

Ether Channel Configuration Guide, Cisco IOS XE 16 (Cisco ASR 920 Series)

First Published: 2017-06-09 **Last Modified:** 2020-07-01

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2017-2020 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1	Feature History
V 11 / A 1 E 11 1	reature instury

CHAPTER 2 Configuring IEEE 802.3ad Link Bundling 3

```
Prerequisites for Configuring IEEE 802.3ad Link Bundling 3
Restrictions for Configuring IEEE 802.3ad Link Bundling 3
Information About Configuring IEEE 802.3ad Link Bundling 5
  Gigabit EtherChannel 5
  Port-Channel and LACP-Enabled Interfaces 5
  IEEE 802.3ad Link Bundling 5
    Benefits of IEEE 802.3ad Link Bundling 6
  LACP Enhancements 6
  LACP for Gigabit Interfaces 7
    Features Supported on Gigabit EtherChannel Bundles 7
    Guidelines for LACP for Gigabit Interfaces Configuration 9
  Understanding LACP 1:1 Redundancy 9
How to Configure IEEE 802.3ad Link Bundling 10
  Enabling LACP 10
  Configuring a Port Channel 11
  Configuring the EtherChannel Min-Links Feature 12
  Configuring LACP (802.3ad) for Gigabit Interfaces 13
  Configuring LACP 1:1 Redundancy with Fast-Switchover 16
  Setting LACP System Priority and Port Priority 17
```

Adding and Removing Interfaces from a Link Bundle 18

Removing a Channel Group from a Port 19

Monitoring LACP Status **20**Troubleshooting Tips **20**

CHAPTER 3

```
Displaying Gigabit EtherChannel Information 20
     Configuration Examples for IEEE 802.3ad Link Bundling 24
       Example: Configuring LACP for Gigabit Interfaces 24
       Example Associating a Channel Group with a Port Channel 25
       Example Adding and Removing Interfaces from a Bundle 26
       Example Monitoring LACP Status 28
       Example: Displaying Port-Channel Interface Information 29
Multichassis LACP 31
     Prerequisites for mLACP 31
     Restrictions for mLACP 32
     Information About mLACP 33
       Overview of Multichassis EtherChannel 33
       Interactions with the MPLS Pseudowire Redundancy Mechanism 34
       Redundancy Mechanism Processes 34
       Dual-Homed Topology Using mLACP 35
         LACP and 802.3ad Parameter Exchange 36
         Port Identifier 36
         Port Number
         Port Priority
         Multichassis Considerations
         System MAC Address 37
         System Priority 37
         Port Key 38
       Failure Protection Scenarios
       Operational Variants 39
         DHD-based Control 39
         PoA Control 40
         Shared Control (PoA and DHD) 40
       mLACP Failover 40
         Dynamic Port Priority
         Revertive and Nonrevertive Modes 41
         Brute Force Shutdown 41
         Peer Monitoring with Interchassis Redundancy Manager 42
```

```
MAC Flushing Mechanisms 43
How to Configure mLACP 46
  Configuring Interchassis Group and Basic mLACP Commands (Global Redundancy Group
     Configuration)
  Configuring the mLACP Interchassis Group and Other Port-Channel Commands 48
  Configuring Redundancy for VPWS
  Configuring Redundancy for VPLS
    Coupled and Decoupled Modes for VPLS 52
    Steps for Configuring Redundancy for VPLS 53
  Configuring Hierarchical VPLS 56
  Troubleshooting mLACP 59
    Debugging mLACP 59
    Debugging mLACP on an Attachment Circuit or EVC 60
    Debugging mLACP on AToM Pseudowires 60
    Debugging Cross-Connect Redundancy Manager and Session Setup 61
    Debugging VFI 62
    Debugging the Segment Switching Manager (Switching Setup) 62
    Debugging High Availability Features in mLACP 63
Configuration Examples for mLACP 64
  Example Configuring VPWS 64
    Active PoA for VPWS 64
    Standby PoA for VPWS 65
  Example Configuring VPLS 66
    Active PoA for VPLS 66
    Standby PoA for VPLS 67
  Example Configuring H-VPLS
    Active PoA for H-VPLS
    Standby PoA for H-VPLS 69
  Example Verifying VPWS on an Active PoA
    show lacp multichassis group 70
    show lacp multichassis port-channel 70
    show mpls ldp iccp 71
    show mpls 12transport 71
    show etherchannel summary 71
```

```
show etherchannel number port-channel 72
    show lacp internal 72
  Example Verifying VPWS on a Standby PoA 73
    show lacp multichassis group 73
    show lacp multichassis portchannel 73
    show mpls ldp iccp 74
    show mpls 12transport 74
    show etherchannel summary 74
    show lacp internal 75
  Example Verifying VPLS on an Active PoA 75
    show lacp multichassis group 75
    show lacp multichassis port-channel 76
    show mpls ldp iccp 76
    show mpls 12transport 77
    show etherchannel summary 77
    show lacp internal 77
  Example Verifying VPLS on a Standby PoA 77
    show lacp multichassis group 78
    show lacp multichassis portchannel 78
    show mpls ldp iccp 79
    show mpls 12transport 79
    showetherchannelsummary
    show lacp internal 80
Glossary 80
```


