 1
sts-1 2
 clock source internal
sts-1 3
 clock source internal
interface CEM0/5/1
no ip address
cem 0
```


Configuring BERT Pattern with line direction and speed as 64kbps on PE

```
PE(config) #controller sonet 0/5/1
PE(config) #sts-1 1
PE(config-ctrlr-sts1) # vtg 1 t1 1 bert timeslots 1 pattern 2^15 interval 100 direction line speed 64kbps
PE(config-ctrlr-sts1) #end
```

Scenario 2 - Configuring Line BERT on CE and PE

Consider a scenario, where CE is connected to PE through an OCx line. BERT with line direction and speed of 64 kbps is configured on both CE and PE. Verify the BERT pattern and speed configured on both CE and PE. The BERT should be in sync.

Figure 5: Configuring Line BERT on CE and PE

Configuring SONET Controller on CE

```
controller SONET 0/10/1
```

```
no snmp trap link-status
rate OC3
no ais-shut
alarm-report all
clock source internal
sts-1 1
 clock source internal
 mode vt-15
 vtg 1 t1 1 cem-group 0 timeslots 1
 sts-1 2
 clock source internal
 !
sts-1 3
 clock source internal
interface CEM0/10/1
no ip address
cem 0
end
```

Configuring BERT Pattern with line direction and speed as 64 kbps on CE

```
PE(config)#controller sonet 0/5/1
PE(config)#sts-1 1
PE(config-ctrlr-sts1)#vtg 1 t1 1 bert timeslots 1 pattern 2^15 interval 100 direction line speed 64kbps
PE(config-ctrlr-sts1)#end
```

Configuring SONET Controller on PE

```
controller SONET 0/5/1
no snmp trap link-status
rate OC3
no ais-shut
alarm-report all
clock source internal
sts-1 1
 clock source internal
 mode vt-15
 vtg 1 t1 1 cem-group 0 timeslots 1
sts-1 2
 clock source internal
 .
sts-1 3
 clock source internal
interface CEM0/5/1
no ip address
```

Configuring BERT Pattern with Line Direction and Speed of 64 kbps on PE

```
PE(config) #controller sonet 0/5/1
PE(config) #sts-1 1
PE(config-ctrlr-sts1) #vtg 1 t1 1 bert timeslots 1 pattern 2^15 interval 100 direction line speed 64kbps
PE(config-ctrlr-sts1) #end
```

Scenario 3 - Configuring System CESoP NxDS0 BERT with System Direction on PE1 and PE2

Consider a scenario, where PE1 is connected to PE2 through a CORE Gigabit Ethernet line. System CESoP NxDS0 BERT with system direction and speed of 56 kbps is configured on both PE1 and PE2. Verify the BERT pattern and speed configured on both PE1 and PE2. The BERT should be in sync.

Figure 6: Configuring System CESoP NxDS0 BERT with System Direction on PE1 and PE2

Ensure that you perform the following steps:

- 1. The core should be UP between PEs and the cross connection should be UP.
- 2. Configure SONET modes on PEs.
- **3.** Configure BERT on PEs.

Configuring SONET Controller on PE1

```
controller SONET 0/10/1
no snmp trap link-status
rate OC3
no ais-shut
 alarm-report all
clock source internal
 sts-1 1
 clock source internal
 mode vt-15
 vtg 1 t1 1 cem-group 0 timeslots 1
 sts-1 2
 clock source internal
 !
 sts-1 3
 clock source internal
interface CEM0/10/1
no ip address
cem 0
end
```

Configuring BERT Pattern with Line Direction and Speed as 56 kbps on PE1

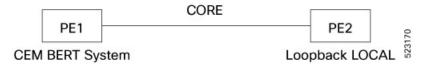
```
PE(config) #controller sonet 0/5/1
PE(config) #sts-1 1
PE(config-ctrlr-sts1) # vtg 1 t1 1 bert timeslots 1 pattern 2^15 interval 100 direction system speed 56kbps
PE(config-ctrlr-sts1) #end
```

Configuring SONET Controller on PE2

```
controller SONET 0/5/1
no snmp trap link-status
rate OC3
no ais-shut
```

```
alarm-report all
clock source internal
!
sts-1 1
clock source internal
mode vt-15
vtg 1 t1 1 cem-group 0 timeslots 1
!
sts-1 2
clock source internal
!
sts-1 3
clock source internal
interface CEMO/5/1
no ip address
cem 0
```

Configuring BERT Pattern with Line Direction and Speed of 56 kbps on PE2


```
PE(config)#controller sonet 0/5/1 PE(config)#sts-1 1 PE(config-ctrlr-sts1)# vtg 1 t1 1 bert timeslots 1 pattern 2^15 interval 100 direction system speed 56kbps PE(config-ctrlr-sts1)#end
```

Sample Scenarios

Similarly, the following are sample scenarios where you can configure system CESoP NxDS0 BERT.

Sample Scenario - 1

Figure 7: Configuring System CESoP NxDS0 BERT with System Direction on PE1 and Loopback as Local on PE2

- 1. The core should be UP between PEs and the cross connection should be UP.
- 2. Configure SONET modes on PE1 and PE2s.
- **3.** Configure system CESoP NxDS0 BERT with system direction and speed on PE1 and loopback as local on PE2.

Verify the BERT pattern and speed configured on both the PE1 and PE2. The BERT should be in sync.

Sample Scenario - 2

Figure 8: Configuring System CESoP NxDS0 BERT with System Direction and Speed on PE1 and Loopback as Network on CE2

- 1. The core should be UP between PEs and the cross connection should be UP between PE2 and CE2.
- 2. Configure SONET modes on PE1 and CE2.

- 3. Configure system CESoP NxDS0 BERT with system direction and speed on PE1.
- **4.** Configure loopback as network on CE2.

Verify the BERT pattern and speed configured on both the PE1 and CE2. The BERT should be in sync.

Sample Scenario - 3

Figure 9: Configuring System CESoP NxDS0 BERT with System Direction on PE1 and Line BERT CE2

- 1. The core should be UP between PEs and the cross connection should be UP between PE2 and CE2.
- 2. Configure SONET modes on PE1 and CE2.
- 3. Configure system CESoP NxDS0 BERT with system direction and speed on PE1.
- **4.** Configure line BERT on CE2.

Verify the BERT pattern and speed configured on both the PE1 and CE2. The BERT should be in sync.

Verifying System CESoP NxDS0 BERT

The following **show** commands enable you to verify the system CESoP NxDS0 BERT configuration:

- show controllers t1 bay/slot/port
- show controller <controller-type> bay/slot/port | section BERT

```
PE1#show controller sonet 0/10/1 | sec BERT
  BERT running on timeslots 1,
  BERT test result (running)
    Test Pattern : 2^15, Status : Sync, Sync Detected : 0
     Interval : 100 minute(s), Time Remain : 01:30:52
    Bit Errors (since BERT started): 35 Mbits,
    Bits Received (since BERT started): 2047290 Mbits
     Bit Errors (since last sync): 35 Mbits
     Bits Received (since last sync): 2047290 Kbits
     Direction
                : Line
     Speed
           : 64kbps
CE#show controller sonet 0/5/1 | sec BERT
  BERT running on timeslots 1,
  BERT test result (running)
    Test Pattern : 2^15, Status : Sync, Sync Detected : 0
     Interval : 100 minute(s), Time Remain : 01:30:52
     Bit Errors (since BERT started): 35 Mbits,
     Bits Received (since BERT started): 2047290 Mbits
     Bit Errors (since last sync): 35 Mbits
     Bits Received (since last sync): 2047290 Kbits
     Direction : system
     Speed: 64kbps
```

Additional References for Configuring Pseudowire

Related Documents

Related Topic	Document Title	
Cisco IOS commands	Cisco IOS Master Commands List, All Releases	

Standards and RFCs

Standard/RFC	Title
_	There are no standards and RFCs for this feature.

MIBs

MII	MIBs Link	
	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:	
	http://www.cisco.com/go/mibs	

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/cisco/web/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

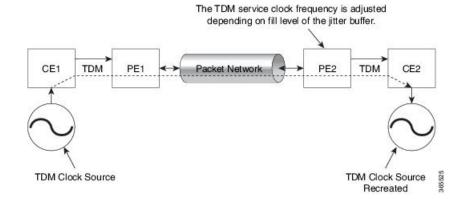
Clock Recovery System for SAToP

The Clock Recovery System recovers the service clock using Adaptive Clock Recovery (ACR) and Differential Clock Recovery (DCR).

- Information About Clock Recovery, on page 77
- How to Configure ACR and DCR, on page 79
- Associated Commands, on page 83
- Additional References for Clock Recovery, on page 84

Information About Clock Recovery

Adaptive Clock Recovery (ACR)


Adaptive Clock Recovery (ACR) is an averaging process that negates the effect of random packet delay variation and captures the average rate of transmission of the original bit stream. ACR recovers the original clock for a synchronous data stream from the actual payload of the data stream. In other words, a synchronous clock is derived from an asynchronous packet stream. ACR is a technique where the clock from the TDM domain is mapped through the packet domain, but is most commonly used for Circuit Emulation (CEM). ACR is supported on unframed and framed modes of SAToP.

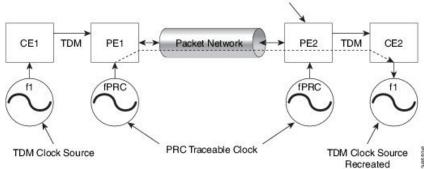
Note

Framing type should be maintained same in all routers end to end.

Effective Cisco IOS XE Everest 16.5.1, ACR is supported on the 8-port T1/E1 interface module.

Differential Clock Recovery (DCR)

Differential Clock Recovery (DCR) is another technique used for Circuit Emulation (CEM) to recover clocks based on the difference between PE clocks. TDM clock frequency are tuned to receive differential timing messages from the sending end to the receiving end. A traceable clock is used at each end, which ensures the recovered clock is not affected by packet transfer. DCR is supported on unframed and framed modes of SAToP.



Note

Framing type should be maintained same in all routers end to end.

Differential timing messages are used to tune the TDM clock frequency from the sending end to the receiving end.

Both ends have a source traceable reference.

Benefits of Clock Recovery

• Customer-edge devices (CEs) can have different clock from that of the Provide-edge devices (PEs).

Scaling Information

IM Card	Pseudowires Supported (Number of Clocks Derived)	
T1 CEM Interface Module	1476	

Prerequisites for Clock Recovery

- The clock of interface modules must be used as service clock.
- CEM must be configured before configuring the global clock recovery.
- RTP must be enabled for DCR in CEM, as the differential clock information is transferred in the RTP header.

Restrictions for Clock Recovery

- The reference clock source is used and locked to a single clock.
- The clock ID should be unique for a particular interface module for ACR or DCR configuration.
- When CEM group is configured, dynamic change in clock source is not allowed.
- ACR clock configuration under each controller should be performed before configuring CEM group.
- When ACR or DCR is configured and loopback network is applied on the same PDH (T1/E1), then the ACR or DCR mode configuration is removed to enable the loopback. The ACR or DCR should be configured again after the loopback maintenance activity.

Scale Restrictions

• For the Cisco IOS XE Amsterdam 17.3.x release, a maximum of **5376** ACR and DCR session scale is supported on the Cisco 1-port OC-192 Interface module or 8-port Low Rate Interface Module (8-port SFP GE and 1-port 10GE IM with CEM, 10G). For releases before the Cisco IOS XE Amsterdam 17.3.1 release, only 2000 session are supported.

How to Configure ACR and DCR

•

Configuring Adaptive Clock Recovery of T1 Interfaces for SAToP

Before configuring Adaptive Clock Recovery, CEM must be configured. Below are the guidelines to configure clock recovery:

- The node (chassis) on which the DS1 is configured for ACR, must have its own clock derived from BITS/GPS/Stratum clock.
- The minimum packet size of CEM pseudowires on the network that delivers robust clock recovery is 64 bytes.

To configure the clock on T1 interfaces for SAToP in controller mode:

enable
configure terminal
controller t1 0/4/0
cem-group 0 unframed

```
clock source recovered 1
exit
```

To configure the clock recovery on T1 interfaces in global configuration mode, use the following commands:

Note

The clock configuration on controller must be done before configuring the clock recovery on global configuration mode.

To remove the clock configuration in ACR and DCR, you must remove the recovery clock configuration in global configuration mode and then remove the controller configuration.

Configuring Adaptive Clock Recovery of T3 Interfaces for SAToP

Before configuring Adaptive Clock Recovery, CEM must be configured. Below are the guidelines to configure clock recovery:

- The node (router) on which the interface module is configured for ACR, must have its own clock derived from BITS/GPS/Stratum clock.
- The minimum packet size of CEM pseudowires on the network that delivers robust clock recovery is 256 bytes.

To configure the clock on T3 interfaces for SAToP in controller mode:

```
enable
configure terminal
controller t3 0/4/12
cem-group 0 unframed
clock source recovered 1
```

To configure the clock recovery on T3 interfaces in global configuration mode, use the following commands:

Note

The clock configuration on controller must be done before configuring the clock recovery on global configuration mode.

To remove the clock configuration in ACR and DCR, you must remove the recovery clock configuration in global configuration mode and then remove the controller configuration.

Verifying Adaptive Clock Recovery Configuration of T3 Interfaces for SAToP

Use the **show recovered-clock** command to verify the adaptive clock recovery of T3 interfaces for SAToP:

Use the **show running-config** | **section** command to verify the configuration of adaptive clock of T3 interfaces:

```
Router# show running-config | section 0/4/12 controller MediaType 0/4/12 mode t3 controller T3 0/4/12 cem-group 0 unframed clock source recovered 1 cablelength 224 interface CEM 0/4/12 no ip address cem 0
```

Use the **show running-config** | **section recovered-clock** command to verify the recovery of adaptive clock of T3 interfaces:

```
Router# show running-config | section recovered-clock recovered-clock 0 0 clock recovered 1 adaptive cem 12 0
```

Configuring Differential Clock Recovery of T3 Interfaces for SAToP

- Before you start configuring DCR, RTP must be enabled on the CEM interface. The RTP is used to carry the differential time.
- The minimum packet size of CEM pseudowires on the network that delivers robust clock recovery is 256 bytes.

To configure differential clock recovery on T3 interface for SAToP in controller mode:

```
enable
configure terminal
controller t3 0/4/12
cem-group 0 unframed
clock source recovered 1
exit
```

To configure RTP header under interface, use the following commands:

```
interface cem 0/4/12 cem 0 rtp-present
```

To configure differential clock recovery of T3 interface in global configuration mode, use the following commands:

```
recovered-clock 0 1
clock recovered 1 differential cem 12 0
ovit
```


Note

The clock configuration on controller must be done before configuring the clock recovery on global configuration mode.

Configuring Clock Recovery on STS-1e Controller for Framed SAToP

Table 11: Feature History

Feature Name	Release Information	Description
STS1E Framed SAToP Support on IMA3G	Cisco IOS XE Bengaluru 17.4.1	Support on clock recovery on STS-1e controller for framed SAToP on the following modes: • T3 • CT3 • VT-15

Starting from Cisco IOS XE Bengaluru 17.4.1, ACR and DCR are supported on STS-1e controller for framed SAToP.

To configure the clock on STS-1e controller for framed SAToP on the T3 mode, enter the following commands:

```
enable
configure terminal
controller STS-1e slot/bay/port
sts-1 1
mode t3
t3 framing c-bit
cem-group 0 framed
t3 clock source recovered 1
```

To configure the clock on STS-1e controller for framed SAToP on the CT3 mode, enter the following commands:

```
enable
configure terminal
controller STS-1e slot/bay/port
sts-1 1
clock source internal
mode ct3
t3 framing c-bit
t1 1 cem-group 0 framed
t1 1 clock source recovered 1
```

To configure the clock on STS-1e controller for framed SAToP on the VT-15 mode, enter the following commands:

```
enable
configure terminal
controller STS-le slot/bay/port
sts-1 1
```

```
mode vt-15 vtg 1 t1 1 cem-group 0 framed vtg 1 t1 1 clock source recovered 2
```

The following example shows how to configure the clock on STS-1e controller for framed SAToP on the T3 mode:

```
enable
configure terminal
controller STS-1e 0/8/12
sts-1 1
mode t3
t3 framing c-bit
cem-group 0 framed
t3 clock source recovered 1
```

The following example shows how to configure the clock on STS-1e controller for framed SAToP on the CT3 mode:

```
enable
configure terminal
controller STS-1e 0/8/12
sts-1 1
clock source internal
mode ct3
t3 framing c-bit
t1 1 cem-group 0 framed
t1 1 clock source recovered 1
```

The following example shows how to configure the clock on STS-1e controller for framed SAToP on the VT-15 mode:

```
enable
configure terminal
controller STS-1e 0/8/12
sts-1 1
mode vt-15
vtg 1 t1 1 cem-group 0 framed
vtg 1t1 1 clock source recovered 2
```

Associated Commands

The commands used to configure adaptive clock recovery and differential clock recovery are:

Commands	URL
clock recovered adaptive cem	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp8894393830

Commands	URL
clock recovered differential cem	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp8894393830
cem-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2440628600
recovered-clock	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp8262293900
controller t1/e1	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp1472647421
clock-source	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp6081785140
network-clock input-source	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html

Additional References for Clock Recovery

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases

Standards and RFCs

Standard/RFC	Title
ITU -T G.8261	Timing and synchronization aspects in packet networks

MIBs

MIB	MIBs Link
	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/cisco/web/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Additional References for Clock Recovery

CEM over MPLS QoS

The QoS EXP matching feature allows you to classify and mark network traffic by modifying the Multiprotocol Label Switching (MPLS) experimental bits (EXP) field in IP packets. This module contains conceptual information and the configuration tasks for classifying and marking network traffic using the MPLS EXP field.

This QoS EXP matching feature is supported on the following CEM interface modules:

- 48-Port T1 or E1 CEM interface module
- 48-Port T3 or E3 CEM interface module
- 1-port OC-48/STM-16 or 4-port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4-port T3/E3 CEM interface module
- 1-port OC-192 or 8-port Low rate CEM interface module

•

- Information About CEM over MPLS QOS, on page 87
- How to Classify and Mark MPLS EXP, on page 88
- Configuration Examples, on page 89

Information About CEM over MPLS QOS

Classifying and Marking MPLS EXP Overview

The QoS EXP matching feature allows you to organize network traffic by setting values for the MPLS EXP field in MPLS packets. By choosing different values for the MPLS EXP field, you can mark packets so that packets have the priority that they require during periods of congestion. Setting the MPLS EXP value allows you to:

Classify traffic

The classification process selects the traffic to be marked. Classification accomplishes this by partitioning traffic into multiple priority levels, or classes of service. Traffic classification is the primary component of class-based QoS provisioning.

· Police and mark traffic

Policing causes traffic that exceeds the configured rate to be discarded or marked to a different drop level. Marking traffic is a way to identify packet flows to differentiate them. Packet marking allows you to partition your network into multiple priority levels or classes of service.

Prerequisites for CEM over MPLS QoS

The device must be configured as an MPLS provider edge (PE) or provider (P) chassis, which can include the configuration of a valid label protocol and underlying IP routing protocols.

Restrictions for CEM over MPLS QoS

- MPLS classification and marking can only occur in an operational MPLS Network.
- MPLS EXP classification and marking is supported on the main chassis interfaces for MPLS packet switching and imposition (simple IP imposition and Ethernet over MPLS (EoMPLS) imposition) and on Ethernet virtual circuits (EVCs) or Ethernet flow points (EFPs) for EoMPLS imposition.
- MPLS EXP topmost classification is not supported for bridged MPLS packets on Ethernet virtual circuits (EVC) or Ethernet flow points (EFP).
- MPLS EXP marking in the ingress direction only.
- If a packet is classified by IP type of service (ToS) or class of service (CoS) at ingress, it cannot be reclassified by MPLS EXP at egress (imposition case). However, if a packet is classified by MPLS at ingress it can be reclassified by Quality of Service (QoS) group at egress (disposition case).
- If a packet is encapsulated in MPLS, the MPLS payload cannot be checked for other protocols such as IP for classification or marking. Only MPLS EXP marking affects packets encapsulated by MPLS.

How to Classify and Mark MPLS EXP

Classifying MPLS Encapsulated Packets

You can use the **match mpls experimental topmost** command to define traffic classes based on the packet EXP values, inside the MPLS domain. You can use these classes to define services policies to mark the EXP traffic using the **police** command.

```
enable
configure terminal
class-map [match-all | match-any] class-map-name
match mpls experimental topmost mpls-exp-value
end
```

Marking MPLS EXP on Imposed Labels

In typical configurations, marking MPLS packets at imposition is used with ingress classification on IP ToS or CoS fields. However, generic matching with the class default value is supported with other ingress attributes such as **vlan**.

Note

For EVC configuration, a policy map that performs matching based on the CoS, and that sets the EXP imposition value, should be used to copy CoS values to the EXP value.

Note

The **set mpls experimental imposition** command works only on packets that have new or additional MPLS labels added to them.

```
enable
configure terminal
policy-map policy-map-name
class class-map-name
set mpls experimental imposition mpls-exp-value
end
```

Classifying and Marking MPLS EXP

Note

The **set mpls experimental topmost** command works only on packets that are already MPLS encapsulated.

```
enable
configure terminal
policy-map policy-map-name
class class-map-name
set mpls experimental topmost mpls-exp-value
end
```

Configuration Examples

Example: Defining an MPLS EXP Class Map

Example: Defining an MPLS EXP Class Map

The following example defines a class map named exp3 that matches packets that contains MPLS experimental value 3:

```
Router(config) # class-map exp3
Router(config-cmap) # match mpls experimental topmost 3
Router(config-cmap) # exit
```

Example: Defining a Policy Map and Applying the Policy Map to an Ingress Interface

Example: Defining a Policy Map and Applying the Policy Map to an Ingress Interface

The following example uses the class map created in the example above to define a policy map. This example also applies the policy map to a physical interface for ingress traffic.

```
Router(config)# policy-map change-exp-3-to-2
Router(config-pmap)# class exp3
Router(config-pmap-c)# set mpls experimental topmost 2
Router(config-pmap)# exit
Router(config)# interface GigabitEthernet 0/0/0
Router(config-if)# service-policy input change-exp-3-to-2
Router(config-if)# exit
```

Example: Defining a Policy Map and Applying the Policy Map to an Egress Interface

Example: Defining a Policy Map and Applying the Policy Map to an Egress Interface

The following example uses the class map created in the example above to define a policy map. This example also applies the policy map to a physical interface for egress traffic.

```
Router(config)# policy-map WAN-out
Router(config-pmap)# class exp3
Router(config-pmap-c)# shape average 10000000
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface GigabitEthernet 0/0/0
Router(config-if)# service-policy output WAN-out
Router(config-if)# exit
```

Example: Applying the MPLS EXP Imposition Policy Map to a Main Interface

Example: Applying the MPLS EXP Imposition Policy Map to a Main Interface

The following example applies a policy map to Gigabit Ethernet interface 0/0/0:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface GigabitEthernet 0/0/0
Router(config-if)# service-policy input mark-up-exp-2
Router(config-if)# exit
```

Example: Defining an MPLS EXP Label Switched Packets Policy Map

Example: Defining an MPLS EXP Label Switched Packets Policy Map

The following example defines a policy map that sets the MPLS EXP topmost value to 2 according to the MPLS EXP value of the forwarded packet:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# class-map exp012
Router(config-cmap)# match mpls experimental topmost 0 1 2
Router(config-cmap)# exit
Router(config-cmap)# policy-map mark-up-exp-2
Router(config-pmap)# class exp012
Router(config-pmap-c)# set mpls experimental topmost 2
Router(config-pmap-c)# exit
Router(config-pmap)# exit
```

Example: Applying the MPLS EXP Label Switched Packets Policy Map to a Main Interface

Example: Applying the MPLS EXP Label Switched Packets Policy Map to a Main Interface

The following example shows how to apply the policy map to a main interface:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface GigabitEthernet 0/0/0
Router(config-if)# service-policy input mark-up-exp-2
Router(config-if)# exit
```

Example: Applying the MPLS EXP Label Switched Packets Policy Map to a Main Interface

Configuring SONET

This module describes how to configure Synchronous Optical NETwork (SONET). SONET defines optical signals and a synchronous frame structure for multiplexed digital traffic. SONET equipment is generally used in North America.

The transport network using SONET provides much more powerful networking capabilities than existing asynchronous systems.

- Overview of SONET, on page 93
- Restrictions for SONET, on page 94
- SONET Switching, on page 95
- SONET Hierarchy, on page 96
- STS-1 and STS-3 Frames, on page 97
- SONET Line and Section Configuration Parameters, on page 98
- BERT, on page 99
- BERT Error Injection, on page 101
- Concatenated SONET Frames, on page 104
- SONET Path Level Configuration Parameters, on page 105
- Channelized SONET Frames, on page 105
- SONET T1 Configuration Parameters, on page 105
- SONET T3 Configuration Parameters, on page 106
- SONET VT Configuration Parameters, on page 106
- Automatic Protection Switching, on page 107
- How to Configure SONET, on page 112
- Configuring Port Rate and Verifying Pluggables, on page 153
- Loopback Remote on T1 and T3 Interfaces, on page 155
- Associated Commands, on page 157

Overview of SONET

SONET is a set of standards that define the rates and formats for optical networks specified in GR–253–CORE. SONET is based on a structure that has a basic frame format and speed. The frame format used by SONET is the Synchronous Transport Signal (STS), with STS-1 as the base-level signal at 51.84 Mbps. An STS-1 frame can be carried in an OC-1 signal.

SONET has a hierarchy of signaling speeds.

Restrictions for SONET

- With Synchronous Transport Signal (STS) Circuit Emulation over Packet (CEP) or STS concatenated CEP mode, if you receive a B3 error, then the Remote Error Indication (REI) won't be generated. Request for Comments (RFC) reference—RFC 4842.
- Prior to Cisco IOS XE Cupertino 17.9.1 release, in V-15 or VC1x mode without or with CEM (SAToP/CEP/CESoP), overhead TX_V5 default value is 1.
- From Cisco IOS XE Cupertino 17.9.1 release onwards, when CEM (SAToP (framed or Unframed) and CESoP) is configured for VT-15 or VC1x mode, overhead TX_V5 default value is 2. If CEM isn't configured or VT CEP is configured, then the default value for V5 Overhead is 1. V5 byte value can be modified according to need using configuration vt <> vt <> overhead v5 <>.
- Rate combinations are one port of OC-48 or four ports of OC-12 or OC-3.
- Only 16 BERT Patterns can be configured at a time.
- VT1.5 VT can't be configured if VT1.5 T1/DS1 is configured with the same KLM value.
- PMON fields aren't supported for VT1.5 VT and DS3 or T3.
- PMON Far-end parameters aren't supported.

Restrictions on Bandwidth

• Total available bandwidth is 10G.

The following configuration is blocked and an error message is displayed after the maximum bandwidth is utilized:

```
rate OC3| OC12| OC48| OC192
```

The bandwidth of adjacent ports shouldn't exceed OC-48.

The following table shows the bandwidth used by different rates:

Table 12: Bandwidth Used by Different Rates

Rate	Bandwidth
OC-3	155.52 Mbps
OC-12	622.08 Mbps
OC-48	2.4 Gbps

Restrictions for Clock Source Configuration

- Only four ports can be configured in SONET line for clock source configuration per chassis.
- You should configure the clock source line and network-clock sync together to receive the clock from a remote port that is connected to the SONET port.

Restrictions for BER Threshold

- The BER threshold value 10e-9 is not supported for the following line, path, and VT BER CLIs on the following interface modules:
 - Line BER CLIs threshold b2-tca, threshold sd-ber and threshold sf-ber.
 - PATH BER CLIs threshold b3-ber sd, threshold b3-ber sf, and threshold b3-tca.
 - VT BER CLIs threshold bip2-sd, threshold bip2-sf, and threshold bip2-tca.
 - Not Supported Interface Modules for the Above BER CLIs

SONET Switching

SONET Switching is achieved on optical interface modules by circuit emulation. Circuit Emulation (CEM) is a way to carry TDM circuits over packet switched network. CEM embeds TDM bits into packets, encapsulates them into an appropriate header and then sends that through Packet Switched Network (PSN). The receiver side of CEM restores the TDM bit stream from packets.

Modes of CEM:

• Structure Agnostic TDM over Packet (SAToP) (RFC 4553) – Structure-Agnostic TDM over Packet (SAToP) mode is used to encapsulate T1 or T3 unstructured (unchannelized) services over packet switched networks. In SAToP mode, the bytes are sent out as they arrive on the TDM line. Bytes do not have to be aligned with any framing.

In this mode, the interface is considered as a continuous framed bit stream. The packetization of the stream is done according to IETF RFC 4553. All signaling is carried transparently as a part of a bit stream.

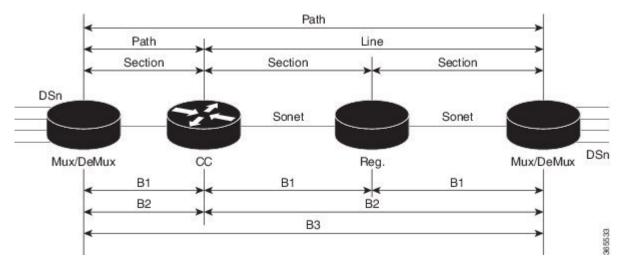

• Circuit Emulation Service over Packet (CEP) (RFC 4842) - CEP mode is used to encapsulate SONET payload envelopes (SPEs) like VT1.5 or VT2 or STS-1 or STS-Nc over packet switched networks. In this mode, the bytes from the corresponding SPE are sent out as they arrive on the TDM line. The interface is considered as a continuous framed bit stream. The packetization of the stream is done according to IETF RFC 4842.

Table 13: Modes of CEM

Mode	СЕМ	Ports
STS-48C	СЕР	OC-48, OC-192
STS-12C	СЕР	OC-12, OC-48, OC-192
STS-3C	СЕР	OC-3, OC-12, OC-48, OC-192
STS-1	СЕР	OC-3, OC-12, OC-48, OC-192
DS3	SAToP	OC-3, OC-12, OC-48, OC-192
DS3-T1	SAToP	OC-3, OC-12, OC-48, OC-192
VT 1.5	СЕР	OC-3, OC-12, OC-48, OC-192
VT DS1	SAToP	OC-3, OC-12, OC-48, OC-192

SONET Hierarchy

Figure 10: A SONET Link

Each level of the SONET hierarchy terminates its corresponding fields in the SONET payload, as follows:

Section

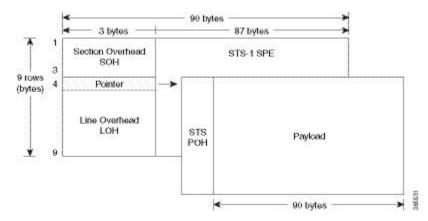
A section is a single fiber run that can be terminated by a network element (Line or Path) or an optical regenerator.

The main function of the section layer is to properly format the SONET frames, and to convert the electrical signals to optical signals. Section Terminating Equipment (STE) can originate, access, modify, or terminate the section header overhead.

Line

Line-Terminating Equipment (LTE) originates or terminates one or more sections of a line signal. The LTE does the synchronization and multiplexing of information on SONET frames. Multiple lower-level SONET signals can be mixed together to form higher-level SONET signals. An Add/Drop Multiplexer (ADM) is an example of LTE.

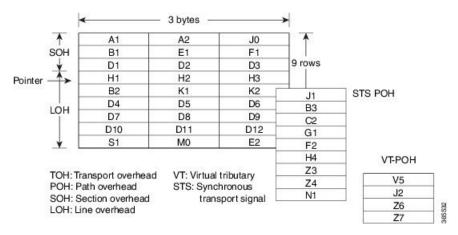
Path


Path-Terminating Equipment (PTE) interfaces non-SONET equipment to the SONET network. At this layer, the payload is mapped and demapped into the SONET frame. For example, an STS PTE can assemble 25 1.544 Mbps DS1 signals and insert path overhead to form an STS-1 signal.

This layer is concerned with end-to-end transport of data.

STS-1 and STS-3 Frames

A standard STS-1 frame is nine rows by 90 bytes. The first three bytes of each row represent the Section and Line overhead. These overhead bits comprise framing bits and pointers to different parts of the SONET frame.


Figure 11: STS-1 Frame Structure

There is one column of bytes in the payload that represents the STS path overhead. This column frequently "floats" throughout the frame. Its location in the frame is determined by a pointer in the Section and Line overhead.

The combination of the Section and Line overhead comprises the transport overhead, and the remainder is the SPE.

Figure 12: STS-1 SONET Overhead

For STS-1, a single SONET frame is transmitted in 125 microseconds, or 8000 frames per second. 8000 fps * 810 B/frame = 51.84 Mbs, of which the payload is roughly 49.5 Mbs, enough to encapsulate 28 DS-1s, a full DS-3, or 21 CEPT-1s.

An STS-3 frame is nine rows by 270 bytes. The first nine columns contain the transport overhead section, and the rest is SPE. For both STS-3 and STS-3c, the transport overhead (Line and Section) is the same.

For an STS-3 frame, the SPE contains three separate payloads and three separate path overhead fields. In essence, it is the SPE of three separate STS-1s packed together, one after another.

For more information on Section Overhead, Line Overhead, and Path Overhead, refer the following:

- http://www.cisco.com/c/en/us/support/docs/optical/synchronous-digital-hierarchy-sdh/5462-sdh-overview.html
- http://www.cisco.com/c/en/us/support/docs/optical/synchronous-optical-network-sonet/13567-sonet-tech-tips.html
- http://www.cisco.com/c/en/us/tech/optical/synchronous-optical-network-sonet/tsd-technology-support-troubleshooting-technotes-list.html

SONET Line and Section Configuration Parameters

The following parameters affect SONET configuration at the line and section levels:

- Overhead Sets the SONET overhead bytes in the frame header to a specific standards requirement, or to ensure interoperability with equipment from another vendors.
 - **J0** Sets the J0 or C1 byte value in the SONET section overhead.

Note

1 byte, 16 bytes, and 64 bytes are the supported values for J0.

- S1S0 Sets the SS bits value of the H1 byte in the SONET line overhead.
- Loopback Sets a loopback to test the SONET port.
- AIS-Shut Configures the SONET port to send the Alarm Indication Signal (AIS) at shutdown.
- **Shut** Disables an interface.
- Alarm Reporting Enables reporting for all or selected alarms.
 - lias —Enables line alarm indication signal.
 - **Irdi** Enables line remote defect indication signal.
 - pais Enables path alarm indication signal.
 - plop Enables loss of pointer failure signal for a path.
 - **pplm** Enables path payload mismatch indication.
 - **prdi** Enables path remote defect indication signal.
 - sd-ber Sets Signal Degrade BER threshold.
- Clock Specifies the clock source, where:
 - line —The link uses the recovered clock from the line.
 - internal The link uses the internal clock source. This is the default setting.

BERT

Bit-Error Rate Testing (BERT) is used for analyzing quality and for problem resolution of digital transmission equipment. BERT tests the quality of an interface by directly comparing a pseudorandom or repetitive test pattern with an identical locally generated test pattern.

The BERT operation is data-intensive. Regular data cannot flow on the path while the test is in progress. The path is reported to be in alarm state when BERT is in progress and restored to a normal state after BERT has been terminated.

BERT is supported in the following two directions:

- Line Supports BERT in TDM direction.
- System Supports BERT in PSN direction.

BERT Restrictions

- BERT is not supported on the following modes:
 - T3—Framing M-13, non-channelized
 - E3—Framing G832, channelized
- When the BERT is initiated with pattern 0s and 1s from the local end and the loopback local is applied from the far end, then the BERT syncing does not happen. Since the BERT process is asserted as LOS alarms for all 0s and AIS alarms for all 1s BERT patterns. Whereas the BERT syncing behaves properly when the BERT is initiated from both the local and the far end.

For all 1s on T3 or E3, the BERT behaviour is not asserted as AIS and the BERT syncing happens as usual.

• In the unframed mode, BERT sync is not stable and may generate alarms until Cisco IOS XE Fuji 16.9.4.

Note

Framing type should be similar in all routers end to end.

- System BERT is not supported for any pattern in framed SATOP for releases earlier to Cisco IOS XE 17.13.1.
- System BERT is not configurable, without cem-group configuration.
- The default BERT pattern supported is PRBS. The QRSS pattern is supported only on T1 or E1 level and the STS-1E path level for pattern 2^20-O151.

BERT Restrictions for Cisco IOS XE Bengaluru 17.4.1 release

• When the BERT is initiated from the local end and the loopback local is applied from the far end, then BERT syncing does not happen. Since the BERT process is asserted as LOS alarms for all 0s and AIS alarms for all 1s BERT patterns. Whereas the BERT syncing behaves properly when the BERT is initiated from both the local and the far end.

BERT Patterns on 1-Port OC-48 or 4-Port OC-12/OC-3 CEM Interface Module

Table 14: Feature History

Feature Name	Release Information	Description
Support for all 0s and 1s BERT Patterns	Cisco IOS XE Bengaluru 17.4.1	Support for all 0s and 1s BERT patterns for SONET and SDH.

The BERT patterns on the 1-Port OC-48 or 4-Port OC-12/OC-3 interface module are:

Table 15: BERT Pattern Descriptions

Keyword	Description
All 1s 9	Pseudo-random binary test pattern consisting of all 1's that is used to test alternating line volt and repeaters.
All 0s	Pseudo-random binary test pattern consisting of all 0's that is used for test line coding.
2^15-1 O.151	Pseudo-random O.151 test pattern consisting of a maximum of 14 consecutive zeros and 15 consecutive ones. The length of this pattern is 32,768 bits.
2^20-O.151	Pseudo-random O.151 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.
2^20-O.153	Pseudo-random O.153 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.
2^23-1 O.151	Pseudo-random 0.151 test pattern consisting of a maximum of 22 consecutive zeros and 23 consecutive ones. The length of this pattern is 8,388,607 bits.
2^9 10	Pseudo-random binary test pattern consisting of a maximum of eight consecutive zeros and nine consecutive ones. The length of this pattern is 511 bits.
2^11 11	Pseudo-random binary test pattern consisting of a maximum of ten consecutive zeros and eleven consecutive ones. The length of this pattern is 2048 bits.

⁹ All 1s are supported only on SONET CT3, SDH AU-3 - CT3/CE3 - T1/E1, and SDH AU-3 - VC3. Starting with Cisco IOS XE Bengaluru 17.4.1, All Is are supported on all modes.

2⁹ is not supported on the following modes:

• SONET—Unframed, STS-3c, STS-12c, and STS-48c.

Starting with Cisco IOS XE Bengaluru 17.4.1, 2⁹ mode is supported.

- SDH AU-4—VC4, TUG-3-VC3, TUG-3-E3, TUG-3-T3, and TUG-3 VC1x.
- SDH AU-3—VC3, VC4-4c, VC4-16c, and VC1x.
- 11 Starting with Cisco IOS XE Bengaluru 17.4.1, 2^11 mode is supported.

2¹¹ is not supported on the following modes:

- SONET—Unframed, STS-3c, STS-12c, and STS-48c.
- SDH AU-4—VC4 and TUG-3-VC3.
- SDH AU-3—VC3, VC4-4c, and VC4-16c.

Note

If All 1's BERT pattern is tested on the system side, then ensure that you need to start all 1's pattern from both sides of the end points.

Configuring BERT on one side and loopback on other side of the end points is not supported. The router treats all 1's pattern as AIS alarm and BERT will not come in sync with the other side configuration of the end point.

BERT Error Injection

Table 16: Feature History

Feature Name	Release Information	Description
BERT Error Injection	Cisco IOS XE Bengaluru 17.4.1	BERT Error injection enables you to inject errors into the BERT stream on SONET and SDH controllers. You can introduce BERT errors in a range of 1 to 255.

This feature enables you to inject a fixed number of BERT errors when a BERT pattern is running and check the same number of BERT errors to be received at the remote end. Starting with Cisco IOS XE Bengaluru 17.4.1 release, you can configure BERT error injection using the **bert errors** command and before configuring the errors, you must use the **bert pattern** command.

BERT Error Injection is supported on T1 and T3 for SONET and SDH controllers.

BERT Error Injection is supported in the following modes:

Table 17: Supported Modes for BERT Error Injection

Controller	Mode
SONET	• STS-1 T3
	• STS-1 CT3
	• VT-15 – T1
	• VT-15 – VT

Controller	Mode
SDH	• AU-3 - CE3
	• AU3 - CT3
	• AU3 - E3
	• AU3 - T3
	• AU3 - VC1X
	• AU4 - VC3
	• AU4 -Tug-3 E3
	• AU4 -Tug-3 VC1x
	• AU4 -Tug-3 T3

Prerequisites of BERT Error Injection

• Ensure that you have set up BERT engine before injecting BERT Errors.

Restrictions of BERT Error Injection

- The BERT Error Injection once configured cannot be removed.
- BERT Error Injection is not supported on the SONET unframed mode.
- A maximum of 16 BERT engines are supported per LOTR card.
- You can configure a maximum of 255 BERT Error counts on the IM.
- BERT Error Injection is **not** supported on the following modes:
 - SONET: Unframed, STS-3C, STS-12C, STS-48C
 - SDH: VC4-4C, VC4-16C, AU3-V3, AU4-VC4

Configuring BERT Error Injection for SONET

Configuring BERT Error Injection - STS-1 T3 Mode

Ensure that you configure the STS-1 and T3 mode followed by BERT Pattern on the SONET STS-1 T3 interface.

To configure BERT Error Injection for the STS-1 mode on the T3 interface, enter the following commands:

```
config terminal
Enter configuration commands, one per line. End with CNTL/Z.
PEl(config)#controller sonet 0/4/0
PEl(config-controller)#sts-1 1
PEl(config-ctrlr-sts1)#t3 bert errors 255
Router#(config-ctrlr-sts1)#end
```

Configuring BERT Error Injection - STS-1 CT3 Mode

Ensure that you configure the STS-1 and CT3 mode followed by BERT Pattern on the SONET STS-1 CT3 interface

To configure BERT Error Injection for the STS-1 CT3 mode, enter the following commands:

```
Router#(config) #controller sonet 0/4/0
Router#(config-controller) #sts-1 1
Router#(config-ctrlr-sts1) #t1 1 bert errors 255
Router#(config-ctrlr-sts1) #end
```

Configuring BERT Error Injection - VT-15 – T1 Mode

Ensure that you configure the STS-1 VT-15 and T1 modes followed by BERT Pattern on the SONET VT-15 T1 interface.

To configure BERT Error Injection for the STS-1 VT-15 and T1 modes, enter the following commands:

```
Enter configuration commands, one per line. End with CNTL/Z. Router# (config)#controller sonet 0/4/0 Router# (config-controller)#sts-1 1 Router# (config-ctrlr-sts1)#vtg 1 t1 1 bert errors 255 Router# (config-ctrlr-sts1)#end
```

Configuring BERT Error Injection - VT-15 - VT Mode

: Ensure that you configure the STS-1 VT-15 and VT modes followed by BERT Pattern on the SONET VT-15 VT modes.