Feature History

Configuring IEEE 802.3ad Link Bundling

This document describes how the IEEE 802.3ad Link Bundling feature leverages the EtherChannel infrastructure within Cisco IOS XE software to manage the bundling of Ethernet links. The supported Ethernet link types for link bundling are Gigabit Ethernet and Ten Gigabit Ethernet.

- Prerequisites for Configuring IEEE 802.3ad Link Bundling, on page 3
- Restrictions for Configuring IEEE 802.3ad Link Bundling, on page 3
- Information About Configuring IEEE 802.3ad Link Bundling, on page 5
- How to Configure IEEE 802.3ad Link Bundling, on page 10
- Configuration Examples for IEEE 802.3ad Link Bundling, on page 24

Prerequisites for Configuring IEEE 802.3ad Link Bundling

- Knowledge of how EtherChannels and Link Aggregation Control Protocol (LACP) function in a network
- Verification that both ends of the LACP link have the same baseline software version

Restrictions for Configuring IEEE 802.3ad Link Bundling

- The maximum number of Ethernet links per bundle that can be supported varies by platform. Some platforms support 4 while other platforms support a maximum 8.
- All links must operate at the same link speed and in full-duplex mode (LACP does not support half-duplex mode).
- EVCs must be with configured **untagged** encapsulation along with L2PT peer, to activate the LACP neighbor configuration.
- All links must be configured as either EtherChannel links or LACP links.
- Only physical interfaces can form aggregations. Aggregations of VLAN interfaces are not possible nor is an aggregation of aggregations.
- If a router is connected to a switch, the bundle terminates on the switch.
- An EtherChannel will not form if one of the LAN ports is a Switched Port Analyzer (SPAN) destination port.

- All ports in an EtherChannel must use the same EtherChannel protocol.
- Maximum of four bundled ports per Ethernet port channel are supported.
- The maximum number of bundled ports per Ethernet port channel that can be supported varies by platform. Some platforms support 4, 8, and 14 while other platforms support a maximum of 16.
- Maximum of 64 Ethernet port channels in a chassis are supported.
- For RSP3, a maximum of 48 Ether channel and a maximum of 8 member-link per Ether channel are supported prior to the Cisco IOS XE Gibraltar 16.11.x release. Starting from the Cisco IOS XE Gibraltar 16.11.x release, 16 member-link per port channel is supported. The restrictions for 8 member-link port channel are also applicable for 16 member-link port channel.
- Quality of service (QoS) is supported on individual bundled ports and not on Ethernet port channels.
- Generic Routing Encapsulation (GRE) is not supported.
- Media type should be uniform across 1G and 10G links.
- For load balancing across 16 member links per port channel, a wide range of addresses (such as Source MAC, Destination MAC, Source IP, Destination IP, and VC) should be used to have the traffic flowing across all the 16 member links.
- Quality of service (QoS) is supported on individual bundled ports and not on Ethernet port channels.
- Generic Routing Encapsulation (GRE) is not supported.
- Media type should be uniform across 1G and 10G links.
- For load balancing across 16 member links per port channel, a wide range of addresses (such as Source MAC, Destination MAC, Source IP, Destination IP, and VC) should be used to have the traffic flowing across all the 16 member links.
- LACP neighbor comes up on dot1q tagged EFP. This is a known behavior.
- Same media type SX-SFP/T-SFP or RJ45/SPF supports load balance.
- IP-based load balancing works *only if* there are more than two traffic flows through the Cisco ASR 920 routers.
- Effective with Cisco IOS XE Everest 16.6.1, the Port-channel (PoCH) scale is reduced to 24 from 48 for Cisco ASR 900 RSP3 module.

• Effective with Cisco IOS XE Fuji 16.9.1, the micro-BFD enabled with port channel having minimum link set to the total member links, is not supported.

Information About Configuring IEEE 802.3ad Link Bundling

Gigabit EtherChannel

Gigabit EtherChannel (GEC) is high-performance Ethernet technology that provides Gigabit per second (Gb/s) transmission rates. A Gigabit EtherChannel bundles individual Ethernet links (Gigabit Ethernet or Ten Gigabit Ethernet) into a single logical link that provides the aggregate bandwidth of up to eight physical links. All LAN ports in each EtherChannel must be the same speed and all must be configured as either Layer 2 or Layer 3 LAN ports. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link in the EtherChannel.

When a link within an EtherChannel fails, traffic previously carried over the failed link switches to the remaining links within that EtherChannel. Also when a failure occurs, a trap is sent that identifies the device, the EtherChannel, and the failed link.

Port-Channel and LACP-Enabled Interfaces

Each EtherChannel has a numbered port-channel interface that must be manually created before interfaces can be added to the channel group. The configuration of a port-channel interface affects all LAN ports assigned to that port-channel interface.

To change the parameters of all ports in an EtherChannel, change the configuration of the port-channel interface; for example, if you want to configure Spanning Tree Protocol or configure a Layer 2 EtherChannel as a trunk. Any configuration or attribute changes you make to the port-channel interface are propagated to all interfaces within the same channel group as the port-channel; that is, configuration changes are propagated to the physical interfaces that are not part of the port-channel but are part of the channel group.

The configuration of a LAN port affects only that LAN port.

IEEE 802.3ad Link Bundling

The IEEE 802.3ad Link Bundling feature provides a method for aggregating multiple Ethernet links into a single logical channel based on the IEEE 802.3ad standard. This feature helps improve the cost effectiveness of a device by increasing cumulative bandwidth without necessarily requiring hardware upgrades. In addition, IEEE 802.3ad Link Bundling provides a capability to dynamically provision, manage, and monitor various aggregated links and enables interoperability between various Cisco devices and devices of third-party vendors.

LACP supports the automatic creation of EtherChannels by exchanging LACP packets between LAN ports. LACP packets are exchanged only between ports in passive and active modes. The protocol "learns" the capabilities of LAN port groups dynamically and informs the other LAN ports. After LACP identifies correctly matched Ethernet links, it facilitates grouping the links into an EtherChannel. Then the EtherChannel is added to the spanning tree as a single bridge port.

Both the passive and active modes allow LACP to negotiate between LAN ports to determine if they can form an EtherChannel, based on criteria such as port speed and trunking state. (Layer 2 EtherChannels also use VLAN numbers.) LAN ports can form an EtherChannel when they are in compatible LACP modes, as in the following examples:

- A LAN port in active mode can form an EtherChannel with another LAN port that is in active mode.
- A LAN port in active mode can form an EtherChannel with another LAN port in passive mode.

• A LAN port in passive mode cannot form an EtherChannel with another LAN port that is also in passive mode because neither port will initiate negotiation.

LACP uses the following parameters:

- LACP system priority—You must configure an LACP system priority on each device running LACP. The system priority can be configured automatically or through the command-line interface (CLI). LACP uses the system priority with the device MAC address to form the system ID and also during negotiation with other systems.
- LACP port priority—You must configure an LACP port priority on each port configured to use LACP. The port priority can be configured automatically or through the CLI. LACP uses the port priority to decide which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating. LACP also uses the port priority with the port number to form the port identifier.
- LACP administrative key—LACP automatically configures an administrative key value on each port configured to use LACP. The administrative key defines the ability of a port to aggregate with other ports. A port's ability to aggregate with other ports is determined by the following:
 - Port physical characteristics such as data rate, duplex capability, and point-to-point or shared medium
 - Configuration restrictions that you establish

On ports configured to use LACP, it tries to configure the maximum number of compatible ports in an EtherChannel, up to the maximum allowed by the hardware. To use the hot standby feature in the event a channel port fails, both ends of the LACP bundle must support the **lacp max-bundle** command.