To configure BERT Error Injection for the STS-1 VT-15 and VT modes, enter the following commands

```
config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router#(config)#controller sonet 0/4/0
Router#(config-controller)#sts-1 1
Router#(config-ctrlr-sts1)#vtg 1 vt 1 bert errors 255
Router#(config-ctrlr-sts1)#end
```

Verifying BERT Error Injection for SONET

Verifying BERT Error Injection – STS-1 T3 Mode

To verify BERT Error Injection for the STS-1 mode on the T3 interface, use the **show-controller SONET** | **sec BERT** command;

```
Router# show controller sonet 0/4/0 | sec BERT BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
DSX3 BERT direction: Line
Interval: 60 minute(s), Time Remain: 00:59:00
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 2697 Mbits
Bit Errors (since last sync): 255 bits
```

```
Bits Received (since last sync): 2697 Mbits Direction : Line
```

Verifying BERT Error Injection – STS-1 CT3 Mode

To verify BERT Error Injection for the STS-1 mode and CT3 mode, use the **show-controller SONET** | **sec BERT** command:

```
Router#
show controller sonet 0/4/0 | sec BERT
BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
Interval: 60 minute(s), Time Remain: 00:59:01
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 89 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 89 Mbits
Direction: Line
```

Verifying BERT Error Injection – STS-1 VT-15 and T1 Modes

To verify BERT Error Injection for the STS-1 VT-15 and T1 modes, use the **show-controller SONET** | **sec BERT** command:

```
Router#
show controller sonet 0/4/0 | sec BERT
BERT running on timeslots 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
Interval: 60 minute(s), Time Remain: 00:58:59
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 92 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 92 Mbits
Direction: Line
```

Verifying BERT Error Injection – STS-1 VT-15 and VT Modes

To verify BERT Error Injection for the STS-1 VT-15 and VT modes, use the **show-controller SONET** | **sec BERT** command:

```
Router#
show controller sonet 0/4/0 | sec BERT
BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
Interval: 60 minute(s), Time Remain: 00:59:00
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 94 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 94 Mbits
Direction: Line
```

Concatenated SONET Frames

Twenty-eight VTs make up one STS-1. Three STS-1s made up an STS-3 and so on. Any one byte within the STS frame has a direct relationship to a base VT that helps to make up the STS.

A lower-case "c" in the STS rate stands for "concatenated", and indicates that the interface hardware is not channelized. Examples of concatenated interfaces are STS-3c and STS-12c.

The STS-1s may be concatenated into sets of 3 or 12 or 24 or 48 or 192 to form STS-3c, STS-12c, and so on. The STS-1s may be combined only at specific STS-n boundaries within an OC port.

SONET Path Level Configuration Parameters

The following parameters affect SONET configuration at the path level:

- **BERT** Starts the BERT test.
- Clock Specifies the clock source for a path.
- **Exit** Exits from SONET path configuration mode.
- **Loopback** Sets the entire path in the loopback mode.
- **Mode** Specifies the path operation mode.
- No Negates a command or sets its defaults.
- Overhead Configures SONET path overhead flags.
- **Shutdown** Disables the SONET path.
- Threshold Sets the path BER threshold values.
- vtg Sets the VT-15 configuration.

Channelized SONET Frames

A channelized SONET interface is a composite of lower-speed STS streams. However, a channelized SONET interface maintains the streams as independent frames with unique payload pointers. The frames are simply multiplexed before transmission to increase the carrying capacity of the physical fiber. This process is similar to multiplexing 24 digital signal level 0 channels into a DS1 or multiplexing 28 DS1 streams into a DS3.

SONET T1 Configuration Parameters

The following parameters affect SONET T1 configuration:

- **BERT** Starts the BERT test.
- Clock Specifies the clock source for T1 interface.
- **Description** Specifies the description of the controller.
- **Framing** Specifies the type of a framing on T1 interface.
- **Loopback** Sets the T1 interface in the loopback mode.
- **Shutdown** Disables the T1 interface.

SONET T3 Configuration Parameters

The following parameters affect SONET T3 configuration:

- Clock Specifies the clock source for T3 link.
- **Description** Specifies the description of the controller.
- **Framing** Specifies the type of a framing on T3 interface.
- **Loopback** Sets the T3 link in the loopback mode.
- **Shutdown** Disables the T3 interface.

SONET VT Configuration Parameters

The following parameters affect SONET VT configuration:

- **BERT** Starts the BERT test.
- **CEM Group** Specifies the time slots for CEM group mapping.
- Clock Specifies the clock source for VT.
- **Description** Specifies the description of the controller.
- Loopback Sets the VT in the loopback mode.
- Overhead Configures VT line path overhead flags.
- Shutdown Disables the VT interface.
- Threshold Configures the VT threshold values.

Automatic Protection Switching

Table 18: Feature History

Feature Name	Release Information	Feature Description
IMA3G 1+1 OC3/12 Single Card APS Support	Cisco IOS XE Amsterdam 17.3.1	Automatic protection switching (APS) is a protection mechanism for SONET networks that enables SONET connections to switch to another SONET circuit when a circuit failure occurs. This protection schemes allows a pair of SONET lines or paths to be configured for line or path redundancy. In the event of a fiber cut, the active line or path switches automatically to the standby line or path. In the 1+1 architecture, there is one working interface (circuit) and one protection interface, and the same payload from the transmitting end is sent to both the receiving ends. The receiving end decides which interface to use.
CEM and IP IW Feature Parity for Interface Modules	Cisco IOS XE Bengaluru 17.4.1	Support for APS and non-APS on SDH and SONET for iMSG IPv6 interworking on Interface Module.

Automatic protection switching (APS) is a protection mechanism for SONET networks that enables SONET connections to switch to another SONET circuit when a circuit failure occurs. A protection interface serves as the backup interface for the working interface. When the working interface fails, the protection interface quickly assumes its traffic load.

The SONET protection schemes partially comply with Telcordia—GR-253-CORE standard. It allows Optical Interface Module to work seamlessly as SONET Add or Drop Multiplexers (ADMs). The implementation of the above protection schemes allows a pair of SONET lines or paths to be configured for line or path redundancy. In the event of a fiber cut, the active line or path switches automatically to the standby line or path in up to 60 milliseconds (2/5/10 millisecond for holdover and 50 millisecond switchovers).

Optical Interface Module supports the following SONET protection switching schemes:

- Linear Bidirectional 1+1 APS
- Linear Unidirectional 1+1 APS
- UPSR Path Protection at STS Level
- UPSR Path Protection at VT Level

1+1 APS

In the 1+1 architecture, there is one working interface (circuit) and one protection interface, and the same payload from the transmitting end is sent to both the receiving ends. The receiving end decides which interface to use. The line overhead (LOH) bytes (K1 and K2) in the SONET frame indicate both status and action.

The protection interfaces need to be configured with an IP address of the chassis that has the working interface, using APS commands. The APS Protect Group Protocol, which runs on top of UDP, provides communication between the process controlling the working interface and the process controlling the protection interface. Using this protocol, interfaces can be switched because of a chassis failure, degradation or loss of channel signal, or manual intervention. In bidirectional mode, the receive and transmit channels are switched as a pair.

Two SONET connections are required to support APS.

The following option is available for linear bidirectional 1+1 APS:

- Revertive option For any failure on working line, the software switches to protection line and when
 the working line recovers, it waits based on the revertive timer and reverts back to working line as active
 link.
- Non-revertive option When the signal fails, the software switches to the protection line and does not automatically revert back to the working line. This is the default option.

The following features are supported on 1+1 APS:

- SONET PW (SAToP or CEP)
- SONET local connect

Benefits of APS

The following lists the benefits of APS:

- APS performs switchovers with minimal loss of data and time-consuming reroutes are avoided.
- There is no visibility that a failure has occurred beyond the network element in which it is residing; other nodes are not affected by the failure.
- Implementation of APS guards a network against complex restarts and resynchronizations since failures are isolated to a local device.
- With APS, the effect of a failure is greatly minimized and a fast switchover guarantees minimal effect on the network.

APS 1+1 for SONET Layer 1 traffic

SONET linear APS 1+1 provides protection against both fiber cuts and front card or back card failures. APS 1+1 requires a redundant protection line for every working line. The traffic is simultaneously carried by the working and the protection lines. Hence, the receiver that terminates the APS 1+1 should select the traffic from one of the lines and continue to forward the traffic. APS 1+1 provides protection in unidirectional and bi-directional modes:

- Uni-directional Protection: The receiving end can switch from working to protection line without any coordination at the transmit end since both lines transmit the same information.
- **Bi-directional Protection**: The receiving end switches from working to protection line by coordinating at the transmit end.

Scenario for Bidirectional APS 1+1

In the above figure, two are connected to provide APS 1+1 bi-directional protection. The highlighted one is the working line and the other is the protection line. The traffic is transmitted on both working and protection lines and received only on one line.

In a scenario where you encounter a fiber cut,

- 1. There is a cable cut in the working line. So, the receives a Loss of Signal (LOS) on working line.
- 2. starts generating K2 byte and sends it to the over the protection line.
- **3.** receives the K2 byte and reacts on the receiving K2 byte.
- **4.** starts sending K1 byte to the on the protection line.
- **5.** starts sending K2 byte to on the protection line.
- **6.** receives the K1/K2 byte and starts receiving the data from protection line. The protection line now acts as the active line.
- 7. sends K2 byte over the new active line to . receives this signal and starts accepting the data from this new active line.

Scenario for Unidirectional APS 1+1

In the above figure, two are connected to provide APS 1+1 unidirectional protection. The figure shows a working line and a protection line. The traffic is transmitted on both working and protection line and received only on one line.

In a scenario where you encounter a fiber cut,

- 1. receives a LOS on RX working line.
- detects LOS and starts receiving the data from the protection line. The protection line now becomes the active line.
- 3. receives the K2 byte and knows about switching event on device 2.

Restrictions for APS

- APS group number of 255 and UPSR group ID of 1 can't be configured on the same router.
- For the releases earlier to Cisco IOS XE Cupertino 17.9.1, when there's a Line Remote Defect Indicator (LRDI) or Line Alarm Indication Signal (LAIS) alarm detected on the protect port, then the received K2 byte stays zero.

For the releases later than Cisco IOS XE Cupertino 17.9.1, when there's an LRDI alarm on the protect channel, the received K2 reflects the LRDI alarm. Whereas for the LAIS alarm on the protect channel, due to all 1s in the SONET or SDH frame rx K1 or K2 becomes invalid, and the router displays the last received best value.

- The **aps exercise** command is not supported with interface modules.
- The APS switch commands are autocleared on reload and controller-shut operations.
- When APS is configured as the revertive mode, then **aps revert** must be enabled from both the ends.

- During *Wait-to-Restore* (*working*), when you configure **no aps revert**, then it takes into effect only after the current wait to restore operation completes.
- On the RSP3 module, it takes a long time (for example, more than half an hour) to copy scale configuration (8064 VT CEP) from boot flash to the running configuration. As a workaround, you can copy the individual configuration one after the other from the CLI.
- You can perform a force switchover to overcome the following limitations:
 - An interface module OIR, either through physical or software causes the APS switchover time to be higher (500-600ms).
 - Shut or no shut of the port may lead to higher APS switchover time.
 - Removal of the active working or protect interface may lead to higher APS switchover time.

UPSR Path Protection

Table 19: Feature History

Feature Name	Release Information	Feature Description
CEM and IP IW Feature Parity for Interface Modules	Cisco IOS XE Bengaluru 17.4.1	Support for UPSR IPv6 on Interface Module.

A Unidirectional Path Switching Ring (UPSR) is a unidirectional network with two rings, one ring used as the working ring and the other as the protection ring. The same signal flows through both rings, one clockwise and the other counterclockwise. It is called UPSR because monitoring is done at the path layer. A node receives two copies of the electrical signals at the path layer, compares them, and chooses the one with the better quality. If part of a ring between two ADMs fails, the other ring still can guarantee the continuation of data flow. UPSR, like the one-plus-one scheme, has fast failure recovery.

Once a signal fail condition or a signal degrade condition is detected, the hardware initiates an interrupt to software that switches from the working path to the protection path. Nonrevertive options are valid for UPSR path protection.

Note

1X OC-192 and 8X OC-48 interface modules only supports the nonrevertive option. The nonrevertive option is the default mode.

Note

When an active link of UPSR and APS is configured on the same interface module and the interface module reloads, the convergence number for UPSR circuits to switch to backup is high ranging 100–200 ms. When each circuit is configured separately, the convergence time is always under 50 ms.

The maximum scale supported on UPSR at system level is 1000 circuits.

The UPSR path protection supports the following feature:

 SONET local connect and cross connect are supported at VT-15 CEP, STS-1c, STS-3c, STS-12c, and STS-48c levels. UPSR is also supported on TDM endpoints that are mapped to a pseudowire. T1 SAToP, T3 SAToP, and CT3 are supported on an UPSR ring only with local connect mode. Cross connect of T1, T3, and CT3 circuits to UPSR are not supported until Cisco IOS XE Fuji 16.8.x.

Starting with Cisco IOS XE Fuji 16.9.x, the cross connect of T1, T3, and CT3 circuits to UPSR is supported. For xconnect with the CT3 mode, the CEM protection group interface only supports the VT-15 mode. For cross-connect configuration, see *Configuring UPSR*.

Restrictions for iMSG UPSR Path Protection

- UPSR Dual Ring Interconnect (DRI) is not supported.
- UPSR Dual Node Interconnect (DNI) is not supported.
- T1 or E1 and T3 or E3 configurations are not supported, and only the OCx-related configuration is supported.
- HDLC UPSR supports 510 PPP or HDLC pseudowire per group for an interface module and 1020 PPP or HDLC pseudowire for a router.
- APS group number of 255 and UPSR group ID of 1 cannot be configured on the same router.

Configuring iMSG UPSR

To configure protection group for iMSG UPSR, enter the following commands:

```
enable
configure terminal
protection-group 401 type STS48c
controller protection-group 401
type STS48c
channel-group 0
end
```

Configuring UPSR

Protection Group Configuration

```
enable
configure terminal
protection-group 401 type STS48c
controller protection-group 401
type STS48c
cem-group 19001 cep
end
```

Cross-connect Configuration with the CT3 mode

For cross connect with the CT3 mode, the CEM protection group interface supports only the VT-15 mode.

```
protection-group 2 type vt1.5 controller protection-group 2 type vt1.5 cem-group 16002 unframed controller sonet 0/4/0 sts-1 1 mode vt-15 vtg 1 t1 2 protection-group 2 working
```

```
controller somet 0/5/0 sts-1 1 mode vt-15 vtg 1 t1 2 protection-group 2 protect
```

Configuring UPSR Work and Protection Path Configuration

UPSR Work Path Configuration:

```
enable
configure terminal
controller MediaType 0/3/6
mode sonet
controller sonet 0/3/6
rate oc48
sts-1 1 - 48 mode sts-48c
protection-group 401 working
end
```

UPSR Protect Path Configuration:

```
enable
configure terminal
controller MediaType 0/12/6
mode sonet
controller sonet 0/12/6
rate oc48
sts-1 1 - 48 mode sts-48c
protection-group 401 protect
end
```

Verifying UPSR Configuration

Use the **show protection-group** command to verify UPSR configuration:

How to Configure SONET

This section describes how to configure SONET.

Each SFP port (0-7) can be configured as OC-3, OC-12, OC-48, or Gigabit Ethernet. SFP+ port (8) can be configured as OC-192 or 10 Gigabit Ethernet.

Prerequisites for Configuring SONET

You must select the MediaType controller to configure and enter the controller configuration mode.

You must configure the controller as a SONET port.

Configuring MediaType Controller

To configure MediaType Controller, use the following commands:

```
enable
configure terminal
controller MediaType 0/0/16
mode sonet
end
```

Configuring SONET Ports

To configure SONET ports, use the following commands:

```
enable
configure terminal
controller MediaType 0/0/16
mode sonet
controller sonet 0/0/16
rate 0C12
end
```

The above example shows how to configure SONET ports in OC-12 mode.

Managing and Monitoring SONET Line

This section describes how to manage and monitor SONET.

Configuring Line and Section Overhead

To configure line and section overhead, use the following commands:

```
enable
configure terminal
controller MediaType 0/0/16
mode sonet
controller sonet 0/0/16
overhead s1s0 2
overhead j0 tx length 1-byte
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring Line Loopback

To configure loopback, use the following commands:

```
enable
configure terminal
controller somet 0/0/16
loopback local
end
```


To restore the system to its default condition, use the **no** form of the command.

Configuring AIS Shut

To configure AIS-Shut, use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
ais-shut
end
```


Note

The **no ais-shut** command will not send AIS.

Configuring Shut

To configure Shut, use the following commands:

```
enable configure terminal controller sonet 0/0/16 shutdown end
```


Note

Use the **no shutdown** command to disable the interface.

Configuring Alarm Reporting

To configure alarm reporting, use the following commands:

```
enable configure terminal controller sonet 0/0/16 alarm-report b2-tcs end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring Clock

To configure clock, use the following commands:

```
enable
configure terminal
controller MediaType 0/0/16
mode sonet
controller sonet 0/0/16
```

```
clock source line
end
```


The default mode is internal.

Note

To restore the system to its default condition, use the **no** form of the command.

Configuring Network-Clock SONET

To configure network-clock SONET, use the following commands:

```
enable configure terminal network-clock input-source \it 1 controller sonet \it 0/0/16 end
```

Configuring STS-1 Modes

To configure STS-1 modes, use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
sts-1 1
mode vt-15
end
```


Note

There is no default mode. The following modes are supported:

- mode vt-15
- mode ct3
- mode t3
- mode unframed

Note

To restore the system to its default condition, use the **no** form of the command.

Configuring DS1/T1 CT3 mode of STS-1

To configure DS1/T1 CT3 mode of STS-1, you can configure the T1 link using the following steps:

```
enable
configure terminal
controller sonet 0/0/16
sts-1 1
mode ct3
t1 1 clock source internal
```

```
t1 1 framing unframed
end
```


To restore the system to its default condition, use the **no** form of the command.

Configuring STS-Nc - Contiguous Concatenation

To configure STS-Nc - contiguous concatenation, use the following commands:

```
enable
configure terminal
controller somet 0/0/16
sts-1 1-3 mode sts-3c
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Note

To configure STS-3c or STS-12c, use the numbers as multiples for 3 or 12, respectively.

Configuring APS for SAToP

This section describes the configuration of APS for SAToP.

Configuring Bi-directional ACR (SONET Framing)

To configure bi-directional ACR (SONET Framing), use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
clock source internal
aps group acr 1
aps working 1
exit
controller sonet 0/0/17
aps group acr 1
aps protect 1 10.7.7.7
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring Unidirectional APS

To configure unidirectional ACR (SONET Framing), use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
clock source internal
```

```
aps group acr 1
aps working 1
aps unidirectional
exit
controller sonet 0/0/17
aps group acr 1
aps protect 1 10.7.7.7
aps revert 3
aps adm
end
```


To restore the system to its default condition, use the **no** form of the command.

Note

Ensure that you use same interface modules for both work and protect links.

Verifying ACR Configurations

This section includes show commands for ACR: The following example shows the ACR groups that have been configured or deleted:

```
Router# show acr group

ACR Group Working I/f Protect I/f Currently Active Status

1 SONET 0/0/16 SONET 0/0/16 SONET 0/0/16
```

The following example shows the configured working and protect CEM interfaces under the ACR controller:

The following example shows the configuration under the ACR controller:

```
Router#show running-config | sec ACR controller SONET-ACR 1 framing sonet ! sts-1 1 mode vt-15 vtg 1 vt 1 cem-group 1 cep ! sts-1 2 ! sts-1 3 interface CEM-ACR1 no ip address cem 1 !
```

The following example shows the loopback IP address for the router:

```
Router# show ip interface brief | i Loopback
Loopback0 172.16.0.1 YES NVRAM up up
```

The following example shows the CEM-ACR circuit status:

```
Router# show cem circuit

CEM Int. ID Ctrlr Admin Circuit AC

CEM-ACR1 1 UP UP Active UP

CEM-ACR1 2 UP UP Active UP

CEM-ACR1 3 UP UP Active UP

CEM-ACR1 4 UP UP Active UP

CEM-ACR1 5 UP UP Active UP

CEM-ACR1 6 UP UP Active UP

CEM-ACR1 7 UP UP Active UP

CEM-ACR1 7 UP UP Active UP

CEM-ACR1 8 UP UP Active UP
```

The following example shows the CEM-ACR circuit details for CEM group 0 under the CEM-ACR interface:

```
Router# \#show cem circuit interface cem-acr 1 1
```

```
CEM-ACR1, ID: 0, Line: UP, Admin: UP, Ckt: ACTIVE
Path Mode: VT15, STS: 1, VTG: 1, T1: 1, CEM Mode: T1-SAToP
Controller state: up, T1/E1 state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 6 (In use: 0)
Payload Size: 192
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: Configured, RTP-HDR Compression: Disabled
Ingress Pkts:
                8186065
                                    Dropped:
Egress Pkts:
               8186065
                                    Dropped:
CEM Counter Details
Input Errors: 0
                                    Output Errors:
                                                        0
Pkts Missing:
               0
                                    Pkts Reordered:
                                                        0
                                    JitterBuf Underrun: 0
Misorder Drops: 0
Error Sec: 0
                                    Severly Errored Sec: 0
Unavailable Sec: 0
                                    Failure Counts: 0
Pkts Malformed: 0
                                    JitterBuf Overrun: 0
Generated Lbits: 0
                                    Received Lbits:
                                                        0
Generated Rbits: 0
                                    Received Rbits:
```

The following example shows the MPLS L2 transport vc details for the specified vc. In this case it is the vc with vc-id = 1001:

```
Router# sh mpls 12 vc 1 det
Local interface: CE1 up, line protocol up, SATOP T1 1 up
Destination address: 10.2.2.2, VC ID: 1, VC status: up
Output interface: Te 0/0/16, imposed label stack {100}
Preferred path: not configured
Default path: active
Next hop: 192.168.1.2
Create time: 02:48:15, last status change time: 02:47:26
Last label FSM state change time: 02:47:26
Signaling protocol: LDP, peer 10.2.2.2:0 up
Targeted Hello: 10.1.1.1(LDP Id) -> 10.2.2.2, LDP is UP
```

```
Graceful restart: not configured and not enabled
 Non stop routing: configured and enabled
 Status TLV support (local/remote) : enabled/supported
   LDP route watch
                                    : enabled
   Label/status state machine
                                    : established, LruRru
   Last local dataplane status rcvd: No fault
   Last BFD dataplane
                          status rcvd: Not sent
   Last BFD peer monitor status rcvd: No fault
   Last local AC circuit status rcvd: No fault
   Last local AC circuit status sent: No fault
   Last local PW i/f circ status rcvd: No fault
   Last local LDP TLV
                          status sent: No status
   Last remote LDP TLV
                        status rcvd: No fault
   Last remote LDP ADJ status rcvd: No fault
 MPLS VC labels: local 16, remote 100
 Group ID: local 38, remote 36
 MTU: local 0, remote 0
 Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On (configured: autosense)
SSO Descriptor: 10.2.2.2/1, local label: 16
Dataplane:
 SSM segment/switch IDs: 274581/4096 (used), PWID: 1
VC statistics:
 transit packet totals: receive 0, send 0
 transit byte totals: receive 0, send 0
 transit packet drops: receive 0, seq error 0, send 0
```

The following example shows the currently configured APS groups on the router:

Router# show aps

```
SONET 0/0/16 APS Group 25: protect channel 0 (Inactive) (HA) Working channel 1 at 10.1.1.1 (Enabled) (HA) bidirectional, non-revertive PGP timers (extended for HA): hello time=1; hold time=10 hello fail revert time=120 Received K1K2: 0x00 0x05 No Request (Null) Transmitted K1K2: 0x00 0x00 No Request (Null) Remote APS configuration: (null) SONET 0/0/2 APS Group 25: working channel 1 (Active) (HA) Protect at 10.1.1.1 PGP timers (from protect): hello time=1; hold time=10 Remote APS configuration: (null)
```

Configuring VT 1.5-T1 Loopback

To configure VT 1.5-T1 loopback, use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
rate oc3
no ais shut
alarm- report all
framing sonet
clock source internal
sts-1 1
clock source internal
mode vt-15
```

Configuring VT 1.5-T1 BERT

To configure VT 1.5-T1 BERT, use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
rate oc3
no ais shut
alarm- report all
framing sonet
clock source internal
sts-1 1
clock source internal
mode vt-15
vtg 1 t1 1 bert pattern 2^11 interval 10
end
```

Configuring Path Overhead

This section describes the configuration of path overhead.

C2 Flag

To configure the C2 flag, use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
sts-1 1
overhead c2 10
end
```

J1 Flag

To configure the J1 flag, use the following commands:

```
enable
configure terminal
controller sonet 0/0/16
sts-1 1
overhead j1 expected length
end
```

Configuring Path Threshold

To configure path threshold, use the following commands:

```
enable
configure terminal
controller somet 0/0/16
sts-1 1
threshold b3-tca 3
end
```

Verification of SONET Configuration

The following sample output shows the verification of SONET configuration:

```
Router#show controllers sonet 0/0/16 SONET 0/0/16 is up. =====> this is the controller/port
```

```
status.
 Hardware is
Port configured rate: OC3
                              =====> this is the rate the port is configured
on it.
Applique type is Channelized Sonet / SDH
                                   ===> the clocking config
Clock Source is Line
Medium info:
 Type: Sonet, Line Coding: NRZ,
SECTION:
 I_iOS = 0
            LOF = 0
                                        =====> the section level alarm
counter (from last clear counters)
SONET Section Tables
           CV ES
 TNTERVAL
                  SES SEFS
           0
              0
                   0
 12:15-12:30
                       0
 12:00-12:15
            0
                0
                    0
                         0
          15
               1
                   0
                                      =====> 1st PMON dataset. The 1st
 11:45-12:00
                         0 (Invalid)
dataset will always be flagged Invalid
Total of Data in Current and Previous Intervals
15 1 0 0 (Invalid)
                                                ===> PMON for the port
TITNE:
AIS = 0
            RDI = 0
                        REI = 0
                                     BIP(B2) = 0
                                              =====> the line level
alarm counter (from last clear counters)
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
                                              =====> present active
alarms on the port.
Alarm reporting enabled for: SLOS SLOF SF B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
                                           ===> ber thresholds
TCA thresholds: B2 = 10e-6
Rx: S1S0 = 00
  K1 = 00, K2 = 00
                       ===> k1k2 values
  J0 = 00
  RX S1 = 00
Tx: S1S0 = 00
  K1 = 00,
         K2 = 00
  J0 = 00
Tx J0 Length: 64
Tx J0 Trace:
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                      Router
 Expected J0 Length: 64
Expected J0 Trace :
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                      Router
 Rx J0 Length: 64
Rx J0 Trace :
 . . . . . . . . . . . . . . . .
```

```
SONET Line Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 12:15-12:30 0 0 50 0 0 0 (FE Invalid) =====> The Far
End PMON dataset is flagged Invalid due to a Near End alarm.
 12:00-12:15 0 0 0 0 0 0
11:45-12:00 48 1 0 0 53 1
                                      0
                              53
                                         0
                                              0 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
   1 0 50 53 1 0 0 (NE, FE Invalid)
High Order Path:
PATH 1:
Clock Source is internal
                            ====> path level clock
 AIS = 0
             RDI = 0
                          REI = 0
                                       BIP(B3) = 0
                                                         =====>
                                                                path
layer alarms counter
 LOP = 0 PSE = 0
                          NSE = 0
                                       NEWPTR = 0
 LOM = 0
             PLM = 0
                          UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
                                                   =====> present alarms
on the path.
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
                                      ====> rx and tx C2 byte..
Tx: C2 = 02
PATH TRACE BUFFER : UNSTABLE
 ====> path trace of the
                                        ......
path
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 SONET Path Tables
                         UAS CVFE ESFE SESFE UASFE
 INTERVAL CV
                ES
                     SES
 12:15-12:30
            0
                0
                    0
                         0
                             0 0
                                      0 389 (FE Invalid)
 12:00-12:15 0
                 0
                     0
                          0
                              0
                                    0
                                         0
                                             0
            0
                 1
                          0
                              0
 11:45-12:00
                     1
                                   0
                                         0 900 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
  1 1 0 0 0
                         0 1289 (NE, FE Invalid)
PATH 2:
Clock Source is internal
 AIS = 0
             RDI = 0
                          REI = 0
                                       BIP(B3) = 0
             PSE = 0
 I_1OP = 0
                          NSE = 0
                                       NEWPTR = 0
             PLM = 0
                          UNEQ = 0
 LOM = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: PLOP
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 04
52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 32 00 00
                                       Router 0/2/0.2..
```

.

```
Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 32 00 00
                                       Router 0/2/0.2..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SONET Path Tables
 INTERVAL CV
                    SES
                         UAS CVFE ESFE SESFE UASFE
                ES
 12:15-12:30
            0
               0
                    0
                         389
                            0 0 0 0 (FE Invalid)
                                  0
                                            Ω
 12:00-12:15 0 0
                    0
                         0
                               0
                                        0
 11:45-12:00 0 0
                     0
                        900
                             0
                                 0
                                        0
                                            0 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
0 0 1289 0 0 0 (NE, FE Invalid)
PATH 3:
Clock Source is internal
 AIS = 0
             RDI = 0
                          REI = 0
                                      BIP(B3) = 0
 T_iOP = 1
             PSE = 0
                          NSE = 0
                                      NEWPTR = 0
 LOM = 0
            PLM = 0
                         UNEQ = 1
Active Defects: None
Detected Alarms: PLOP LOM
Asserted/Active Alarms: PLOP
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 02
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 33 00 00
                                       Router 0/2/0.3..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length : 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 33 00 00
                                      Router 0/2/0.3..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SONET Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
```

```
12:15-12:30
                 0
                       0
                             Ω
                                 389
                                         0
                                               0
                                                       0
                                                              0 (FE Invalid)
 12:00-12:15
                Ο
                       Ω
                             Ω
                                         Ω
                                               Ω
                                  Ω
                                                      Ω
 11:45-12:00
                0
                                 894
                                                              0 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
           0 1283
                                           0 (NE, FE Invalid)
                    0
                             0
                                    0
OC3.STS1 0/0/16 is up.
                         =====> present status of the path
 Hardware is
Applique type is VT1.5 ====> mode of the path
 STS-1 1, VTG 1, T1 1 (VT1.5 1/1/1) is down ====> status of the SPE (t1)
VT Receiver has no alarm.
 Receiver is getting AIS.
                                                         ===> alarm of the SPE (t1)
 Framing is unframed, Clock Source is Internal
                                                   ====> framing of the T1, clock of the
 t1
 Data in current interval (230 seconds elapsed):
  Near End
    O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavailable Secs
     O Path Failures, O SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavailable Secs
    O Path Failures
  Data in Interval 1:
  Near End
    O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs, 15 Unavailable Secs
     1 Path Failures, 0 SEF/AIS Secs
   Far End Data
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, O Degraded Mins
     4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
     0 Path Failures
  Total Data (last 1 15 minute intervals):
  Near End
    O Line Code Violations, O Path Code Violations,
     O Slip Secs, O Fr Loss Secs, 14 Line Err Secs, O Degraded Mins,
     0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 15 Unavailable Secs
     1 Path Failures, 0 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations,
     O Slip Secs, 4 Fr Loss Secs, 2 Line Err Secs, O Degraded Mins,
     4 Errored Secs, 0 Bursty Err Secs, 4 Severely Err Secs, 0 Unavailable Secs
     0 Path Failures
 STS-1 1, VTG 1, T1 2 (VT1.5 1/1/2) is down
VT Receiver has no alarm.
  Receiver is getting AIS.
```

The following table shows each field and its description.

Table 20: Field Description

Field	Description
SONET 0/0/16 is up	Shows that the SONET controller is operating. The controller's state can be up, down, or administratively down.
Port configured rate: OC3	Shows the rate configured on the port.
SECTION: LOS = 0 LOF = 0 BIP = 0	Shows the section level alarm counters.
SONET Section Tables:	Shows the PMON for the port.
INTERVAL CV ES SES SEFS	
05:50-05:58 0 0 0 0	
LINE:	Shows the line level alarm counters.
AIS = 0 RDI = 0 REI = 0 BIP(B2) = 0	
Asserted/Active Alarms: None	Shows the active alarms on the port.
BER thresholds: SF = 10e-3 SD = 10e-6	Shows BER thresholds.
K1 = 00, K2 = 00	Shows the K1 and K2 values.
PATH 1:	Shows the path level clock.
Clock Source is internal	
AIS = 0 RDI = 0 REI = 0 BIP(B3) = 0 LOP = 0 PSE = 0 NSE = 0 NEWPTR = 0 LOM = 0 PLM = 0 UNEQ = 0	Shows the path layer alarm counters.
Active Defects: None	Shows the alarms on the path.
Detected Alarms: None	
Asserted/Active Alarms: None	
Alarm reporting enabled for: PLOP LOM B3-TCA	
TCA threshold: B3 = 10e-6	shows the Rx and Tx C2 bytes.
Rx: $C2 = 00 = rx$ and tx $C2$ byte	
Tx: C2 = 02	
PATH TRACE BUFFER : UNSTABLE	
00 00 00 00 00 00 00 00 00 00 00 00 00	Shows the path trace.
OC3.STS1 0/3/3.1 is up.	Shows the status of the path.
Applique type is VT1.5	Shows the mode of the path.
STS-1 1, VTG 1, T1 1 (VT1.5 1/1/1) is down	Shows the status of SPE (T1).

Field	Description
Receiver is getting AIS.	Shows the alarm of SPE (T1).
Framing is unframed, Clock Source is Internal	Shows the framing of T1 and clock of the T1.

Configuring CEM Group for Framed SAToP

To configure a CEM group for Framed SAToP:

```
enable
configure terminal
controller mediatype 0/4/16
mode sonet
controller sonet 0/4/16
rate oc12
sts-1 1
mode vt-15
vtg 1 t1 1 cem-group 0 framed
end
```

Configuring VT-15 mode of STS-1 for Framed SAToP

To configure VT-15 mode of STS-1 for framed SAToP:

```
enable
configure terminal
controller mediatype 0/0/16
mode sonet
controller sonet 0/0/16
rate oc3
sts-1 1
mode vt-15
vtg 1 t1 1 cem-group 0 framed
```

Configuring DS1/T1 CT3 mode of STS-1 for Framed SAToP

To configure DS1/T1 CT3 mode of STS-1 for framed SAToP:

```
enable
configure terminal
controller mediatype 0/0/16
mode sonet
controller sonet 0/0/16
rate oc3
sts-1 2
mode ct3
t3 framing c-bit
t1 1 cem-group 1 framed
end
```

Configuring CEM APS for Framed SAToP

To configure unidirectional ACR (SONET Framing) for framed SAToP:

```
enable
configure terminal
controller sonet 0/4/16
rate OC3
clock source internal
aps group acr 1
{\tt aps\ working}\ 1
exit
controller sonet 0/4/17
rate OC3
aps group acr 1
aps unidirectional
aps protect 1 10.7.7.7
{\tt aps\ revert}\ {\it 3}
aps adm
\verb"controller somet-acr" 1
mode vt-15
vtg 1 t1 1 cem-group 0 framed
end
To configure bi-directional ACR (SONET Framing) for Framed SAToP:
configure terminal
controller sonet 0/4/16
rate OC3
clock source internal
aps group acr 1
aps working 1
exit
controller sonet 0/4/17
rate OC3
aps group acr 1
aps protect 1 10.7.7.7
controller somet-acr 1
sts-1 1
mode vt-15
vtg 1 t1 1 cem-group 0 framed
end
```

Verifying SONET Configuration for Framed SAToP

To verify SONET configuration for Framed SAToP:

```
Router# show running configuration | sec 0/0/16
platform enable controller mediatype 0/0/16 oc3
controller mediatype 0/0/16
mode sonet
controller sonet 0/0/16
rate oc3
no ais-shut
alarm-report all
clock source internal
sts-1 1
clock source internal
mode vt-15
vtg 1 t1 1 cem-group 0 framed
sts-1 2
clock source internal
mode ct3
```

```
t3 framing c-bit
t3 clock source internal
t1 1 cem-group 1 framed
!
sts-1 3
clock source internal
mode ct3-e1
t3 framing c-bit
t3 clock source internal
e1 1 cem-group 2 framed
interface cem 0/0/16
no ip address
cem 0
!
cem 1
!
cem 2
```

Provisioning APS 1+1

#Router

Note

Ensure to follow the steps only in the order provided.

Perform the following generic steps to provision APS 1+1.

- **Step 1** Provision a physical controller with mode and rate.
- **Step 2** Put controllers into the APS group and define as working or protect.
- **Step 3** Setup STS1s on the sonet-acr controller. Cem-group placement is done on the logical port.
- **Step 4** Setup ACR or DCR clocking on the physical controllers.
- **Step 5** Provision clock recovered configuration under the recovered-clock section.
- **Step 6** Apply xconnect under the cem-acr interface.

Deprovisioning APS 1+1

Note

Ensure to follow the steps only in the order provided.

Perform the following generic steps to deprovision APS 1+1.

- **Step 1** Remove all xconnect under the cem-acr interface.
- **Step 2** Remove clock source for all ACR or DCR services under the physical controllers.
- **Step 3** Remove the clock recovered lines under the recovered-clock ACR section.
- **Step 4** Remove all provisioning under the sonet-acr controller. This step includes cem-group information and mode settings.

- **Step 5** Shut down the physical controller setup for Protect, remove APS provisioning, and apply no shut controller.
- **Step 6** Shut down the physical controller setup for Working, remove APS provisioning and apply no shut controller.
- **Step 7** Remove the *acr XX type* line in the configuration.
- **Step 8** Remove the mode SONET from each physical controller media type to restore the controller to its default setup.
- **Step 9** Remove ACR completely from the SONET or SDH interfaces. Ensure that you remove ACR from the virtual SONET and SDH controllers.

SONET Controller

```
config terminal
no controller sonet-acr <group-id>
end
```

The following example shows how to remove ACR completely from the SONET controller:

```
config terminal
no controller sonet-acr 100
end
```

SDH Controller

```
config terminal
no controller sdh-acr <group-id>
end
```

The following example shows how to remove ACR completely from the SDH controller:

```
config terminal
no controller sdh-acr 100
end
```

Performance Monitoring Use Cases or Deployment Scenarios for SONET

You can view the statistics or error count generated on the TDM lines.

To view the statistics or error count generated, use the **show controller sonet** command:

```
Router# show controller sonet 0/2/0
SONET 0/2/0 is up.
 Hardware is
Port configured rate: OC3
Applique type is Channelized Sonet
Clock Source is Internal
Medium info:
 Type: Sonet, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
 LOS = 0
                LOF = 0
                                                BIP(B1) = 0
SONET Section Tables
 INTERVAL CV
                    ES
                         SES SEFS
              0
 12:00-12:07
                   0
                        0
                             0
 11:45-12:00 15 1
                         0
                             0 (Invalid)
Total of Data in Current and Previous Intervals
              15 1 0 0 (Invalid)
LINE:
```

```
AIS = 0
             RDI = 0
                        REI = 0
                                    BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 00
  K1 = 00,
          K2 = 00
  J0 = 00
  RX S1 = 00
Tx: S1S0 = 00
  K1 = 00, K2 = 00
  J0 = 04
Tx J0 Length: 64
Tx J0 Trace:
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                     Router
 Expected J0 Length: 64
Expected J0 Trace :
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                     Router
 Rx J0 Length: 64
Rx J0 Trace :
 . . . . . . . . . . . . . . . .
 SONET Line Tables
                       UAS CVFE ESFE SESFE UASFE
 INTERVAL
           CV
               ES
                   SES
                                        0 (FE Invalid)
 12:15-12:30
            0
                0
                   0
                        50
                           0
                                 0
                                      0
 12:00-12:15
            0
                0
                     0
                         Ω
                             Ω
                                 0
                                      0
                                           Ω
 11:45-12:00
               1
                    Ω
                        Ω
                            53
                                          0 (NE, FE Invalid)
           4.8
                                 1
                                      0
Total of Data in Current and Previous Intervals
                                      0
                                1
           48 1
                  0
                        50
                            53
                                          0 (NE, FE Invalid)
High Order Path:
PATH 1:
Clock Source is internal
 AIS = 0
             RDI = 0
                        REI = 41350871 \quad BIP(B3) = 9
 LOP = 0
            PSE = 0
                        NSE = 0
                                    NEWPTR = 0
 LOM = 0
            PLM = 0
                        UNEQ = 1
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
```

```
TCA threshold: B3 = 10e-6
Rx: C2 = 04
Tx: C2 = 04
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 31 00 00
                                    Router 0/2/0.1..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 31 00 00
                                     Router 0/2/0.1..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 64
Rx J1 Trace
 BB 43 45 5F 31 5F 31 20 30 2F 34 2F 33 2E 31 00
                                     .CE 1 1 0/4/3.1.
 . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 SONET Path Tables
                       UAS CVFE ESFE SESFE UASFE
 INTERVAL CV
               ES
                  SES
               0
                   0
                       0
                           0
                               0
                                    0
                                         389 (FE Invalid)
 12:15-12:30
            0
 12:00-12:15
            0
                0
                     0
                         0
                             0
                                  0
                                       0
                                           0
           0
 11:45-12:00
                1
                    1
                        0 0 0
                                         900 (NE, FE Invalid)
                                      0
Total of Data in Current and Previous Intervals
            0 1 1 0 0 0
                                    0 1289 (NE, FE Invalid)
PATH 2:
Clock Source is internal
 AIS = 0
            RDI = 0
                        REI = 0
                                     BIP(B3) = 0
            PSE = 0
                        NSE = 0
 I_iOP = 1
                                     NEWPTR = 0
 LOM = 0
             PLM = 0
                         UNEQ = 1
Active Defects: None
Detected Alarms: PLOP
Asserted/Active Alarms: PLOP
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 04
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 32 00 00
                                    Router 0/2/0.2..
 . . . . . . . . . . . . . . . .
 Expected J1 Length: 64
Expected J1 Trace
```

```
52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 32 00 00
                                          Router 0/2/0.2...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length : 0
Rx J1 Trace
SONET Path Tables
                          UAS CVFE ESFE SESFE UASFE
 INTERVAL
           CV
                 ES
                     SES
                0
                     0
 12:15-12:30
             Ο
                          389
                               0 0
                                        0 0 (FE Invalid)
            0
                 0
 12:00-12:15
                      0
                           0
                                0
                                     0
                                          0
                                                0
 11:45-12:00
             0
                  0
                       0
                          900
                                0
                                    0
                                          0
                                                0 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
             0
                0
                    0 1289
                              0
                                    0
                                         0
                                               0 (NE, FE Invalid)
PATH 3:
Clock Source is internal
                           REI = 0
 ATS = 0
              RDT = 0
                                        BIP(B3) = 0
 LOP = 1
             PSE = 0
                           NSE = 0
                                         NEWPTR = 0
 LOM = 0
              PLM = 0
                           UNEQ = 1
Active Defects: None
Detected Alarms: PLOP LOM
Asserted/Active Alarms: PLOP
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 02
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 33 00 00
                                          Router 0/2/0.3..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 32 2F 30 2E 33 00 00
                                          Router 0/2/0.3..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SONET Path Tables
 INTERVAL CV
                 ES
                     SES
                          UAS CVFE ESFE SESFE UASFE
                                   0
                                             0 (FE Invalid)
 12:15-12:30
             0
                  0
                      0
                          389
                               0
                                        0
             0
 12:00-12:15
                  0
                       0
                          Ω
                                Ω
                                    0
                                          Ω
                                                Ω
                              0 0
           0
                 0
                     0
 11:45-12:00
                          900
                                          0
                                               0 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
```

```
Ω
                              0 1289
                                          0
                                               Ω
                                                       0
                                                              0 (NE, FE Invalid)
SONET 0/2/0.1 T3 is down.
 Applique type is T3
 Receiver is getting AIS.
  MDL transmission is disabled
  FEAC code received: No code is being received
  Framing is C-BIT Parity, Cablelength is 224
  BER thresholds: SF = 10e-3 SD = 10e-6
  Clock Source is internal
  Equipment customer loopback
  Data in current interval (390 seconds elapsed):
  Near End
    O Line Code Violations, O P-bit Coding Violations
    O C-bit Coding Violations, O P-bit Err Secs
    O P-bit Severely Err Secs, O Severely Err Framing Secs
    389 Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
    O Severely Errored Line Secs, O Path Failures
    O AIS Defect Secs, O LOS Defect Secs
   Far End
    O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
  Near End
    O Line Code Violations, O P-bit Coding Violations
    O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     910 Unavailable Secs, 0 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, O LOS Defect Secs
  Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
    O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
  Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
    0 P-bit Severely Err Secs, 0 Severely Err Framing Secs,
     910 Unavailable Secs, 0 Line Errored Secs,
    O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, O LOS Defect Secs
  Far End
    O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
 T1 1 is up
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is ESF, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
  Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
```

```
O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     0 Path Failures, 0 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O Path Code Violations,
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs, O Path Failures
SONET 0/2/0.2 T3 is down.
  Hardware is
  Applique type is Channelized T3 to T1
  Receiver is getting AIS.
  MDL transmission is disabled
  FEAC code received: No code is being received
  Framing is C-BIT Parity, Cablelength is 224
  BER thresholds: SF = 10e-3 SD = 10e-6
  Clock Source is internal
  Equipment customer loopback
  Data in current interval (400 seconds elapsed):
   Near End
     O Line Code Violations, O P-bit Coding Violations
     0 C-bit Coding Violations, 0 P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     399 Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     910 Unavailable Secs, 0 Line Errored Secs
```

```
O C-bit Errored Secs, O C-bit Severely Errored Secs
   O Severely Errored Line Secs, 1 Path Failures
   O AIS Defect Secs, O LOS Defect Secs
 Far End
   O Errored Secs, O Severely Errored Secs
   O C-bit Unavailable Secs, O Path Failures
   O Code Violations, O Service Affecting Secs
Total Data (last 1 15 minute intervals):
   O Line Code Violations, O P-bit Coding Violations,
   O C-bit Coding Violations, O P-bit Err Secs,
   O P-bit Severely Err Secs, O Severely Err Framing Secs,
   910 Unavailable Secs, O Line Errored Secs,
   O C-bit Errored Secs, O C-bit Severely Errored Secs
   O Severely Errored Line Secs, 1 path failures
   O AIS Defect Secs, O LOS Defect Secs
 Far End
   O Errored Secs, O Severely Errored Secs
   O C-bit Unavailable Secs, O Path Failures
   O Code Violations, O Service Affecting Secs
T1 1 is up
timeslots:
FDL per AT&T 54016 spec.
No alarms detected.
Framing is ESF, Clock Source is Internal
Data in current interval (250 seconds elapsed):
 Near End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   O Unavailable Secs, O Stuffed Secs
   O Path Failures, O SEF/AIS Secs
 Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   O Unavailable Secs O Path Failures
Data in Interval 1:
 Near End
   {\tt O} Line Code Violations, {\tt O} Path Code Violations
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
   2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
   O Unavailable Secs, O Stuffed Secs
   1 Path Failures, 2 SEF/AIS Secs
 Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
   3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
   O Unavailable Secs O Path Failures
Total Data (last 1 15 minute intervals):
 Near End
   O Line Code Violations, O Path Code Violations,
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
   O Unavailable Secs, O Stuffed Secs
   1 Path Failures, 2 SEF/AIS Secs
 Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
   O Unavailable Secs, O Path Failures
STS-1 2, T1 1 (CT3 2-1) is down
timeslots:
FDL per ANSI T1.403 and AT&T 54016 spec.
```

```
Receiver is getting AIS.
Framing is ESF, Clock Source is Internal
Data in current interval (390 seconds elapsed):
Near End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
  389 Unavailable Secs, 0 Stuffed Secs
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   O Unavailable Secs
Data in Interval 1:
Near End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   900 Unavailable Secs, 0 Stuffed Secs
 Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   0 Unavailable Secs
Total Data (last 1 15 minute intervals):
Near End
   O Line Code Violations, O Path Code Violations,
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   900 Unavailable Secs, 0 Stuffed Secs
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   0 Unavailable Secs
```

To view the performance monitoring details on SONET, use the show controller sonet tabular command:

Router#show controllers sonet 0/7/19 tabular

```
SONET 0/7/19 is up.
 Hardware is A900-IMA3G-IMSG NCS4200-3GMS
Port configured rate: OC3
Applique type is Channelized Sonet
Clock Source is Internal
Medium info:
 Type: Sonet, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
                 I_iOF = 0
                                                   BIP(B1) = 0
 I_iOS = 0
SONET Section Tables
                             SES-S SEFS-S
 INTERVAL CV-S
                      ES-S
 11:33-11:47
                  0
                                  0
                                       0 (NE, FE Invalid)
LINE:
 AIS = 0
                  RDI = 0
                                   REI = 0
                                                   BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
```

```
Rx: S1S0 = NA
 K1 = 00, K2 = 00
  J0 = 00
  RX S1 = 00
Tx: S1S0 = NA
 K1 = 00, K2 = 00
  J0 = 04
Tx J0 Length: 64
Tx J0 Trace:
 . .
Expected J0 Length: 64
Expected J0 Trace:
 PE2
 Rx J0 Length: 64
Rx J0 Trace :
 PE2
 . .
SONET Line Tables
 INTERVAL CV-L ES-L SES-L UAS-L CV-LFE ES-LFE SES-LFE UAS-LFE
 11:33-11:47 0 0
              0 0 0 0 0 0 (NE, FE Invalid)
APS
BERSF = 0
           BERSD = 0
Active Alarms: None
PATH 1:
Clock Source is internal
                           BIP(B3) = 0
AIS = 0
         RDI = 0
                  REI = 0
LOM = 0
          PLM = 0
                   UNEQ = 0
                             LOP = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 04
Tx: C2 = 04
Tx J1 Length: 64
Tx J1 Trace
 50 45 32 20 30 2F 37 2F 31 39 2E 31 00 00 00 PE2 0/7/19.1...
 . . . . . . . . . . . . . . . .
```

```
. . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 50 45 32 20 30 2F 37 2F 31 39 2E 31 00 00 00 00
                                     PE2 0/7/19.1....
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Rx J1 Length: 64
Rx J1 Trace
 50 45 32 20 30 2F 39 2F 37 2E 31 00 00 00 00 00
                                    PE2 0/9/7.1....
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 SONET Path Tables
 INTERVAL CV-P ES-P SES-P UAS-P CV-PFE ES-PFE SES-PFE UAS-PFE
 11:33-11:47
          0 0 0 0
                               Ο
                                    Ο
                                        0 0 (NE, FE Invalid)
PATH 2:
Clock Source is internal
                                    BIP(B3) = 0
             RDI = 0
                         REI = 0
 ATS = 0
 LOM = 0
             PLM = 0
                         UNEQ = 0
                                     LOP = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 64
Tx J1 Trace
                                   PE2 0/7/19.2....
 50 45 32 20 30 2F 37 2F 31 39 2E 32 00 00 00 00
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 50 45 32 20 30 2F 37 2F 31 39 2E 32 00 00 00 00
                                     PE2 0/7/19.2....
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Rx J1 Length: 0
Rx J1 Trace
SONET Path Tables
 INTERVAL CV-P ES-P SES-P UAS-P CV-PFE ES-PFE SES-PFE UAS-PFE
 11:47-11:47
           Ο
              Ω
                  Ω
                       0
                               0
                                    0
                                           0
                                              0 (NE, FE Invalid)
PATH 3:
```

```
Clock Source is internal
             RDI = 0
PLM = 0
 AIS = 0
             RDI = 0
                         REI = 0
                                      BIP(B3) = 0
 LOM = 0
                          UNEQ = 0
                                        LOP = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 64
Tx J1 Trace
 50 45 32 20 30 2F 37 2F 31 39 2E 33 00 00 00 00
                                      PE2 0/7/19.3....
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length : 64
Expected J1 Trace
 50 45 32 20 30 2F 37 2F 31 39 2E 33 00 00 00 00
                                        PE2 0/7/19.3....
 . . . . . . . . . . . . . . . .
 Rx J1 Length: 0
Rx J1 Trace
SONET Path Tables
 INTERVAL CV-P ES-P SES-P UAS-P CV-PFE ES-PFE SES-PFE UAS-PFE
 11:47-11:47 0 0
                    0 0
                               0 0 0 (NE, FE Invalid)
SONET 0/7/19.1 T3 is up.
 Hardware is NCS4200-3GMS
 Applique type is T3
 No alarms detected.
 MDL transmission is disabled
 FEAC code received: No code is being received
 Framing is C-BIT Parity, Cablelength is 224
 BER thresholds: SF = 10e-3 SD = 10e-6
 Clock Source is internal
 Equipment customer loopback
 Near End Data
 INTERVAL CV-L ES-L SES-L LOSS-L CVP-P CVCP-P ESP-P ESCP-P SESP-P SESCP-P SAS-P
AISS-P FC-P UASP-P UASCP-P
                           0
                      0
                                 0 0
 11:33-11:47 0 0
                                            0
                                                 0
                                                      0
                                                             Ω
                                                                   0
             0
   0 0
                  0 (Invalid)
 Far End Data
           CVCP-PFE ESCP-PFE SESCP-PFE UASCP-PFE FCCP-PFE SASCP-PFE
 INTERVAL
 11:33-11:47
           0 0 0 0 0 0 (Invalid)
```

Table 21: Feature History

Feature Name	Release Information	Description
GR-820-CORE specific Performance Monitoring	Cisco IOS XE Bengaluru 17.5.1	The show controller tabular enables you to view the performance monitoring details in tabular form as per GR-820-Core standards.

To view the performance monitoring details on T3 interface, use the **show controller t3 tabular** command:

```
Router#show controllers t3 0/7/12 tabular
T3 0/7/12 is down.
 Hardware is
 Applique type is Subrate T3
 Receiver has loss of signal.
 MDL transmission is disabled
 FEAC code received: No code is being received
  Framing is C-BIT Parity, Line Code is B3ZS, Cablelength Short less than 225ft
 BER thresholds: SF = 10e-3 SD = 10e-6
 Clock Source is internal
 Equipment customer loopback
 Near End Data
              CV-L ES-L SES-L LOSS-L CVP-P CVCP-P ESP-P ESCP-P SESP-P SESCP-P SAS-P
 INTERVAL
 AISS-P FC-P UASP-P UASCP-P
 11:33-11:46 0 779 779
                                  779
                                          0
                                                0
                                                        0
                                                              0
                                                                    0
                                                                           0 0
     0 0
               779
                     779 (Invalid)
 Far End Data
  INTERVAL
               CVCP-PFE ESCP-PFE SESCP-PFE UASCP-PFE FCCP-PFE SASCP-PFE
 11:33-11:46
                     0
                               0
                                         0
                                                   0
                                                             0
                                                                       0 (Invalid)
```

To view the performance monitoring details on T1 interface, use the **show controller t1 tabular** command:

```
Router#show controllers t1 0/7/0 tabular
T1 0/7/0 is down
 Applique type is
 Receiver has loss of signal.
 alarm-trigger is not set
 Soaking time: 3, Clearance time: 10
 Framing is ESF, Line Code is B8ZS, Clock Source is Line.
 BER thresholds: SF = 10e-3 SD = 10e-6
 Near End Data
 INTERVAL CV-L ES-L CV-P ES-P SES-P CSS-P SAS-P UAS-P
                                                               FC-P
                        0
              0 530
                                  0
                                        0
                                            0
                                                     0
                                                        530
 10:48-10:57
                                                               1 (Invalid)
 Far End Data
 INTERVAL ES-LFE ES-PFE SES-PFE CSS-PFE UAS-PFE FC-PFE
                                0
```

Starting with Cisco IOS XE 17.11.1, you can view the previous day performance monitoring details using the following **show controller** commands for the T1 or E1, T3 or E3, and SONET controllers.

- · show controllers sonet
- show controllers sonet tabular
- show controllers sonet remote performance
- show controllers sonet remote performance tabular

```
router#show controllers somet 0/3/0
SONET 0/3/0 is down.
```

```
Hardware is
Port configured rate: OC3
Applique type is Channelized Sonet
Clock Source is Internal
Medium info:
 Type: Sonet, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
              LOF = 0
 LOS = 1
                                            BIP(B1) = 0
SONET Section Tables
 INTERVAL CV ES SES SEFS
 06:14-06:24 0 611 611 611
 05:59-06:14 0 901 901 901
. . . . . . . . . . . . .
 06:29-06:44
              0 901
                       901
                            901
            0 901 901 901 (NE, FE Invalid)
 06:14-06:29
Total of Data in Current and Previous Intervals
              0 87107 87107 87107 (NE, FE Invalid)
Total (Previous Day)
 LINE:
              RDI = 0
 AIS = 0
                            REI = 0
                                          BIP(B2) = 0
Active Defects: None
Detected Alarms: SLOS SLOF LAIS
Asserted/Active Alarms: SLOS
. . . . . . . . . . . .
SONET Line Tables
 INTERVAL
            CV
                 ES
                       SES
                           UAS CVFE ESFE SESFE UASFE
                                                0
 06:14-06:24
             0 0 0
                            611 0 0 0
              0
                  0
 05:59-06:14
                         0
                            901
                                   0
                                       0
                                              0
                                                    0
                                      0
 05:44-05:59
                         0
                            901
                                   0
                                              0
                                                    0
                      0
             0 0
                                  0 0
 05:29-05:44
                            901
                                             0
                                                    0
. . . . . . . . . . . . .
            0 0
                                  0 0
 06:14-06:29
                        0 901
                                             0
                                                  0 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
                                              0
                                                    0 (NE, FE Invalid)
              0
                  0 0 87107
                                  0
Total (Previous Day)
                 0 0 86494 0 0
 05:29-05:29 0
                                             0
                                                    0 (NE, FE Invalid)
PATH 1:
Clock Source is internal
 AIS = 0
              RDI = 0
                            REI = 0
                                           BIP(B3) = 8
 LOM = 0
               PLM = 0
                             UNEQ = 0
                                            LOP = 0
. . . . . . . . . . . . . .
SONET Path Tables
 INTERVAL CV
                       SES
                            UAS CVFE ESFE SESFE UASFE
                   ES
 06:14-06:24 0 0
                            609
                                   0
                                        0
                                                    0
                                       0
 05:59-06:14 0 0
                        0
                            901
                                   Ω
                                              Ω
                                                    Ω
 05:44-05:59
                            900
              0
                   0
                         0
                                   0
                                       0
                                              0
                                                    0
 05:29-05:44
              0
                   0
                         0
                            901
                                  0
                                       0
                                              0
                                                    0
. . . . . . . . . . . . . . .
 06:29-06:44
             0
                 0
                      0
                            900
                                0
                                        0
                                              0
 06:14-06:29 0 0
                        0 900 0
                                        0
                                              0
                                                  0 (NE, FE Invalid)
Total of Data in Current and Previous Intervals
              0
                  0
                        0 87045
                                       0
                                              0
                                                    0 (NE, FE Invalid)
                                  0
Total (Previous Day)
 05:29-05:29 0 0 0 86435 0 0
                                             0
                                                    0 (NE, FE Invalid)
```

```
PATH 2:
Clock Source is internal
. . . . . . . . . . . . . . . .
SONET 0/3/0.1 PATH is down.
 Hardware is
Applique type is VT1.5
STS-1 1, VTG 1, VT 1 (SONET 0/3/0.1/1/1 VT) is down
VT Receiver has LP AIS.
 cep is configured: FALSE cem id (0)
 fwd alarm ais :0 fwd alarm rai :0, Clock Source is Internal
 BIP2-tca:6, BIP2-sf:3, BIP2-sd:6
 Tx V5:2
 Rx V5:0
 Tx J2 Length=64
 TX J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 Expected J2 Length=64
 Expected J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 Rx J2 Length=16
 RX J2 Trace Buffer:
 CRC-7: 0x60 ERROR
 C9 79 F7 OF 5F D8 5D D2 D2 7C F6 0E 53 B2 0E 00
                                             .y...]..|..S...
 Data in curerent interval (610 seconds elapsed)
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 609 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
 Data in Interval 1:
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 901 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
. . . . . . . . . . . . . . . . .
Data in Interval 96:
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 900 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
Total Data (last 96 fifteen minute intervals):
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 86436 Unavailable Secs
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
 Total (Previous Day):
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 86435 Unavailable Secs
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
```

```
STS-1 1, VTG 1, T1 1 (SONET 0/3/0.1/1/1 T1) is down
timeslots: 1-4
 FDL per AT&T 54016 spec.
Receiver is getting AIS.
 Framing is ESF, Clock Source is Internal
 Data in current interval (610 seconds elapsed):
 Near End
   O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    609 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   0 Unavail Secs
 Data in Interval 1:
 Near End
   O Line Code Violations, O Path Code Violations
 Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   0 Unavail Secs
 Data in Interval 96:
 Near End
   O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    900 Unavail Secs, 0 Stuffed Secs
 Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   0 Unavail Secs
 Total Data (last 24 hours)
 Near End
    O Line Code Violations, O Path Code Violations,
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    86436 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavailable Secs
 Total (Previous Day)
 Near End
   O Line Code Violations, O Path Code Violations,
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    86435 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavailable Secs
STS-1 1, VTG 1, VT 2 (SONET 0/3/0.1/1/2 VT) is down
VT Receiver has LP AIS.
```

router#show controllers sonet 0/3/0 tabular

```
Section/Line/Path same as previous.
SONET 0/3/0.1 PATH is down.
 Hardware is
Applique type is VT1.5
STS-1 1, VTG 1, VT 1 (SONET 0/3/0.1/1/1 VT) is down
VT Receiver has LP AIS.
 cep is configured: FALSE cem_id (0)
 fwd alarm ais :0 fwd alarm rai :0, Clock Source is Internal
 BIP2-tca:6, BIP2-sf:3, BIP2-sd:6
 Tx V5:2
 Rx V5:0
 Tx J2 Length=64
 TX J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Expected J2 Length=64
 Expected J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 Rx J2 Length=16
 RX J2 Trace Buffer:
 CRC-7: 0x60 ERROR
 C9 79 F7 OF 5F D8 5D D2 D2 7C F6 OE 53 B2 OE OO
                                        .y.. .]..|..S...
          CV-V ES-V SES-V UAS-V CV-VFE ES-VFE SES-VFE UAS-VFE
INTERVAL
                                  0
                                               0
06:14-06:24
          0
               0
                      0
                          619
                                        0
                                                       0
           0
05:59-06:14
                 Ω
                       Ω
                           901
                                   Ω
                                         Ω
                                                Ω
                                                       Ω
05:44-05:59
            0
                 0
                       0
                           900
                                   0
                                         0
                                                0
                                                       0
05:29-05:44
             0
                       0
                           901
                                                0
                                                       0
                 0
                                   0
                                         0
           0
05:14-05:29
                 Ω
                       Ω
                           900
                                   Ω
                                         Ω
                                                0
                                                       0
04:59-05:14
          0
                 0
                      0
                           900
                                   0
                                        0
                                                0
                                                       0
                                        0
                       0
                           901
                                                       0
06:44-06:59 0
                 0
                                  0
                                                0
06:29-06:44
            0
                 0
                       0
                           900
                                   0
                                         0
                                                0
                                                       0
            0
06:14-06:29
                 0
                       0
                           900
                                   Ω
                                         0
                                                Ω
                                                       0 (NE, FE Invalid)
            0
                                                Ω
                                                       0 (NE, FE Invalid)
Total
                 Ω
                       0 86436
                                  Ω
                                        Ω
Total (Previous Day):
                                               0
                 0
                                 0
                                        0
                                                      0 (NE, FE Invalid)
05:29-05:29 0
                       0 86435
STS-1 1, VTG 1, T1 1 (SONET 0/3/0.1/1/1 T1) is down
 timeslots: 1-4
 FDL per AT&T 54016 spec.
 Receiver is getting AIS.
 Framing is ESF, Clock Source is Internal
 Near End Data
                     CV-P
                           ES-P SES-P CSS-P SAS-P UAS-P
 INTERVAL CV-L ES-L
                                                       FC-P
                0
 06:14-06:24
           0
                       0
                            0
                                 0
                                         0
                                           0
                                                   619
                                                          0
 05:59-06:14
             0
                  0
                        0
                              0
                                    0
                                         0
                                              0
                                                   901
                                                          0
. . . . . . . . . . . . . .
 06:44-06:59
             0
                   0
                        0
                              0
                                    0
                                         0
                                               0
                                                   901
                                                          0
 06:29-06:44
             0
                   Ω
                        Ω
                              Ω
                                   Ω
                                         Ω
                                              Ω
                                                   900
                                                          Ω
 06:14-06:29
             0
                  0
                        0
                             0
                                   0
                                                   900
                                                          0 (Invalid)
                                         0
                                              0
 Total
             0
                  0
                       0
                              0
                                   0
                                         0
                                             0 86436
                                                         0 (Invalid)
```

```
Total (Previous Day):
                             0
                                   0
                                          0
                                                 0
                                                        0 86435
 05:29-05:29
                                                                     0 (Invalid)
 Far End Data
 INTERVAL ES-LFE ES-PFE SES-PFE SEFS-PFE CSS-PFE UAS-PFE FC-PFE
              0 0
 06:14-06:24
                                   0
                                            0
                                                     0
                                                              0
                                                                      Ω
 05:59-06:14
                  0
                          0
                                   0
                                             0
                                                      0
                                                               0
                                                                      0
 06:29-06:44
                0
                         0
                                   0
                                             0
                                                      0
 06:14-06:29
                 0
                                                      0
                                                               0
                          0
                                   0
                                             0
                                                                     0 (Invalid)
                                   0
                                             0
                                                     0
                 0
                          Ω
                                                              0
                                                                     0 (Invalid)
 Total
 Total (Previous Day):
 05:29-05:29
              0
                          Ω
                                  0
                                            0
                                                      0 0
                                                                    0 (Invalid)
 STS-1 1, VTG 1, VT 2 (SONET 0/3/0.1/1/2 VT) is down
VT Receiver has LP AIS.
 cep is configured: FALSE cem id (0)
 fwd alarm ais :0
                   fwd alarm rai :0, Clock Source is Internal
router#show controllers sonet 0/3/0 remote performance
Section/Line/Path same as previous.
SONET 0/3/0.1 PATH is down.
 Hardware is
STS-1 1, VTG 1, VT 1 (VT1.5 1/1/1) - Remote Performance Data
Far end MIB Data:
Data in curerent interval (630 seconds elapsed)
O CodeViolations , O ErrorSecs, O Severly Err Secs, O Unavail Secs
FarEnd VT Interval data:
Total Data (last 96 15 minute intervals):
O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
Total (Previous Day):
O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
STS-1 1, VTG 1, T1 1 (SONET 0/3/0.1/1/1 T1) - Remote Performance Data
 Data in current interval (630 seconds elapsed):
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 Data in Interval 1:
. . . . . . . . . . . . . . . . .
 Data in Interval 96:
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 Total Data (last 24 hours)
    0 Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 Total (Previous Day)
    0 Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
STS-1 1, VTG 1, VT 2 (VT1.5 1/1/2) - Remote Performance Data
Far end MIB Data:
```

```
Data in curerent interval (630 seconds elapsed)
O CodeViolations , O ErrorSecs, O Severly Err Secs, O Unavail Secs
FarEnd VT Interval data:
Total Data (last 96 15 minute intervals):
O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
Total (Previous Day):
O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
router#show controllers sonet 0/3/0 remote performance tabular
Section/Line/Path same as previous.
SONET 0/3/0.1 PATH is down.
 Hardware is
STS-1 1, VTG 1, VT 1 (VT1.5 1/1/1) - Remote Performance Data
Far end MIB Data:
 INTERVAL
              CV
                     ES
                          SES
                                UAS
              Ο
                     Ω
                          0
                                Ω
06:14-06:24
 FarEnd VT Interval data:
 INTERVAL
              CV
                    ES
                          SES
                                UAS
 05:59-06:14
               0
                     0
                          0
                                 0
 05:44-05:59
               Ο
                     Ω
                          Ω
                                 Ω
 05:29-05:44
                0
                      0
                           0
                                 0
 05:14-05:29
               0
               0
                      0
                           0
                                 0
 06:29-06:44
 06:14-06:29
                Ω
                      Ω
                           Ω
                                 Ω
 Total
 CV
      ES
          SES
                UAS
                        0
                             0
                                   0
                                         0
 Total (Previous Day)
 CV ES SES UAS
                      0
                           0
                                   Ω
                                         Ω
STS-1 1, VTG 1, T1 1 (SONET 0/3/0.1/1/1 T1) - Remote Performance Data
 INTERVAL LCV
                   PCV
                         CSS SELS
                                           DM
                                               ES BES
                                    LES
 06:14-06:24
               0
                     0
                          0
                                 Ω
                                       Ω
                                            0
                                                 Ω
                                                      Ω
                                                            Ω
                                                                   0
 05:59-06:14
               Ω
                     Ω
                           Ω
                                 Ω
                                       0
                                            Ω
                                                 Ω
                                                       Ω
                                                             Ω
                                                                   Ω
 05:44-05:59
               0
                          0
                                 0
                                       0
                                            0
                                                0
                                                      0
                                                             0
 06:44-06:59 0
06:29-06:44 0
                     0
                           0
                                 0
                                       0
                                            0
                                                  0
                                                       0
                                                             0
                     0
                           0
                                 0
                                       0
                                            0
                                                  0
                                                       0
                                                             0
                                                                  0
               0
 06:14-06:29
                                       Ω
                                                             Ω
                     Ω
                           0
                                 Ω
                                            Ω
                                                  Ω
                                                       0
                                                                  Ω
 Total
               0
                           0
                                       0
                                            0
                                                  0
                                                       0
                                                             0
                                                                  0 (NE, FE Invalid)
 Total (Previous Day)
                                                                0 (NE, FE Invalid)
 05:29-05:29
               0
                     0
                          0
                                 0
                                       0
                                            0
                                                  0
                                                      0
                                                             0
 STS-1 1, VTG 1, VT 2 (VT1.5 1/1/2) - Remote Performance Data
 Far end MIB Data:
 INTERVAL
             CV
                     ES
                          SES
                               UAS
 06:14-06:24
              0
                    Ω
                          0
                                0 (Invalid)
 FarEnd VT Interval data:
 INTERVAL
          CV ES
                          SES
                               UAS
 05:59-06:14 0
                    0
                          0
                               0 (Invalid)
```

Monitoring Protection Switching Count for Protected SONET Interface

Table 22: Table 1. Feature History

Feature Name	Release Information	Feature Description
Protection Switching Count for Protected SONET Interface	Cisco IOS XE 17.15.1	In SONET with redundancy, an Automatic protection switching (APS) occurs between working and standby protection links due to reasons like a circuit failure. Whenever the switching happens, the switching count is tracked using a Protection Switching Count (PSC) parameter. Depending on the PSC count, you can debug the network to identify the reason for extensive switching and work on the corrective actions.

In addition to alarms, the PSC parameter records the number of times that a SONET traffic is switched between working and protection SONET circuits automatically. APS enables SONET connections to switch to another SONET circuit due to circuit failure reasons. A protection interface serves as the backup interface for the working interface. When the working interface fails, the protection interface quickly assumes its traffic load. For more information on APS, see Automatic Protection Switching, on page 107

The switching count can be monitored and tracked with respect to performance monitoring at a time interval of every 15 minutes and 24 hours. The higher the PSC value cautions you to check on the SONET network, analyze the failures, and work on correction actions to restore the network. Thus, the PSC count provides a better monitoring package to the administrator.

You can track the PSC parameter under the **SONET Section Tables** in the **show controller sonet** and **show controller sonet tabular** commands.

Supported Interface Module for PSC Monitoring

PSC monitoring is supported on these interface modules:

Viewing the PSC Parameter

The sample **show controller sonet** displays a PSC value under **SONET Section Tables**. The PSC value of 2 denotes that switching happened twice for every 15 minutes and the total switching count that occurred on the SONET inteface is 4.

```
Router#show controller sonet 0/3/1
SONET 0/3/1 is up. (Configured for Locally Looped)
 Currently in Locally Looped
 Alarm-profile: telcordia
 Sec-admin-state: maintenance, Soak-time: NA,
  soak-Time-left: NA, AINS-state: OOS-MA, LPBK & MT
  Hardware is
 Port configured rate: OC3
Applique type is Channelized Sonet
Clock Source is Internal
Medium info:
 Type: Sonet, Line Coding: NRZ,
Alarm Throttling: OFF
 SECTION:
 LOS = 1
                  I_iOF = 0
                                                      BIP(B1) = 0
```

```
SONET Section Tables
 INTERVAL
          CV
                ES SES SEFS
                             PSC
 20:46-20:53
           0
               170 170
                       170
                             2 (Invalid)
 20:31-20:46
           0 559 559 559
                             2 (Invalid)
Total of Data in Current and Previous Intervals
            0 729 729 729
                             4 (Invalid)
LINE:
AIS = 0
            RDI = 0
                        REI = 12
                                     BIP(B2) = 36
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = NA
  K1 = 00, K2 = 00
  J0 = 00
  RX S1 = 00
Tx: S1S0 = NA
  K1 = 00, K2 = 00
  J0 = 04
Tx J0 Length: 64
Tx J0 Trace :
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                      Router
 . .
Expected J0 Length: 64
Expected J0 Trace:
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                      Router
 . .
Rx J0 Length: 64
Rx J0 Trace :
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                      Router
 SONET Line Tables
        CV
 INTERVAL
               ES
                   SES
                       UAS CVFE ESFE SESFE UASFE
 02:35-02:47
            0
                5
                    5
                        0
                            0
                                 0
                                     0
                                         0 (NE, FE Invalid)
PATH 1:
Clock Source is internal
             RDT = 0
                        RET = 0
                                    BIP(B3) = 0
 ATS = 0
             PLM = 0
                        UNEQ = 0
 LOM = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
```

```
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length : 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 31 00 00
                                      Router 0/3/1.1..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 31 00 00
                                        Router 0/3/1.1..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Rx J1 Length: 0
Rx J1 Trace
PATH 2:
Clock Source is internal
 ATS = 0
             RDI = 0
                         REI = 0
                                     BIP(B3) = 0
 LOM = 0
            PLM = 0
                         UNEQ = 0
                                       LOP = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length : 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 32 00 00
                                      Router 0/3/1.2..
 . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 32 00 00
                                       Router 0/3/1.2..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Rx J1 Length: 0
Rx J1 Trace
PATH 3:
Clock Source is internal
```

```
AIS = 0
            RDI = 0
                         REI = 0
                                     BTP(B3) = 0
 LOM = 0
            PLM = 0
                         UNEQ = 0
                                       T_iOP = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 33 00 00
                                        Router 0/3/1.3..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 33 00 00
                                       Router 0/3/1.3..
 . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Rx J1 Length: 0
Rx J1 Trace
```

The sample **show controller sonet tabular** displays a PSC value under **SONET Section Tables**. The PSC value of 1 denotes that switching happened one time in every 15 minutes and the total switching count that occurred on the SONET inteface is 2.

```
Router#show controller sonet 0/3/1 tabular
SONET 0/3/1 is up. (Configured for Locally Looped)
 Currently in Locally Looped
 Hardware is
Port configured rate: OC3
Applique type is Channelized Sonet
Clock Source is Internal
Medium info:
 Type: Sonet, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
               LOF = 0
 I_iOS = 1
                                               BIP(B1) = 0
SONET Section Tables
 INTERVAL CV-S
                    ES-S SES-S SEFS-S
                                            PSC
 12:15-12:29
               0 0 0
                                   0
                                              0
 12:00-12:15
                 0
                        0
                                0
                                       0
                                              0
                0
                       0
                               0
                                      0
 11:45-12:00
                                              0
 11:30-11:45
                0 404
                              404
                                    404
                                              1
                0 619
 11:15-11:30
                                      619
                              619
                0
 11:00-11:15
                       0
                               0
                                      0
                                              0
                0
 10:45-11:00
                       711
                              711
                                     711
                                              0
 10:30-10:45
                       656
                              656
                                      656
                                              0
                                                (Invalid)
Total of Data in Current and Previous Intervals
```

```
2390
                    2390
                           2390
                                  2 (Invalid)
LINE:
        RDI = 0
AIS = 0
                      REI = 12
                                   BIP(B2) = 36
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = NA
  K1 = 00, K2 = 00
  J0 = 00
  RX S1 = 00
Tx: S1S0 = NA
  K1 = 00,
         K2 = 00
  J0 = 04
Tx J0 Length: 64
Tx J0 Trace :
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                    Router
 Expected J0 Length: 64
Expected J0 Trace :
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                    Router
 Rx J0 Length: 64
Rx J0 Trace :
 52 6F 75 74 65 72 20 20 20 20 20 20 20 20 20 20 20
                                    Router
 SONET Line Tables
 INTERVAL CV-L ES-L SES-L UAS-L CV-LFE ES-LFE SES-LFE UAS-LFE
 0 0 (NE, FE Invalid)
PATH 1:
Clock Source is internal
                                  BIP(B3) = 0
           RDI = 0
                      REI = 0
 ATS = 0
 LOM = 0
            PLM = 0
                       UNEO = 0
                                   LOP = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
```

```
Tx: C2 = 00
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 31 00 00
                                       Router 0/3/1.1..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 31 00 00
                                       Router 0/3/1.1..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Rx J1 Length: 0
Rx J1 Trace
PATH 2:
Clock Source is internal
 ATS = 0
            RDI = 0
                         REI = 0
                                     BIP(B3) = 0
 LOM = 0
             PLM = 0
                         UNEQ = 0
                                      LOP = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 32 00 00
                                       Router 0/3/1.2..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 32 00 00
                                       Router 0/3/1.2..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Rx J1 Length: 0
Rx J1 Trace
PATH 3:
Clock Source is internal
 ATS = 0
             RDI = 0
                          RET = 0
                                     BIP(B3) = 0
 LOM = 0
            PLM = 0
                         UNEO = 0
                                      LOP = 0
```

```
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-SF B3-SD B3-TCA
BER threshold: SF = 10e-3 SD = 10e-6
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 64
Tx J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 33 00 00 Router 0/3/1.3..
 . . . . . . . . . . . . . . . .
 Expected J1 Length: 64
Expected J1 Trace
 52 6F 75 74 65 72 20 30 2F 33 2F 31 2E 33 00 00
                                      Router 0/3/1.3..
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Rx J1 Length : 0
Rx J1 Trace
```

Configuring Port Rate and Verifying Pluggables

A comprehensive range of pluggable optical modules is available. For more information, see *Cisco ASR 920 Series - Supported Optics*.

Configuring Port Rate for SONET

To configure port rate for SONET, use the following commands:

```
enable configure terminal controller mediatype 0/0/16 mode sonet exit controller sonet 0/0/16 rate oc3
```

Verifying the Pluggables

Before you configure the pluggables, use the following commands to verify the supported plugables:

show hw-module subslot <slot/bay> transceiver <port> status:

```
The Transceiver in slot 0 subslot 7 port 4 is enabled.

Module temperature = +46.636 C

Transceiver Tx supply voltage = 3291.5 mVolts

Transceiver Tx bias current = 17264 uAmps
```

```
Transceiver Tx power = -2.9 \text{ dBm}
Transceiver Rx optical power = -7.4 \text{ dBm}
```


Note

The **show hw-module subslot <slot/bay> transceiver <port> status** displays as **Enabled** if the pluggables are supported and the command displays as **Disabled** if the pluggables are not supported.

show hw-module subslot <slot/bay> transceiver <port> idprom:

```
show hw-module subslot 0/7 transceiver 6 idprom detail
IDPROM for transceiver SPA-1T8S-10CS 7/6:
  Description
                                               = SFP or SFP+ optics (type 3)
 Transceiver Type:
                                              = ONS SE Z1 (406)
                                              = ONS-SE-Z1
 Product Identifier (PID)
 Vendor Revision
                                              = A
  Serial Number (SN)
                                              = FNS19251NPM
  Vendor Name
                                              = CISCO-FINISAR
                                              = 00.90.65 (36965)
  Vendor OUI (IEEE company ID)
                                              = WMOTCZPAAA
 CLEI code
                                              = 10-1971-04
  Cisco part number
  Device State
                                              = Enabled.
  Date code (yy/mm/dd)
                                              = 15/06/19
  Connector type
                                              = LC.
                                               = 8B10B
 Encoding
                                                 NR7
                                                Manchester
                                               = OC48/STM16 (2500 Mbits/s)
  Nominal bitrate
  Minimum bit rate as % of nominal bit rate = not specified
  Maximum bit rate as % of nominal bit rate = not specified
  The transceiver type is 406
  Link reach for 9u fiber (km)
                                              = IR-1(15km) (15)
  Link reach for 50u fiber (m)
                                              = SR(2km) (0)
                                                 IR-1(15km) (0)
                                                 IR-2(40 \text{km}) (0)
                                                LR-1(40 \text{km}) (0)
                                                LR-2(80km) (0)
                                                 LR-3(80 km) (0)
                                                 DX (40KM) (0)
                                                 HX(40km) (0)
                                                 ZX(80km) (0)
                                                 VX(100km) (0)
                                                1xFC, 2xFC-SM(10km) (0)
                                                ESCON-SM(20km) (0)
  Link reach for 62.5u fiber (m)
                                               = SR(2km) (0)
                                                 IR-1(15km) (0)
                                                 IR-2(40 \text{km}) (0)
                                                LR-1(40 \text{km}) (0)
                                                 LR-2(80 \text{km}) (0)
                                                 LR-3(80km) (0)
                                                 DX (40KM) (0)
                                                 HX (40km) (0)
                                                 ZX(80km) (0)
                                                 VX(100km) (0)
                                                1xFC, 2xFC-SM(10km) (0)
                                                ESCON-SM(20 \text{km}) (0)
  Nominal laser wavelength
                                              = 1310 \text{ nm}.
  DWDM wavelength fraction
                                              = 1310.0 \, \text{nm}.
  Supported options
                                              = Tx disable
                                                Tx fault signal
                                                Loss of signal (standard implementation)
  Supported enhanced options
                                              = Alarms for monitored parameters
                                                Software Rx LOS monitoring
```

```
Diagnostic monitoring
                                                     = Digital diagnostics supported
                                                        Diagnostics are externally calibrated
                                                       Rx power measured is "Average power"
Transceiver temperature operating range = -40 C to 85 C (industrial)
Minimum operating temperature
Maximum operating temperature
                                                    = 85 C
High temperature alarm threshold
                                                   = +90.000 C
High temperature alarm threshold = +90.000 C

High temperature warning threshold = -40.000 C

Low temperature warning threshold = -45.000 C

Low temperature alarm threshold = -45.000 C

High voltage alarm threshold = 3630.0 mVolts

High voltage warning threshold = 3470.0 mVolts

Low voltage warning threshold = 3140.0 mVolts

Low voltage alarm threshold = 2971.2 mVolts
High laser bias current alarm threshold = 85.000 mAmps
High laser bias current warning threshold = 65.000 mAmps
Low laser bias current warning threshold = 4.000 mAmps
Low laser bias current alarm threshold = 2.000 mAmps
                                                  = 4.0 dBm
High transmit power alarm threshold
High transmit power warning threshold
                                                   = 2.0 \text{ dBm}
Low transmit power warning threshold = -7.0 \text{ dBm}
Low transmit power alarm threshold
                                                    = -9.0 \text{ dBm}
                                                   = 1.0 dBm
High receive power alarm threshold
Low receive power alarm threshold
                                                 = -26.0 \text{ dBm}
                                                 = -1.0 \text{ dBm}
High receive power warning threshold
                                                      = -24.9 \text{ dBm}
Low receive power warning threshold
External Calibration: bias current slope = 1.000
External Calibration: bias current offset = 0
```

show hw-module subslot <slot/bay> transceiver <port> idprom brief:

```
sh hw-module subslot 0/7 transceiver 6 idprom brief
IDPROM for transceiver SPA-1T8S-10CS 7/6:
                                            = SFP or SFP+ optics (type 3)
 Description
                                           = ONS SE Z1 (406)
 Transceiver Type:
 Product Identifier (PID)
                                           = ONS-SE-Z1
 Vendor Revision
                                           = A
 Serial Number (SN)
                                           = FNS19251NO0
 Vendor Name
                                           = CISCO-FINISAR
 Vendor OUI (IEEE company ID)
                                           = 00.90.65 (36965)
                                           = WMOTCZPAAA
 CLET code
 Cisco part number
                                          = 10-1971-04
 Device State
                                           = Enabled.
 Date code (yy/mm/dd)
                                           = 15/06/19
  Connector type
  Encoding
                                           = 8B10B
                                             NRZ
                                             Manchester
 Nominal bitrate
                                           = OC48/STM16 (2500 Mbits/s)
  Minimum bit rate as % of nominal bit rate = not specified
  Maximum bit rate as % of nominal bit rate = not specified
```

Loopback Remote on T1 and T3 Interfaces

The remote loopback configuration attempts to put the far-end T1 or T3 into a loopback.

The remote loopback setting loops back the far-end at line or payload, using IBOC (inband bit-orientated CDE) or the ESF loopback codes to communicate the request to the far-end.

Restrictions for Loopback Remote

- E1 and E3 loopback remote are not supported until Cisco IOS XE Fuji 16.9.4 release. Starting from Cisco IOS XE Fuji 16.9.5 release, E1 and E3 loopback remote are supported.
- IBOC loopcode configuration is not supported when CESoP or SATOP (framed or unframed) is configured.
- ESF loopcode configuration is not supported when SAToP is configured.

Configuring Loopback Remote in Sonet

To set T1 loopback remote iboc fac1/fac2/csu for OCX sonet, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller sonet 0/0/1
mode ct3
t1 1 loopback remote iboc {fac1 | fac2 | csu}
mode vt-15
vtg 1 t1 1 loopback remote iboc {fac1 | fac2 | csu}
```

To set T1 loopback remote iboc esf line csu/esf payload for OCX sonet, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller sonet 0/0/1
mode ct3
t1 1 loopback remote iboc esf {line csu | payload}
mode vt-15
vtg 1 t1 1 loopback remote esf {line csu | payload}
```

To set T3 loopback remote line/payload for OCX in sonet, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller sonet 0/0/1
mode t3
t3 loopback remote {line | payload}
```


Note

loopback remote esf line niu is not supported.