As a control protocol, LACP uses the Slow Protocol Multicast address of 01-80-C2-00-00-02 to transmit LACP protocol data units (PDUs). Aside from LACP, the Slow Protocol linktype is to be utilized by operations, administration, and maintenance (OAM) packets, too. Subsequently, a subtype field is defined per the IEEE 802.3ad standard [1] (Annex 43B, section 4) differentiating LACP PDUs from OAM PDUs.

Note

LACP and Port Aggregation Control Protocol (PAgP) are not compatible. Ports configured for PAgP cannot form port channels on ports configured for LACP, and ports configured for LACP cannot form port channels on ports configured for PAgP.

Benefits of IEEE 802.3ad Link Bundling

- Increased network capacity without changing physical connections or upgrading hardware
- Cost savings from the use of existing hardware and software for additional functions
- A standard solution that enables interoperability of network devices
- Port redundancy without user intervention when an operational port fails

LACP Enhancements

The following LACP enhancements are supported:

• Four member links per LACP bundle.

- Stateful switchover (SSO), in service software upgrade (ISSU), Cisco nonstop forwarding (NSF), and nonstop routing (NSR) on Gigabit EtherChannel bundles.
- Link failover time of 250 milliseconds or less and a maximum link failover time of 2 seconds; port channels remain in the LINK_UP state to eliminate reconvergence by the Spanning-Tree Protocol.
- Shutting down a port channel when the number of active links falls below the minimum threshold. In the port channel interface, a configurable option is provided to bring down the port channel interface when the number of active links falls below the minimum threshold. For the port-channel state to be symmetric on both sides of the channel, the peer must also be running LACP and have the same **lacp min-bundle** command setting.
- The IEEE Link Aggregation Group (LAG) MIB.

LACP for Gigabit Interfaces

The LACP (802.3ad) for Gigabit Interfaces feature bundles individual Ethernet links (Gigabit Ethernet or Ten Gigabit Ethernet) into a single logical link that provides the aggregate bandwidth of up to four physical links.

All LAN ports on a port channel must be the same speed and must all be configured as either Layer 2 or Layer 3 LAN ports. If a segment within a port channel fails, traffic previously carried over the failed link switches to the remaining segments within the port channel. Inbound broadcast and multicast packets on one segment in a port channel are blocked from returning on any other segment of the port channel.

Note

The network device may impose its own limits on the number of bundled ports per port channel.

Features Supported on Gigabit EtherChannel Bundles

The table below lists the features that are supported on Gigabit EtherChannel (GEC) bundles.

Table 1: Gigabit EtherChannel Bundle Features

Cisco IOS XE Release	Feature	Bundle Interface
2.5	Access control lists (ACLs) per bundle	Supported
	All Ethernet routing protocols	Supported
	Intelligent Service Gateway (ISG) IP sessions	Not Supported
	Interface statistics	Supported
	IP switching	Supported
	IPv4: unicast and multicast	Supported
	IPv6: unicast without load balancing across member links	Supported
	IPv6: multicast	Supported
	Layer 2 Tunneling Protocol Version 3 (L2TPv3), IPinIP, Any Transport Over Multiprotocol Label Switching (MPLS) (AToM) tunnels	Supported
	Layer 2 Tunneling Protocol Version 2 (L2TPv2)	Not Supported
	MPLS (6PE)	Supported
	Multicast VPN	Not Supported
	VLANs	Supported
2.6	Virtual Private Network (VPN) Routing and Forwarding (VRF)	Supported
3.4	IPv6: unicast and multicast	Supported
3.6	Bidirectional Forwarding Detection (BFD) over GEC	Supported
3.7	Layer 2 Tunneling Protocol Version 2 (L2TPv2)	Supported
	PPPoX (PPPoEoE, PPPoEoQinQ, PPPoVLAN)	Supported
3.7.6	Policy-based routing (PBR) over GEC	Supported
3.11	GEC over L2TPv3	Supported