Verifying the Loopback Remote Configuration

Use the following command to check the T1 loopback remote configuration:

```
router# show run | sec 0/0/1 controller SONET 0/0/1 rate 0C3 no ais-shut alarm-report all
```

```
clock source internal
!
sts-1 1
!
sts-1 2
  clock source internal
  mode ct3
  t3 framing c-bit
  t3 clock source internal
  t1 Loopback remote iboc fac1
  t1 1 framing SF
```

Use the following command to verify the T1 loopback remote configuration:

```
Router(config-ctrlr-sts1)# show controller sonet 0/0/1 | b STS-1 2, T1 1
STS-1 2, T1 1 (CT3 2-1) is up
timeslots:
Configured for NIU FAC1 Line Loopback with IBOC
Currently in Inband Remotely Line Looped
Receiver has no alarms.
Framing is SF, Clock Source is Internal
```

Use the following command to check T3 loopback remote configuration:

```
Router# show run | sec 0/0/1
controller SONET 0/0/1
rate OC3
no ais-shut
alarm-report all
clock source internal
!
sts-1 1
!
sts-1 2
!
sts-1 3
    clock source internal
    mode t3
    t3 framing c-bit
    t3 loop remote line
    t3 clock source internal
```

Use the following command to verify T3 loopback remote configuration:

```
Router(config-ctrlr-sts1)# do show controller sonet 0/0/1 | b Path 3

OC3.STS1 0/0/1 Path 3 is up. (Configured for Remotely Looped)

Currently in Remotely Line Looped

Hardware is

Applique type is T3

Receiver has no alarms.

MDL transmission is disabled
```

Associated Commands

The following table shows the Associated Commands for SONET configuration:

Commands	Links
ais-shut	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp7654966010
alarm-report	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp2800999060
aps adm	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp8015117230
aps group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp1674734739
aps protect	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp2073867702
aps revert	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp4063780600
aps unidirectional	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp5340799170
aps working	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-a1.html#wp8949584630
cem-group cem-group-number cep	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c1.html#wp2440628600
controller mediatype	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp1201337639
controller protection-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/mcl/allreleasemcl/all-book/all-03.html
controller sonet	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp2020468554
clock source	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-c2.html#wp3604380959
loopback	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp2735045490

Commands	Links
mode sonet	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp2327088950
mode sts-nc	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp1791424945
mode vt-15	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-l2.html#wp1137973905
overhead c2	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp1973678817
overhead j0	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp4338698890
overhead j1	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp1987243836
overhead s1s0	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp2779929239
protection-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/mcl/allreleasemcl/all-book/all-10.html
protection-group [working protect]	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/mcl/allreleasemcl/all-book/all-10.html
rate [OC3 OC12 OC48 OC192]	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-o1.html#wp4442889730
shutdown	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s6.html#wp3364503641
show controllers sonet	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s3.html#wp1341372847
show hw-module subslot transceiver	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s4.html#wp6553420000
show protection-group	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/mcl/allreleasemcl/all-book/all-14.html
sts-1	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-s6.html#wp2423232697

Commands	Links
t1 t1-line-number framing	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp2623191253
t1 t1-line-number clock source	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp3480850667
threshold	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t1.html#wp2311589330
type sts48c	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/mcl/allreleasemcl/all-book/all-15.html
vtg vtg-line-number t1 t1-line-number loopback	http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/command/ir-cr-book/ir-t2.html#wp3494199143

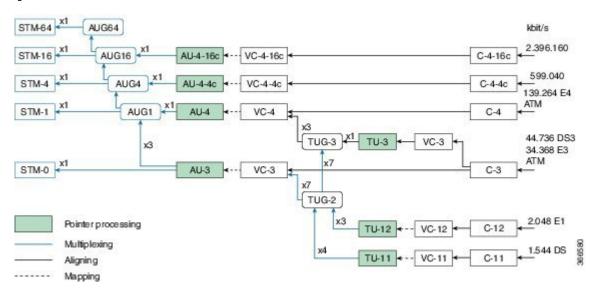
Configuring SDH

SDH is a standard that defines optical signals as well as a synchronous frame structure for multiplexed digital traffic. It is is used in Europe by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). The SDH equipment is used everywhere except North America. The IM supports the entire SDH hierarchy (except VC-2/C-2).

- Overview of SDH, on page 161
- Services Provided by SDH Configuration, on page 164
- SDH Multiplexing, on page 167
- Configuring AU-4 TUG-3 TUG-2 VC-12 for Framed SAToP, on page 178
- Configuring AU-3 TUG-2 VC-11 T1 for Framed SAToP, on page 178
- Verifying SDH Configuration for Framed SAToP, on page 178
- Restrictions for SDH, on page 179
- Configuring Mediatype Controller, on page 180
- Configuring Rate on SDH Ports, on page 181
- SDH Line and Section Configuration Parameters, on page 181
- Configuring BERT in SDH for SAToP, on page 199
- BERT Error Injection, on page 203
- SDH T1/E1 Configuration Parameters, on page 208
- SDH T3/E3 Configuration Parameters, on page 209
- SDH VC Configuration Parameters for SAToP, on page 210
- Configuring ACR on SDH, on page 211
- Configuring DCR on SDH, on page 213
- Loopback Remote on T1 and T3 Interfaces, on page 214

Overview of SDH

SDH was defined by European Telecommunications Standards Institute (ETSI) and is now being controlled by the ITU-T standards body. SDH standard is prevalently used everywhere outside North America and Japan.


The following are true for SDH:

- Network Node Interface (NNI) defined by CCITT/ITU-TS for worldwide use and partly aompatible with SONET
- One of the two options for the User-Network Interface (UNI) (the customer connection) and formally the U reference point interface for support of BISDN

Basic SDH Signal

The basic format of an SDH signal allows it to carry many different services in its VC because SDH signal is bandwidth-flexible. This capability allows the transmission of high-speed packet-switched services, ATM, contribution video, and distribution video. However, SDH still permits transport and networking at the 2 Mbit/s, 34 Mbit/s, and 140 Mbit/s levels, accommodating the existing digital hierarchy signals. In addition, SDH supports the transport of signals based on the 1.5 Mbit/s hierarchy.

SDH Hierarchy

SDH Frame Structure

The STM-1 frame is the basic transmission format for SDH. The frame lasts for 125 microseconds, therefore, there are 8000 frames per second. The STM-1 frame consists of overhead plus a Virtual Container (VC) capacity.

The SDH frame consists of 270 columns. The first nine columns of each frame make up the Section Overhead, and the last 261 columns make up the VC capacity. The VC plus the pointers (H1, H2, H3 bytes) are called the Administrative Unit (AU). Carried within the VC capacity, which has its own frame structure of nine rows and 261 columns, is the Path Overhead and the Container. The first column is for Path Overhead; it is followed by the payload container, which can itself carry other containers. VCs can have any phase alignment within the Administrative Unit, and this alignment is indicated by the Pointer in row four. Within the Section Overhead, the first three rows are used for the Regenerator Section Overhead, and the last five rows are used for the Multiplex Section Overhead. The STM frame is transmitted in a byte-serial fashion, row-by-row, and is scrambled immediately prior to transmission to ensure adequate clock timing content for downstream regenerators.

Figure 13: STM1 Frame Structure

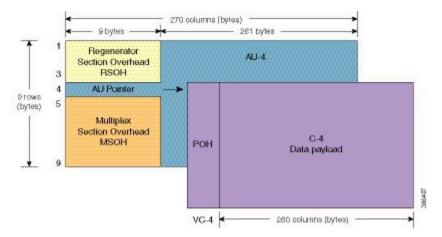
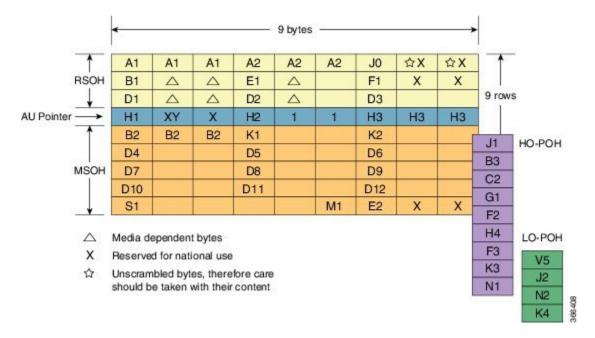



Figure 14: STM1 Section Overhead

VC

SDH supports a concept called VC. Through the use of pointers and offset values, VCs can be carried in the SDH payload as independent data packages. VCs are used to transport lower-speed tributary signals. Note that it can start (indicated by the J1 path overhead byte) at any point within the STM-1 frame. The start location of the J1 byte is indicated by the pointer byte values. VCs can also be concatenated to provide more capacity in a flexible fashion.

Modes of CEM

- Structure Agnostic TDM over Packet (SAToP) (RFC 4553) SAToP mode is used to encapsulate T1/E1 or T3/E3 unstructured (unchannelized) services over packet switched networks. In SAToP mode, the bytes are sent out as they arrive on the TDM line. Bytes do not have to be aligned with any framing.
- In this mode, the interface is considered as a continuous framed bit stream. The packetization of the stream is done according to IETF RFC 4553. All signaling is carried transparently as a part of a bit stream.
- Circuit Emulation Service over Packet (CEP) (RFC 4842) CEP mode is used to encapsulate SDH payload envelopes (SPEs) like VC11, VC12, VC4, or VC4-Nc over PSN. In this mode, the bytes from the corresponding SPE are sent out as they arrive on the TDM line. The interface is considered as a continuous framed bit stream. The packetization of the stream is done according to IETF RFC 4842.

Table 23: SDH CEM Channelization Modes

SDH Modes	СЕМ	Ports
VC4-16c	СЕР	STM16
VC4-4c	СЕР	STM4, STM16
VC4	СЕР	STM1, STM4, STM16
TUG-3-E3	SAToP	STM1, STM4, STM16
TUG-3-T3	SAToP	STM1, STM4, STM16
TUG-2-VC11	СЕР	STM1, STM4, STM16
TUG-2-VC12	СЕР	STM1, STM4, STM16
TUG-2-T1	SAToP	STM1, STM4, STM16
TUG-2-E1	SAToP	STM1, STM4, STM16

Services Provided by SDH Configuration

The following services are provided by SDH Configuration:

SDH Circuits	Configuration Details
Configuring VC4 CEP circuit	Configuring Mediatype Controller
	• Configuring Rate on SDH Ports
	• Configurin AU-3 or AU-4 Mapping
	Configuring Modes under AU-4 Mapping
	Configuring Mode VC4 CEP

SDH Circuits	Configuration Details
Configuring VC4-4c circuit or Configuring VC4-16c	Configuring Mediatype Controller
circuit	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	Configuring Modes under AU-4 Mapping
	• Configuring Mode VC-4 Nc
Configuring VC4—TUG3—E3 circuit	Configuring Mediatype Controller
	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode TUG-3
Configuring VC4—TUG3—T3 circuit	Configuring Mediatype Controller
	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode TUG-3
	• Configuring AU-4—TUG-3—VC-3—DS3
Configuring VC4—TUG-3—TUG-2—VC-12 circuit	Configuring Mediatype Controller
	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode TUG-3
	• Configuring VC4—TUG-3—TUG-2—VC-12—VC
Configuring VC4 — TUG-3 — TUG-2 — VC-12 —	Configuring Mediatype Controller
E1 circuit	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode TUG-3
	• Configuring AU-4—TUG-3—TUG-2—VC-12

SDH Circuits	Configuration Details
Configuring VC4—TUG-3—TUG-2—VC-11 circuit	Configuring Mediatype Controller
	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode TUG-3
	• Configuring AU-4—VC4—TUG-3—TUG-2—VC-11—T1
Configuring AU-3—VC-3—E3 circuit	Configuring Mediatype Controller
	• Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring AU-3—VC-3—E3
Configuring AU-3—VC-3—DS3 circuit	Configuring Mediatype Controller
	• Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	Configuring AU-3—VC-3—DS3 circuit
Configuring (AU-3) VC-3—TUG-2—VC-12—T1	Configuring Mediatype Controller
circuit	• Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode VC-1x
	• Configuring AU-3—TUG-2—VC-11—T1
Configuring (AU-3) VC-3—TUG-2—VC-12 circuit	Configuring Mediatype Controller
	• Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode VC-1x
	• Configuring AU-3—TUG-2—VC-12—E1
Configuring (AU-3) VC-3—TUG-2—VC11 circuit	Configuring Mediatype Controller
	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode VC-1x

SDH Circuits	Configuration Details
Configuring (AU-3) VC-3—TUG-2—VC11—E1 circuit	Configuring Mediatype Controller
	Configuring Rate on SDH Ports
	• Configuring AU-3 or AU-4 Mapping
	• Configuring Mode VC-1x
	• Configuring AU-3—TUG-2—VC-12—E1

SDH Multiplexing

The terms and definitions of SDH multiplexing principles are:

- **Mapping** A process used when tributaries are adapted into VCs by adding justification bits and Path Overhead (POH) information.
- Aligning This process takes place when a pointer is included in a Tributary Unit (TU) or an Administrative Unit (AU), to allow the first byte of the VC to be located.
- **Multiplexing** This process is used when multiple lower-order path layer signals are adapted into a higher-order path signal, or when the higher-order path signals are adapted into a Multiplex Section.
- Stuffing As the tributary signals are multiplexed and aligned, some spare capacity is designed into the SDH frame to provide enough space for all the various tributary rates. Therefore, at certain points in the multiplexing hierarchy, this space capacity is filled with "fixed stuffing" bits that carry no information, but are required to fill up the particular frame.

Modes of SDH

A Synchronous Transport Module (STM) signal is the Synchronous Digital Hierarchy (SDH) equivalent of the SONET STS. In this document, STM term refers to both path widths and optical line rates. The paths within an STM signals are called administrative units (AUs).

An AU is the information structure that provides adaptation between the higher-order path layer and the multiplex section layer. It consists of an information payload (the higher-order VC) and an AU pointer, which indicates the offset of the payload frame start relative to the multiplex section frame start.

The AU-3 pointer is composed of 3 bytes; the AU-4 pointer is composed of 9 bytes.

The payload of the STM-1 frame consists of one AU-4 unit or three AU-3 units.

Augment Mapping

An administrative unit group (AUG) consists of one or more administrative units occupying fixed, defined positions in an STM payload. Augment mapping is supported at STM1 level. The following types of augment mapping are supported:

Augment Mapping AU-4

This is the default augment mapping mode.

- Augment Mapping AU-3
- Mixed (AU-3 and AU-4) Augment Mapping

The supported modes of SDH are:

- AU-4-16c (VC4-16c)
- AU-4-4c (VC4-4c)
- AU-4 (VC4)
- AU-4 TUG-3 VC-3 DS3
- AU-4 TUG-3 VC-3 E3
- AU-4 TUG-3 TUG-2 VC-11 T1
- AU-4 TUG-3 TUG-2 VC-12 E1
- AU-4 TUG-3 TUG-2 VC-11
- AU-4 TUG-3 TUG-2 VC-12
- AU-3 VC-3 DS3
- AU-3 TUG-2 VC-11 T1
- AU-3 TUG-2 VC-12 E1
- AU-3 TUG-2 VC-11
- AU-3 TUG-2 VC-12
- AU-3 VC-3 E3

Configuring AUG Mapping

This section describes the configuration of Administration Units Group (AUG) mapping.

Configuring AU-3 or AU-4 Mapping

To configure AU-3 or AU-4 mapping:

```
configure terminal aug mapping [au-3 \mid au-4] end
```


Note

The **aug mapping** command is available only when SDH framing is configured.

The AUG mapping mode is AU-4 by default. AUG mapping is supported at STM-1 level.

Configuring Mixed AU-3 and AU-4 Mapping

To configure mixed AU-3 and AU-4 mapping:

```
configure terminal aug mapping [au-3 \mid au-4] stm [1-1] stm1 number [1-4] end
```


Note

Use the following command to change the AUG mapping of a particular STM-1 to AU-3:

aug mapping au-3 stm [1-16] path number 1-16

After configuring this command for STM-4 the AUG mapping of path 2, 3, and 4 is AU-4 and for path 1 it is AU-3.

Verifying AUG Mapping Configuration

Use **show running-configuration** command to verify the AUG mapping configuration.

```
show running-config | sec 0/3/4
PDT: %SYS-5-CONFIG I: Configured from console by console
controller MediaType 0/0/16
mode sdh
controller SDH 0/0/16
rate STM4
no ais-shut
alarm-report all
threshold sf-ber 3
clock source internal
overhead s1s0 0
aug mapping au-4 stm 1
aug mapping au-3 stm 2
aug mapping au-4 stm 3
aug mapping au-4 stm 4
au-4 1
1
au-3 4
!
au-3 5
!
au-3 6
lan-4 3
!au-4 4
```

Configuring Modes under AU-4 Mapping

This section describes the configuration of modes under AU-4 mapping.

Configuring Mode VC-4 CEP

To configure mode VC-4 CEP:

```
enable
configure terminal
controller sdh 0/0/16
rate stm 4
aug mapping au-4
au-4 1
mode vc4
cem-group 100 cep
end
```


Note

Overhead C2 should match with the peer end else it will result in PPLM alarm.

Verifying Mode VC-4 Configuration

Use the **show running-configuration** command to verify the mode VC-4 configuration.

```
#show running-config | sec 0/3/4
PDT: %SYS-5-CONFIG_I: Configured from console by console
platform enable
controller MediaType 0/0/16 oc12
controller MediaType 0/0/16
mode sdh
controller SDH 0/0/16
rate STM4
no ais-shut
alarm-report all
threshold sf-ber 3
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
mode vc4
clock source internal
au-4 2
au-4 3
au-4 4
```

Configuring Mode TUG-3

To configure mode TUG-3:

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
end
```


Note

Mode TUG-3 creates three TUG-3 paths. TUG-3 range is 1 to 3.

Configuring AU-4 — TUG-3 — VC-3 — DS3

```
To configure AU-4 — TUG-3 — VC-3 — DS3:

enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
tug-3 1
mode t3
cem-group 100 unframed
end
```

Verifying DS3 Configuration

Use **show running-configuration** command to verify DS3 configuration:

```
#show running-configuration | sec 0/3/4
platform enable controller MediaType 0/0/16 oc12
controller MediaType 0/0/16
mode sdh
controller SDH 0/0/16
rate STM4
no ais-shut
alarm-report all
threshold sf-ber 3
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
mode tug-3
clock source internal
tug-3 1mode T3
t3 clock source internal
t3 framing c-bit
tug-3 2
tug-3 3
au-4 2
au-4 3
au-4 4
```

Configuring AU-4 — TUG-3 — VC-3 — E3

```
To configure AU-4 — TUG-3 — VC-3 — E3:
```

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
tug-3 1
mode e3
cem-group 100 unframed
end
```

Verifying E3 Configuration

Use **show running-configuration** command to verify E3 configuration.

```
#show running-configuration | sec 0/0/16
platform enable
controller MediaType 0/0/16 oc12
controller MediaType 0/0/16
mode sdh
controller SDH 0/0/16
rate STM4
no ais-shut
alarm-report all
threshold sf-ber 3
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
mode tug-3
clock source internal
tug-3 1
mode E3
e3 clock source internal
e3 framing g751
tug-3 2
tug-3 3
au-4 2
```

Configuring Mode VC-1x

To configure mode VC-1x:

```
enable
configure terminal
controller sdh 0/0/16
rate stm1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode VC1x
tug-2 1 payload VC11
tug-2 2 payload VC11
tug-2 3 payload VC11
tug-2 4 payload VC11
tug-2 5 payload VC11
tug-2 6 payload VC11
tug-2 7 payload VC11
end
```


When you configure mode VC-1x, seven TUG-2 payloads are created. TUG-2 payloads can be of two types, VC-11 and VC-12. Default for TUG-2 payload mode is VC-11.

TUG-2 payload VC-11 can be configured as VC or T1 and the range is 1 to 4.

TUG-2 payload VC-12 can be configured as VC or E1 and the range is 1 to 3.

Configuring AU-4 — TUG-3 — TUG-2 — VC-11 — T1

```
To configure AU-4 — TUG-3 — TUG-2 — VC-11 — T1:

enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
tug-3 1
mode vc1x
tug-2 1 payload vc11
t1 1 cem-group 10 unframed
vc 1 overhead v5 2
interface cem 0/0/16
cem 100
xconnect 10.2.2.2 10 encapsulation mpls
```


end

Note

Overhead v5 has to be matched with the peer end.

Configuring AU-4 — TUG-3 — TUG-2 — VC-12

Use the following commands to configure AU-4 — TUG-3 — TUG-2 — VC-12:

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
tug-3 1
mode vclx
tug-2 3 payload vc12
el 1 cem-group 10 unframed
vc 1 overhead v5 2
end
```


Note

Overhead v5 should match with the peer end.

Configuring AU-4 — TUG-3 — TUG-2 — VC-11 — VC

To configure AU-4 — TUG-3 — TUG-2 — VC-11 — VC:

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
tug-3 1
mode vclx
tug-2 2 payload vc11
vc 1 cem-group 2 cep
end
```

Configuring AU-4 — TUG-3 — TUG-2 — VC-12 — VC

```
To configure AU-4 — TUG-3 — TUG-2 — VC-12 — VC:
```

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
tug-3 1
mode vc1x
tug-2 4 payload vc12
vc 1 cem-group 10 cep
end
```

Verifying Mode VC-1x Configuration

Use **show running-configuration** command to verify mode VC-1x configuration.

```
#show running-configuration
controller MediaType 0/3/4
mode sdh
controller SDH 0/3/4
rate STM4
no ais-shut
alarm-report all
threshold sf-ber 3
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode VC1x
tug-2 1 payload VC11
t1 1 cem-group 1 unframed
tug-2 2 payload VC11
vc 1 cem-group 2 cep
tug-2 3 payload VC12
el 1 cem-group 3 unframed
tug-2 4 payload VC12
vc 1 cem-group 4 cep
tug-2 5 payload VC11
tug-2 6 payload VC11
tug-2 7 payload VC11
tug-3 2
!
```

tug-3 3

```
au-4 2
!
au-4 3
!
au-4 4
```

Configuring Mode VC-4 Nc

To configure mode VC-4 Nc:

```
enable configure terminal controller sdh 0/0/16 au-4 1 - 4 mode vc4-4c cem-group 100 cep end
```


Note

Overhead C2 should match with the peer end else it will result in PPLM alarm.

Verifying Mode VC-4 Nc Configuration

Use **show running-configuration** command to verify mode VC-4 Nc configuration.

#show running-configuration

```
platform enable
controller MediaType 0/0/16 oc12
controller MediaType 0/0/16
mode sdh
controller SDH 0/0/16
rate STM4
no ais-shut
alarm-report all
threshold sf-ber 3
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1 - 4 \mod vc4-4c
clock source internal
cem-group 10 cep
interface CEM 0/0/16
no ip address
cem 10
```

Configuring AU-3 — VC-3 — DS3

```
To configure AU-3 — VC-3 — DS3:
```

```
enable
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
rate stm4
au-3 1
mode t3
cem-group 100 unframed
end
```

Configuring AU-3 — VC-3 — E3

```
To configure AU-3 — VC-3 — E3:
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-3 1
mode e3
cem-group 100 unframed
end
```

Configuring Modes under AU-3 Mapping

This section describes the configuration of modes under AU-3 mapping.

Configuring Mode VC-1x

```
To configure mode VC-1x:
```

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-3 1
mode VC1x
tug-2 1 payload VC11
tug-2 2 payload VC11
tug-2 3 payload VC11
tug-2 4 payload VC11
tug-2 5 payload VC11
tug-2 6 payload VC11
tug-2 7 payload VC11
tug-2 7 payload VC11
end
end
```

Configuring AU-3 — TUG-2 — VC-11 — VC

```
To configure AU-3 — TUG-2 — VC-11 — VC:
```

```
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
rate stm4
au-3 1
mode vc1x
tug-2 1 payload vc11
vc 1 cem-group 10 cep
```

Configuring AU-3 — TUG-2 — VC-12 — VC

```
To configure AU-3 — TUG-2 — VC-12 — VC:
```

```
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
rate stm4
```

```
au-3 1
mode vc1x
tug-2 1 payload vc12
vc 1 cem-group 10 cep
end
```

Configuring AU-3 — TUG-2 — VC-11 — T1

```
To configure AU-3 — TUG-2 — VC-11 — T1:

configure terminal
controller MediaType 0/0/16

mode sdh
controller sdh 0/0/16

rate stm4

au-3 1

mode vc1x

tug-2 1 payload vc11

t1 1 cem-group 10 unframed
vc 1 overhead v5 2
interface cem 0/0/16
cem 100
xconnect 10.2.2.2 10 encapsulation mpls
end
```

Configuring AU-3 — TUG-2 — VC-12 — E1

```
To configure AU-3 — TUG-2 — VC-12 — E1:
```

```
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
rate stm4
au-3 1
mode vc1x
tug-2 3 payload vc12
e1 1 cem-group 10 unframed
vc 1 overhead v5 2
end
```

Verifying Mode VC-1x Configuration

Use **show running-configuration** command to verify mode VC-1x configuration.

#show running-configuration

```
controller MediaType 0/0/16
mode sdh
controller SDH 0/0/16
rate STM4
no ais-shut
alarm-report all
threshold sf-ber 3
clock source internal
overhead s1s0 0
aug mapping au-3
au-3 1
clock source internal
mode VC1x
tug-2 1 payload VC11
t1 1 cem-group 1 unframed
tug-2 2 payload VC11
vc 1 cem-group 2 cep
```

```
tug-2 3 payload VC12
tug-2 4 payload VC12
vc 1 cem-group 4 cep
tug-2 5 payload VC11
tug-2 6 payload VC11
tug-2 7 payload VC11
```

Configuring AU-4 — TUG-3 — TUG-2 — VC-12 for Framed SAToP

Use the following commands to configure AU-4 — TUG-3 — TUG-2 — VC-12 for framed SAToP under mode VC-1x (AU-4 mapping):

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-4 1
mode tug-3
tug-3 1
mode vclx
tug-2 3 payload vc12
el 1 cem-group 1 framed
vc 1 overhead v5 2
end
```

Configuring AU-3 — TUG-2 — VC-11 — T1 for Framed SAToP

To configure AU-3 — TUG-2 — VC-11 — T1 for framed SAToP under mode VC-1x (AU-3 mapping):

```
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
rate stm4
au-3 1
mode vc1x
tug-2 1 payload vc11
t1 1 cem-group 0 framed
vc 1 overhead v5 2
interface cem 0/0/16
cem 100
xconnect 10.2.2.2 10 encapsulation mpls
end
```

Verifying SDH Configuration for Framed SAToP

Use **show running configuration** command to verify SDH configuration for Framed SAToP:

```
Router#show running configuration | sec 0/0/16 platform enable controller mediatype 0/0/16 oc3 controller mediatype 0/0/16 mode sdh controller sdh 0/0/16 rate stm1 no ais-shut alarm-report all
```

```
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode vc1x
tug-2 1 payload vc11
tug-2 2 payload vc12
el 1 cem-group 1 framed
tug-2 3 payload vc11
tug-2 4 payload vc11
tug-2 5 payload vc11
tug-2 6 payload vc11
tug-2 7 payload vc11
interface cem 0/0/16
no ip address
cem 0
cem 1
cem 2
cem 3
Router#
```

Restrictions for SDH

- The maximum supported bandwidth is STM-16.
- Any Port (16-19) is configurable for STM-1, STM-4 or STM-16.
- The IM has 4 X STM-4 ports. You can configure STM-1 or STM-4 on all four ports. If you configure rate STM-16 on any of the four ports, others ports will not be available.
- This IM does not support CEP on AU-4 VC-4 TUG-3 VC-3.
- This IM does not support CT3, CE3, CT3-E1 under the VC3 container. Only clear channel T3 services are supported.
- This IM does not support the framed SAToP CESoPSN.
- Eight BERT engines are supported for Higher Order and 16 BERT engines are supported for Lower Order hierarchy.
- If a port is configured as SDH, all ports can only be configured as SDH unless the mode SDH is removed from all the ports on the IM.
- VC-4-64c and VC-2 are not supported.
- AU-4 CT3, AU-4 CE3, AU-4 CT3-E1, AU-3-CT3, AU-3-CE3, and AU-3 CT3-E1 are not supported.

 AU-4 VC-4 TUG-3 VC-3 DS3 T1/E1, AU-4 VC-4 TUG-3 VC-3 E3 E1,

 AU-3 VC-3 DS3 T1/E1, and AU-3 VC-3 E3 E1 are not supported.
- Concatenation VC-4-Nc is only supported for augment mapping AU-4.

- MDL is not supported.
- SNCP is not supported.

Restrictions on Bandwidth

• Total available bandwidth is 2.5G.

The following configuration is blocked and an error message is displayed after the maximum bandwidth is utilized:

```
rate stm1 | rate stm4 | rate stm16
```

Table 24: Bandwidth Used by Different Rates

Rate	Bandwidth (kbit/s)
STM-1	150,336
STM-4	601,344
STM-16	2,405,376

Restrictions for Scale PW Circuits

• Only 1000 CEM PW Circuits per OCN Interface modules are supported.

Restrictions for BER Threshold

- The BER threshold value 10e-9 is not supported for the following line, path, and VT BER CLIs on the following interface modules:
 - Line BER CLIs threshold b2-tca, threshold sd-ber and threshold sf-ber.
 - PATH BER CLIs threshold b3-ber_sd, threshold b3-ber_sf, and threshold b3-tca.
 - VT BER CLIs threshold bip2-sd, threshold bip2-sf, and threshold bip2-tca.
 - Not Supported Interface Modules for Above BER CLIs

Configuring Mediatype Controller

Each SFP port (16-19) can be configured as STM-1, STM-4, STM-16.

You must select the MediaType controller to configure and enter the controller configuration mode.

You must configure the controller as a SDH port.

To configure MediaType Controller:

```
enable
configure terminal
controller MediaType 0/0/16
```

```
mode sdh
end
```

Configuring Rate on SDH Ports

To configure rate on SDH ports:

```
enable
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
rate [stm1 | stm4 | stm16]
end
```


Note

The configuration of **no** form of the command is not suported. To restore to the default condition, use **no mode sdh** command under Mediatype controller after removing all configuration under that port.

SDH Line and Section Configuration Parameters

The following parameters affect SDH configuration at the line and section levels.

Overhead

Sets the SDH overhead bytes in the frame header to a specific standards requirement, or to ensure interoperability with equipment from another vendors.

• **J0** — Sets the J0 or C1 byte value in the SDH section overhead.

Note

The supported values of J0 are 1 byte, 16 bytes, and 64 bytes.

• S1S0 — Sets the SS bits value of the H1 byte in the SDH line overhead.

Configuring Line and Section Overhead

To configure line and section overhead:

```
enable
configure terminal
controller sdh 0/0/16
overhead s1s0 2
overhead j0 expected length 16-byte
overhead j0 expected tracebuffer rx Message
overhead j0 tx length 1-byte
overhead j0 tx tracebuffer tx Message
end
```


To restore the system to its default condition, use the **no** form of the **overhead j0** command.

Threshold

Set the path BER threshold values.

- b1-tca Enables Bit Error Rate (BER) threshold crossing alerts for B1.
- **b2-tca** Enables BER threshold crossing alerts for B2.
- sd-ber Enables the threshold of the Signal Degrade (SD) BER that is used to trigger a signal degrade alarm.
- **sf-ber** Configures the threshold of the Signal Failure (SF) BER that is used to trigger a link state change.

Configuring Line and Section Threshold

To configure line and section threshold:

```
enable
configure terminal
mode sdh
controller sdh 0/0/16
threshold b1-tca 5
threshold b2-tca 5
threshold sd-ber 5
threshold sf-ber 5
end
```


Note

To restore the system to its default condition, use the **no** form of the threshold command.

Loopback

Sets a loopback to test the SDH port.

- local Loops the signal from Tx to Rx path. Sends alarm indication signal (AIS) to network.
- network Loops the signal from Rx to Tx path.

Configuring Line Loopback

To configure loopback:

```
enable
configure terminal
controller sdh 0/0/16
loopback [local | network]
end
```


To restore the system to its default condition, use the **no** form of the loopback command.

Note

When loopback is configured as network, it is recommended to use the configuration of clock source as line.

AIS-Shut

Enables automatic insertion of a Line Alarm Indication Signal (LAIS) in the sent SDH signal whenever the SDH port enters the administrative shutdown state.

Configuring AIS Shut

To configure AIS-Shut:

```
enable configure terminal controller sdh 0/0/16 ais-shut end
```


Note

The no ais-shut command does not send AIS.

Shutdown

Disables the interface.

Configuring Shut

To configure Shut:

```
enable configure terminal controller sdh 0/0/16 shutdown end
```


Note

Use the **no shutdown** command to disable the interface.

Alarm Reporting

Enables reporting for all or selected alarms.

• b1-tca — Enables BER threshold crossing alarm for B1.

- **b2-tca** Enables BER threshold crossing alarm for B2.
- **b3-tca** Enables BER threshold crossing alarm for B3.
- lais —Enables line alarm indication signal.
- **lom** Enables loss of multiframe signal.
- **Irdi** Enables line remote defect indication signal.
- pais Enables path alarm indication signal.
- plop Enables loss of pointer failure signal for a path.
- **pplm** Enables path payload mismatch indication.
- **prdi** Enables path remote defect indication signal.
- puneq Enables path unequipped (path label equivalent to zero) signal.
- sd-ber Enables LBIP BER in excess of SD threshold.
- sf-ber Enables LBIP BER in excess of SF threshold.
- **slof** Enables section loss of frame signal.
- slos Enables section loss of signal.

Configuring Alarm Reporting

To configure alarm reporting:

```
enable
configure terminal
controller sdh 0/0/16
alarm-report [b1-tca | b2-tca | b3-tca | lais | lom | lrdi | pais | plop | pplm | prdi |
puneq | sd-ber | sf-ber | lof | los]
end
```


Note

To restore the system to its default condition, use the **no** form of the alarm report command.

Clock Source

Specifies the clock source, where

- line —The link uses the recovered clock from the line.
- internal The link uses the internal clock source. This is the default setting.

Configuring Clock

To configure clock, use the following commands:

```
enable
configure terminal
controller sdh 0/0/16
```

```
clock source [line | internal]
end
```


The default mode is internal.

Note

To restore the system to its default condition, use the **no** form of the command.

Configuring Network-Clock SDH

To configure network-clock SDH, use the following commands:

```
enable
configure terminal
controller sdh 0/0/16
clock source line
end
enable
configure terminal
network-clock input-source 1 controller sdh 0/0/16
```

Verifying SDH Line and Section Parameters Configuration

Use **show controllers** command to verify SDH Line and Section Parameters Configuration:

```
Rotuer#show controller sdh 0/7/7
SDH 0/7/7 is up.
Hardware is A900-IMA3G-IMSG
Port configured rate: STM16
Applique type is Channelized SDH
Clock Source is Internal, AUG mapping is AU4.
Medium info:
 Type: SDH, Line Coding: NRZ,
Alarm Throttling: OFF
Regenerator Section:
                                                     BIP(B1) = 0
 LOS = 0
                LOF = 0
SDH Section Tables
 INTERVAL CV ES SES SEFS 21:24-21:24 0 0 0 0
Multiplex Section:
 AIS = 0
                  RDI = 0
                                   REI = 0
                                                     BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 00
   K1 = 00, K2 = 00
   J0 = 00
    RX S1 = 00
Tx: S1S0 = 00
```

```
K1 = 00, K2 = 00
   J0 = 04
Tx J0 Length: 16
Tx J0 Trace :
 PE1
Expected J0 Length : 16
Expected J0 Trace :
 50 45 31 20 20 20 20 20 20 20 20 20 20 20 20 00
                                                PE1
Rx J0 Length: 0
Rx J0 Trace :
SDH Line Tables
 INTERVAL
              CV ES SES UAS CVFE ESFE SESFE UASFE
 21:24-21:24
              0
                   0 0
                              0
                                    0
                                         0
                                               0
High Order Path:
PATH 1:
Clock Source is internal
 AIS = 0
                RDI = 0
                               REI = 0
                                              BIP(B3) = 0
 LOP = 0
                PSE = 0
                               NSE = 0
                                              NEWPTR = 0
 LOM = 0
               PLM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: PPLM
Asserted/Active Alarms: PPLM
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = FE
Tx: C2 = 01
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 00 00 00 00 PE1 0/7/7.1....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 00 00 00 00 PE1 0/7/7.1....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length : 16
Rx J1 Trace
 CRC-7: 0xBA OK
 4F 4E 54 20 48 4F 2D 54 52 41 43 45 20 20 20 00
                                             ONT HO-TRACE
SDH Path Tables
 INTERVAL
             CV
                   ES
                        SES
                             UAS CVFE ESFE SESFE UASFE
 21:24-21:24
               0
                    0
                         0
                               0
                                    0
                                         0
                                                0
PATH 4:
Clock Source is internal
```

```
REI = 0
          RDI = 0
PSE = 0
 AIS = 0
                                                BIP(B3) = 0
 LOP = 0
                                NSE = 0
                                                 NEWPTR = 0
 LOM = 0
                PLM = 0
                                 UNEQ = 0
Active Defects: None
Detected Alarms: PPLM LOM
Asserted/Active Alarms: PPLM LOM
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = FE
Tx: C2 = 02
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 32 00 00 00 00 00
                                                 PE1 0/7/7.2....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 32 00 00 00 00 PE1 0/7/7.2....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 16
Rx J1 Trace
 CRC-7: 0xBA OK
 4F 4E 54 20 48 4F 2D 54 52 41 43 45 20 20 20 00 ONT HO-TRACE
SDH Path Tables
 INTERVAL CV ES SES UAS 21:23-21:24 0 0 0 382
                   ES SES UAS CVFE ESFE SESFE UASFE
                                    0 0
                                                0
PATH 7:
Clock Source is internal
                                REI = 0
                RDI = 0
 ATS = 0
                                                BIP(B3) = 0
               PSE = 0
                               NSE = 0
 LOP = 0
                                                NEWPTR = 0
 LOM = 0
                PLM = 0
                                UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 33 00 00 00 00 PE1 0/7/7.3.....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 33 00 00 00 00 00
                                                 PE1 0/7/7.3....
PATH TRACE BUFFER : UNSTABLE
```

```
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES
                        SES UAS CVFE ESFE SESFE UASFE
               0
 21:24-21:25
                    Ω
                         0
                               Ω
                                    Ω
                                          Ω
                                               Ω
PATH 10:
Clock Source is internal
                              REI = 0
NSE = 0
 AIS = 0
                RDI = 0
                                               BIP(B3) = 0
               PSE = 0
 LOP = 0
                                               NEWPTR = 0
 LOM = 0
               PLM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 34 00 00 00 00 PE1 0/7/7.4....
Expected J1 Length: 16
Expected J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 34 00 00 00 00 00
                                              PE1 0/7/7.4....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
 INTERVAL
              CV ES SES
                              UAS CVFE ESFE SESFE UASFE
 21:25-21:25
             0 0 0
                             0 0 0 0 0
PATH 13:
Clock Source is internal
               RDI = 0
                               REI = 0
 AIS = 0
                                              BIP(B3) = 0
                PSE = 0
                                               NEWPTR = 0
 LOP = 0
                                NSE = 0
 LOM = 0
                 PLM = 0
                                UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 35 00 00 00 00 PE1 0/7/7.5....
```

```
Expected J1 Length: 16
Expected J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 35 00 00 00 00 00
                                             PE1 0/7/7.5....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length : 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 21:25-21:25 0 0 0 0 0 0 0 0
PATH 16:
Clock Source is internal
 AIS = 0
               RDI = 0
                              REI = 0
                                              BIP(B3) = 0
               PSE = 0
                              NSE = 0
 LOP = 0
                                             NEWPTR = 0
 LOM = 0
               PLM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 36 00 00 00 00 PE1 0/7/7.6....
Expected J1 Length: 16
Expected J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 36 00 00 00 00 00
                                               PE1 0/7/7.6....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
             CV
 INTERVAL
                  ES SES UAS CVFE ESFE SESFE UASFE
              0 0
 21:25-21:25
                        0
                              0
                                  0
                                        0
                                             0
                                                   0
PATH 19:
Clock Source is internal
                RDI = 0
                             REI = 0
 AIS = 0
                                              BIP(B3) = 0
 LOP = 0
               PSE = 0
                              NSE = 0
                                              NEWPTR = 0
 LOM = 0
               PLM = 0
                              UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
```

```
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 37 00 00 00 00 PE1 0/7/7.7....
Expected J1 Length : 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 37 00 00 00 00 PE1 0/7/7.7....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
            CV
 INTERVAL
                  ES SES
                             UAS CVFE ESFE SESFE UASFE
 21:25-21:25
              0
                   0
                        0
                              0
                                   0
                                        0 0 0
PATH 22:
Clock Source is internal
 AIS = 0
               RDI = 0
                               REI = 0
                                              BIP(B3) = 0
 LOP = 0
                PSE = 0
                               NSE = 0
                                              NEWPTR = 0
 LOM = 0
               PLM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 38 00 00 00 00 PE1 0/7/7.8....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 38 00 00 00 00 PE1 0/7/7.8.....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length : 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 21:25-21:25
             0 0 0
                             0 0 0 0
PATH 25:
Clock Source is internal
 AIS = 0
               RDI = 0
                              REI = 0
                                             BIP(B3) = 0
```

```
LOP = 0
                PSE = 0
                                NSE = 0
                                                NEWPTR = 0
 LOM = 0
                PLM = 0
                                UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 39 00 00 00 00 00
                                               PE1 0/7/7.9....
Expected J1 Length : 16
Expected J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 39 00 00 00 00 PE1 0/7/7.9....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length : 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 21:25-21:25 0 0 0 0 0
                                         0
                                                 0 0
PATH 28:
Clock Source is internal
                              REI = 0
 AIS = 0
               RDI = 0
                                               BIP(B3) = 0
                PSE = 0
                               NSE = 0
                                                NEWPTR = 0
 LOP = 0
 LOM = 0
                 PLM = 0
                                 UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length : 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 30 00 00 00 00
                                                PE1 0/7/7.10....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 30 00 00 00 PE1 0/7/7.10....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length : 0
Rx J1 Trace
```

```
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 21:25-21:25 0 0
                        0
                              0 0
                                        0 0
PATH 31:
Clock Source is internal
 AIS = 0
               RDI = 0
                               REI = 0
                                              BIP(B3) = 0
               PSE = 0
 LOP = 0
                               NSE = 0
                                              NEWPTR = 0
               PLM = 0
                               UNEQ = 0
 T_iOM = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 31 00 00 00 00 PE1 0/7/7.11....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 31 00 00 00 00 PE1 0/7/7.11....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
                  ES SES UAS CVFE ESFE SESFE UASFE
 INTERVAL CV
                   0
                        0
                             0 0
 21:25-21:25
               0
                                        0 0 0
PATH 34:
Clock Source is internal
 AIS = 0
                RDI = 0
                               REI = 0
                                              BIP(B3) = 0
                PSE = 0
                                NSE = 0
                                               NEWPTR = 0
 LOP = 0
 LOM = 0
                PLM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 31 32 00 00 00 00 PE1 0/7/7.12....
Expected J1 Length: 16
Expected J1 Trace
```

```
50 45 31 20 30 2F 37 2F 37 2E 31 32 00 00 00 0 PE1 0/7/7.12....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 21:25-21:25 0 0 0 0 0 0 0 0
PATH 37:
Clock Source is internal
              RDI = 0
                              REI = 0
 AIS = 0
                                              BIP(B3) = 0
 LOP = 0
                PSE = 0
                               NSE = 0
                                              NEWPTR = 0
                PLM = 0
 LOM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 33 00 00 00 00 PE1 0/7/7.13....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 33 00 00 00 00
                                             PE1 0/7/7.13....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 21:25-21:25 0 0 0 0 0 0
PATH 40:
Clock Source is internal
 AIS = 0
               RDI = 0
                              REI = 0
                                             BIP(B3) = 0
 LOP = 0
               PSE = 0
                              NSE = 0
                                              NEWPTR = 0
 LOM = 0
               PLM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
```

```
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 34 00 00 00 PE1 0/7/7.14....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 34 00 00 00 00
                                              PE1 0/7/7.14....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE
 21:26-21:26
               0 0 0
                             0 0 0 0 0
PATH 43:
Clock Source is internal
               RDI = 0
                               REI = 0
 ATS = 0
                                              BIP(B3) = 0
 LOP = 0
               PSE = 0
                               NSE = 0
                                              NEWPTR = 0
 LOM = 0
                PLM = 0
                               UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 35 00 00 00 PE1 0/7/7.15....
Expected J1 Length: 16
Expected J1 Trace
 50 45 31 20 30 2F 37 2F 37 2E 31 35 00 00 00 00 PE1 0/7/7.15....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
 INTERVAL CV ES SES UAS CVFE ESFE SESFE UASFE 21:26-21:26 0 0 0 0 0 0 0 0 0
 21:26-21:26
              0
                  0
                        0
                              0 0
                                        0 0 0
PATH 46:
Clock Source is internal
                               REI = 0
                                              BIP(B3) = 0
 AIS = 0
               RDI = 0
 LOP = 0
                PSE = 0
                                NSE = 0
                                                NEWPTR = 0
 LOM = 0
                PLM = 0
                                UNEQ = 0
Active Defects: None
```

```
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
Tx J1 Length: 16
Tx J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 31 36 00 00 00 PE1 0/7/7.16....
Expected J1 Length: 16
Expected J1 Trace
  50 45 31 20 30 2F 37 2F 37 2E 31 36 00 00 00 00
                                                 PE1 0/7/7.16....
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 0
Rx J1 Trace
SDH Path Tables
 INTERVAL
              CV
                   ES SES UAS CVFE ESFE SESFE UASFE
 21:26-21:26
                   0
                                0
                Ω
                         Ω
                                      Ω
                                          Ω
                                                 0
SDH 0/7/7.1 PATH mode vc4 is down
 cep is configured: TRUE cem id :20
 clock source internal
AU-4 2, TUG-3 1, TUG-2 1, VC12 1 (SDH 0/7/7.2/1/1/1 VC12) is down
VT Receiver has LP-RDI.
 cep is configured: FALSE cem id (0)
 fwd alarm ais :0
                  fwd alarm rai :0
 Framing is unframed, Clock Source is Internal
 BIP2-tca:6, BIP2-sf:3, BIP2-sd:6
 Tx V5:1
 Rx V5:6
 Tx J2 Length=16
 TX J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 Expected J2 Length=16
 Expected J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 Rx J2 Length=16
 RX J2 Trace Buffer:
 CRC-7: 0x81 OK
 4F 4E 54 20 4C 4F 2D 54 52 41 43 45 20 20 20 00
                                               ONT LO-TRACE .
 Data in curerent interval (140 seconds elapsed)
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 269 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
AU-4 2, TUG-3 1, TUG-2 1, E1 1 (SDH 0/7/7.2/1/1/1 E1) is down
 Receiver is getting AIS.
  Framing is unframed, Clock Source is Internal
```

```
Data in current interval (140 seconds elapsed):
 Near End
    O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   293 Unavail Secs, O Stuffed Secs
  Far End
   O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
AU-4 2, TUG-3 1, TUG-2 1, VC12 2 (SDH 0/7/7.2/1/1/2 VC12) is down
VT Receiver has LP-RDI.
 cep is configured: FALSE cem id (0)
 fwd alarm ais :0
                  fwd alarm rai :0
 Framing is unframed, Clock Source is Internal
 BIP2-tca:6, BIP2-sf:3, BIP2-sd:6
 Tx V5:1
 Rx V5:6
 Tx J2 Length=16
 TX J2 Trace Buffer:
 Expected J2 Length=16
 Expected J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 Rx J2 Length=16
 RX J2 Trace Buffer:
 CRC-7: 0x81 OK
 4F 4E 54 20 4C 4F 2D 54 52 41 43 45 20 20 20 00
                                                   ONT LO-TRACE
Data in curerent interval (150 seconds elapsed)
 Near End
  O CodeViolations, O ErrorSecs, O Severly Err Secs, 483 Unavailable Secs
 Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
AU-4 2, TUG-3 1, TUG-2 1, E1 2 (SDH 0/7/7.2/1/1/2 E1) is down
 Receiver is getting AIS.
 Framing is unframed, Clock Source is Internal
 Data in current interval (150 seconds elapsed):
 Near End
   O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    90 Unavail Secs, 0 Stuffed Secs
  Far End
   O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
```

Configuring SDH Path Parameters

This section describes the configuration of SDH path parameters.

Path Overhead

J1 Flag

Sets the message length and the message text of the High Order Path Trace identifier (J1).

C2 Flag

Sets the C2 byte in the Path OverHead (POH) to indicate the contents of the payload inside the frame.

The path overheads, C2 flag and J1 flag can be configured for the following modes:

- AU-4 Mapping
 - Mode VC-4
 - Mode VC-4 Nc
 - Mode TUG-3

For more information, refer Configuring Modes under AU-4 Mapping, on page 169.

- AU-3 Mapping
 - Mode E3
 - Mode T3

For more information, refer Configuring Modes under AU-3 Mapping.

Configuring C2 Flag

To configure the C2 flag:

```
enable
configure terminal
controller Mediatype 0/0/16
mode sdh
controller sdh 0/0/16
au-4 1
overhead c2 10
end
```

J1 Flag

To configure the J1 flag:

```
enable
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
au-4 1
overhead j1 expected length 16
overhead j1 expected message expectedmessage
overhead j1 tx length 16
overhead j1 tx message testmessage
end
```

Path Threshold

Set the path BER threshold values.

• **b3-tca** — Enables BER threshold crossing alerts for B3.

- sd-ber Enables the threshold of the Signal Degrade (SD) BER that is used to trigger a signal degrade alarm.
- **sf-ber** Configures the threshold of the Signal Failure (SF) BER that is used to trigger a link state change.

The path threshold can be configured for the following modes:

- AU-4 Mapping
 - Mode VC-4
 - Mode VC-4 Nc
 - Mode TUG-3

For more information, refer Configuring Modes under AU-4 Mapping, on page 169.

- AU-3 Mapping
 - For more information, refer Configuring Modes under AU-3 Mapping.

Configuring Path Threshold

To configure path threshold:

```
enable
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
au-4 1
threshold b3-ber_sd 7
threshold b3-ber_sf 7
end
```

Path Loopback

Sets a loopback to test the SDH port.

- local Loops the signal from Tx to Rx path. Sends alarm indication signal (AIS) to network.
- network Loops the signal from Rx to Tx path.

Configuring Path Loopback

To configure path loopback:

```
enable
configure terminal
controller sdh 0/0/16
au-4 1
loopback [local | network]
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring Path BERT

For more information on BERT configuration, see Configuring BERT in SDH for SAToP, on page 199 section.

Verifying Path Parameters Configuration

Use **show running-configuration** command to verify path parameters configuration.

```
#show running-configuration
controller MediaType 0/0/16
mode sdh
controller SDH 0/0/16
rate STM16
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
mode vc4
clock source internal
loopback local
overhead c2 10
threshold b3-ber sd 7
threshold b3-ber sf 7
overhead j1 tx message STRING
overhead j1 expected message STRING
threshold b3-tca 5
au - 4 2
```

Configuring BERT in SDH for SAToP

Bit-Error Rate Testing (BERT) is used to analyze quality and to resolve problems of digital transmission equipment. BERT tests the quality of an interface by directly comparing a pseudorandom or repetitive test pattern with an identical locally generated test pattern.

The BERT operation is data-intensive. Regular data cannot flow on the path while the test is in progress. The path is reported to be in alarm state when BERT is in progress and restored to a normal state after BERT has terminated.

BERT is supported in the following two directions:

- Line Supports BERT in TDM direction.
- System Supports BERT in PSN direction. CEM must be configured before running BERT towards system direction.

For BERT patterns supported on SDH, see BERT Patterns on 1-Port OC-48 or 4-Port OC-12/OC-3 CEM Interface Module.

BERT Patterns on 1-Port OC-48 or 4-Port OC-12/OC-3 CEM Interface Module

Table 25: Feature History

Feature Name	Release Information	Description
Support for all 0s and 1s BERT Patterns	Cisco IOS XE Bengaluru 17.4.1	Support for all 0s and 1s BERT patterns for SONET and SDH.

The BERT patterns on the 1-Port OC-48 or 4-Port OC-12/OC-3 interface module are:

Table 26: BERT Pattern Descriptions

Keyword	Description	
All 1s 12	Pseudo-random binary test pattern consisting of all 1's that is used to test alternating line volt and repeaters.	
All 0s	Pseudo-random binary test pattern consisting of all 0's that is used for test line coding.	
2^15-1 O.151	Pseudo-random O.151 test pattern consisting of a maximum of 14 consecutive zeros and 15 consecutive ones. The length of this pattern is 32,768 bits.	
2^20-O.151	Pseudo-random O.151 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.	
2^20-O.153	Pseudo-random O.153 test pattern consisting of a maximum of 19 consecutive zeros and 20 consecutive ones. The length of this pattern is 1,048,575 bits.	
2^23-1 O.151	Pseudo-random 0.151 test pattern consisting of a maximum of 22 consecutive zeros and 23 consecutive ones. The length of this pattern is 8,388,607 bits.	
2^9 13	Pseudo-random binary test pattern consisting of a maximum of eight consecutive zeros and nine consecutive ones. The length of this pattern is 511 bits.	
2^11 14	Pseudo-random binary test pattern consisting of a maximum of ten consecutive zeros and eleven consecutive ones. The length of this pattern is 2048 bits.	

All 1s are supported only on SONET CT3, SDH AU-3 - CT3/CE3 - T1/E1, and SDH AU-3 - VC3. Starting with Cisco IOS XE Bengaluru 17.4.1, All Is are supported on all modes.

2⁹ is not supported on the following modes:

• SONET—Unframed, STS-3c, STS-12c, and STS-48c.

¹³ Starting with Cisco IOS XE Bengaluru 17.4.1, 2⁹ mode is supported.

- SDH AU-4—VC4, TUG-3-VC3, TUG-3-E3, TUG-3-T3, and TUG-3 VC1x.
- SDH AU-3—VC3, VC4-4c, VC4-16c, and VC1x.

2¹¹ is not supported on the following modes:

- SONET—Unframed, STS-3c, STS-12c, and STS-48c.
- SDH AU-4—VC4 and TUG-3-VC3.
- SDH AU-3—VC3, VC4-4c, and VC4-16c.

Note

If All 1's BERT pattern is tested on the system side, then ensure that you need to start all 1's pattern from both sides of the end points.

Configuring BERT on one side and loopback on other side of the end points is not supported. The router treats all 1's pattern as AIS alarm and BERT will not come in sync with the other side configuration of the end point.

Configuring BERT in Modes VC-4 and VC Nc

To configure BERT in modes VC-4 and VC Nc:

```
configure terminal
controller sdh 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
mode vc4
clock source internal
bert pattern 2^15 internal 10 direction [line | system]
```

Verifying BERT Configuration in Modes VC-4 and VC Nc

Use **show controllers** command to verify BERT Configuration in Modes VC-4 and VC Nc:

```
#show controller sdh 0/0/16 | sec BERT
BERT test result (running)Test Pattern : 2^15,
Status : Sync, Sync Detected : 0Interval : 10 minute(s),
Time Remain : 00:09:47
Bit Errors (since BERT started): 0 Mbits,Bits Received (since BERT started): 0 Mbits
Bit Errors (since last sync): 1943 bits
Bits Received (since last sync): 1943 Kbits
Direction : LineRouter#
```

Configuring E1 Bert

To configure E1 Bert:

Starting with Cisco IOS XE Bengaluru 17.4.1, 2¹¹ mode is supported.

```
enable
configure terminal
controller MediaType 0/0/16
mode sdh
controller sdh 0/0/16
rate stm4
au-3 1
mode vclx
tug-2 1 payload vc12
el 1 bert pattern 2^11 interval 10
end
```

Configuring T1 Bert

```
To configure T1 Bert:
```

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-3 1
mode vc1x
tug-2 1 payload vc11
t1 1 bert pattern 2^11 interval 10
end
```

Configuring BERT in Mode T3/E3

To configure BERT in Mode T3/E3 for both AUG mapping AU-3 and AU-4:

```
configure terminal
controller sdh 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
mode tug-3
clock source internal
tug-3 1
mode t3
threshold b3-tca 0
overhead c2 0
t3 clock source internal
t3 bert pattern 2^15 internal 10 direction [line | system]
```

Verifying BERT Configuration in Mode T3 or E3

Use **show controllers** command to verify BERT configuration in mode T3 or E3:

```
show controller sdh 0/0/16 | sec BERT
BERT test result (running)Test Pattern : 2^15,
Status : Sync, Sync Detected : 0Interval : 10 minute(s),
Time Remain : 00:09:47
Bit Errors (since BERT started): 0 Mbits,
Bits Received (since BERT started): 0 Mbits
Bit Errors (since last sync): 1943 bits
```

```
Bits Received (since last sync): 1943 Kbits Direction: Line
```

Configuring BERT in Mode VC-1x

To configure BERT in mode VC-1x for both AUG mapping AU-3 and AU-4:

```
configure terminal
controller sdh 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
mode tug-3
clock source internal
tug-3 1
mode vc-1x
tug-2 1 payload VC11
vc 1 bert pattern 2^15 internal 10 direction [line | system]
```

Verifying BERT Configuration in Mode VC-1x

Use **show controllers** command to verify BERT configuration in mode VC-1x:

```
#show controller sdh 0/0/16 | sec BERT
BERT test result (running)Test Pattern : 2^15,
Status : Sync, Sync Detected : 0Interval : 10 minute(s),
Time Remain : 00:09:47Bit Errors (since BERT started): 0 Mbits,Bits Received (since BERT started): 0 Mbits
Bit Errors (since last sync): 1943 bits
Bits Received (since last sync): 1943 Kbits
Direction : Line
```

BERT Error Injection

Table 27: Feature History

Feature Name	Release Information	Description
BERT Error Injection	Cisco IOS XE Bengaluru 17.4.1	BERT Error injection enables you to inject errors into the BERT stream on SONET and SDH controllers. You can introduce BERT errors in a range of 1 to 255.

This feature enables you to inject a fixed number of BERT errors when a BERT pattern is running and check the same number of BERT errors to be received at the remote end. Starting with Cisco IOS XE Bengaluru 17.4.1 release, you can configure BERT error injection using the **bert errors** command and before configuring the errors, you must use the **bert pattern** command.

BERT Error Injection is supported on T1 and T3 for SONET and SDH controllers.

BERT Error Injection is supported in the following modes:

Table 28: Supported Modes for BERT Error Injection

Controller	Mode
SONET	• STS-1 T3
	• STS-1 CT3
	• VT-15 – T1
	• VT-15 – VT
SDH	• AU-3 - CE3
	• AU3 - CT3
	• AU3 - E3
	• AU3 - T3
	• AU3 - VC1X
	• AU4 - VC3
	• AU4 -Tug-3 E3
	• AU4 -Tug-3 VC1x
	• AU4 -Tug-3 T3

Prerequisites of BERT Error Injection

• Ensure that you have set up BERT engine before injecting BERT Errors.

Restrictions of BERT Error Injection

- The BERT Error Injection once configured cannot be removed.
- BERT Error Injection is not supported on the SONET unframed mode.
- A maximum of 16 BERT engines are supported per LOTR card.
- You can configure a maximum of 255 BERT Error counts on the IM.
- BERT Error Injection is **not** supported on the following modes:
 - SONET: Unframed, STS-3C, STS-12C, STS-48C
 - SDH: VC4-4C, VC4-16C, AU3-V3, AU4-VC4

Configuring BERT Error Injection for SDH

Configuring BERT Error Injection – CT3-T1-AU3 Mode

Ensure that you configure the CT3-T1-AU-3 mode followed by BERT Pattern on the SDH AU-3-T1 interface.

To configure BERT Error Injection for the CT3-T1-AU3 Mode, enter the following commands:

```
config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router#(config)#controller sdh 0/4/0
Router#(config-controller)#au-3 1
Router#(config-ctrlr-au3)#t1 1 bert errors 255
Router#(config-ctrlr-au3)#end
```

Configuring BERT Error Injection – E3-AU-3 Mode

Ensure that you configure the E3-AU-3 mode followed by BERT Pattern on the SDH E3-AU-3 interface

To configure BERT Error Injection for the E3-AU-3 Mode, enter the following commands:

```
config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router#(config)#controller sdh 0/4/0
Router#(config-controller)#au-3 1
Router#(config-ctrlr-au3)#e3 bert errors 255
Router#(config-ctrlr-au3)#end
```

Configuring BERT Error Injection – T3-AU-3 Mode

Ensure that you configure the T3-AU3 mode followed by BERT Pattern on the SDH T3-AU-3 interface.

To configure BERT Error Injection for the T3-AU-3 Mode, enter the following commands:

```
Router# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router#(config)#controller sdh 0/4/0
Router#(config-controller)#au-3 1
Router#(config-ctrlr-au3)#t3 bert errors 255
Router#(config-ctrlr-au3)#end
```

Verifying BERT Error Injection for SDH

Verifying BERT Error Injection – CT3-T1-AU3 Mode

To verify BERT Error Injection for the CT3-T1-AU3 Mode, use the **show-controller SDH | sec BERT** command

```
Router#
show controller sdh 0/4/0 | sec BERT
BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
Interval: 60 minute(s), Time Remain: 00:59:00
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 90 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 90 Mbits
Direction: Line
```

Verifying BERT Error Injection – E3-AU-3 Mode

To verify BERT Error Injection for the E3-AU-3 Mode, use the **show-controller SDH** | **sec BERT** command:

```
Router# show controller sdh 0/4/0 | sec BERT BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
DSX3 BERT direction: Line
Interval: 60 minute(s), Time Remain: 00:59:00
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 2046 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 2046 Mbits
```

Verifying BERT Error Injection - T3-AU-3 Mode

To verify BERT Error Injection for the T3-AU-3 Mode, use the **show-controller SDH** | **sec BERT** command:

```
Router# Show controller sdh 0/4/0 | sec BERT BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
DSX3 BERT direction: Line
Interval: 60 minute(s), Time Remain: 00:59:30
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 1282 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 1282 Mbits
```

Configuring BERT Error Injection for SONET

Configuring BERT Error Injection - STS-1 T3 Mode

Ensure that you configure the STS-1 and T3 mode followed by BERT Pattern on the SONET STS-1 T3 interface.

To configure BERT Error Injection for the STS-1 mode on the T3 interface, enter the following commands:

```
config terminal
Enter configuration commands, one per line. End with CNTL/Z.
PEl(config)#controller sonet 0/4/0
PEl(config-controller)#sts-1 1
PEl(config-ctrlr-sts1)#t3 bert errors 255
Router#(config-ctrlr-sts1)#end
```

Configuring BERT Error Injection - STS-1 CT3 Mode

Ensure that you configure the STS-1 and CT3 mode followed by BERT Pattern on the SONET STS-1 CT3 interface

To configure BERT Error Injection for the STS-1 CT3 mode, enter the following commands:

```
Router#(config)#controller sonet 0/4/0
Router#(config-controller)#sts-1 1
Router#(config-ctrlr-sts1)#t1 1 bert errors 255
Router#(config-ctrlr-sts1)#end
```

Configuring BERT Error Injection - VT-15 - T1 Mode

Ensure that you configure the STS-1 VT-15 and T1 modes followed by BERT Pattern on the SONET VT-15 T1 interface.

To configure BERT Error Injection for the STS-1 VT-15 and T1 modes, enter the following commands:

```
Enter configuration commands, one per line. End with CNTL/Z. Router# (config)#controller sonet 0/4/0 Router# (config-controller)#sts-1 1 Router# (config-ctrlr-sts1)#vtg 1 t1 1 bert errors 255 Router# (config-ctrlr-sts1)#end
```

Configuring BERT Error Injection - VT-15 - VT Mode

: Ensure that you configure the STS-1 VT-15 and VT modes followed by BERT Pattern on the SONET VT-15 VT modes.

To configure BERT Error Injection for the STS-1 VT-15 and VT modes, enter the following commands

```
config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router#(config)#controller sonet 0/4/0
Router#(config-controller)#sts-1 1
Router#(config-ctrlr-sts1)#vtg 1 vt 1 bert errors 255
Router#(config-ctrlr-sts1)#end
```

Verifying BERT Error Injection for SONET

Verifying BERT Error Injection - STS-1 T3 Mode

To verify BERT Error Injection for the STS-1 mode on the T3 interface, use the **show-controller SONET** | **sec BERT** command;

```
Router# show controller sonet 0/4/0 | sec BERT BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
DSX3 BERT direction: Line
Interval: 60 minute(s), Time Remain: 00:59:00
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 2697 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 2697 Mbits
Direction: Line
```

Verifying BERT Error Injection – STS-1 CT3 Mode

To verify BERT Error Injection for the STS-1 mode and CT3 mode, use the **show-controller SONET** | **sec BERT** command:

```
Router#
show controller sonet 0/4/0 | sec BERT
BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
Interval: 60 minute(s), Time Remain: 00:59:01
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 89 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 89 Mbits
Direction: Line
```

Verifying BERT Error Injection - STS-1 VT-15 and T1 Modes

To verify BERT Error Injection for the STS-1 VT-15 and T1 modes, use the **show-controller SONET** | **sec BERT** command:

```
Router#
show controller sonet 0/4/0 | sec BERT
BERT running on timeslots 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
Interval: 60 minute(s), Time Remain: 00:58:59
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 92 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 92 Mbits
Direction: Line
```

Verifying BERT Error Injection – STS-1 VT-15 and VT Modes

To verify BERT Error Injection for the STS-1 VT-15 and VT modes, use the **show-controller SONET** | **sec BERT** command:

```
Router#
show controller sonet 0/4/0 | sec BERT
BERT test result (running)
Test Pattern: All 0's, Status: Sync, Sync Detected: 1
Interval: 60 minute(s), Time Remain: 00:59:00
Bit Errors (since BERT started): 255 bits,
Bits Received (since BERT started): 94 Mbits
Bit Errors (since last sync): 255 bits
Bits Received (since last sync): 94 Mbits
Direction: Line
```

SDH T1/E1 Configuration Parameters

The following parameters affect SDH T1/E1 configuration:

- **BERT** Starts the BERT test.
- **CEM Group** Creates a circuit emulation (CEM) channel from one or more time slots of a T1 or E1 line of an NM-CEM-4TE1 network module,
- Clock Specifies the clock source for T1 or E1 interface.
- **Description** Specifies the description of the controller.
- Loopback Sets the T1 or E1 interface in the loopback mode.

Configuring T1/E1 Parameters

To configure T1/E1 parameters:

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-3 1
mode vclx
```

```
tug-2 1 payload vc11
t1 1 loopback [local | network line]
t1 1 clock source [line | internal | recovered]
end
```


Note

Loopback network payload is not supported. This is applicable for AU-4 Vc-1x and AU-3 Vc-1x modes.

Note

If T1/E1 is enabled on a particular J/K/L/M, you can only configure overhead and threshold for that J/K/L/M value.

Verifying T1 or E1 Parameters Configuration

Use **show running-configuration** command to verify T1 or E1 parameters configuration:

#show running-configuration

controller SDH 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 2
mode VC1x
tug-2 1 payload VC11
t1 1 loopback network line
t1 1 clock source line

SDH T3/E3 Configuration Parameters

The following parameters affect SDH T3/E3 configuration:

- Clock Specifies the clock source for T3 or E3 link.
- **Loopback** Sets the T3 or E3 link in the loopback mode.
- **CEM Group** Creates a circuit emulation (CEM) channel from one or more time slots of a T1 or E1 line.
- **BERT** Bit-Error Rate Testing (BERT) is used for analyzing quality and for problem resolution of digital transmission equipment.

Configuring SDH T3/E3 Parameters Configuration

To configure SDH T3/E3 parameters configuration:

```
enable
configure terminal
```

```
controller sdh 0/0/16
rate stm4
au-4 1
mode tug 3
tug-3 1
mode e3
e3 1 clock source [line | internal | recovered]
e3 framing [m13 | c-bit ] (applicable to for mode e3)
e3 1 loopback [local | network line]
e3 bert pattern Os interval 2
tug-3 2
mode t3
t3 1 clock source [line | internal | recovered]
t3 framing [m13 \mid c-bit] (applicable to for mode t3)
t3 1 loopback [local | network line]
t3 bert pattern Os interval 2
end
```


Note

This is applicable to AUG mappaing AU-4 mode T3 and AU-3 mode T3.

Verifying SDH T3 or E3 Parameters Configurations

Use **show running-configuration** command to verify SDH T3 or E3 parameters configurations:

```
# show running-configuration
controller sdh 0/0/16
rate stm1
au - 4 2
mode tug-3
clock source internal
tua-3 1
mode E3
threshold b3-tca 0
overhead c2 0
e3 clock source internal
e3 framing g751
!tug-3 2mode T3
threshold b3-tca 0
overhead c2 0
t3 clock source internal
```

t3 framing c-bit!

SDH VC Configuration Parameters for SAToP

The following parameters affect SDH VC configuration:

- **BERT** Starts the BERT test.
- **CEM Group** Specifies the time slots for CEM group mapping.
- Clock Specifies the clock source for VC.
- Loopback Sets the VC in the loopback mode.
- Overhead Configures VC line path overhead flags.
- **Shutdown** Disables the VC interface.

Configuring VC Parameters

To configure VC parameters:

```
enable
configure terminal
controller sdh 0/0/16
rate stm4
au-3 1
mode vclx
tug-2 1 payload vcl1
vc 1 loopback [local | network]
vc 1 clock source internal
vc 1 overhead j2 expected [16 | 64]
vc 1 overhead j2 expected message STRING
vc 1 overhead j2 tx [16 | 64]
vc 1 overhead j2 tx message STRING
vc 1 overhead j2 tx message STRING
vc 1 overhead v5 [0 - 7]
vc 1 [threshold bip2-sd 4 | threshold bip2-sf 4 | threshold bip2-tca 9]
end
```


Note

v5 overhead should match with the far end tx v5.

Verifying VC Configuration Parameters Configurations

Use **show running-configuration** command to verify VC configuration parameters configuration:

```
#show running-configuration
controller SDH 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tua-3 1
mode VC1x
tug-2 1 payload VC11
vc 1 overhead j2 tx message STRING
vc 1 overhead j2 expected message STRING
vc 1 threshold bip2-sd 4
vc 1 threshold bip2-sf 4
vc 1 threshold bip2-tca 9
```

Configuring ACR on SDH

```
To configure E1 ACR:
```

```
enable
configure terminal
controller sdh 0/0/16
rate STM1
no ais-shut
alarm-report all
```

```
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode vc1x
tug-2 1 payload vc12
el 1 cem-group 1 unframed
el 1 clock source recovered 1
tug-2 2 payload vc11
tug-2 3 payload vc11
tug-2 4 payload vc11
To configure E3 ACR:
enable
configure terminal
controller sdh 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode e3
overhead c2 0
cem-group 1 unframed
e3 clock source recovered 1
ACR Global Configuration
enable
configure terminal
recovered-clock 0 4
clock recovered {\it 1} adaptive cem {\it 0} {\it 1}
end
```

Verifying ACR Configuration on SDH

Use show recovered clock command to verify E1 ACR configuration:

```
Use show recovered clock command to verify T3 ACR configuration: #show recovered clock
```

Configuring DCR on SDH

```
To configure E1 DCR:
enable
configure terminal
controller sdh 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode vc1x
tug-2 1 payload vc12
el 1 cem-group 1 unframed
el 1 clock source recovered 1
tug-2 2 payload vc11
tug-2 3 payload vc11
tug-2 4 payload vc11
To configure E3 DCR:
enable
configure terminal
controller sdh 0/0/16
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode e3
overhead c2 0
cem-group 1 unframed
e3 clock source recovered 1
DCR Global Configuration
enable
configure terminal
recovered-clock 0 4
clock recovered 1 differential cem 0 1
```

Verifying DCR Configuration on SDH

end

Use show recovered clock command to verify E1 DCR configuration:

```
#show recovered clockRecovered clock status for subslot 0/16
```

```
Clock Type Mode CEM Status Frequency Offset(ppb) Circuit-No 1 STMx-E1 DIFFERENTIAL 1 ACQUIRED n/a 0/1/1/1 (Port/au-4/tug3/tug2/e1)
```

Use **show recovered clock** command to verify T3 DCR configuration:

Loopback Remote on T1 and T3 Interfaces

The remote loopback configuration attempts to put the far-end T1 or T3 into a loopback.

The remote loopback setting loops back the far-end at line or payload, using IBOC (inband bit-orientated CDE) or the ESF loopback codes to communicate the request to the far-end.

Restrictions for Loopback Remote

- E1 and E3 loopback remote are not supported until Cisco IOS XE Fuji 16.9.4 release. Starting from Cisco IOS XE Fuji 16.9.5 release, E1 and E3 loopback remote are supported.
- IBOC loopcode configuration is not supported when CESoP or SATOP (framed or unframed) is configured.
- ESF loopcode configuration is not supported when SAToP is configured.

Configuring Loopback Remote in SDH

To set T1 loopback remote iboc fac1/fac2/csu for OCX in SDH, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller sdh 0/2/0
mode vc1x
tug-2 1 payload vc1x
t1 1 loopback remote iboc {fac1 | fac2 | csu}
```

To set T1 loopback remote iboc esf line csu/esf payload for OCX in SDH, perform the following tasks in global configuration mode:

```
enable
configure terminal
controller sdh 0/2/0
mode vc1x
tug-2 1 payload vc1x
t1 1 loopback remote esf {line csu | payload}
```

To set T3 loopback remote line/payload for OCX in SDH, perform the following tasks in global configuration mode:

```
enable
configure terminal
```

```
controller sdh 0/2/0
mode t3
t3 loopback remote {line | payload}
```


Note

loopback remote esf line niu is not supported.

Verifying the Loopback Remote Configuration

Use the following command to check the T1 loopback remote configuration:

```
router# show run | sec 0/2/0
controller SDH 0/2/0
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
clock source internal
mode tug-3
tug-3 1
mode VC1x
tug-2 1 payload VC11
t1 1 Loopback remote iboc fac1
```

Use the following command to verify the T1 loopback remote configuration:

```
Router(config-ctrlr-tug2-vcx) #do show controller sdh 0/2/0 | be T1 1
AU-4 1, TUG-3 1, TUG-2 1, T1 1 (C-11 1/1/1/1) is up
  timeslots:
 Configured for NIU FAC1 Line Loopback with IBOC
 Currently in Inband Remotely Line Looped
 Receiver has no alarms.
 Framing is SF, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
  Near End
     O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
    O Path Failures, O SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    O Unavailable Secs O Path Failures
  Data in Interval 1:
  Near End
    O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
    2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
    O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
```

```
0 Unavailable Secs 0 Path Failures
Total Data (last 1 15 minute intervals):
Near End
0 Line Code Violations, 0 Path Code Violations,
0 Slip Secs, 2 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins,
2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
0 Unavailable Secs, 0 Stuffed Secs
1 Path Failures, 2 SEF/AIS Secs
Far End
0 Line Code Violations, 0 Path Code Violations
0 Slip Secs, 2 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins,
3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
0 Unavailable Secs, 0 Path Failures
```

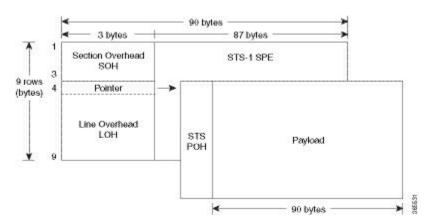
Use the following command to check the T3 loopback remote configuration:

```
Router#show run | sec 0/4/7
platform enable controller MediaType 0/4/7 oc3
controller MediaType 0/4/7
mode sdh
controller SDH 0/4/7
rate STM1
no ais-shut
alarm-report all
clock source internal
overhead s1s0 0
aug mapping au-4
au-4 1
  clock source internal
 mode tug-3
  tug-3 1
  mode T3
   t3 clock source internal
   t3 framing c-bit
   t3 loopback remote line
```

Use the following command to verify the T3 loopback remote configuration:

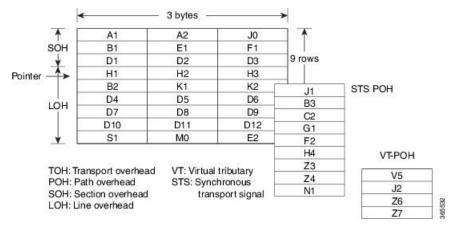
```
Router#show controll sdh 0/4/7 | be T3
SDH 0/4/7.1/1 T3 is up. (Configured for Remotely Looped)
  Hardware is
  Applique type is T3
  Receiver has no alarms.
  Data in current interval (240 seconds elapsed):
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
     O Unavailable Secs, O Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     O Severely Errored Line Secs, O Path Failures
     O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Data in Interval 1:
   Near End
     O Line Code Violations, O P-bit Coding Violations
     O C-bit Coding Violations, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
```

```
20 Unavailable Secs, 20 Line Errored Secs
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 Path Failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O P-bit Coding Violations,
     O C-bit Coding Violations, O P-bit Err Secs,
     O P-bit Severely Err Secs, O Severely Err Framing Secs,
     20 Unavailable Secs, 20 Line Errored Secs,
     O C-bit Errored Secs, O C-bit Severely Errored Secs
     20 Severely Errored Line Secs, 1 path failures
     O AIS Defect Secs, 20 LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
T1 1 is up
  timeslots:
  FDL per AT&T 54016 spec.
  No alarms detected.
  Framing is ESF, Clock Source is Internal
  Data in current interval (250 seconds elapsed):
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     0 Path Failures, 0 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
     O Errored Secs, O Bursty Err Secs, O Severely Err Secs
     O Unavailable Secs O Path Failures
  Data in Interval 1:
   Near End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs O Path Failures
  Total Data (last 1 15 minute intervals):
   Near End
     O Line Code Violations, O Path Code Violations,
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     2 Errored Secs, 0 Bursty Err Secs, 2 Severely Err Secs
     O Unavailable Secs, O Stuffed Secs
     1 Path Failures, 2 SEF/AIS Secs
   Far End
     O Line Code Violations, O Path Code Violations
     O Slip Secs, 2 Fr Loss Secs, O Line Err Secs, O Degraded Mins,
     3 Errored Secs, 0 Bursty Err Secs, 3 Severely Err Secs
     O Unavailable Secs, O Path Failures
```


Verifying the Loopback Remote Configuration

STS-1 Electricals

A standard STS-1 frame is nine rows by 90 bytes. The first three bytes of each row represent the Section and Line overhead. These overhead bits comprise framing bits and pointers to different parts of the STS-1 frame.


Figure 15: STS-1 Frame Structure

There is one column of bytes in the payload that represents the STS path overhead. This column frequently "floats" throughout the frame. Its location in the frame is determined by a pointer in the Section and Line overhead.

The combination of the Section and Line overhead comprises the transport overhead, and the remainder is the SPE.

Figure 16: STS-1 Overhead

For STS-1, a single frame is transmitted in 125 microseconds, or 8000 frames per second. 8000 fps * 810 B/frame = 51.84 Mbs, of which the payload is roughly 49.5 Mbs, enough to encapsulate 28 DS-1s, a full DS-3, or 21 CEPT-1s.

STS-1electrical ports are also supported. Each port operates at 51.840 Mbps over a single 75-ohm, 728A or equivalent coaxial span. Ports range from 12 to 15 are supported.

- Restrictions for STS-1e, on page 220
- Prerequisites for Configuring STS-1e, on page 221
- Configuring MediaType Controller, on page 221
- Configuring STS-1e Modes, on page 221
- Configuring Line and Section Overhead, on page 223
- Configuring Line Loopback, on page 223
- Configuring AIS Shut, on page 223
- Configuring Shut, on page 224
- Configuring Clock, on page 224
- Verifying STS-1e Configuration, on page 224
- controller sts-1e, on page 240
- mode sts-1e, on page 241

Restrictions for STS-1e

- Only 16 BERT patterns can be configured at a time.
- PMON fields are not supported for VT1.5 VT and T3.
- PMON far-end parameters are not supported.
- APS and card-protection are not supported for STS-1e port.
- In the unframed mode, ACR and DCR are not supported.
- CESoPSN is not supported.
- Framed SAToP is not supported.

Restrictions for Clock Source Configuration

- Only 4 ports can be configured in STS-1e line for clock source configuration per chassis.
- You should configure the clock source line and network-clock sync together to receive the clock from a remote port that is connected to the STS-1e port.

Prerequisites for Configuring STS-1e

You must select the MediaType controller to configure and enter the controller configuration mode.

You must configure the controller as a STS-1e port.

Configuring MediaType Controller

To configure MediaType Controller, use the following commands:

```
enable
configure terminal
controller MediaType 0/0/16
mode STS-1e
end
```

Configuring STS-1e Modes

Configuring STS-1e Modes for Unframed SAToP

STS-1e supports unframed SAToP and you can configure STS-1e under VT-15, CT3, T3, and unframed modes. There is no default mode for STS-1e.

To configure STS-1e modes for unframed SAToP, use the following commands:

```
enable
configure terminal
controller sts-le 0/0/16
sts-1 1
mode {vt-15 | ct3 | t3 | unframed}
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring VT-15 Mode of STS-1e

Configuring VT-15 Mode of STS-1e for Unframed SAToP

To configure VT-15 mode of STS-1e for unframed SAToP, enter the following commands:

```
enable
configure terminal
```

```
controller STS1E 0/3/14
no ais-shut
alarm-report all
clock source internal
!
sts-1 1
clock source internal
mode vt-15
vtg 1 t1 1 framing unframed
vtg 1 t1 1 cem-group 0 unframed
```

Configuring T1 CT3 mode of STS-1e

Configuring T1 CT3 mode of STS-1e for Unframed SAToP

To configure T1 CT3 mode of STS-1, you can configure the T1 link using the following steps:

```
enable
configure terminal
controller sts-le 0/0/16
sts-l 1
mode ct3
tl 1 clock source internal
tl 1 framing unframed
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring T3 mode of STS-1e

Configuring T3 mode of STS-1e for Unframed SAToP

```
controller STS1E 0/3/14
no ais-shut
alarm-report all
clock source internal
!
sts-1 1
clock source internal
mode t3
cem-group 0 unframed
t3 clock source internal
```

Configuring Unframed Mode of STS-1e

```
controller STS1E 0/3/14
no ais-shut
alarm-report all
clock source internal
!
sts-1 1
clock source internal
mode unframed
cem-group 0 cep
```

Configuring Line and Section Overhead

To configure line and section overhead, use the following commands:

```
enable
configure terminal
controller MediaType 0/0/16
mode sts-le
controller sts-le 0/0/16
overhead s1s0 2
overhead j0 tx length 1-byte
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring Line Loopback

To configure loopback, use the following commands:

```
enable
configure terminal
controller sts-le 0/0/16
loopback local
end
```


Note

To restore the system to its default condition, use the **no** form of the command.

Configuring AIS Shut

Alarm Indication Signal (AIS) shut when enabled on the STS-1e controller results in sending AIS alarm to peer node.

To configure AIS-Shut, use the following commands:

```
enable
configure terminal
controller sts-le 0/0/16
ais-shut
end
```


Note

The no ais-shut command will not send AIS.

Configuring Shut

To configure Shut, use the following commands:

enable
configure terminal
controller sts-le 0/0/16
shutdown
end

Note

Use the **no shutdown** command to disable the interface.

Configuring Clock

To configure clock, use the following commands:

enable
configure terminal
controller MediaType 0/0/16
mode sts-1e
controller sts-1e 0/0/16
clock source line
end

Note

The default mode is internal.

Note

ACR and DCR clock recovery are also supported.