Cisco IOS XE Release	Feature	Bundle Interface
3.12	MPLS TE (Traffic Engineering) over GEC	Supported

Guidelines for LACP for Gigabit Interfaces Configuration

Port channel interfaces that are configured improperly with LACP are disabled automatically to avoid network loops and other problems. To avoid configuration problems, observe these guidelines and restrictions:

- Every port added to a port channel must be configured identically. No individual differences in configuration are allowed.
- Bundled ports can be configured on different line cards in a chassis.
- Maximum transmission units (MTUs) must be configured on only port channel interfaces; MTUs are propagated to the bundled ports.
- QoS and committed access rate (CAR) are applied at the port level. Access control lists (ACLs) are applied on port channels.
- MAC configuration is allowed only on port channels.
- MPLS IP should be enabled on bundled ports using the **mpls ip** command.
- Unicast Reverse Path Forwarding (uRPF) should be applied on the port channel interface using the **ip verify unicast reverse-path** command in interface configuration mode.
- Cisco Discovery Protocol enable is not supported on the port channel interface.
- All LAN ports in a port channel should be enabled. If you shut down a LAN port in a port channel, the shutdown is treated as a link failure and the traffic is transferred to one of the remaining ports in the port channel.
- Create a port channel interface using the **interface port-channel** command in global configuration mode.
- When an Ethernet interface has an IP address assigned, disable that IP address before adding the interface
 to the port channel. To disable an existing IP address, use the no ip address command in interface
 configuration mode.
- The **hold queue in** command is valid only on port channel interfaces. The **hold queue out** command is valid only on bundled ports.

Understanding LACP 1:1 Redundancy

The LACP 1:1 redundancy feature provides an EtherChannel configuration with one active link and fast switchover to a hot standby link.

To use LACP 1:1 redundancy, you configure an LACP EtherChannel with two ports (one active and one standby). If the active link goes down, the EtherChannel stays up and the system performs fast switchover to the hot standby link. When the failed link becomes operational again, the EtherChannel performs another fast switchover to revert to the original active link.

For the LACP 1:1 redundancy feature to work correctly (especially the fast switchover capability) the feature needs to be enabled at both ends of the link.

How to Configure IEEE 802.3ad Link Bundling

Enabling LACP

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface port-channel channel-number	Identifies the interface port channel and enters
	Example:	interface configuration mode.
	Device(config)# interface port-channel 10	
Step 4	ip address ip-address mask	Assigns an IP address and subnet mask to the
	Example:	port channel interface.
	Device(config-if)# ip address 10.1.1.1 255.255.255.0	
Step 5	exit	Returns to global configuration mode.
	Example:	
	Device(config-if)# exit	
Step 6	interface type slot/subslot/ port	Specifies the port to bundle.
	Example:	
	Device(config)# interface gigabitethernet 0/0/2	
Step 7	no ip address	Disables the IP address on the port channel
	Example:	interface.
	Device(config-if)# no ip address	
Step 8	channel-group channel-group-number mode {active passive}	Configures the interface in a channel group and sets it as active.
	Example: Device(config-if) # channel-group 25 mode active	In active mode, the port will initiate negotiations with other ports by sending LACP packets.

	Command or Action	Purpose
Step 9	end	Returns to privileged EXEC mode.
	Example:	
	Device(config-if)# end	

Configuring a Port Channel

You must manually create a port channel logical interface. Perform this task to configure a port channel.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface port-channel channel-number	Identifies the interface port channel and enters
	Example:	interface configuration mode.
	Device(config)# interface port-channel 10	
Step 4	lacp max-bundle max-bundles	Configures three active links on the port
	Example:	channel. The remaining links are in standby mode. Traffic is load-balanced among the act
	Device(config-if)# lacp max-bundle 3	links.
Step 5	ip address ip-address mask	Assigns an IP address and subnet mask to the
	Example:	EtherChannel.
	Device(config-if)# ip address 172.31.52.10 255.255.255.0	
Step 6	end	Returns to privileged EXEC mode.
	Example:	
	Device(config-if)# end	
Step 7	show running-config interface port-channel group-number	Displays the port channel configuration.
	Example:	
	Device# show running-config interface port-channel 10	