Configuring Network-Clock STS-1e

To configure network-clock STS-1e, use the following commands:

enable
configure terminal
network-clock input-source 1 controller STS-le 0/0/16
end

Verifying STS-1e Configuration

The following sample output shows the verification of STS-1e configuration in unframed mode:

```
router#show controllers stsle 0/3/14
STS1E 0/3/14 is up. =====> this is the controller/port status.

Hardware is A900-IMA3G-IMSG
```

```
Port configured rate: OC3
                                  =====> this is the rate the port is
configured on it.
Applique type is Channelized STS1E
Clock Source is Internal
                                   ===> the clocking config
Medium info:
 Type: STS1E, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
 LOS = 0
             LOF = 0
                                 BIP(B1) = 0
                                             =====> the section level
alarm counter (from last clear counters)
STS1E Section Tables
          CV
              ES SES SEFS
 TNTERVAL
 05:26-05:28 0 49
                   49
                       49
LINE:
                         REI = 0
                                                   =====> the line
 AIS = 0
            RDI = 0
                                    BIP(B2) = 0
level alarm counter (from last clear counters)
Active Defects: None
Detected Alarms: None
                                              ======> present active
Asserted/Active Alarms: None
alarms on the port.
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
                                              ====> ber thresholds
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 00
  J0 = 00
  RX S1 = 00
Tx: S1S0 = 00
  J0 = 04
Tx J0 Length: 64
Tx J0 Trace:
 RSP2
 Expected J0 Length: 64
Expected J0 Trace:
 RSP2
 Rx J0 Length: 16
Rx J0 Trace :
 CRC-7: 0xD8 ERROR
 BC 4B 69 CC 79 24 1B 01 E8 EB 9C 36 FC 29 A9 00
                                    .Ki.y$....6.)..
STS1E Line Tables
 INTERVAL CV
              ES SES UAS CVFE ESFE SESFE UASFE
 05:26-05:28 0 0 0
                       50 0 0
High Order Path:
PATH 1:
Clock Source is internal
```

```
RDI = 0
PSE = 0
                       REI = 0
 AIS = 0
                                   BTP(B3) = 0
 LOP = 0
                       NSE = 0
                                    NEWPTR = 0
 LOM = 0
                        UNEQ = 0
            PLM = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 04
Tx: C2 = 01
Tx J1 Length: 64
Tx J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                                     RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                                    RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 64
Rx J1 Trace
 . . . . . . . . . . . . . . . .
 SONET Path Tables
 INTERVAL
          CV
               ES
                   SES
                       UAS CVFE ESFE SESFE UASFE
 05:26-05:28
               0
           0
                  0
                       4.8
                          0 0 0 0
STS1E 0/3/14.1 PATH mode UNFRAMED is up
 cep is configured: TRUE cem id :0
 clock source internal
```

The following sample output shows the verification of STS-1e configuration in VT-15 mode:

```
router#show controllers stsle 0/3/14
STS1E 0/3/14 is up.
Hardware is A900-IMA3G-IMSG

Port configured rate: OC1
Applique type is Channelized STS1E
Clock Source is Internal
Medium info:
Type: STS1E, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
LOS = 0 LOF = 0 BIP(B1) = 0

STS1E Section Tables
```

```
INTERVAL CV ES 05:33-05:33 0 0
              ES SES SEFS
                  Ω
                      0
LINE:
AIS = 0
            RDI = 0
                       REI = 0
                                  BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 00
  J0 = 00
  RX S1 = 00
Tx: S1S0 = 00
  J0 = 04
Tx J0 Length: 64
Tx J0 Trace :
 RSP2
 Expected J0 Length: 64
Expected J0 Trace :
 RSP2
 Rx J0 Length: 16
Rx J0 Trace :
 CRC-7: 0xD8 ERROR
 BC 4B 69 CC 79 24 1B 01 E8 EB 9C 36 FC 29 A9 00
                                    .Ki.y$....6.)..
STS1E Line Tables
 INTERVAL CV
              ES SES UAS CVFE ESFE SESFE UASFE
 05:33-05:33
          0
              0 0 0 0 0 0
High Order Path:
PATH 1:
Clock Source is internal
 AIS = 0
            RDI = 0
                       REI = 0
                                  BIP(B3) = 0
 LOP = 0
           PSE = 0
                       NSE = 0
                                   NEWPTR = 0
 LOM = 0
            PLM = 0
                        UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 02
Tx: C2 = 02
```

```
Tx J1 Length: 64
Tx J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                               RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Expected J1 Length: 64
Expected J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                                 RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 64
Rx J1 Trace
 . . . . . . . . . . . . . . . .
 SONET Path Tables
         CV
                 SES
                    UAS CVFE ESFE SESFE UASFE
 INTERVAL
              ES
 05:33-05:33
          0
              0
                 0
                     0
                         0
                            0
                                 0
STS1E 0/3/14.1 PATH is up.
 Hardware is A900-IMA3G-IMSG
Applique type is VT1.5
STS-1 1, VTG 1, VT 1 (STS1E 0/3/14.1/1/1 VT) is up
No VT alarms detected.
 cep is configured: FALSE cem id (0)
 fwd alarm ais :0      fwd alarm rai :0
 Framing is unframed, Clock Source is Internal
 BIP2-tca:6, BIP2-sf:3, BIP2-sd:6
 Tx V5:1
 Rx V5:2
 Tx J2 Length=64
 TX J2 Trace Buffer:
 . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Expected J2 Length=64
 Expected J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Rx J2 Length=16
 RX J2 Trace Buffer:
 CRC-7: 0x80 OK
 4A 44 53 55 00 00 00 00 00 00 00 00 00 00 00 00
                                 JDSU......
```

```
Data in curerent interval (1 seconds elapsed)
 Near End
  O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
 Far End
  O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
STS-1 1, VTG 1, T1 1 (STS1E 0/3/14.1/1/1 T1) is up
No alarms detected.
Framing is unframed, Clock Source is Internal
Data in current interval (0 seconds elapsed):
 Near End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   O Unavail Secs, O Stuffed Secs
 Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   0 Unavail Secs
```

The following sample output shows the verification of STS-1e configuration in T3 mode:

```
router#show controllers stsle 0/3/14
STS1E 0/3/14 is up.
 Hardware is A900-IMA3G-IMSG
Port configured rate: OC1
Applique type is Channelized STS1E
Clock Source is Internal
Medium info:
 Type: STS1E, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
 LOS = 0
              LOF = 0
                                        BIP(B1) = 0
STS1E Section Tables
 INTERVAL
           CV
                ES SES SEFS
 05:35-05:35
            0
                0
                     0
LINE:
                          REI = 0
 AIS = 0
              RDI = 0
                                        BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 00
   J0 = 00
   RX S1 = 00
Tx: S1S0 = 00
   J0 = 04
Tx J0 Length: 64
Tx J0 Trace :
 RSP2
```

Expected J0 Length: 64

```
Expected J0 Trace:
 . .
Rx J0 Length : 16
Rx J0 Trace :
 CRC-7: 0xD8 ERROR
 BC 4B 69 CC 79 24 1B 01 E8 EB 9C 36 FC 29 A9 00
                                   .Ki.y$....6.)..
STS1E Line Tables
          CV
 TNTERVAL
              ES
                 SES UAS CVFE ESFE SESFE UASFE
 05:35-05:35
           0
              0
                  0
                      73
                          0
                             0
                                 0
High Order Path:
PATH 1:
Clock Source is internal
 ATS = 0
            RDT = 0
                      RET = 0
                                  BIP(B3) = 0
 LOP = 0
           PSE = 0
                      NSE = 0
                                  NEWPTR = 0
 LOM = 0
           PLM = 0
                       UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 04
Tx: C2 = 04
Tx J1 Length: 64
Tx J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                                   RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                                   RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 64
Rx J1 Trace
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 SONET Path Tables
 INTERVAL
         CV ES SES
                     UAS CVFE ESFE SESFE UASFE
```

```
05:26-05:36 0 0 0 12 0
                                             Ω
                                                    0
                                                            Ω
STS1E 0/3/14.1 T3 is up.
 Hardware is A900-IMA3G-IMSG
 Applique type is T3
 No alarms detected.
  Framing is Unframed, Cablelength is 224
 BER thresholds: SF = 10e-3 SD = 10e-6
 Clock Source is internal
  Equipment customer loopback
 Data in current interval (560 seconds elapsed):
  Near End
    O Line Code Violations, O P-bit Coding Violation
    O C-bit Coding Violation, O P-bit Err Secs
     O P-bit Severely Err Secs, O Severely Err Framing Secs
    275 Unavailable Secs, O Line Errored Secs
    O C-bit Errored Secs, O C-bit Severely Errored Secs
    O Severely Errored Line Secs, 3 Path Failures
    O AIS Defect Secs, O LOS Defect Secs
   Far End
     O Errored Secs, O Severely Errored Secs
     O C-bit Unavailable Secs, O Path Failures
     O Code Violations, O Service Affecting Secs
```

The following sample output shows the verification of STS-1e configuration in CT3 mode:

```
router#show controllers stsle 0/3/14
STS1E 0/3/14 is up.
 Hardware is A900-IMA3G-IMSG
Port configured rate: OC1
Applique type is Channelized STS1E
Clock Source is Internal
Medium info:
 Type: STS1E, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
 LOS = 0
                LOF = 0
                                               BIP(B1) = 0
STS1E Section Tables
 INTERVAL CV ES SES SEFS
 05:41-05:42 0 10 10 10
LINE:
 AIS = 0
                RDI = 0
                              REI = 0
                                             BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF LAIS SF SD LRDI B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 00
   J0 = 00
   RX S1 = 00
Tx: S1S0 = 00
   J0 = 04
Tx J0 Length: 64
Tx J0 Trace:
```

```
Expected J0 Length: 64
Expected J0 Trace:
 RSP2
 . .
Rx J0 Length : 16
Rx J0 Trace :
 CRC-7: 0xD8 ERROR
 BC 4B 69 CC 79 24 1B 01 E8 EB 9C 36 FC 29 A9 00
                                 .Ki.y$....6.)..
STS1E Line Tables
 INTERVAL
         CV
              ES
                 SES
                     UAS CVFE ESFE SESFE UASFE
 05:41-05:42
          Ο
              Ο
                0
                     1.0
                        Ω
                               0
                            0
High Order Path:
PATH 1:
Clock Source is internal
                     REI = 0
           RDI = 0
 ATS = 0
                                 BIP(B3) = 0
LOP = 0
          PSE = 0
                     NSE = 0
                                NEWPTR = 0
LOM = 0
           PLM = 0
                     UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PAIS PRDI PUNEQ PLOP PPLM LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 04
Tx: C2 = 04
Tx J1 Length: 64
Tx J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                               RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
Expected J1 Length: 64
Expected J1 Trace
 52 53 50 32 20 30 2F 33 2F 31 34 2E 31 00 00 00
                                 RSP2 0/3/14.1...
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 PATH TRACE BUFFER : UNSTABLE
Rx J1 Length: 64
Rx J1 Trace
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
```

```
SONET Path Tables
 INTERVAL
              CV
                     ES
                          SES
                               UAS CVFE ESFE SESFE UASFE
 05:42-05:42
                      Ω
                            0
                                 0
                                       0
                                             0
                0
                                                    0
STS1E 0/3/14.1 T3 is up.
 Hardware is A900-IMA3G-IMSG
 Applique type is Channelized T3 to T1
 No alarms detected.
 MDL transmission is disabled
 FEAC code received: No code is being received
 Framing is C-BIT Parity, Cablelength is 224
 BER thresholds: SF = 10e-3 SD = 10e-6
 Clock Source is internal
 Equipment customer loopback
 Data in current interval (60 seconds elapsed):
  Near End
    O Line Code Violations, O P-bit Coding Violation
    O C-bit Coding Violation, O P-bit Err Secs
    O P-bit Severely Err Secs, O Severely Err Framing Secs
    25 Unavailable Secs, 0 Line Errored Secs
    O C-bit Errored Secs, O C-bit Severely Errored Secs
    O Severely Errored Line Secs, O Path Failures
    O AIS Defect Secs, O LOS Defect Secs
  Far End
    O Errored Secs, O Severely Errored Secs
    O C-bit Unavailable Secs, O Path Failures
    O Code Violations, O Service Affecting Secs
 STS-1 1, T1 1 (STS1E 0/3/14.1/1 T1) is up
 No alarms detected.
 Framing is unframed, Clock Source is Internal
 Data in current interval (60 seconds elapsed):
  Near End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    25 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 STS-1 1, T1 2 (STS1E 0/3/14.1/2 T1) is up
 timeslots:
 FDL per AT&T 54016 spec.
 No alarms detected.
 Framing is ESF, Clock Source is Internal
 Data in current interval (60 seconds elapsed):
  Near End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    26 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
```

Starting with Cisco IOS XE 17.11.1, you can view the previous day performance monitoring details using the following **show controller** commands for the STS-1e controllers.

- show controller sts1e
- show controller sts1e tabular
- show controller sts1e remote performance
- show controller sts1e remote performance tabular

```
router#show controllers sts1e 0/3/0
stsle 0/3/0 is down.
 Hardware is
Port configured rate: OC3
Applique type is Channelized Sonet
Clock Source is Internal
Medium info:
 Type: stsle, Line Coding: NRZ,
Alarm Throttling: OFF
SECTION:
 LOS = 1
               LOF = 0
                                               BIP(B1) = 0
stsle Section Tables
 INTERVAL CV ES SES SEFS
             0 611 611 611
 06:14-06:24
              0 901
 05:59-06:14
                        901
                              901
. . . . . . . . . . . . .
 06:29-06:44 0 901 901
06:14-06:29 0 901 901
                              901
                             901
Total of Data in Current and Previous Intervals
 06:14-06:24 0 87107 87107 87107
Total (Previous Day)
 LINE:
 AIS = 0
                               REI = 0 \qquad BIP(B2) = 0
               RDT = 0
Active Defects: None
Detected Alarms: SLOS SLOF LAIS
Asserted/Active Alarms: SLOS
. . . . . . . . . . . .
stsle Line Tables
                   ES SES
 INTERVAL CV
                              UAS CVFE ESFE SESFE UASFE
 06:14-06:24 0 0 0
05:59-06:14 0 0 0
05:44-05:59 0 0 0
05:29-05:44 0 0
                                   0
                              611
                                         0
                                              0
                                                        0
                              901
                                          0
                                                        0
                                                 0
                              901 0 0
                                          0
                             901
                                    0
                                                 0
                                                        Ω
. . . . . . . . . . . . .
 06:14-06:29 0 0
                              901 0
                                                        0
                                                 0
Total of Data in Current and Previous Intervals
 06:14-06:24 0 0 0 87107 0 0
                                                 Ω
                                                        0
Total (Previous Day)
 05:29-05:29 0 0 0 86494 0 0
                                                 0
                                                        0
PATH 1:
Clock Source is internal
                              REI = 0
               RDI = 0
                                              BIP(B3) = 8
 ATS = 0
 LOM = 0
                PLM = 0
                               UNEQ = 0
                                                LOP = 0
```

```
SONET Path Tables
 TNTERVAL
         CV
               ES SES UAS CVFE ESFE SESFE UASFE
                             ()
                                  0
 06:14-06:24
           0 0 0 609
                                         0
                                               0
               0
           0
 05:59-06:14
                      0
                         901
                               0
                                    0
                                         0
                                               0
 05:44-05:59
                 0
                      0
                         900
                               0
                                    0
                                         0
                                               0
             0
                 0
 05:29-05:44
             0
                      0
                         901
                               0
                                    Ω
                                         Ω
                                               Ω
. . . . . . . . . . . . . . .
 06:29-06:44
            0
               0
                    0
                         900
                               0
                                   0
                                         0
                                               0
 06:14-06:29
           Ω
                0
                      0
                         900
                               Ω
                                    Ω
                                               Ω
                                         Ω
Total of Data in Current and Previous Intervals
 06:14-06:24 0 0
                      0 87045
                              0
                                   0
                                         0
                                               0
Total (Previous Day)
 05:29-05:29 0 0 0 86435
                             0
                                 0
                                               0
PATH 2:
Clock Source is internal
stsle 0/3/0.1 PATH is down.
 Hardware is A900-IMA1Z8S-CX
Applique type is VT1.5
STS-1 1, VTG 1, VT 1 (sts1e 0/3/0.1/1/1 VT) is down
VT Receiver has LP AIS.
 cep is configured: FALSE cem id (0)
 fwd alarm ais :0 fwd alarm rai :0, Clock Source is Internal
 BIP2-tca:6, BIP2-sf:3, BIP2-sd:6
 Tx V5:2
 Rx V5:0
 Tx J2 Length=64
 TX J2 Trace Buffer:
 Expected J2 Length=64
 Expected J2 Trace Buffer:
 . . . . . . . . . . . . . . . . .
 Rx J2 Length=16
 RX J2 Trace Buffer:
 CRC-7: 0x60 ERROR
 C9 79 F7 OF 5F D8 5D D2 D2 7C F6 OE 53 B2 OE OO
                                        .y...]..|..S...
Data in curerent interval (610 seconds elapsed)
  O CodeViolations, O ErrorSecs, O Severly Err Secs, 609 Unavailable Secs
  Far End
  O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
Data in Interval 1:
  Near End
  O CodeViolations, O ErrorSecs, O Severly Err Secs, 901 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
Data in Interval 96:
  Near End
```

```
O CodeViolations, O ErrorSecs, O Severly Err Secs, 900 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
Total Data (last 96 fifteen minute intervals):
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 86436 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
Total (Previous Day):
  Near End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, 86435 Unavailable Secs
  Far End
   O CodeViolations, O ErrorSecs, O Severly Err Secs, O Unavailable Secs
STS-1 1, VTG 1, T1 1 (sts1e 0/3/0.1/1/1 T1) is down
 timeslots: 1-4
 FDL per AT&T 54016 spec.
 Receiver is getting AIS.
 Framing is ESF, Clock Source is Internal
 Data in current interval (610 seconds elapsed):
  Near End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    609 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 Data in Interval 1:
  Near End
    O Line Code Violations, O Path Code Violations
. . . . . . . . . . . . . . . . . . . .
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 Data in Interval 96:
  Near End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    900 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 Total Data (last 24 hours)
  Near End
    O Line Code Violations, O Path Code Violations,
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    86436 Unavail Secs, 0 Stuffed Secs
  Far End
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavailable Secs
 Total (Previous Day)
  Near End
```

```
O Line Code Violations, O Path Code Violations,
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   86435 Unavail Secs, 0 Stuffed Secs
  Far End
   O Line Code Violations, O Path Code Violations
   O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
   O Errored Secs, O Bursty Err Secs, O Severely Err Secs
   0 Unavailable Secs
STS-1 1, VTG 1, VT 2 (SONET 0/3/0.1/1/2 VT) is down
VT Receiver has LP AIS.
router#show controllers stsle 0/3/0 tabular
Section/Line/Path same as previous.
stsle 0/3/0.1 PATH is down.
 Hardware is
Applique type is VT1.5
STS-1 1, VTG 1, VT 1 (SONET 0/3/0.1/1/1 VT) is down
VT Receiver has LP AIS.
 cep is configured: FALSE cem id (0)
 BIP2-tca:6, BIP2-sf:3, BIP2-sd:6
 Tx V5:2
 Rx V5:0
 Tx J2 Length=64
 TX J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 Expected J2 Length=64
 Expected J2 Trace Buffer:
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . .
 Rx J2 Length=16
 RX J2 Trace Buffer:
 CRC-7: 0x60 ERROR
 C9 79 F7 OF 5F D8 5D D2 D2 7C F6 OE 53 B2 OE OO
                                       .y.. .]..|..S...
TNTERVAL
          CV-V ES-V SES-V UAS-V CV-VFE ES-VFE SES-VFE UAS-VFE
06:14-06:24
          0
               0
                     0
                         619
                                0
                                    0
                                          0
                                                    0
05:59-06:14
            0
                0
                      0
                          901
                                 0
                                      0
                                              0
                                                    0
05:44-05:59
          0
                         900
                                 0
                                      0
                                             Ω
                                                    0
                0
                     0
05:29-05:44
           0 0
                        901
                                 0
                                      0
                                             0
                                                    0
                      0
               0
                                      0
05:14-05:29
          0
                    0
                         900
                                 0
                                             0
                                                    0
04:59-05:14
           0
                0
                     0
                         900
                                 0
                                      0
                                              0
                                                    0
                                 0
                                             0
06:44-06:59 0
                Ω
                     0
                        901
                                      Ω
                                                    Ω
06:29-06:44
           Ω
               Ω
                     Ω
                        900
                                 0
                                              Ω
                                                    0
                                 0
                                      0
06:14-06:29 0 0
                     0
                        900
                                              0
                                                    0
                                                    0
           0
                      0 86436
                                 0
                                      0
                                              0
Total
               0
Total (Previous Day):
05:29-05:29 0 0 0 86435
                             0 0
                                              Ω
                                                    Ω
```

Ω

0

0

0

0

0

Ω

0

0

0

```
STS-1 1, VTG 1, T1 1 (SONET 0/3/0.1/1/1 T1) is down
 timeslots: 1-4
 FDL per AT&T 54016 spec.
 Receiver is getting AIS.
 Framing is ESF, Clock Source is Internal
 Near End Data
 INTERVAL CV-L ES-L CV-P ES-P SES-P CSS-P SAS-P UAS-P
                                                                  FC-P
 06:14-06:24
              0 0
                            0
                                   0
                                           0
                                                        0
               0
                      0
                                    0
                                           0
 05:59-06:14
                             Ω
                                                  Ω
                                                        Ω
                                                             901
. . . . . . . . . . . . . . .
 06:44-06:59
                0
                      0
                             0
                                    0
                                           0
                                                  0
                                                        0
                                                             901
               0
                                                             900
 06:29-06:44
                      0
                             0
                                    0
                                           0
                                                  0
                                                        0
 06:14-06:29
               0
                      0
                            0
                                   0
                                           0
                                                        0
                                                             900
 Total
               Ω
                      Ω
                            Ω
                                   Ω
                                          Ω
                                                 Ω
                                                        0 86436
 Total (Previous Day):
 05:29-05:29
               0
                       0
                             0
                                    0
                                           0
                                                        0 86435
 Far End Data
 INTERVAL ES-LFE ES-PFE SES-PFE CSS-PFE UAS-PFE FC-PFE
                        0
 06:14-06:24 0
                                 0
                                            0
                                                     0
                                                             Ω
 05:59-06:14
                 0
                         0
                                  0
                                            0
                                                     0
                                                             0
06:29-06:44 0
                          0
                                  0
                                            0
                                                    0
                                                             0
 06:14-06:29
                                  0
                  0
                          0
                                            0
                                                    0
                                                             0
                 0
                          0
                                 0
                                                             0
 Total (Previous Day):
 05:29-05:29 0
                          0
                                  0
                                            0
                                                    0
                                                             0
 STS-1 1, VTG 1, VT 2 (SONET 0/3/0.1/1/2 VT) is down
VT Receiver has LP AIS.
 cep is configured: FALSE cem id (0)
 fwd alarm ais :0 fwd alarm rai :0, Clock Source is Internal
router#show controllers stsle 0/3/0 remote performance
Section/Line/Path same as previous.
stsle 0/3/0.1 PATH is down.
 Hardware is
STS-1 1, VTG 1, VT 1 (VT1.5 1/1/1) - Remote Performance Data
Data in curerent interval (630 seconds elapsed)
O CodeViolations , O ErrorSecs, O Severly Err Secs, O Unavail Secs
 FarEnd VT Interval data:
Total Data (last 96 15 minute intervals):
O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
Total (Previous Day):
 O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
 STS-1 1, VTG 1, T1 1 (SONET 0/3/0.1/1/1 T1) - Remote Performance Data
 Data in current interval (630 seconds elapsed):
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
    0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs
    0 Unavail Secs
 Data in Interval 1:
. . . . . . . . . . . . . . . . .
 Data in Interval 96:
    O Line Code Violations, O Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins
```

```
O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    O Unavail Secs
 Total Data (last 24 hours)
    0 Path Code Violations
    O Slip Secs, O Fr Loss Secs, O Line Err Secs, O Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
 Total (Previous Day)
    0 Path Code Violations
    0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins,
    O Errored Secs, O Bursty Err Secs, O Severely Err Secs
    0 Unavail Secs
STS-1 1, VTG 1, VT 2 (VT1.5 1/1/2) - Remote Performance Data
Far end MIB Data:
Data in curerent interval (630 seconds elapsed)
O CodeViolations , O ErrorSecs, O Severly Err Secs, O Unavail Secs
FarEnd VT Interval data:
Total Data (last 96 15 minute intervals):
O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
Total (Previous Day):
O CodeViolations, O ErrorSec, O Severly Err Secs, O Unavail Secs
router#show controllers stsle 0/3/0 remote performance tabular
Section/Line/Path same as previous.
stsle 0/3/0.1 PATH is down.
 Hardware is
STS-1 1, VTG 1, VT 1 (VT1.5 1/1/1) - Remote Performance Data
Far end MIB Data:
INTERVAL CV
                    ES
                          SES UAS
06:14-06:24
             0
                   0
                         0
                               0
FarEnd VT Interval data:
TNTERVAL
            CV ES
                         SES
                               UAS
             0
 05:59-06:14
                    0
                          0
 05:44-05:59 0 0
                          0
                                0
                  0
 05:29-05:44
               0
                          Ω
                                Ω
 05:14-05:29
               0
                     0
                           0
                                0
 06:29-06:44
               0 0
                           0
 06:14-06:29 0
                     0
                          0
                                0
Total
 CV ES SES UAS
                     0
                           0
                                 0
Total (Previous Day)
 CV ES SES
                       0
                            0
                                 0
                                       0
                UAS
STS-1 1, VTG 1, T1 1 (SONET 0/3/0.1/1/1 T1) - Remote Performance Data
 INTERVAL LCV PCV CSS SELS LES DM ES BES SES UAS
 06:14-06:24
             0 0 0 0 0 0 0 0 0
             0
                   0
                             0
                                   0 0 0
                                                     0
                          0
 05:59-06:14
                        0
                                                0
                                                           0
                                              0
                                                          0
 05:44-05:59
. . . . . . . . . . . . . . . . . . . .
```

0

0

06:44-06:59	0	0	0	0	0	0	0	0	0	0
06:29-06:44	0	0	0	0	0	0	0	0	0	0
06:14-06:29	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0
Total (Previou	us Day)								
05:29-05:29	0	0	0	0	0	0	0	0	0	0
STS-1 1, VTG 1	, VT 2	(VT1.5	1/1/2	2) - Re	mote F	erfor	mance I	ata		
Far end MIB Dat	ta:									
INTERVAL	CV	ES	SES	UAS						
06:14-06:24	0	0	0	0						
FarEnd VT Inte	rval d	ata:								
INTERVAL	CV	ES	SES	UAS						
05:59-06:14	0	0	0	0						

controller sts-1e

To configure a STS-1e controller and enter controller configuration mode, use the **controller sts-1e** command in global configuration mode.

controller sts-1e slot/subslot/port

slot	Physical slot number. The slot is always 0.
/subslot	Physical sub-slot number. The range for sub-slot is 0-5.
/port	STS-1e port number. The range of port number for 3GMS is 12-15 and for 48 T3E3 CE is 0-47.

Command Default

port : 0

Command Modes

Global configuration

Command History

Release	Modification
XE Fuji 16.9.1	This command was integrated into the Cisco ASR 900 Series, Cisco ASR 920 Series, and Cisco NCS 4200 Series Routers.

Usage Guidelines

This command can be enabled only after configuring the **mode sts1e** command under **controller mediatype** *slot/subslot/port*command, as shown below:

```
Router(config) #controller mediaType 0/3/13
Router(config-controller) #mode
Router(config-controller) #mode stsle
```

Example

```
enable
configure terminal
controller sts-le 0/0/16
sts-l 1
mode sts-le
tl 1 clock source internal
tl 1 framing unframed
end
```

mode sts-1e

Use this command to configure the sts-1e mode.

None.

Command Default

None.

Command Modes

Controller configuration.

Command History

Release	Modification
IOS XE Fuji 16.9.1	This command was integrated into the Cisco ASR 900 Series, Cisco ASR 920 Series, and the Cisco NCS 4200 Series.

Usage Guidelines

You can change the mode of a controller only when there are no subinterfaces defined for the controller.

Example

enable
configure terminal
controller MediaType 0/0/16
mode STS-1e
end

mode sts-1e

Unidirectional Path Switching Ring Over HDLC

- Unidirectional Path Switching Ring Over HDLC Overview, on page 243
- Limitations for HDLC UPSR, on page 243
- How to Configure UPSR over HDLC, on page 244
- Configuration Examples for HDLC UPSR, on page 247

Unidirectional Path Switching Ring Over HDLC Overview

A Unidirectional Path Switching Ring (UPSR) is a unidirectional network with two rings, one ring used as the working ring and the other as the protection ring. The traffic on a working ring or path is always in one direction (clockwise) and on a protection path is in the opposite direction (counterclockwise). The same signal flows through both working and protection rings using a selector switch.

The UPSR monitoring is performed at the path layer. A node receives two copies of the electrical signals at the path layer, compares them, and chooses the one with the better quality. When a signal fail condition is detected, the hardware initiates an interrupt to software which switches from the working path to the protection path or the opposite way.

In an access network, the UPSR serial traffic is processed with an HDLC encapsulation protocol. The termination CE end may be Ethernet traffic. Between the access routers, the network can be a SONET network, where the data path in the network is protected by UPSR. The data terminating router in the network selects the working or protection path.

UPSR is supported on modes such as VT 1.5, STS 3c, and T3.

Limitations for HDLC UPSR

- HDLC UPSR is supported only on the 1 port OC-48/4 port OC-12/OC-3 + 12 port T1/E1 + 4 port T3/E3 CEM interface module.
- HDLC UPSR is applicable only for the OCx ports of the 1 port OC-48/4 port OC-12/OC-3 + 12 port T1/E1 + 4 port T3/E3 CEM interface module.
- Work path and protection path should be in the different interface modules.
- The modes supported for configuring HDLC UPSR are VT 1.5, T3, and STS-3c.
- The HDLC UPSR is supported only on RSP2 module.

• HDLC UPSR switching does not happen when there is any alarm at PDH level, for example T1 or T3. The switching happens at VT or STS path alarm.

How to Configure UPSR over HDLC

You can configure HDLC UPSR in anyone of the following ways:

- Create protection group first and then add working or protect member under physical controller. The channel group can be configured under protection group controller once the protection group is created.
- Add working or protect member under physical controller which creates the protection group controller. The channel group can be added under the protection group controller once protection group is created.

Configuring Protection Group

You need to create protection group serial interface.

You can create protection group for anyone of the following types: T3, VT 1.5 T1, and STS-3c.

```
enable configure terminal controller protection-group 401 type STS3c channel-group chan-num timeslots 1-24
```

Configuring Channel Group

You can configure channel group under protection controller to create a protection group (PG) serial interface.

Creating Protection Group Serial Interface for VT 1.5 T1 Mode

Once the protection group is created, you can configure the controller using the protection group name and mode. You need to specify the channel group number with timeslots to create a PG serial interface.

To configure the channel group under the controller for VT 1.5 T1 mode, enter the following commands:

```
enable
configure terminal
controller protection-group pg_grp_num type vt1.5
channel-group chan_num timeslots 1-24
end
```

Creating Protection Group Serial Interface for T3 or STS-3c Mode

You can configure protection group for the controller mode types T3 or STS-3c using specific channel group.

To configure channel group under protection controller for mode T3, enter the following commands:

```
enable configure terminal protection-group pg\_grp\_num type sts1 controller sonet x/y/z sts-1 3 mode t3
```

```
\label{eq:protection-group} \begin{split} & \texttt{protection-group} pg\_grp\_num \textbf{working} \\ & \texttt{end} \end{split}
```

To configure channel group under protection controller for mode types STS-3c, enter the following commands:

```
enable
configure terminal
protection-group pg_grp_num type sts1
controller sonet x/y/z
sts-3c
mode t3
protection-grouppg_grp_numworking
end
```

The following example details on how to create protection group serial interface for T3 mode:

```
Router(config) #protection-group 6 type stS1
Router(config-ctrlr-sts1) #controller sonet 0/5/17
Router(config-controller) #sts-1 3
Router(config-ctrlr-sts1) #mode t3
Router(config-ctrlr-sts1) #protection-group 6 working
```

Creating Protection Group Serial Interface for VT 1.5 T1 Mode

Once the protection group is created, you can configure the controller using the protection group name and mode. You need to specify the channel group number with timeslots to create a PG serial interface.

To configure the channel group under the controller for VT 1.5 T1 mode, enter the following commands:

```
enable
configure terminal
controller protection-group pg_grp_num type vt1.5
channel-group chan_num timeslots 1-24
end
```

Creating Protection Group Serial Interface for T3 or STS-3c Mode

You can configure protection group for the controller mode types T3 or STS-3c using specific channel group.

To configure channel group under protection controller for mode T3, enter the following commands:

```
enable
configure terminal
protection-group pg_grp_num type sts1
controller sonet x/y/z
sts-1 3
mode t3
protection-grouppg_grp_numworking
end
```

To configure channel group under protection controller for mode types STS-3c, enter the following commands:

```
enable
configure terminal
protection-group pg_grp_num type sts1
controller sonet x/y/z
sts-3c
mode t3
protection-grouppg_grp_numworking
end
```

The following example details on how to create protection group serial interface for T3 mode:

```
Router(config) #protection-group 6 type stS1
Router(config-ctrlr-sts1) #controller sonet 0/5/17
Router(config-controller) #sts-1 3
Router(config-ctrlr-sts1) #mode t3
Router(config-ctrlr-sts1) #protection-group 6 working
```

Adding Protection Group to Controller Under VT 1.5 Mode

You can add protection group as working or protect under specific SONET controller mode on the SONET controller interface.

To add protection group to SONET controller under VT 1.5 mode, enter the following commands:

```
enable
configure terminal
controller sonet <x/y/z>
sts-1 1
mode vt-15
vtg 1 t1 1
protection-group pg_grp_num type {working | protect}
end
```

Adding Protection Group to Controller Under T3 Mode

You can add protection group for T3 framing type such as M13, c-bit.

To add protection group to SONET controller under T3 mode, enter the following commands:

```
enable
configure terminal
controller sonet <x/y/z>
sts-1 1
mode t3
protection-group pg_grp_num type {working | protect}
```

Adding Protection Group to Controller Under STS-3c Mode

To add protection group to SONET controller under STS-3c mode, enter the following commands:

```
enable configure terminal controller sonet \langle x/y/z \rangle sts-1 1 - 3 mode sts-3c protection-group pg\_grp\_num type \{working \mid protect\} end
```

Configuring Cross-Connect Under Protection Group Serial Interface Pseudowire

The **xconnect** command binds the attachment circuit to a pseudowire for cross connect service. The identifier creates the binding between a pseudowire that is configured on a PE router and an attachment circuit in a CE device.

To perform cross connection between a pseudowire and attachment circuit, use the following commands:

```
router(config) #interface serial-pg <pg-group-name>.<chan_num>
router(config-if) #xconnect ip-address id encapsulation type pw-class pw-class
```

Verifying UPSR Over HDLC Configuration

Use the following **show** commands to verify the UPSR over HDLC configuration:

```
Router#show ip int br | sec PG
Serial-PG1.0 unassigned YES unset up
Serial-PG2.0 unassigned YES unset up
                                                                       up
                                                                       up
Router#sh protection-group
PGN Type Working I/f
                                       Protect I/f
                                                                Active Status
    VT15 SONET0/5/17.1/1/1
                                                                  W
     VT15 SONET0/5/17.2/2/2
                                                                   TAT
                                                                             Α
Router#show xconnect all | sec PG
DN pri ac Se-PG1.0(HDLC)
                                        UP mpls 10.10.10.10:2
                                                                             DN
Router#sh controller sonet 0/5/17 | sec prot
  Working member of protection-group: 1
  Working member of protection-group: 2
Router#show run | sec 0/5/17
platform enable controller MediaType 0/5/17 oc3
controller MediaType 0/5/17
mode sonet
controller SONET 0/5/17
rate OC3
no ais-shut
alarm-report all
clock source internal
sts-1 1
 clock source internal
 mode vt-15
 vtg 1 t1 1 protection-group 1 working
sts-1 2
 clock source internal
 mode vt-15
  vtg 2 t1 2 protection-group 2 working
```

Configuration Examples for HDLC UPSR

This section provides examples to configure HDLC UPSR:

Use Case 1

The following example details on how UPSR is configured over HDLC:

• Protection group of 3 configured under VT 1.5 T1 mode.

- Channel group of zero with timeslot configured under the protection group created.
- SONET controller is configured for mode VT 1.5 T1 on interface 0/5/17.
- Protection group of 3 added as working ring under SONET controller mode VT 1.5 T1.
- Perform cross connection under attachment circuit

```
Router(config) #protection-group 3 type vt1.5
Router(config) #controller protection-group 3
Router(config-controller) #type vt1.5
Router(config-ctrlr-sts1) #channel-group 0 timeslots 1-24
Router(config-ctrlr-sts1) #controller sonet 0/5/17
Router(config-controller) #sts-1 1
Router(config-ctrlr-sts1) #mode vt-15
Router(config-ctrlr-sts1) #vtg 1 t1 1 protection-group 3 working
```

Verify the configuration using the following **show** commands:

Router#show protection-group

PGN	Type	Working I/f	Protect I/f	Active	Status
1	VT15				A
2	VT15			-	A
3	VT15	SONET0/5/17.1/1/1		\overline{W}	A

Router#show controller sonet 0/5/17 | sec protection

Working member of protection-group: 3

```
Router#show ip int br | sec PG
```

```
Serial-PG3.0 unassigned YES unset up up
```

```
Router(config) #interface Serial-PG3.0
Router(config-if) #xconnect 10.10.10.10 1 encapsulation mpls pw-Router(config-if) #$.10.10.10 1 encapsulation mpls pw-class serial_pg
```

If you want to remove the configuration performed, use the following commands:

```
Router(config-if-xconn) #int Serial-PG3.0
Router(config-if) #no xconnect

Router(config) #controller sonet 0/5/17
Router(config-controller) #sts-1 1
Router(config-ctrlr-sts1) #no vtg 1 t1 1 protection-group 3 working

Router(config) #controller protection-group 3
Router(config-controller) #type vt1.5
Router(config-ctrlr-sts1) #no channel-group 0
Router(config-ctrlr-sts1) #no protection-group 3
```

Use Case 2

The following example details on how UPSR is configured over HDLC:

- SONET controller is configured for mode VT 1.5 T1 on interface 0/5/17.
- Protection group of 3 added as working ring under SONET controller mode VT 1.5 T1.

- Protection group of 3 configured under VT 1.5 T1 mode.
- Channel group of zero with timeslot configured under the protection group created.
- Perform cross connection under attachment circuit

```
Router(config) #controller sonet 0/5/17
Router(config-controller) #sts-1 1
Router(config-ctrlr-sts1) #mode vt-15
Router(config-ctrlr-sts1) #vtg 1 t1 1 protection-group 3 working
Router(config-ctrlr-sts1) #exit
Router(config-controller) #exit
Router(config) #controller protection-group 3
Router(config-controller) #type vt1.5
Router(config-ctrlr-sts1) #channel-group 0 timeslots 1-24
```

Verify the configuration using the following **show** commands:

Router#show protection-group

PGN	Туре	Working I/f	Protect I/f	Active	Status
1	VT15			-	А
2	VT15			-	A
3	VT15	SONET0/5/17.1/1/1		M	A

Router#show controller sonet 0/5/17 | sec protection

Working member of protection-group: 3

Router#show ip int br | sec PG

Serial-PG3.0 unassigned YES unset up up

Router(config) #int Serial-PG3.0
Router(config-if) #xconnect 10.10.10.10 1 encapsulation mpls pw-Router(config-if) #\$.10.10.10 1 encapsulation mpls pw-class serial_pg

Use Case 2

Interworking Multiservice Gateway Access Circuit Redundancy

Table 29: Feature History

Feature Name	Release Information	Description
	Cisco IOS XE Amsterdam 17.3.1	

Interworking Multiservice Gateway Access Circuit Redundancy (iMSG ACR) enables local switching for serial interfaces by creating a virtual serial-ACR interface. All configuration changes made on the virtual serial-ACR interface are applied automatically on both the working and protect interfaces. Switching from working to protect or protect to working interface occurs within 250 milliseconds at different scaled levels with line rate traffic. For more information, see .

Note

Interworking Multiservice Gateway Access Circuit Redundancy (iMSG ACR) is supported on from Cisco IOS XE Everest 16.5.1 release.

- SONET Supported Modes, on page 251
- SDH Supported Modes, on page 252
- Restrictions for iMSG ACR, on page 253
- How to Configure iMSG ACR, on page 253

SONET Supported Modes

Table 30: SONET Supported Modes for iMSG ACR

Mode	Ports
STS-3C	OC-3, OC-12, OC-48
DS3	OC-3, OC-12, OC-48
DS3-T1	OC-3, OC-12, OC-48
VT 1.5	OC-3, OC-12, OC-48

Table 31: SONET Supported Modes for iMSG non-ACR

Mode	Ports
STS-3C	OC-3, OC-12, OC-48
STS-12C	OC-12, OC-48
STS-48C	OC-48
DS3	OC-3, OC-12, OC-48
DS3-T1	OC-3, OC-12, OC-48
VT 1.5	OC-3, OC-12, OC-48

SDH Supported Modes

Table 32: SDH Supported Modes for iMSG ACR

Mode	Ports
VC4	STM1, STM4, STM16
TUG-3-E3	STM1, STM4, STM16
TUG-3-T3	STM1, STM4, STM16
TUG-2-E1	STM1, STM4, STM16
TUG-2-T1	STM1, STM4, STM16

Table 33: SDH Supported Modes for iMSG non-ACR

Mode	Ports
VC4	STM1, STM4, STM16
VC4-4c	STM4, STM16
VC4-16c	STM16

Modes not supported on SDH for iMSG ACR

- VC4—TUG-3—TUG-2—VC-12
- VC4— TUG-3—TUG-2—VC-11
- (AU-3) VC-3—TUG-2—VC-12
- (AU-3) VC-3—TUG-2—VC11
- SDH—AU3—VC12—E1

Restrictions for iMSG ACR

Table 34: Feature History

Feature Name	Release	Description
Interworking Support for nxDS0	Cisco IOS XE Amsterdam 17.3.1	Interworking function (IWF) for PPP/HDLC is supported on Ethernet for E1/STM1 ports. This support is extended at nxDS0 level to speed up the GSR TDM migration.

- A maximum number of 336 circuits are supported on ACR interface.
- Quality of Service (QoS) and default experimental bits (EXP) marking for MPLS pseudowires is not supported on the iMSG-ACR interface.
- Port license must be enabled on 3G IM port SONET or SDH ports.
- For iMSG IPv6 MTU, the change in configuring MTU value is not supported. Ensure that you configure the circuit with the default MTU value.

How to Configure iMSG ACR

Creating ACR Group

You can create virtual ACR groups with the following SONET ACR types:

- OC3
- OC12
- OC48

You can create virtual ACR groups with the following SDH ACR types:

- STM1
- STM4
- STM16

To create ACR group, enter the following commands:

rotuer(config) #ACR <id> type <type-id>

Configuring ACR Group on APS

You can configure ACR group on APS. The ACR group supported range is from 1 to 96. Any group number exceeding the range is not supported. You can configure the interface as working using the circuit number.

The circuit number identies a particular channel in the APS pair. Since the interface only supports 1 + 1 redundancy, the only valid and the default value for working interface is 1.

The APS group created can be active or inactive:

- Active—The interface that is currently sending and receiving data.
- Inactive—The interface that is currently standing by to take over when the active fails.

Note

APS is supported in revertive and non-revertive mode and can be configured as undirectional and bidirectional.

To configure ACR group on APS with SONET interface as a working interface, enter the following commands:

```
configure terminal
controller sonet slot/subslot/port
aps group acr-id
aps working circuit-number
aps group acr <acr_id>
```

To configure ACR group on APS with SDH interface as a working interface, enter the following commands:

```
configure terminal
controller sdh slot/subslot/port
aps group acr-id
aps working circuit-number
aps group acr <acr id>
```

You can configure an interface to be protect interface in the APS pair. Because only 1+1 redundancy is supported, the only valid value is 1, and the protect interface defaults to 1.

While specifying ACR ID, you need to specify an IP address for the loopback interface. The protect interface uses this IP address to communicate with the working interface.

To configure ACR group on APS with SONET interface as a protect interface, enter the following commands:

```
configure terminal
controller sonet slot/subslot/port
aps group acr-id
aps protect <acr_id> <any-loopback-ip-address>
aps group acr <acr_id>
```

To configure ACR group on APS with SDH interface as a protect interface, enter the following commands:

```
configure terminal
controller sdh slot/subslot/port
aps group acr-id
aps protect <acr_id> <any-loopback-ip-address>
aps group acr <acr_id>
```

The following example explains how to configure ACR group on APS with SONET interface as working interface:

```
Router# configure terminal
Router (config)# controller sonet 0/1/0
Router(config-controller)# aps group 1
```

```
Router (config-controller)# aps working 1
Router (config-controller)# aps group acr 1
```

The following example explains how to configure ACR group on APS with SONET interface as protect interface:

```
Router# configure terminal
Router (config)# controller sonet 0/2/0
Router(config-controller)# aps group 1
Router (config-controller)# aps protect 1 10.1.1.1
Router (config-controller)# aps group acr 1
```

The following example explains how to configure ACR group on APS with SDH interface as working interface:

```
Router# configure terminal
Router (config)# controller sdh 0/3/0
Router(config-controller)# aps group 1
Router (config-controller)# aps working 1
Router (config-controller)# aps group acr 1
```

The following example explains how to configure ACR group on APS with SDH interface as protect interface:

```
Router# configure terminal
Router (config)# controller sdh 0/4/0
Router(config-controller)# aps group 1
Router (config-controller)# aps protect 1 10.1.1.1
Router (config-controller)# aps group acr 1
```

Creating Serial Interface for SONET ACR

You can create serial interface for SONET ACR on VT 1.5, CT-3, and T3 modes.