Example

This example shows how to verify the configuration:

Device# show running-config interface port-channel 10

```
Building configuration...
Current configuration: : 110 bytes !
interface Port-channel10
ip address 172.31.52.10 255.255.255.0
no negotiation auto
lacp max-bundle 3
end
```

Configuring the EtherChannel Min-Links Feature

The EtherChannel Min-Links feature is supported on LACP EtherChannels. This feature allows you to configure the minimum number of member ports that must be in the link-up state and bundled in the EtherChannel for the port channel interface to transition to the link-up state. You can use the EtherChannel Min-Links feature to prevent low-bandwidth LACP EtherChannels from becoming active. This feature also causes LACP EtherChannels to become inactive if they have too few active member ports to supply your required minimum bandwidth.

To configure the EtherChannel Min-Links feature, perform this task in interface configuration mode:

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface port-channel group-number	Selects an LACP port channel interface.
	Example:	
	Device(config)# interface port-channel	
Step 4	lacp min-bundle number	Configures the minimum number of bundle
	Example:	ports in the EtherChannel for the port channel interface to transition to the link-up state.
	Device(config-if)# lacp min-bundle 2	Default is one.

	Command or Action	Purpose
Step 5	end	Exits configuration mode.
	Example:	
	Device(config-if)# end	
Step 6	show running-config interface port-channel group-number	Displays the port channel configuration.
	Example:	
	Device# show running-config interface port-channel 1	
Step 7	show interfaces port-channel group-number	
	Example:	
	Device(config) # show interfaces port-channel 1	

Configuration Examples

Note

Although the EtherChannel Min-Links feature works correctly when configured only on one end of an EtherChannel, for best results, configure the same number of minimum links on both ends of the EtherChannel.

This example shows how to configure port-channel interface 1 to be inactive if fewer than 2 member ports are active in the EtherChannel:

```
Device> enable
Device# configure terminal
Device(config)# interface port-channel 1
Device(config-if)# lacp min-bundle 2
Device(config-if)# end
```

Configuring LACP (802.3ad) for Gigabit Interfaces

Perform this task to create a port channel with two bundled ports. You can configure a maximum of four bundled ports per port channel.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	

	Command or Action	Purpose
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface port-channel number	Specifies the port channel interface and enters
	Example:	interface configuration mode.
	Device(config)# interface port-channel 1	• number — Valid range is from 1 to 64.
Step 4	ip address ip-address mask	Assigns an IP address and subnet mask to the
	Example:	port channel interface.
	Device(config-if)# ip address 10.1.1.1 255.255.255.0	
Step 5	exit	Returns to global configuration mode.
	Example:	
	Device(config-if)# exit	
Step 6	interface type slot/subslot/ port	Specifies the port to bundle.
	Example:	
	Device(config)# interface gigabitethernet 0/0/2	
Step 7	no ip address	Disables the IP address on the port channel
	Example:	interface.
	Device(config-if) # no ip address	
Step 8	channel-group channel-group-number mode {active passive}	Assigns the interface to a port channel group and sets the LACP mode.
	<pre>Example: Device(config-if) # channel-group 1 mode</pre>	• <i>channel-group-number</i> —Valid range is 1 to 64.
	active	• active —Places a port into an active negotiating state, in which the port initiates negotiations with other ports by sending LACP packets.
		• passive —Places a port into a passive negotiating state, in which the port responds to LACP packets it receives but does not initiate LACP negotiation. In this mode, the channel group attaches the interface to the bundle.
Step 9	exit	Returns to global configuration mode.
	Example:	
	Device(config-if)# exit	