Creating Serial Interface for SONET ACR on VT 1.5 Mode

To create serial interface for SONET ACR on VT 1.5 mode, enter the following commands:

```
controller SONET-ACR <ACR-ID>
  sts-1 1
  mode vt-15
  vtg <vtg_num> t1 <t1_num> channel-group <channel_num> timeslots 1-24
  vtg <vtq num> t1 <t1 num> channel-group <channel_num> timeslots 1
```

The following example describes how to create serial interface on VT 1.5 mode for SONET controller:

```
controller SONET-ACR 100
sts-1 2
mode vt-15
vtg 1 t1 1 channel-group 0 timeslots 1-24
vtg 2 t1 2 channel-group 1 timeslots 1
```

Creating Serial Interface for SONET ACR on CT3 Mode

To create serial interface for SONET ACR on CT-3 mode, enter the following commands:

```
controller SONET-ACR <ACR-ID>
  sts-1 1
  mode ct3
  t3 framing c-bit
  t1 <t1 num> channel-group <channel num> timeslots 1-24
```

The following example describes how to create serial interface on CT-3 mode for SONET controller:

```
controller SONET-ACR 100
  sts-1 1
  mode ct3
  t3 framing c-bit
  t1 1 channel-group 0 timeslots 1-24
```

Creating Serial Interface for SONET ACR on T3 Mode

To create serial interface for SONET ACR on T3 mode, enter the following commands:

```
controller SONET-ACR <ACR-ID>
  sts-1 3
  mode t3
  t3 framing c-bit
  t3 channel-group 0
```

The following example describes how to create serial interface on T3 mode for SONET controller:

```
controller SONET-ACR 100
sts-1 3
mode t3
t3 framing c-bit
t3 channel-group 0
```

Creating Serial Interface for SONET ACR on PoS Mode

To create serial interface for SONET ACR on PoS mode, enter the following commands

```
controller SONET-ACR 50
  sts-1 1 - 3 mode sts-3c
  channel-group 0
```

Creating Serial Interface for SONET non-ACR on PoS Mode

To create serial interface for SONET non-ACR on STS-12c mode, enter the following commands:

```
configure terminal
controller SONET <slot>/<subslot>/<port>
   rate OC12
   sts-1 1 - 12 mode sts-12c
   channel-group 0
```

To create serial interface for SONET non-ACR on STS-48c mode, enter the following commands:

```
configure terminal
controller SONET <slot>/<subslot>/<port>
  rate OC48
  sts-1 1 - 48 mode sts-48c
  channel-group 0
```

Creating Serial Interface for SDH ACR

To create serial interface for SDH ACR on T1, enter the following commands:

```
configure terminal
controller sdh-acr <acr-ID>
aug mapping au-4
au-4 1
mode tug-3
tug-3 1
mode vc1x
Tug-2 1 payload vc12
t1 1 channel-group 0 timeslots 1 - 24
```

To create serial interface for SDH ACR on E1, enter the following commands:

```
enable
configure terminal
controller sdh-acr 200
aug mapping au-4
au-4 1
mode tug-3
tug-3 1
mode vclx
Tug-2 1 payload vc12
e1 1 channel-group 0 timeslots 1 - 31
```

The following example explains how to create serial interface for SDH ACR on T1:

```
configure terminal
controller sdh-acr 200
aug mapping au-4
au-4 1
mode tug-3
tug-3 1
mode vc1x
Tug-2 1 payload vc12
t1 1 channel-group 0 timeslots 1 - 24
```

The following example explains how to create serial interface for SDH ACR on E1:

```
enable
configure terminal
controller sdh-acr 300
aug mapping au-4
au-4 1
mode tug-3
tug-3 1
mode vclx
Tug-2 1 payload vc12
el 1 channel-group 0 timeslots 1 - 31
```

Creating Serial Interface for SDH ACR on PoS Mode

To create serial interface for SDH ACR on PoS mode, enter the following commands

```
controller SDH-ACR 50
aug mapping au-4
au-4 1
  mode vc4
  Channel-group 0
```

Creating Serial Interface for SDH non-ACR on PoS Mode

To create serial interface for SDH non-ACR on VC4-4c Mode, enter following commands under physical controller:

```
configure terminal
controller SDH <slot>/<subslot>/<port>
  rate STM
  au-4 1 - 4 mode vc4-4c
  channel-group 0
```

To create serial interface for SDH non-ACR on VC4-16c Mode, enter following commands under physical controller:

```
configure terminal
controller SDH <slot>/<subslot>/<port>
  rate STM16
  au-4 1 - 16 mode vc4-16c
  channel-group 0
```

Modifying Encapsulation to PPP

By default the encapsulation is HDLC, and you can change the encapsulation to PPP.

To modify encapsulation to PPP, enter the following commands:

```
router(config) #interface SERIAL-ACR148.1
router(config-if) #no ip address
router(config-if) # encapsulation ppp
```

Configuring IPv4 and IPv6 Interworking Pseudowire

To configure IPv4 interworking pseudowire class, enter the following commands:

```
pseudowire-class <PW_class_name>
  encapsulation mpls
  interworking ip
  control-word
```

To configure IPv6 interworking pseudowire interface, enter the following commands:

```
interface pseudowire<pw-number>
  encapsulation mpls
  neighbor <peer-address> <vcid-value>
  control-word include
```


Note

Based on the far-end router, the control-word needs to be enabled or disabled.

The following example describes how to configure IPv4 interworking pseudowire class:

```
pseudowire-class PW_class_name
  encapsulation mpls
  interworking ip
  control-word
```

The following example describes how to configure IPv6 interworking pseudowire interface:

```
interface pseudowire30
encapsulation mpls
neighbor 10.2.2.2 30
control-word include
```

Configuring Cross-Connect on Serial Interface

The **xconnect** command binds the attachment circuit to a pseudowire for cross connect service. The identifier creates the binding between a pseudowire that is configured on a PE router and an attachment circuit in a CE device.

To perform IPv4 cross connection between a pseudowire and attachment circuit, use the following commands:

```
router(config)#interface serial-ACR1.29
router(config-if)#xconnect ip-address vc_num pw-class class-name
```

To perform IPv6 cross connection between a pseudowire and attachment circuit, use the following commands:

```
router(config) #12vpn xconnect context <xconnect name>
router(config-xconnect) #interworking ipv6
router(config-xconnect) #member pseudowire pw-number
router(config-xconnect) #member serial-ACR
```

The following example shows IPv6 cross connection between a pseudowire and attachment circuit:

```
12vpn xconnect context pw_30_acr_vt15
interworking ipv6
member pseudowire30
member serial-ACR1.29
```

Verifying iMSG ACR

Verifying iMSG ACR with HDLC Encapsulation

Use the following **show aps group** and **show interface SERIAL-ACR** commands to verify iMSG ACR with HDLC encapsulation on the SONET or SDH controller:

```
router# show aps group 100
SONET 0/1/16 APS Group 100: protect channel 0 (Inactive) (HA)
        Working channel 1 at 10.1.1.3 (Enabled)
        unidirectional, ADM, non-revertive
        PGP timers (extended for HA): hello time=1; hold time=10
                hello fail revert time=120
        SONET framing; SONET APS signalling by default
        Received K1K2: 0x11 0x04
                Do Not Revert (working)
        Transmitted K1K2: 0x00 0x04
                No Request (Null)
        Remote APS configuration: (null)
SONET 0/4/16 APS Group 100: working channel 1 (Active) (HA)
        Protect at 10.1.1.3 (unidirectional, non-revertive)
        PGP timers (from protect): hello time=1; hold time=10
        SONET framing
        Remote APS configuration: (null)
router# show aps group 300
SDH 0/3/0 APS Group 300: protect channel 0 (Inactive) (HA)
        Working channel 1 at 10.1.1.3 (Enabled)
        unidirectional, ADM, non-revertive
        PGP timers (extended for HA): hello time=1; hold time=10
                hello fail revert time=120
        SDH framing; SDH APS signalling by default
        Received K1K2: 0x11 0x04
                Do Not Revert (working)
        Transmitted K1K2: 0x00 0x04
               No Request (Null)
        Remote APS configuration: (null)
SDH 0/3/1 APS Group 300: working channel 1 (Active) (HA)
        Protect at 10.1.1.3 (unidirectional, non-revertive)
        PGP timers (from protect): hello time=1; hold time=10
        SDH framing
        Remote APS configuration: (null)
router#show interface SERIAL-ACR100.1
SERIAL-ACR100.1 is up, line protocol is up
  Hardware is N/A
  MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation HDLC, crc 16, loopback not set
  Keepalive set (10 sec)
  Last input 00:00:05, output 00:00:02, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  30 second input rate 0 bits/sec, 0 packets/sec
  30 second output rate 0 bits/sec, 0 packets/sec
     70 packets input, 10902 bytes, 0 no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     57 packets output, 2508 bytes, 0 underruns
     O output errors, O collisions, O interface resets
     20 unknown protocol drops
     O output buffer failures, O output buffers swapped out
     7 carrier transitions no alarm present
  VC 1: timeslot(s): 1-24, Transmitter delay 0, non-inverted data
```

Use the following **show interface SERIAL-ACR** commands to verify HDLC ACR configuration on the SDH controller:

```
router#show int SERIAL-ACR148.1
SERIAL-ACR148.1 is up, line protocol is up
 Hardware is N/A
 MTU 1500 bytes, BW 44210 Kbit/sec, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation HDLC, crc 16, loopback not set
  Keepalive set (10 sec)
  Last input 00:00:07, output 00:00:06, output hang never
  Last clearing of "show interface" counters 01:16:15
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  30 second input rate 0 bits/sec, 0 packets/sec
  30 second output rate 0 bits/sec, 0 packets/sec
     122925 packets input, 16492939 bytes, 0 no buffer
    Received 0 broadcasts (0 IP multicasts)
    0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     744239 packets output, 41162791 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
    85 unknown protocol drops
     O output buffer failures, O output buffers swapped out
     O carrier transitions alarm present
  DSU mode 0, bandwidth 0 Kbit, scramble 0, VC 1, non-inverted data
```

Verifying iMSG ACR with PPP Encapsulation

Use the following **show interface SERIAL-ACR** command to verify iMSG ACR with PPP encapsulation on the SONET or SDH controller:

```
router#show interface SERIAL-ACR100.1
SERIAL-ACR100.1 is up, line protocol is up
 Hardware is N/A
  MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
    reliability 255/255, txload 2/255, rxload 2/255
  Encapsulation PPP, LCP Open
  Stopped: TAGCP
  Open: IPCP, crc 16, loopback not set
 Keepalive set (10 sec)
  Last input 00:00:00, output 00:00:00, output hang never
  Last clearing of "show interface" counters 03:28:29
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 14000 bits/sec, 1185 packets/sec
  5 minute output rate 14000 bits/sec, 1185 packets/sec
    14628274 packets input, 25965577 bytes, 0 no buffer
     Received 0 broadcasts (0 IP multicasts)
    0 runts, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
    14628402 packets output, 26013374 bytes, 0 underruns
     0 output errors, 0 collisions, 1 interface resets
     0 unknown protocol drops
     O output buffer failures, O output buffers swapped out
    2 carrier transitions
 PW stats
 14625804 input packets ,14625930 output packets,
```

```
1872102912 input bytes, 1872119040 output bytes, 0 input packet drop no alarm present
VC 1: timeslot(s): 1-24, Transmitter delay 0, non-inverted data
```

Verifying iMSG ACR with HDLC Encapsulation on PoS Mode

Use the following **show interfaces SERIAL-ACR**<*acr-id*>.<*path-number*> command to verify iMSG ACR with HDLC encapsulation on PoS mode for SONET or SDH controller.

```
Router#show interfaces serial-acr50.1
SERIAL-ACR50.1 is up, line protocol is up
  Hardware is N/A
  MTU 1500 bytes, BW 155000 Kbit/sec, DLY 100 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation HDLC, crc 16, loopback not set
  Keepalive set (10 sec)
  Last input 00:00:09, output 00:00:05, output hang never
  Last clearing of "show interface" counters 00:00:27
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
    102 packets input, 10688 bytes
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     103 packets output, 10732 bytes, 0 underruns
     O output errors, O collisions, O interface resets
     0 unknown protocol drops
     0 output buffer failures, 0 output buffers swapped out
     O carrier transitions
PW stats
100 input packets ,100 output packets,
10000 input bytes, 10000 output bytes, 0 input packet drop
no alarm present
  VC:1, Non-inverted data
```

Verifying iMSG ACR with PPP Encapsulation on PoS Mode

Use the following **show interfaces SERIAL-ACR**<*acr-id*>.<*path-number*> command to verify iMSG ACR with PPP encapsulation on PoS mode for SONET or SDH controller.

```
Router#show interfaces serial-acr50.85
SERIAL-ACR50.85 is up, line protocol is up
 Hardware is N/A
  MTU 1500 bytes, BW 155000 Kbit/sec, DLY 100 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation PPP, LCP Open
  Stopped: TAGCP
  Open: IPCP, crc 16, loopback not set
  Keepalive set (10 sec)
  Last input 00:00:01, output 00:00:01, output hang never
  Last clearing of "show interface" counters 00:00:11
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
```

```
104 packets input, 10776 bytes
Received 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
104 packets output, 10776 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 unknown protocol drops
0 output buffer failures, 0 output buffers swapped out
0 carrier transitions
PW stats
100 input packets ,100 output packets,
10000 input bytes, 10000 output bytes, 0 input packet drop
no alarm present
VC:85, Non-inverted data
```

Verifying iMSG ACR with PPP Encapsulation on PoS Mode

Serial Interfaces

You can create the serial interface on T1 or E1, T3 or E3, SDH, or SONET interface. Each serial interface configuration differs based on the interface mode.

The channel identifier configuration differs based on the interface mode. For more information, refer serial interface supported modes.

- Serial Interface Supported Modes, on page 265
- Interworking Multiservice Gateway Support Matrix, on page 269
- Creating T1 or E1 Serial Interfaces on T1 or E1 Ports, on page 270
- Creating T3 or E3 Serial Interfaces on T3 or E3 Ports, on page 271
- Creating an E1 Serial Interface in Unframed Mode, on page 273
- Creating Serial Interfaces on SDH, on page 273
- Creating Serial Interfaces on SONET, on page 275
- Modifying Encapsulation to PPP, on page 277
- IPv4 Interworking Pseudowire over HDLC or PPP, on page 277
- IPv4 or IPv6 Interworking Multiservice Gateway Pseudowire over Frame Relay, on page 283
- IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces, on page 298
- Layer 3 Termination for Frame Relay, on page 300

Serial Interface Supported Modes

The serial interface name is specified as **interface serial 0/bay/port**. The zero specifies the slot number, bay specifies the bay number in the slot, and port specifies the port number in the bay.

The channel identifier varies depending on port type and supported port modes.

The following table details the values for the channel ID depending on the port modes:

Table 35: Channel Identifier Supported on T1 or E1 Interface

Mode	Interface	Serial Interface with supported Channel Identifier
T1 or E1	T1 or E1	Serial0/bay/port.1
		The port value ranges from 0 to 11.

Table 36: Channel Identifier Supported on T3 or E3 Interface

Mode	Interface	Serial Interface with supported Channel Identifier
T3 or E3	T3 or E3	Serial0/bay/port.1
		The port value ranges from 12 to 15.
CT3 or CE3	Channelized T3 or E3	Serial0/bay/port. <t1 number=""></t1>
		Serial0/bay/port. <e1 number=""></e1>
		T1 or E1 number specifies the VTG number with TUG number and T1 channels. The T1 or E1 number that is supported are as follows:
		• VTG 1/TUG2 1: T1 {1,8,15,22}
		• VTG 2/TUG2 2: T1 {2,9,16,23}
		• VTG 3/TUG2 3: T1 {3,10,17,24}
		• VTG 4/TUG2 4: T1 {4,11,18,25}
		• VTG 5/TUG2 5: T1 {5,12,19,26}
		• VTG 6/TUG2 6: T1 {6,13,20,27}
		• VTG 7/TUG2 7: T1 {7,14,21,28

Table 37: Channel Identifier Supported on SDH or SONET Interface

Mode	Interface Mode	Serial Interface with supported Channel Identifier
SONET or SDH	STS-3c or VC-4	Serial0/bay/port. <channel-id></channel-id>
		For SONET, the <channel-id> is calculated based on the following formula:</channel-id>
		Channel-id = (start_sts_number – 1) x 28 + 1
		For SDH, the <channel-id> is calculated based on the following formula:</channel-id>
		Channel-id = $(\text{start}_\text{aug4} - 1) \times 28$ $\times 3 + 1$
SONET or SDH	T3 or E3	Serial0/bay/port. <channel-id></channel-id>
		For SONET, the <channel-id> is calculated based on the following formula:</channel-id>
		Channel-id = (start_sts_number – 1) x 28 + 1
		For SDH AU-4 mapping in TUG3 mode, the <channel-id> is calculated based on the following formula:</channel-id>
		Channel-id = $(AUG 4 - 1) \times 28 \times 3 + (TUG 3 - 1) \times 28 + (e1 - 1) \times 7 + TUG 2$
		For SDH AU-3 mapping, the <channel-id> is calculated based on the following formula:</channel-id>
		Channel-id = (AUG 3 – 1) x 28 + (e1 – 1) x 7 + TUG 2

Mode	Interface Mode	Serial Interface with supported Channel Identifier
SONET or SDH	Concatenated Mode	For SONET, the <channel-id> is calculated based on the following formula:</channel-id>
		Channel-id = (start_sts_number – 1) x 28 + 1
		For SDH, the <channel-id> is calculated based on the following formula:</channel-id>
		Channel-id = $(\text{start}_\text{aug4} - 1) \times 28$ $\times 3 + 1$
SONET	VT1.5	Serial0/bay/port. <channel-id></channel-id>
		<channel-id> is the channel ID calculated based on the following formula:</channel-id>
		Channel-id = $(sts_number - 1) x$ 28 + $(T1/E1 - 1) x 7 + VTG$
		The following example describes how the channel ID is calculated for a given configuration.
		sts-1 2 mode vt-15 vtg 2 t1 3 channel-group 0 timeslots 1-24
		Inter serial interface channel-id = $(2-1) \times 28 + (3-1) \times 7 + 2 = 44$
		• VTG 1 1: T1 {1,8,15,22}
		• VTG 2 2: T1 {2,9,16,23}
		• VTG 3 3: T1 {3,10,17,24}
		• VTG 4 4: T1 {4,11,18,25}
		• VTG 5 5: T1 {5,12,19,26}
		• VTG 6 6: T1 {6,13,20,27}
		• VTG 7 7: T1 {7,14,21,28
SONET	CT3	For the CT3 mode, the <channel-id> is calculated based on the following formula:</channel-id>
		$((STS - 1) \times 28) + T1$

Mode	Interface Mode	Serial Interface with supported Channel Identifier
SDH	AU4-T3 or E3	For the SDH AU4-T3 or E3 mode, the <channel-id> is calculated based on the following formula:</channel-id>
		((AU Mapping - 1) x 28 x 3) + ((TUG3 - 1) x 28) + 1
SDH	Vc11 and Vc12	T1 number with Vc11 supported:
		• TUG2 1: T1 {1,8,15,22}
		• TUG2 2: T1 {2,9,16,23}
		• TUG2 3: T1 {3,10,17,24}
		• TUG2 4: T1 {4,11,18,25}
		• TUG2 5: T1 {5,12,19,26}
		• TUG2 6: T1 {6,13,20,27}
		• TUG2 7: T1 {7,14,21,28
		E1 number with Vc12 supported:
		• TUG2 1: E1 {1,8,15}
		• TUG2 2: E1 {2,9,16}
		• TUG2 3: E1 {3,10,17}
		• TUG2 4: E1 {4,11,18}
		• TUG2 5: E1 {5,12,19}
		• TUG2 6: E1 {6,13,20}
		• TUG2 7: E1 {7,14,21}
		Note Depending on the mode selected, the number of E1 changes.

Note

ACL is not supported on serial interfaces.

Interworking Multiservice Gateway Support Matrix

The following table details the list of interworking multiservice gateway features supported on Cisco ASR 920 platforms.

Table 38: Interworking Multiservice Gateway Support Matrix on Cisco ASR 920 Platforms

Platform RSP	ASR920		
IM Type	A900-IMA3G-IMSG		
Feature List	IPv4	IPv6	
Interworking	Y	Y	
Interworking Access Circuit Redundancy (ACR)	N	N	
Interworking UPSR (Only HDLC)	N	N	
L3 Termination (FR & MLFR not supported)	N	N	
Interworking nXDS0	N	N	
Interworking nXDS0 ACR	N	N	
VLAN Handoff (Local connect)	N	N	
VLAN Handoff (Cross connect / Xconnect)	N	N	
Interworking MLPPP	Y	Y	
Interworking MLPPP ACR	N	N	
Interworking FR	Y	Y	
Interworking MLFR	Y	Y	
Interworking FR ACR	N	N	
Interworking MLFR ACR	N	N	
L3 QoS (FR & MLFR not supported)	N	N	

Y-Supported

N-Not Supported

Creating T1 or E1 Serial Interfaces on T1 or E1 Ports

Creating T1 Serial Interface

To create a channel group on a T1 interface, use the following commands:

```
router(config)#controller t1 0/2/0
router(config-controller)#channel-group 0 timeslots 1-24
```


Note

For T1, the channel-group ID ranges from 0 to 23.

Creating E1 Serial Interface

To create a channel group on an E1 interface, use the following commands:

```
router(config)#controller e1 0/2/0
router(config-controller)#channel-group 0 timeslots 1-31
```


Note

For E1, the channel-group ID ranges from 0 to 30.

The following example explains a channel group of number 2 with time slot 1-24 is configured on the T1 interface of the controller. The default encapsulation of HDLC is used.

```
router(config) #controller t1 0/2/0
router(config-controller) #channel-group 2 timeslots 1-24
router(config-controller) #end
```


Note

While specifying time slot, use the complete range, for example, 1-24 for T1 and 1-31 for E1.

The following example explains a channel group of number 10 with time slot 1-31 is configured on the E1 interface of the controller. The default encapsulation of HDLC is used.

```
router(config)#controller e1 0/3/2
router(config-controller)#channel-group 10 timeslots 1-31
router(config-controller)#end
```

Creating T3 or E3 Serial Interfaces on T3 or E3 Ports

Configuring Mode to T3 or E3

To configure T3 mode, use the following commands:

```
router(config) #controller mediatype 0/2/12
router(config-controller) #mode t3
router(config-controller) #exit
To configure E3 mode, use the following commands:
router(config) #controller mediatype 0/2/12
router(config-controller) #mode e3
```

Creating T3 Serial Interface

router(config-controller) #exit

To create a T3 interface, use the following commands:

```
router(config) #controller t3 0/2/12
router(config-controller) #no channelized
router(config-controller) #channel-group 0
router(config-controller) #exit
```


Note

Use no channel group command to clear configured T3 channels.

Creating E3 Serial Interface

To create an E3 interface, use the following commands:

```
router(config) #controller e3 0/2/12
router(config-controller) #no channelized
router(config-controller) #channel-group 0
router(config-controller) #exit
```


Note

Unframed mode is not supported on E3-E1 mode.

Creating CT3 Serial Interface

To create a CT3 interface, use the following commands:

```
router(config) #controller t3 0/2/12
router(config-controller) #channelized
router(config-controller) #t1 1 channel-group 0 timeslots 1-24
router(config-controller) #t1 2 channel-group 0 timeslots 1-24
router(config-controller) #exit
```


Note

While specifying time slot, ensure that you provide the complete time slot, for example 1-24 for T1 interface.

The following example explains a channel group of 0 is configured on the E3 interface of the controller. The default encapsulation of HDLC is used.

```
router(config) #controller e3 0/2/12
router(config-controller) #no channelized
router(config-controller) #channel-group 0
router(config-controller) #end
```

The following example explains a channel group of number 0 is configured on the CT3 interface of the controller. The default encapsulation of HDLC is used.

```
router(config) #controller t3 0/2/12
router(config-controller) #no channelized
router(config-controller) #channel-group 0
router(config-controller) #end
```

Creating an E1 Serial Interface in Unframed Mode

Table 39: Feature History

Feature Name	Release Information	Description
Unframed Framing Support on an E1 and Channel STM links	Cisco IOS XE Bengaluru 17.5.1	In this release, a new framing mode unframed is supported for the 1 port OC-48/STM-16 or 4 port OC-12/OC-3 / STM-1/STM-4 + 12 port T1/E1 + 4 port T3/E3 CEM Interface Module. With the unframed mode, you can create serial interfaces under the electrical E1 mode.

Starting with Cisco IOS XE 17.5.1, you can create a channel group in the unframed mode only on the E1 interface.

To create channel group in the unframed mode, use the following commands:

```
router(config) #controller e1 0/2/0
router(config-controller) #framing unframed
router(config-controller) #channel-group channel-grp-no unframed
```

The following example explains a channel group of number 10 configured on the unframed mode of E1 interface. The default encapsulation of HDLC is used.

```
router(config) #controller e1 0/2/0
router(config-controller) #framing unframed
router(config-controller) #channel-group 10 unframed
```

Creating Serial Interfaces on SDH

Configuring Mode to SDH

To enter into SDH mode, use the following commands:

```
router(config) #controller mediatype 0/bay/port
router(config-controller) #mode sdh
router(config-controller) #exit
```

Creating SDH T3 Interface

To create an SDH T3 interface, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #rate {stm1 | stm4 | stm16}
router(config-controller) #aug mapping au-4
router(config-controller) #au-4 1
router(config-ctrlr-au4) #mode tug-3
```

```
router(config-ctrlr-au4) #tug-3 1
router(config-ctrlr-tug3) #[no]mode t3
router(config-ctrlr-tug3) #[no]t3 channel-group 0
router(config-ctrlr-tug3) #exit
```

Creating SDH E3 Interface

To create an SDH E3 interface, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #rate {stm1 | stm4 | stm16}
router(config-controller) #aug mapping au-4
router(config-controller) #au-4 1
router(config-ctrlr-au4) #mode tug-3
router(config-ctrlr-au4) #tug-3 1
router(config-ctrlr-tug3) #[no]mode e3
router(config-ctrlr-tug3) #[no]e3 channel-group 0
router(config-ctrlr-tug3) #exit
```

Creating SDH VC11 Interface

To create an SDH VC11 interface, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #rate {stm1 | stm4 | stm16}
router(config-controller) #aug mapping au-4
router(config-controller) #au-4 1
router(config-ctrlr-au4) #[no]mode tug-3
router(config-ctrlr-tug3) #[no]mode vc1x
router(config-ctrlr-tug3) #tug-2 1 payload vc11
router(config-ctrlr-tug2-vcx) #[no]t1 1 channel-group 0 timeslots 1-24
router(config-ctrlr-tug3) #exit
```

Creating SDH VC12 Interface

To create an SDH VC12 interface, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #rate {stm1 | stm4 | stm16}
router(config-controller) #aug mapping au-4
router(config-controller) #au-4 1
router(config-ctrlr-au4) #[no]mode tug-3
router(config-ctrlr-au4) #tug-3 1
router(config-ctrlr-tug3) #[no]mode vc1x
router(config-ctrlr-tug3) #tug-2 1 payload vc12
router(config-ctrlr-tug2-vcx) #[no]e1 1 channel-group 0 timeslots 1-31
router(config-ctrlr-tug3) #exit
```

Creating SDH VC4-nc Interface

To create an SDH VC4-nc concatenated interface, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #rate {stm1 | stm4 | stm16}
router(config-controller) #aug mapping au-4
router(config-controller) #au-4 1
router(config-ctrlr-au4) #[no]mode vc4
router(config-ctrlr-au4) #[no]channel-group 0
router(config-ctrlr-tug3) #exit
```

Creating SDH T3 Interface with AUG-3 Mapping

To create an SDH T3 interface with AUG-3 AUG mapping, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #aug mapping au-3
router(config-controller) #au-3 1
router(config-ctrlr-au3) # [no] mode t3
router(config-ctrlr-au3) # [no] t3 channel-group 0
router(config-ctrlr-au3) #exit
```

Creating SDH VC11 Interface with AUG-3 Mapping

To create an SDH VC11 interface with AUG-3 AUG mapping, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #au-3 1
router(config-ctrlr-au3) # [no] mode vclx
router(config-ctrlr-au3) #tug-2 1 payload vc11
router(config-ctrlr-tug2-vcx) # [no] t1 1 channel-group 0 timeslots 1-24
router(config-ctrlr-tug3) #exit
```

Creating SDH VC12 Interface with AUG-3 Mapping

To create an SDH VC12 interface with AUG-3 AUG mapping, use the following commands:

```
router(config) #controller sdh 0/bay/port
router(config-controller) #au-3 1
router(config-ctrlr-au3) #[no]mode vc1x
router(config-ctrlr-au3) #tug-2 1 payload vc12
router(config-ctrlr-tug2-vcx) #[no]e1 1 channel-group 0 timeslots 1-31
router(config-ctrlr-tug3) #exit
```

The following example explains SDH serial interface is configured with rate STM1 with AU-4 mapping and TUG-3 and T3 mode:

```
router(config) #controller sdh 0/3/4
router(config-controller) #rate stm1
router(config-controller) #aug mapping au-4
router(config-controller) #au-4 1
router(config-ctrlr-au4) #mode tug-3
router(config-ctrlr-tug-3) #mode t3
router(config-ctrlr-tug-3) #t3 channel-group 0
router(config-ctrlr-tug-3) #exit
```

Creating Serial Interfaces on SONET

Setting Controller Mode to SONET

To enter into SONET mode, use the following commands:

```
router(config) #controller mediatype 0/bay/port
router(config-controller) #mode sonet
router(config-controller) #exit
```

Creating T3 Serial Interface

To create a channel group on the T3 interface, use the following commands:

```
router(config) #controller sonet 0/bay/port
router(config-controller) #rate {oc3 | oc12 | oc48}
router(config-controller) #sts-1 1
router(config-controller) #[no]mode t3
router(config-controller) #[no]t3 channel-group 0
router(config-controller) #exit
```

Creating VT1.5 Serial Interface

To create a channel group on the VT1.5 interface, use the following commands:

```
router(config) #controller sonet 0/bay/port
router(config-controller) #rate oc3
router(config-controller) #sts-1 1
router(config-controller) #[no]mode vt-15
router(config-controller) #[no]vtg 1 t1 1 channel-group 0 timeslots 1-24
router(config-controller) #exit
```

Creating CT3 Serial Interface

To create a channel group on the CT3 interface, use the following commands:

```
router(config) #controller sonet 0/bay/port
router(config-controller) #rate oc3
router(config-controller) #sts-1 1
router(config-controller) #[no]mode ct3
router(config-controller) #[no]t1 1 channel-group 0 timeslots 1-24
router(config-controller) #exit
```


Note

While specifying time slot, ensure that you specify the complete time slot.

Creating Concatenated Mode Serial Interface

To create a channel group on the concatenated mode serial interface, use the following commands:

```
router(config) #controller sonet 0/bay/port
router(config-controller) #rate oc3
router(config-controller) #sts-1 1 - 3 mode sts-3c
router(config-controller) #channel-group 0
router(config-controller) #exit
```

The following example explains SONET interface that is configured with OC-3 rate, STS-1 as 1, and mode as T3. The serial interface is modified for PPP encapsulation.

```
router(config) #controller sonet 0/3/4
router(config-controller) #rate oc3
router(config-controller) #sts-1 1
router(config-controller) #mode t3
router(config-controller) #t3 channel-group 0
router(config-controller) #end
router(config) #interface serial 0/3/4 .1
router(config-if) #no ip address
router(config-if) # encapsulation ppp
```

Modifying Encapsulation to PPP

By default, HDLC is used for encapsulation. You can modify encapsulation to PPP on a serial interface using the **encapsulation ppp** command.

The **channel-id** varies based on the mode set and the circuit type. For more information, see the Serial Interface Supported Modes section.

To modify encapsulation on the serial interface, use the following commands:

```
router(config) #interface serial 0/bay/port.channel-id
router(config-if) #no ip address
router(config-if) # encapsulation ppp
```

IPv4 Interworking Pseudowire over HDLC or PPP

L2VPN Interworking Multiservice Gateway

Table 40: Feature History

Feature Name	Release Information	Feature Description
CEM and IP IW Feature Parity for Interface Modules	Cisco IOS XE Bengaluru 17.4.1	Support for NxDS0 iMSG IPv4 and NxDS0 APS iMSG IPv4 on Interface Module.

Layer 2 transport over MPLS and IP already exists for like-to-like attachment circuits, such as Ethernet-to-Ethernet or PPP-to-PPP. Layer 2 Virtual Private Network (L2VPN) Interworking Multiservice Gateway (iMSG) builds on this functionality by allowing disparate attachment circuits to be connected. An iMSG function facilitates the translation between the different Layer 2 encapsulations.

L2VPN iMSG Mode

L2VPN iMSG works in IP (routed) mode that facilitates transport of IPv4 or IPv6 payload in HDLC or PPP frames to Ethernet, over an MPLS network. The configuration is supported on . You specify the mode by issuing the **interworking ip** command in pseudowire-class configuration mode.

Starting with Cisco IOS XE 17.1.x release, the IPv6 iMSG is supported.

The **interworking** command causes the attachment circuits to be terminated locally. The **ip** keyword causes IP packets to be extracted from the attachment circuit and sent over the pseudowire. Packets with IPv4 or IPv6 payload only are transported over pseudowire.

IP Interworking Mode

The CE routers encapsulate the IP on the link between the CE router and PE router. A new VC type is used to signal the IP pseudowire in MPLS. Translation between the L2 and IP encapsulations across the pseudowire is required. Special consideration is given to the address resolution and routing protocol operation, because these operations are handled differently on different L2 encapsulations.

In routed iMSG, IP packets that are extracted from the ACs are sent over the pseudowire. The pseudowire works in the IP Layer 2 transport (VC type 0x000B) like-to-like mode. The iMSG function at the network service provider's (NSP) end performs the required adaptation that is based on the AC technology. Non-IPv4 or non-IPv6 packets are not forwarded on pseudowire. Only packets with the IPv4 or IPv6 payload are transported over the pseudowire.

The following table details on the packets that are terminated locally:

Table 41: List of Packets Locally Terminated

Protocol	Packets (Locally Terminated)	PID Number
Cisco HDLC	SLARP, LCP, or RARP	0x8035
Cisco HDLC	NCP or ARP	0x0806
PPP	LCP	0xCxxx to 0xFxxx
PPP	NCP	0x8xxx to 0xBxxx

HDLC or PPP to Ethernet IPv4 or IPv6 iMSG Pseudowire

Starting with Cisco IOS XE 16.9.1 release, the L2VPN iMSG allows you to connect disparate attachment circuits, for example, TDM and Ethernet attachment circuits.

For pseudowires operated in the IP (routed) mode, the IP packets are extracted from the attachment circuit and sent over the pseudowire.

Once IPv4 or IPv6 iMSG is configured, create a serial interface with specific channel identifier.

When a serial interface is UP, an internal label is allocated and LDP negotiation with a peer is performed for a remote label. A pseudowire is created and bound to HDLC or PPP channel. Based on the pseudowire configuration, you can permit IPv4 payload traffic with an allocated internal MPLS label.

The default encapsulation for all serial interfaces is HDLC. You can change the encapsulation to PPP. You can cross connect the attachment circuit segment with specific VC identifier and the pseudowire segment.

IPv4 or IPv6 iMSG Pseudowire Supported Modes

IPv4 or IPv6 iMSG pseudowire is supported on the following modes:

- T1 or E1
- T3 or E3
- Channelized T3 or E3 (channelized to T1 or E1)
- SDH
- SONET

Limitations of IPv4 or IPv6 iMSG Pseudowire on HDLC or PPP Serial Interfaces

The following limitations apply to IPv4 or IPv6 iMSG pseudowire on HDLC or PPP serial interfaces:

- IPv4 or IPv6 iMSG pseudowire with HDLC or PPP attachment circuit is supported only on the .
- L3 termination, bridging, and local switching on SERIAL-ACR interfaces (IPv4 and IPv6) are not supported, only L3 termination is supported on IPv4 serial interfaces.
- IPv4 or IPv6 over HDLC or PPP is not supported on Nx DS0 serial interfaces.
- T1 framing SF is not supported.
- Serial-ACR HDLC or PPP is not supported for STS-12C or VC4-4C and STS-48C or VC4-16C modes.
- HDLC or PPP is not supported for CE3 modes.
- Modifying MTU value is not supported for IPv6 iMSG pseudowire.
- Scrambling is not supported in the POS mode.
- IPv6 is not supported on RSP2 modules for Layer 3 termination on HDLC or PPP serial interfaces.

iMSG Restrictions for 1-Port OC-192 or 8-Port Low Rate CEM 20G Bandwidth Interface Module

iMSG Restrictions - Cisco IOS XE Amsterdam 17.3.1 release

- MLPPP is not supported for iMSG.
- MLPPP ACR is not supported.
- nxDS0 iMSG is not supported until Cisco IOS XE Amsterdam 17.3.1.
 Starting with Cisco IOS XE Bengaluru 17.4.1, nxDS0 iMSG IPv4 is supported and iMSG IPv6 is not supported.
- UPSR-only SONET modes such as VT1.5, STS-3C, STS-12C, and STS-48C are supported.

Bandwidth Restrictions - Cisco IOS XE Amsterdam 17.3.1 release

- Supports 2.5 G for iMSG
- iMSG supports upto STS-48c for concatenation

How to Configure IPv4 or IPv6 iMSG Pseudowire on HDLC or PPP Interface

This section provides the following information about configuring an IPv4 or IPv6 iMSG pseudowire on an HLDC or PPP interface:

- Configuring L2VPN iMSG, on page 279
- Configuring Cross-Connect Under Attachment Circuit, on page 280

Configuring L2VPN iMSG

To configure L2VPN iMSG, create a pseudowire class with the tunneling encapsulation as MPLS. The **interworking** command specifies the type of payload traffic that flows across the pseudowire tunnel. Configure pseudowire class only once on a device.

You can also configure **control-word** as an optional command.

To configure L2VPN IPv4 iMSG, use the following commands:

```
router>enable
router#configure terminal
router(config) #pseudowire-class pw-class-name
router(config-pw) #encapsulation mpls
router(config-pw) # interworking ip
router(config-pw) # control-word
```

To configure L2VPN IPv6 iMSG, use the following commands:

```
router>enable
router#configure terminal
router(config) #interface pseudowire pw-number
router(config-if) # encapsulation mpls
router(config-if) # neighbor reper-address><vcid-value>
router(config-xconnect) # control-word include
```


Note

Based on the far-end router, the control-word needs to be enabled or disabled.

The following example shows how to configure L2VPN IPv6 iMSG:

```
interface pseudowire30
encapsulation mpls
neighbor 10.2.2.2 30
control-word include
```

Configuring Cross-Connect Under Attachment Circuit

The **xconnect** command binds the attachment circuit to an L2VPN pseudowire for cross connect service. The virtual circuit identifier creates the binding between a pseudowire that is configured on a PE router and an attachment circuit in a CE device.

To perform IPv4 cross connection between an AToM routed pseudowire and attachment circuit, use the following commands:

```
router(config) #interface serial 0/bay/port.channel-id
router(config-if) #xconnect ip-address vc-id pw-class atom-iw-routed
```

To perform IPv6 cross connection between pseudowire and attachment circuit, use the following commands:

```
router(config) #12vpn xconnect context xconnect-name
router(config-xconnect) #interworking ipv6
router(config-xconnect) #member pseudowire pw-number
router(config-xconnect) #member serial 0/bay/port.channel-id
```

Verifying IPv4 or IPv6 iMSG Pseudowire over HDLC or PPP Configuration

The following **show interface serial** *0/bay/port.vc-number* command displays information about encapsulation and statistics of a serial interface.

To display configuration information on the serial interface, use the **show interface serial** command:

```
Router# show interface serial 0/5/19.8
 Serial0/5/19.8 is up, line protocol is up
 Hardware is
 MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation PPP, LCP Open
  Stopped: TAGCP
  Open: IPCP, crc 16, loopback not set
  Keepalive set (10 sec)
  Last input 00:00:04, output 00:00:04, output hang never
  Last clearing of "show interface" counters 23:52:46
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
    16201 packets input, 712844 bytes, 0 no buffer
    Received 0 broadcasts (0 IP multicasts)
    0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
    16205 packets output, 696835 bytes, 0 underruns
     O output errors, O collisions, 1 interface resets
    0 unknown protocol drops
    O output buffer failures, O output buffers swapped out
     1 carrier transitions
 PW stats
0 input packets ,0 output packets,
 0 input bytes, 0 output bytes, 0 input packet drop
no alarm present
 VC 2: timeslot(s): 1-24, Transmitter delay 0, non-inverted data
```

The **show platform software tdm-combo vc info** command helps you to identify the bay, port, STS path, T1, and channel group associated with a serial interface:

```
router#show platform software tdm-combo vc info

BAY PORT PATH T1 CHANNEL VC HWIDB

spa in bay:0 is NULL

spa in bay:1 is NULL

5 19 1 1 0 Serial0/5/19.1 1

5 19 1 8 0 Serial0/5/19.8 2

TOTAL ENTRIES:2
```

The **show running-config interface serial 0/5/19.8** command provides information about the current configuration under the serial interface 0/5/19.8:

```
router#show running-config interface serial 0/5/19.8

Building configuration...

Current configuration: 147 bytes!

interface Serial0/5/19.8

no ip address
encapsulation ppp
ppp authentication chap
xconnect 192.168.2.6 207 encapsulation mpls pw-class ip-iw
end

BYOS-RSP3#sh xconnect all

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
UP=Up DN=Down AD=Admin Down IA=Inactive
```

```
      SB=Standby
      HS=Hot Standby
      RV=Recovering
      NH=No Hardware

      XC ST
      Segment 1
      S1 Segment 2
      S2

      UP pri
      ac Se0/5/19.8(PPP)
      UP mpls 192.168.2.6:207
      UP
```

The **show mpls 12transport vc 207 detail** command provides information on pseudowire corresponding to VC ID 207:

```
Local interface: Se0/5/19.8 up, line protocol up, PPP up
  Interworking type is IP
  Destination address: 192.168.2.6, VC ID: 207, VC status: up
    Output interface: Gi0/3/7, imposed label stack {16}
    Preferred path: not configured
    Default path: active
   Next hop: 209.165.202.129
  Create time: 23:31:56, last status change time: 23:31:54
    Last label FSM state change time: 23:31:56
  Signaling protocol: LDP, peer 192.168.2.6:0 up
    Targeted Hello: 192.168.2.10(LDP Id) -> 192.168.2.6, LDP is UP
    Graceful restart: configured and not enabled
    Non stop routing: not configured and not enabled
    Status TLV support (local/remote) : enabled/supported
                                   : enabled
: established, LruRru
     LDP route watch
      Label/status state machine
      Last local dataplane status rcvd: No fault
      Last BFD dataplane
                            status rcvd: Not sent
      Last BFD peer monitor status rcvd: No fault
      Last local AC circuit status rcvd: No fault
      Last local AC circuit status sent: No fault
      Last local PW i/f circ status rcvd: No fault
      Last local LDP TLV
                           status sent: No fault
      Last remote LDP TLV
                           status rcvd: No fault
      Last remote LDP ADJ
                            status rcvd: No fault
    MPLS VC labels: local 512, remote 16
    Group ID: local n/a, remote 0
    MTU: local 1500, remote 1500
    Remote interface description:
  Sequencing: receive disabled, send disabled
  Control Word: On
  SSO Descriptor: 192.168.2.6/207, local label: 512
  Dataplane:
    SSM segment/switch IDs: 8219/8218 (used), PWID: 1
  VC statistics:
    transit packet totals: receive 0, send 0
    transit byte totals: receive 0, send 0 transit packet drops: receive 0, seq error 0, send 0
```

IPv4 or IPv6 Interworking Multiservice Gateway Pseudowire over Frame Relay

Frame Relay for iMSG

Table 42: Feature History

Feature Name	Release Information	Description
Frame Relay Support for IP Interworking	Cisco IOS XE Cupertino 17.8.1	Support for frame relay encapsulation on iMSG serial interface for the following interface modules:
		• 1-port OC-48/STM-16 or 4-port OC-12/OC-3 / STM-1/STM-4 + 12-port T1/E1 + 4-port T3/E3 CEM interface module
		Frame Relay being a streamlined protocol facilitates higher performance and greater efficiency.

Frame Relay is an industry-standard, switched data link layer protocol that handles multiple virtual circuits using encapsulation between connected devices.

Frame Relay provides a packet-switching data communications capability that is used across the interface between user devices (such as routers, bridges, host machines) and network equipment (such as switching nodes). User devices are often referred to as data terminal equipment (DTE), while network equipment that interfaces to DTE is often referred to as data circuit-terminating equipment (DCE). The network providing the Frame Relay interface can be either a carrier-provided public network or a network of privately owned equipment serving a single enterprise.

As an interface between user and network equipment, Frame Relay provides a means for statistically multiplexing many logical data conversations (referred to as virtual circuits) over a single physical transmission link. This contrasts with systems that use only time-division-multiplexing (TDM) techniques for supporting multiple data streams. Frame Relay's statistical multiplexing provides more flexible and efficient use of available bandwidth. It can be used without TDM techniques or on top of channels that are provided by TDM systems.

Frame relay is supported only on the Cisco ASR-920-12SZ-IM, Cisco ASR-920U-12SZ-IM, Cisco ASR-920-24SZ-IM, Cisco ASR-920-24SZ-M, and Cisco ASR-920-24TZ-M modules starting with Cisco IOS XE Cupertino 17.8.x release.

Limitations of IPv4 or IPv6 iMSG Pseudowire on Frame Relay Serial Interfaces

• Subinterfaces with point-to-multipoint are not supported. Only point-to-point subinterfaces are supported.

- From release Cisco IOS XE Cupertino 17.9.1 onwards:
 - QoS on serial interface is supported.
 - On frame relay, subinterface operations (for example, shut and no shut) are not supported on HDLC and PPP serial interfaces.
 - CT3-E1 mode is not supported on HDLC and PPP serial interfaces, and you cannot enable frame relay on these interfaces.
 - Due to limitation from the Cisco series 7600 router side, the IPv6 ping fails with encapsulation as Cisco for frame relay.

For example, consider the following scenario:

CE1 (7600 router) FR-Encap Cisco-IPv6 <-> FR-Encap Cisco-IPv6 iMSG PE1

The CE (7600 router) sending IETF packet (having Cisco encapsulation with the IPv6 address) with the format as 0x038E, then the expected packet format to arrive at PE side is 0x86DD.

However, the IPv6 ping fails with encapsulation as Cisco for frame relay.

- Subinterface number and data-link connection identifier (DLCI) number should be same for local connect and cross connect.
- DTE interface type for frame relay is not supported.
- Local connect is supported with IETF only, and not with CISCO (default).
- Local connect protection is not supported.
- On frame relay subinterface, any functional and maintenance configurations (for example, shut or no shut, or DLCI) aren't supported.
- The cross connect configuration using the **12vpn xconnect context xconnect-name** command format isn't supported.

Scale Supported for iMSG Pseudowire on Frame Relay Serial Interfaces

The following table describes the scale information that is applicable for serial interface (includes both main and subinterface):

Table 43: Scale Supported on iMSG Frame Relay Serial Interfaces

Interface Module/System	Scale Supported
Frame Relay Pseudowire supported per Interface Module	1000
Frame Relay Pseudowire supported per System	4000
Number of DLCI supported per interface	25
Number of DLCI supported per Interface Module	1000
Number of DLCI supported per System	4000

How to Configure IPv4 or IPv6 iMSG Pseudowire on Frame Relay Serial Interface

Modifying Encapsulation to Frame Relay

By default, HDLC is used for encapsulation. You can modify encapsulation to frame relay on a serial interface using the encapsulation for the interface as Cisco or IETF. The default encapsulation type for frame relay is Cisco. On the frame relay interface, you can configure interface type and Local Management Interface (LMI) type. With interface type, you can set the interface as Data Communications Equipment (DCE). Though the default option displays as Data Transmission Equipment (DTE), the DTE is not supported. The LMI types that are supported are CISCO, ANSI, and q933A, and the default value is Cisco.

The **channel-id** varies based on the mode set and the circuit type.

To modify encapsulation on the serial interface to frame relay, use the following commands:

```
router(config) #interface serial O/bay/port.channel-id
router(config-if) #no ip address
router(config-if) # encapsulation frame-relay (cisco | ietf)
router(config-if) # frame-relay intf-typedce
router(config-if) # frame-relay lmi-type(cisco | ansi | q033a)
router(config-if) # end
```

Configuring Frame Relay

Configuring Frame Relay for T1 or E1 Serial Interface and Configuring Sub-interface for Serial Interface

```
controller T1 0/4/0
threshold sd-ber 6
threshold sf-ber 3
framing esf
linecode b8zs
cablelength short 110
channel-group 0 timeslots 1-24
no snmp trap link-status
interface Serial0/4/0.1
no ip address
encapsulation frame-relay
frame-relay lmi-type q933a
interface Serial0/4/0.1/21 point-to-point
```

Configuring Frame Relay for T3 or E3 Serial Interface and Configuring Sub-interface for Serial Interface

```
controller T3 0/4/12
no snmp trap link-status
threshold sd-ber 6
threshold sf-ber 3
no channelized
framing c-bit
cablelength short
channel-group 0
```

```
interface Serial0/4/12.1
no ip address
encapsulation frame-relay IETF
frame-relay lmi-type ansi
interface Serial0/4/12.1/25 point-to-point
```

Configuring Frame Relay for OCx Serial Interface and Configuring Sub-interface for Serial Interface

```
controller SONET 0/4/19
no snmp trap link-status
rate OC3
no ais-shut
alarm-report all
clock source internal
 sts-1 1
 clock source internal
 mode ct3
 t3 framing c-bit
  t3 clock source internal
 t1 1 channel-group 1 timeslots 1-24
 sts-1 2
 clock source internal
 mode vt.-15
 vtg 1 t1 1 channel-group 2 timeslots 1-24
 sts-1 3
 clock source internal
 mode t3
 t3 framing c-bit
 t3 channel-group 0
 t3 clock source internal
interface Serial0/4/19.1
no ip address
encapsulation frame-relay
interface Serial0/4/19.1/32 point-to-point
interface Serial0/4/19.29
no ip address
encapsulation frame-relay IETF
frame-relay lmi-type ansi
interface Serial0/4/19.29/33 point-to-point
interface Serial0/4/19.57
no ip address
encapsulation frame-relay
frame-relay lmi-type q933a
interface Serial0/4/19.57/34 point-to-point
```

Configuring Frame Relay for POS Serial Interface and Configuring Sub-interface for Serial Interface

```
controller SONET 0/4/18
no snmp trap link-status
rate OC3
no ais-shut
alarm-report all
clock source internal
!
sts-1 1 - 3 mode sts-3c
clock source internal
overhead c2 207
```

```
channel-group 0
interface Serial0/4/18.1
no ip address
encapsulation frame-relay
pos report pplm
pos report ptim
interface Serial0/4/18.1/40 point-to-point
```

Configuring Frame Relay for NxDS0 Serial Interface and Configuring Sub-interface for Serial Interface

```
controller T1 0/4/1
threshold sd-ber 6
threshold sf-ber 3
framing esf
linecode b8zs
cablelength short 110
channel-group 4 timeslots 1-10
no snmp trap link-status
interface Serial0/4/1.1:4
no ip address
encapsulation frame-relay
interface Serial0/4/1.1:4/45 point-to-point
```

Configuring L2VPN iMSG Using Local Connect for Frame Relay

Configuring L2VPN iMSG Using IPv4 Local Connect for Frame Relay

Once you configure frame relay and subinterface for serial interface, you can configure L2VPN iMSG local connect.

Example

connect frsub21vlcv4 GigabitEthernet0/0/3 100 Serial0/2/19.1/21 21 interworking ip

Configuring L2VPN iMSG Using IPv6 Local Connect for Frame Relay

```
connect <local-connect-keyword> GigabitEthernet slot/bay/port vc-number Serial
slot/bay/port.channel.id/sub-interface-number dlci-number interworking ipv6
```

Example

connect frsub21vlcv6 GigabitEthernet0/0/3 150 Serial0/2/19.8/21 21 interworking ipv6

Configuring L2VPN iMSG Using Cross Connect for Frame Relay

Ensure that you create pseudowire class template before proceeding to cross connect step for IPv4 and IPv6 L2VPN.

Create Pseudowire Class Template for IPv4 and IPv6

pseudowire-class <pseudowire-class-name>
encapsulation mpls
interworking {ip | ipv6}
control-word

Example

Create Pseudowire Class Template for IPv4

pseudowire-class serial_test
encapsulation mpls
interworking ip
control-word

Create Pseudowire Class Template for IPv6

pseudowire-class serial_testipv6
encapsulation mpls
interworking ipv6
control-word

Configuring L2VPN iMSG Using IPv4 Cross Connect for Frame Relay

Once you configure frame relay and subinterface for serial interface, you can configure L2VPN iMSG cross connect.

The cross connect configuration using the **12vpn xconnect context xconnect-name** command format is not supported. Ensure that you use the following command format to perform cross connect configuration:

```
connect <cross-connect-keyword> Serial slot/bay/port.channel.id/sub-interface-number
dlci-number l2transport
xconnect ipv4-address vc-number encapsulation mpls pw-class pw-name
```

Example

connect frsub21ipv4 Serial0/2/19.43/21 21 12transport
 xconnect 10.2.2.2 400 encapsulation mpls pw-class serial test

Configuring L2VPN iMSG Using IPv6 Cross Connect for Frame Relay

connect <local-connect-keyword> Serial slot/bay/port.channel.id/sub-interface-number
dlci-number l2transport
xconnect ipv4-address vc-number encapsulation mpls pw-class pw-name

Example

connect frsub21ipv6 Serial0/2/19.50/21 21 12transport
xconnect 10.2.2.2 450 encapsulation mpls pw-class serial_testipv6

Verifying IPv4 or IPv6 iMSG Pseudowire over Frame Relay Configuration

Use the following **show** commands to verify the frame relay configuration on iMSG pseudowire:

```
• show interface Serial <slot/bay/port.channel.id>
```

- show ip interface brief | interface <slot/bay/port.channel.id>
- show frame-relay lmi interface Serial <slot/bay/port.channel.id>
- show frame-relay pvc interface Serial <slot/bay/port.channel.id>
- show xconnect all
- show platform software tdm-combo vc info
- show mpls 12transport vc <vc-id> detail

```
Router#show ip interface brief | interface 0/4/16.28
Serial0/4/16.28
                      unassigned YES unset up
                                                                        uρ
Serial0/4/16.28/21
                      unassigned
                                      YES unset up
Router#show interface Serial 0/4/16.28
Serial0/4/16.28 is up, line protocol is up
  MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
     reliability 252/255, txload 138/255, rxload 255/255
  Encapsulation FRAME-RELAY IETF, crc 16, loopback not set
  Keepalive set (10 sec)
  LMI eng sent 0, LMI stat recvd 0, LMI upd recvd 0
  LMI enq recvd 25, LMI stat sent 25, LMI upd sent 0, DCE LMI up
  LMI DLCI 0 LMI type is CCITT frame relay DCE segmentation inactive
  Broadcast queue 0/64, broadcasts sent/dropped 0/0, interface broadcasts 0
  Last input 00:00:02, output 00:00:02, output hang never
  Last clearing of "show interface" counters 00:04:06
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 11661000 bits/sec, 4824731 packets/sec
  5 minute output rate 833000 bits/sec, 554183 packets/sec
     25 packets input, 375 bytes, 0 no buffer
    Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     1 input errors, 1 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     25 packets output, 400 bytes, 0 underruns
     Output O broadcasts (O IP multicasts)
     O output errors, O collisions, O interface resets
     0 unknown protocol drops
     O output buffer failures, O output buffers swapped out
     O carrier transitions
  no alarm present
  VC 7: timeslot(s): 1-24, Transmitter delay 0, non-inverted data
```

Router#show frame-relay lmi interface Serial0/4/16.28

```
LMI Statistics for interface Serial0/4/16.28 (Frame Relay DCE) LMI TYPE = CCITT Invalid Unnumbered info 0 Invalid Prot Disc 0 Invalid dummy Call Ref 0 Invalid Msg Type 0 Invalid Status Message 0 Invalid Lock Shift 0 Invalid Information ID 0 Invalid Report IE Len 0
```

```
Invalid Report Request 0 Invalid Keep IE Len 0
Num Status Enq. Rcvd 17 Num Status msgs Sent 17
Num Update Status Sent 0 Num St Enq. Timeouts 0
```

Router#show frame-relay pvc interface Serial0/4/16.28

PVC Statistics for interface Serial0/4/16.28 (Frame Relay DCE)

	Active	Inactive	Deleted	Static
Local	0	0	0	0
Switched	1	0	0	0
Unused	0	0	0	0

DLCI = 21, DLCI USAGE = SWITCHED, PVC STATUS = ACTIVE, INTERFACE = Serial0/4/16.28/21

```
input pkts 0
                    output pkts 0
                                         in bytes 0
                   dropped pkts 0
out bytes 0
                                         in pkts dropped 0
out pkts dropped 0
                           out bytes dropped 0
in FECN pkts 0 in BECN pkts 0 out FECN pkts 0
out BECN pkts 0
                    in DE pkts 0
                                          out DE pkts 0
out bcast pkts 0 out bcast bytes 0
30 second input rate 0 bits/sec, 0 packets/sec
30 second output rate 0 bits/sec, 0 packets/sec
switched pkts 0
                    FECNs set 0
                                          BECNs set 0
Detailed packet drop counters:
no out PVC 0
               out PVC down 0
pkt above DE 0
                                         pkt too big 0
in PVC down 0
shaping Q full 0
                                         policing drop 0
connected to pseudowire 10.3.3.3 vcid 700, interworking IP
pvc create time 00:02:03, last time pvc status changed 00:01:45
```

Router#show xconnect all

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
UP=Up DN=Down AD=Admin Down IA=Inactive
SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

Router#show platform software tdm-combo vc info

Media: Path: AUG: Mode: Channel: VC: Timeslots: Serial-Interface:

SONET SONET 0/4/16.1/7/4 NONE VT1.5 1 7 1-24

Serial0/4/16.28

TOTAL ENTRIES:1

Router#sh mpls 12transport vc 700 detail

```
Local interface: Se0/4/16.28/21 up, line protocol up, FR DLCI 21 up
Interworking type is IP
Destination address: 10.3.3.3, VC ID: 700, VC status: up
Output interface: Gi0/3/0, imposed label stack {17}
Preferred path: not configured
Default path: active
Next hop: 209.165.200.225
Create time: 00:00:45, last status change time: 00:00:44
Last label FSM state change time: 00:00:45
Signaling protocol: LDP, peer 10.3.3.3:0 up
Targeted Hello: 10.2.2.2(LDP Id) -> 10.3.3.3, LDP is UP
Graceful restart: configured and not enabled
Non stop routing: configured and enabled
```

```
Status TLV support (local/remote) : enabled/supported
    LDP route watch
                                        : enabled
                                     : established, LruRru
    Label/status state machine
    Last local dataplane status rcvd: No fault
   Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
    Last local AC circuit status rcvd: No fault
    Last local AC circuit status sent: No fault
    Last local PW i/f circ status rcvd: No fault
    Last local LDP TLV
                          status sent: No fault
    Last remote LDP TLV status rcvd: No fault Last remote LDP ADJ status rcvd: No fault
 MPLS VC labels: local 16, remote 17
 Group ID: local 71, remote 9
 MTU: local 1500, remote 1500
 Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On
SSO Descriptor: 10.3.3.3/700, local label: 16
Dataplane:
 SSM segment/switch IDs: 4103/4102 (used), PWID: 2
VC statistics:
  transit packet totals: receive 0, send 0
  transit byte totals: receive 0, send 0
  transit packet drops: receive 0, seq error 0, send 0
```

Configuring Frame Relay for APS Protection

Configuring APS on Frame Relay Serial Interface and Configuring Subinterface for Serial Interface

```
controller SONET-ACR 10
!
sts-1 1
  mode vt-15
  vtg 1 t1 1 channel-group 1 timeslots 1-24
!
sts-1 2
!
sts-1 3
interface SERIAL-ACR10.1
no ip address
encapsulation frame-relay
interface SERIAL-ACR10.1/21 point-to-point
```

Configuring Frame Relay for UPSR Protection

Configuring UPSR on Frame Relay Serial Interface and Configuring Subinterface for Serial Interface

```
controller protection-group 20 type vt1.5 channel-group 20 timeslots 1-24!

interface Serial-PG20.20 no ip address encapsulation frame-relay
```

```
! interface Serial-PG20.20/39 point-to-point
```

Configuring Frame Relay L2VPN iMSG for APS Protection

Configuring Frame Relay L2VPN iMSG Using Cross Connect on ACR Interface - APS

```
connect frsubacripv4 SERIAL-ACR10.1/21 21 12transport
xconnect 10.2.2.2 402 encapsulation mpls pw-class serial test
```

Configuring Frame Relay L2VPN iMSG for UPSR Protection

Configuring Frame Relay L2VPN iMSG Using Cross Connect on ACR Interface - UPSR

```
connect frsubupsripv4 Serial-PG20.20/39 39 12transport
xconnect 10.2.2.2 403 encapsulation mpls pw-class serial_test
```

Verifying Frame Relay for APS Protection

```
Router#show ip interface brief | in ACR10
SERIAL-ACR10.1
                     unassigned
                                      YES unset up
                                                                        down
SERIAL-ACR10.1/21
                     unassigned
                                     YES unset down
                                                                        down
Router#show interface SERIAL-ACR10.1
SERIAL-ACR10.1 is up, line protocol is down
  Hardware is N/A
 MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation FRAME-RELAY, crc 16, loopback not set
  Keepalive set (10 sec)
  LMI enq sent 63, LMI stat recvd 0, LMI upd recvd 0, DTE LMI down
  LMI enq recvd 0, LMI stat sent 0, LMI upd sent 0
  LMI DLCI 1023 \, LMI type is CISCO \, frame relay DTE \,
  Broadcast queue 0/64, broadcasts sent/dropped 0/0, interface broadcasts 0
  Last input never, output 00:00:04, output hang never
  Last clearing of "show interface" counters 00:10:34
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     O packets input, O bytes, O no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 underruns
     Output 0 broadcasts (0 IP multicasts)
     O output errors, O collisions, O interface resets
     0 unknown protocol drops
     O output buffer failures, O output buffers swapped out
     O carrier transitions
  alarm present
  VC 1: timeslot(s): 1-24, Transmitter delay 0, non-inverted data
Router#show frame-relay lmi | beg SERIAL-ACR10.1
LMI Statistics for interface SERIAL-ACR10.1 (Frame Relay DTE) LMI TYPE = CISCO
```

```
Invalid Unnumbered info 0
                                                  Invalid Prot Disc 0
  Invalid dummy Call Ref 0
                                                      Invalid Msg Type 0
  Invalid Status Message 0
                                                      Invalid Lock Shift 0
  Invalid Information ID 0
                                                        Invalid Report IE Len 0
  Invalid Report Request 0
                                                      Invalid Keep IE Len 0
  Num Status Enq. Sent 75
                                                     Num Status msgs Rcvd 0
 Num Update Status Rcvd 0
                                                  Num Status Timeouts 74
Router#show platform software tdm-combo vc info | in ACR
          SONET-ACR 10.1/1/1
                                       NONE VT1.5
                                                           1 2 1-24
SERIAL-ACR10.1
Router#show xconnect all | in ACR
       ac SE-ACR10.1/21:21(FR DLCI)
                                                                              DN
                                        DN mpls 10.2.2.2:402
Router#show mpls 12transport vc 402 detail
Local interface: SE-ACR10.1/21 down, line protocol down, FR DLCI 21 down
  Interworking type is IP
  Destination address: 10.2.2.2, VC ID: 402, VC status: down
    Last error: Local peer access circuit is down
    Output interface: none, imposed label stack {}
   Preferred path: not configured
   Default path: no route
   No adjacency
  Create time: 00:09:32, last status change time: 00:09:32
    Last label FSM state change time: 00:09:32
  Signaling protocol: LDP, peer unknown
   Targeted Hello: 10.1.1.1(LDP Id) -> 10.2.2.2, LDP is DOWN, no binding
    Graceful restart: not configured and not enabled
   Non stop routing: not configured and not enabled
    Status TLV support (local/remote) : enabled/None (no remote binding
     LDP route watch
                                       : enabled
                                   : local standby, AC-ready, LndRnd
     Label/status state machine
     Last local dataplane status rcvd: No fault
     Last BFD dataplane status rcvd: Not sent
     Last BFD peer monitor status rcvd: No fault
     Last local AC circuit status rcvd: DOWN AC(rx/tx faults)
     Last local AC circuit status sent: DOWN(not-forwarding)
     Last local PW i/f circ status rcvd: No fault
     Last local LDP TLV
                          status sent: No status
     Last remote LDP TLV
                          status rcvd: None (no remote binding)
     Last remote LDP ADJ
                            status rcvd: None (no remote binding)
   MPLS VC labels: local 16, remote unassigned
   Group ID: local 57, remote unknown
   MTU: local 1500, remote unknown
   Remote interface description:
  Sequencing: receive disabled, send disabled
  Control Word: On
  SSO Descriptor: 10.2.2.2/402, local label: 16
  Dataplane:
    SSM segment/switch IDs: 0/0 (used), PWID: 1
  VC statistics:
    transit packet totals: receive 0, send 0
    transit byte totals: receive 0, send 0
    transit packet drops: receive 0, seq error 0, send 0
```

Verifying Frame Relay for UPSR Protection

Router#show ip interface brief | in PG20

```
Serial-PG20.20
                       unassigned
                                      YES unset down
                                                                        down
Serial-PG20.20/39
                                      YES unset down
                                                                        down
                      unassigned
Router#show interface Serial-PG20.20
Serial-PG20.20 is down, line protocol is down
  Hardware is NCS4200-3GMS
  MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
     reliability 128/255, txload 1/255, rxload 1/255
  Encapsulation FRAME-RELAY, crc 16, loopback not set
  Keepalive set (10 sec)
  {\tt LMI} enq sent 0, {\tt LMI} stat recvd 0, {\tt LMI} upd recvd 0, {\tt DTE} {\tt LMI} down
  LMI enq recvd 0, LMI stat sent 0, LMI upd sent 0
  LMI DLCI 1023 LMI type is CISCO frame relay DTE
  Broadcast queue 0/64, broadcasts sent/dropped 0/0, interface broadcasts 0
  Last input never, output never, output hang never
  Last clearing of "show interface" counters 00:09:23
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     O packets input, O bytes, O no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 underruns
     Output 0 broadcasts (0 IP multicasts)
     O output errors, O collisions, O interface resets
     0 unknown protocol drops
     O output buffer failures, O output buffers swapped out
     O carrier transitions
Router#show frame-relay lmi | beg Serial-PG20.20
LMI Statistics for interface Serial-PG20.20 (Frame Relay DTE) LMI TYPE = CISCO
  Invalid Unnumbered info 0
                                                   Invalid Prot Disc 0
  Invalid dummy Call Ref 0
                                                       Invalid Msg Type 0
 Invalid Status Message 0
                                                       Invalid Lock Shift 0
 Invalid Information ID 0
                                                        Invalid Report IE Len 0
 Invalid Report Request 0
                                                       Invalid Keep IE Len 0
 Num Status Enq. Sent 0
                                                       Num Status msgs Rcvd 0
  Num Update Status Rcvd 0
                                                   Num Status Timeouts 0
Router#show platform software tdm-combo vc info | in PG
         SONET 0/4/17.1/1/1
                                      NONE VT1.5
                                                           20
                                                                          1-24
SONET
                                                                     3
Serial-PG20.20
Router#show xconnect all | in PG
DN pri ac Se-PG20.20/39:39(FR DLCI)
                                       DN mpls 10.2.2.2:403
                                                                               DN
Router#show mpls 12transport vc 403 detail
Local interface: Se-PG20.20/39 down, line protocol down, FR DLCI 39 down
  Interworking type is IP
  Destination address: 10.2.2.2, VC ID: 403, VC status: down
   Last error: Local peer access circuit is down
    Output interface: none, imposed label stack {}
   Preferred path: not configured
   Default path: no route
   No adjacency
  Create time: 00:09:27, last status change time: 00:09:27
    Last label FSM state change time: 00:09:27
```

```
Signaling protocol: LDP, peer unknown
 Targeted Hello: 10.1.1.1(LDP Id) -> 10.2.2.2, LDP is DOWN, no binding
 Graceful restart: not configured and not enabled
 Non stop routing: not configured and not enabled
 Status TLV support (local/remote) : enabled/None (no remote binding
                                    : enabled
   LDP route watch
   Label/status state machine
                                      : local standby, AC-ready, LndRnd
   Last local dataplane status rcvd: No fault
   Last BFD dataplane status rcvd: Not sent
   Last BFD peer monitor status rcvd: No fault
   Last local AC circuit status rcvd: DOWN AC(rx/tx faults)
   Last local AC circuit status sent: DOWN(not-forwarding)
   Last local PW i/f circ status rcvd: No fault
   Last local LDP TLV status sent: No status
   Last remote LDP TLV status rcvd: None (no remote binding)
   Last remote LDP ADJ
                         status rcvd: None (no remote binding)
 MPLS VC labels: local 17, remote unassigned
 Group ID: local 62, remote unknown
 MTU: local 1500, remote unknown
 Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On
SSO Descriptor: 10.2.2.2/403, local label: 17
Dataplane:
 SSM segment/switch IDs: 0/0 (used), PWID: 2
VC statistics:
 transit packet totals: receive 0, send 0
 transit byte totals: receive 0, send 0 transit packet drops: receive 0, seq error 0, send 0
```

Scenario 1-Configure L2VPN iMSG Using Local Connect for Frame Relay

Consider a cross connect scenario with the following frame relay configurations on serial interface Serial0/4/16.28:

- Frame relay encapsulation type is set to IETF
- Frame relay LMI type is set to ANSI

Configure T3 Interface

```
controller T3 0/4/12
no snmp trap link-status
threshold sd-ber 6
threshold sf-ber 3
no channelized
framing c-bit
cablelength short
channel-group 0
```

Configure Serial Interface for Frame Relay and Create Sub Interface

```
interface Serial0/4/12.1
no ip address
encapsulation frame-relay IETF
frame-relay lmi-type ansi
interface Serial0/4/12.1/25 point-to-point
```

Configure L2VPN iMSG Using Local Connect for Frame Relay

connect frsub21vlcv4 GigabitEthernet0/0/3 100 Serial0/4/12.1/25 21 interworking ip

Verify Frame Relay Configuration on iMSG Pseudowire

```
Router#show interface Serial0/4/12.1
Serial0/4/12.1 is up, line protocol is up
  Hardware is
  MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
    reliability 252/255, txload 138/255, rxload 255/255
  Encapsulation FRAME-RELAY IETF, crc 16, loopback not set
  Keepalive set (10 sec)
  LMI enq sent \, 0, LMI stat recvd \, 0, LMI upd recvd \, 0
  LMI eng recvd 25, LMI stat sent 25, LMI upd sent 0, DCE LMI up
  LMI DLCI 0 LMI type is CCITT frame relay DCE segmentation inactive
  Broadcast queue 0/64, broadcasts sent/dropped 0/0, interface broadcasts 0
  Last input 00:00:02, output 00:00:02, output hang never
  Last clearing of "show interface" counters 00:04:06
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 11661000 bits/sec, 4824731 packets/sec
  5 minute output rate 833000 bits/sec, 554183 packets/sec
     25 packets input, 375 bytes, 0 no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     1 input errors, 1 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     25 packets output, 400 bytes, 0 underruns
     Output O broadcasts (O IP multicasts)
     0 output errors, 0 collisions, 0 interface resets
     0 unknown protocol drops
     O output buffer failures, O output buffers swapped out
     O carrier transitions
  no alarm present
  VC 7: timeslot(s): 1-24, Transmitter delay 0, non-inverted data
```

Scenario 2—Configure L2VPN iMSG Using Cross Connect for Frame Relay

Consider a cross connect scenario with the following frame relay configurations on serial interface Serial 0/4/16.28:

- Frame relay encapsulation type is set to IETF
- Frame relay LMI type is set to q933a
- Frame relay interface type is set to DCE

Configure T1 Interface

```
controller T1 0/4/16
threshold sd-ber 6
threshold sf-ber 3
framing esf
linecode b8zs
cablelength short 110
channel-group 0 timeslots 1-24
no snmp trap link-status
```

Configure Serial Interface for Frame Relay and Create Sub Interface

```
interface Serial0/4/16.28

no ip address
encapsulation frame-relay IETF
ipv6 enable
frame-relay lmi-type q933a
frame-relay intf-type dce
interface Serial0/4/16.28/21 point-to-point
```

Create Pseudowire Class Template for IPv6

```
pseudowire-class serial_testipv6
encapsulation mpls
interworking ipv6
control-word
```

Configure L2VPN iMSG Using Cross Connect for Frame Relay

```
connect test Serial0/4/16.28/21 21 12transport
xconnect 10.3.3.3 700 encapsulation mpls pw-class serial_testipv6
```

Verify Frame Relay Configuration on iMSG Pseudowire

```
Router#show interface Serial0/4/16.28
Serial0/4/16.28 is up, line protocol is up
 Hardware is
 MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
     reliability 252/255, txload 138/255, rxload 255/255
 Encapsulation FRAME-RELAY IETF, crc 16, loopback not set
  Keepalive set (10 sec)
  LMI enq sent \, 0, LMI stat recvd \, 0, LMI upd recvd \, 0
  LMI enq recvd 25, LMI stat sent 25, LMI upd sent 0, DCE LMI up
  LMI DLCI 0 LMI type is CCITT frame relay DCE segmentation inactive
  Broadcast queue 0/64, broadcasts sent/dropped 0/0, interface broadcasts 0
  Last input 00:00:02, output 00:00:02, output hang never
  Last clearing of "show interface" counters 00:04:06
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 11661000 bits/sec, 4824731 packets/sec
  5 minute output rate 833000 bits/sec, 554183 packets/sec
    25 packets input, 375 bytes, 0 no buffer
    Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     1 input errors, 1 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     25 packets output, 400 bytes, 0 underruns
    Output 0 broadcasts (0 IP multicasts)
     O output errors, O collisions, O interface resets
     0 unknown protocol drops
     O output buffer failures, O output buffers swapped out
     O carrier transitions
  no alarm present
  VC 7: timeslot(s): 1-24, Transmitter delay 0, non-inverted data
```

Router#show frame-relay lmi interface Serial0/4/16.28

```
LMI Statistics for interface Serial0/4/16.28 (Frame Relay DCE) LMI TYPE = CCITT Invalid Unnumbered info 0 Invalid Prot Disc 0 Invalid dummy Call Ref 0 Invalid Msg Type 0 Invalid Status Message 0 Invalid Lock Shift 0 Invalid Information ID 0 Invalid Report IE Len 0 Invalid Report Request 0 Invalid Keep IE Len 0
```

```
Num Status Enq. Rcvd 17 Num Status msgs Sent 17
Num Update Status Sent 0 Num St Enq. Timeouts 0

Router#show xconnect all

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
UP=Up DN=Down AD=Admin Down IA=Inactive
SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2

UP pri ac Se0/4/16.28/21:21(FR DLCI) UP mpls 10.3.3.3:700
```

IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces

IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces

Starting with Cisco IOS XE 16.11.x release, you can perform IPv4 Layer 3 termination on HDLC or PPP serial interfaces on the Cisco ASR 920 Series 4-Port OC3/STM-1 or 1-Port OC12/STM-4 Module.

IPv4 routing can be performed using standard routing protocols such as OSPF, BGP, IS-IS, EIGRP, and RIP.

A maximum of 1020 serial interfaces are supported on the Cisco RSP3 module.

This feature supports MPLS IP.

Restrictions for IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces

- Multicast and QoS features are not supported.
- Frame-relay is not supported.
- BFD is not supported on serial interfaces.
- IPv6 is not supported for layer 3 termination.

How to Configure IPv4 Layer 3 Termination on HDLC or PPP Serial Interfaces

Configuring Protocols

Configuring Routing Protocol

You should configure routing protocols such as OSPF, BGP, IS-IS, EIGRP, and RIP.

For more information on configuring IP Routing protocols, refer the respective Guides:

https://www.cisco.com/c/en/us/support/ios-nx-os-software/ios-xe-3s/products-installation-and-configuration-guides-list.html

Configuring Layer 3 VPN

To configure Layer 3 VPN, refer the MPLS Virtual Private Networks chapter in the .

Configuring VRF

Before configuring IPv4 Layer 3 flow on a serial interface, ensure that you have configured VRF forwarding. For more information, refer Configuring VFR.

VRF-lite is a feature that enables a service provider to support two or more VPNs, where IP addresses can be overlapped among the VPNs. VRF-lite uses input interfaces to distinguish routes for different VPNs and forms virtual packet-forwarding tables by associating one or more Layer 3 interfaces with each VRF.

With the VRF-lite feature, the router supports multiple VPN routing or forwarding instances in customer edge devices. VRF-lite allows a service provider to support two or more VPNs with overlapping IP addresses using one interface.

To configure VRF, enter the following commands:

```
router#configure terminal
router(config)#vrf definition vrf_test
router(config-vrf)#rd 1:1
router(config-vrf)#address-family ipv4
```

Once VRF is configured, ensure that you specify the Layer 3 interface to be associated with the VRF and then associate the VRF with the Layer 3 interface using the **vrf forwarding vrf-name** command. The interface can be a routed port or SVI.

To configure VRF forwarding, enter the following commands:

```
router#configure terminal
router (config-vrf)# interface interface-id
router (config-if)#vrf forwarding vrf-name
```

Configuring IPv4 Unicast Layer 3 Termination on HDLC or PPP Interfaces

You can enable or disable IPv4 Layer 3 flow on HDLC or PPP serial interfaces. You can use the **vrf forwarding** <**vrf name**> command optionally on the serial interface.

You can also modify the default MTU 1500 bytes optionally using the **mtu** command.

To enable IPv4 Layer 3 flow on a serial interface, enter the following commands:

```
router(config) #interface serial x/y/z.channel-id
router(config-if) #vrf forwarding <vrf name> (optional)
router(config-if) #ip address <ipv4 address> <mask>/<ip address>
router(config-if) #mtu <bytes>
```

To disable IPv4 Layer 3 flow on a serial interface, enter the no form of the command:

```
router(config) #interface serial x/y/z.channel-id
router(config-if) #vrf forwarding <vrf name>
router(config-if) #no ip address <ipv4 address> <mask>/<ip address>
router(config) #interface serial x/y/z.channel-id
router(config-if) #no vrf forwarding <vrf name>
```

Verifying IPv4 Layer 3 Termination on HDLC or PPP

The following **show interface serial** *0/bay/port.vc-number* command displays information about PPP encapsulation and statistics of a serial interface.

To display configuration information on the serial interface, use the **show interface serial** command:

```
Router# show interface serial 0/5/16.1
 Serial0/5/16.1 is up, line protocol is up
 Hardware is
  Internet address is 172.16.0.1/24
  MTU 1500 bytes, BW 44210 Kbit/sec, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation HDLC, crc 16, loopback not set
  Keepalive set (10 sec)
  Last input 00:00:03, output 00:00:02, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 76000 bits/sec, 298 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     99332 packets input, 983489 bytes, 0 no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     62 packets output, 4832 bytes, 0 underruns
     O output errors, O collisions, 3 interface resets
     0 unknown protocol drops
     0 output buffer failures, 0 output buffers swapped out
     O carrier transitions
  no alarm present
  DSU mode 0, bandwidth 0 Kbit, scramble 0, VC 3, non-inverted data
```

Layer 3 Termination for Frame Relay

Layer 3 Termination on Frame Relay Serial Interfaces

Table 44: Feature History

Feature Name	Release Information	Description
Layer 3 Termination for Frame Relay	Cisco IOS XE Dublin 17.11.1	You can configure layer 3 termination on the frame relay sub interface for the following interface modules: You can assign IP address on the FR sub interface and terminate the Layer 3 traffic where ever required in the network.

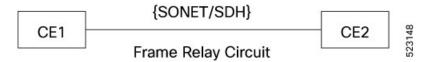
You can perform IPv4 or IPv6 Layer 3 termination on Frame Relay serial interfaces for RSP3 module.

Restrictions for Layer 3 Termination on FR Serial Interfaces

- QOS, fragmentation, and interleaving are not supported.
- Sub interface number and DLCI number should be the same.
- OSPF and ISIS are only supported.

How to Configure Layer 3 Termination on Frame Relay Serial Interfaces

Configuring Layer 3 Termination on Frame Relay Interfaces


Scenario 1 - Configuring Layer 3 Termination on Frame Relay Sub Interface with IPv4 Address

Consider a scenario with the following configurations on CE1 and CE2. Both CE1 and CE2 are connected through serial interface and the traffic is carried through a frame relay circuit.

CE1—On the serial interface 0/3/0.2/1/1:0 with frame relay as encapsulation and interface type as DTE, a sub interface 0/3/0.2/1/1:0.21 is created with DLCI as 21.

CE2—On the serial interface 0/3/0.2/2/1:0 with frame relay as encapsulation and interface type as DCE, a sub interface 0/3/0.2/2/1:0.21 is created with DLCI as 21.

Figure 17: Configuring Layer 3 Termination on Frame Relay Interfaces with IPv4 Address

Configuring Layer 3 Termination on CE1

```
CE1#configure terminal
CE1(config)#interface serial 0/3/0.2/1/1:0
CE1(config-if)#encapsulation frame-relay ietf
CE1(config-if)frame-relay intf-type dte
CE1(config-if)#interface serial 0/3/0.2/1/1:0.21 point-to-point
CE1(config-subif)#frame-relay interface-dlci 21
CE1(config-fr-dlci)#ip address 192.10.2.1 255.255.255.0
CE1(config-fr-dlci)#end
```

Configuring Layer 3 Termination on CE2

```
CE2#configure terminal
CE2(config)#interface serial 0/3/0.2/2/1:0
CE2(config-if)#encapsulation frame-relay ietf
CE2(config-if)frame-relay intf-type dce
CE2(config-if)#interface serial 0/3/0.2/2/1:0.21 point-to-point
CE2(config-subif)#frame-relay interface-dlci 21
CE2(config-fr-dlci)#ip address 192.10.2.2 255.255.0
CE2(config-fr-dlci)#end
```

Scenario 2 - Configuring Layer 3 Termination on Frame Relay Sub Interface with IPv6 Address

Consider a scenario with the following configurations on CE1 and CE2. Both CE1 and CE2 are connected through serial interface and the traffic is carried through a frame relay circuit.

CE1—On the serial interface 0/3/0.2/1/1:0 with frame relay as encapsulation and interface type as DTE, a sub interface 0/3/0.2/1/1:0.21 is created with DLCI as 21.

CE2—On the serial interface 0/3/0.2/2/1:0 with frame relay as encapsulation and interface type as DCE, a sub interface 0/3/0.2/2/1:0.21 is created with DLCI as 21.

Figure 18: Configuring Layer 3 Termination on Frame Relay Interfaces with IPv6 Address

Configuring Layer 3 Termination on CE1

```
CE1#configure terminal
CE1(config) #interface serial 0/3/0.2/1/1:0
CE1(config-if) #encapsulation frame-relay ietf
CE1(config-if) frame-relay intf-type dte
CE1(config-if) #interface serial 0/3/0.2/1/1:0.21 point-to-point
CE1(config-subif) #frame-relay interface-dlci 21
CE1(config-subif) #ipv6 address 2001:10::1/64
CE1(config-subif) #ipv6 enable
CE1(config-fr-dlci) #end

CE1(config) #ipv6 unicast-routing
CE1(config) #end
```

Configuring Layer 3 Termination on CE2

```
CE2#configure terminal
CE2(config)#interface serial 0/3/0.2/2/1:0
CE2(config-if)#encapsulation frame-relay ietf
CE2(config-if)frame-relay intf-type dce
CE2(config-if)#interface serial 0/3/0.2/2/1:0.21 point-to-point
CE2(config-subif)#frame-relay interface-dlci 21
CE2(config-subif)#ipv6 address 2001:10::2/64
CE2(config-subif)#ipv6 enable
CE2(config-fr-dlci)#end

CE2(config)#ipv6 unicast-routing
CE2(config)#end
```

Verifying Layer 3 Termination on Frame Relay

Use the **show interfaces serial x/y/z.channel-id** command to verify the configuration:

```
CE1#show interfaces serial0/3/0.2/1/1:0
Serial0/3/0.2/1/1:0 is up, line protocol is up
Hardware is
MTU 1500 bytes, BW 155000 Kbit/sec, DLY 100 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation FRAME-RELAY, crc 16, loopback not set
Keepalive not set
```

```
Scramble disabled
Broadcast queue 0/64, broadcasts sent/dropped 0/0, interface broadcasts 0
Last input 00:00:21, output 00:00:22, output hang never
Last clearing of "show interface" counters 00:01:12
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
8 packets input, 120 bytes
Received 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
7 packets output, 106 bytes, 0 underruns
Output 0 broadcasts (0 IP multicasts)
O output errors, O collisions, O interface resets
0 unknown protocol drops
O output buffer failures, O output buffers swapped out
O carrier transitions
Non-inverted data
CE1#show interfaces serial0/3/0.2/2/1:0
Serial0/3/0.2/2/1:0 is up, line protocol is up
Hardware is
MTU 1500 bytes, BW 155000 Kbit/sec, DLY 100 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation FRAME-RELAY, crc 16, loopback not set
Keepalive not set
Scramble disabled
Broadcast queue 0/64, broadcasts sent/dropped 0/0, interface broadcasts 0
Last input 00:00:21, output 00:00:22, output hang never
Last clearing of "show interface" counters 00:01:12
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
8 packets input, 120 bytes
Received 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
7 packets output, 106 bytes, 0 underruns
Output 0 broadcasts (0 IP multicasts)
O output errors, O collisions, O interface resets
0 unknown protocol drops
O output buffer failures, O output buffers swapped out
O carrier transitions
Non-inverted data
```

Verifying Layer 3 Termination on Frame Relay