	Command or Action	Purpose
Step 10	<pre>interface type slot/subslot/ port Example: Device(config) # interface gigabitethernet 0/0/4</pre>	Specifies the next port to bundle and places the CLI in interface configuration mode.
Step 11	<pre>no ip address Example: Device(config-if) # no ip address</pre>	Disables the IP address on the port channel interface.
Step 12	channel-group channel-group-number mode {active passive}	Assigns the interface to the previously configured port channel group.
	<pre>Example: Device(config-if)# channel-group 1 mode active</pre>	 channel-group-number —Valid range is 1 to 64. active —Places a port into an active negotiating state, in which the port initiates negotiations with other ports by sending LACP packets. passive —Places a port into a passive negotiating state, in which the port responds to LACP packets it receives but does not initiate LACP negotiation. In this mode, the channel-group attaches the interface to the bundle.
Step 13	end	Returns to privileged EXEC mode.
	<pre>Example: Device(config-if)# end</pre>	

Example

```
Device> enable

Device# configure terminal

Device(config)# interface port-channel 1

Device(config-if)# ip address 10.1.1.1 255.255.255.0

Device(config-if)# interface gigabitethernet 0/0/2

Device(config-if)# no ip address

Device(config-if)# channel-group 1 mode active

Device(config-if)# exit

Device(config-if)# interface gigabitethernet 0/0/4

Device(config-if)# no ip address

Device(config-if)# channel-group 1 mode active

Device(config-if)# channel-group 1 mode active

Device(config-if)# end
```

Configuring LACP 1:1 Redundancy with Fast-Switchover

For the LACP 1:1 redundancy feature, the LACP EtherChannel must contain exactly two links, of which only one is active. The link with the lower port priority number (and therefore a higher priority) will be the active link, and the other link will be in a hot standby state. The LACP max-bundle must be set to 1.

To configure the LACP 1:1 redundancy feature, perform this task in interface configuration mode:

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface port-channel group-number	Selects an LACP port channel interface.
	Example:	
	Device(config)# interface port-channel	
Step 4	lacp fast-switchover	Enables the fast switchover feature for this
	Example:	EtherChannel.
	Device(config-if)# lacp fast-switchover	
Step 5	lacp max-bundle max-bundles	Sets the maximum number of active member
	Example:	ports to 1.
	Device(config-if)# lacp max-bundle 1	Note The minimum number of active member ports should be 1.
Step 6	end	Exits configuration mode.
	Example:	
	Device(config-if)# end	
Step 7	show running-config interface port-channel group-number	Displays the port channel configuration.
	Example:	
	Device# show running-config interface port-channel 10	
Step 8	show etherchannel summary	

Command or Action	Purpose
Example:	
 Device(config)# show etherchannel summary	

Example

Note

For the LACP 1:1 redundancy feature, both ends of the EtherChannel must be enabled.

This example shows how to configure an LACP EtherChannel with 1:1 redundancy. Because Fast Ethernet port 5/6 is configured with a higher port priority number (and therefore a lower priority) than the default of 32768, it will be the standby port.

```
Device> enable

Device# configure terminal

Device(config)# lacp system-priority 33000

Device(config)# interface range fastethernet 5/6 -7

Device(config-if)# channel-group 1 mode active

Device(config)# interface fastethernet 5/6

Device(config-if)# lacp port-priority 33000

Device(config)# interface port-channel 1

Device(config-if)# lacp fast-switchover

Device(config-if)# lacp max-bundle 1

Device(config-if)# end
```

Setting LACP System Priority and Port Priority

Perform this task to set the LACP system priority and port priority. The system ID is the combination of the LACP system priority and the MAC address of a device. The port identifier is the combination of the port priority and port number.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	lacp system-priority priority	Sets the system priority.
	Example:	
	Device(config)# lacp system-priority 200	

	Command or Action	Purpose
Step 4	<pre>interface slot/subslot/ port Example: Device(config) # interface gigabitethernet 0/1/1</pre>	Specifies the bundled port on which to set the LACP port priority and enters interface configuration mode.
Step 5	<pre>lacp port-priority priority Example: Device(config-if) # lacp port-priority 500</pre>	Specifies the priority for the physical interface. • priority — Valid range is from 1 to 65535. The higher the number, the lower the priority.
Step 6	<pre>end Example: Device(config-if)# end</pre>	Returns to privileged EXEC mode.
Step 7	show lacp sys-id Example: Device# show lacp sys-id	Displays the system ID (a combination of the system priority and the MAC address of the device).

Examples

Device> enable
Device# configure terminal
Device(config)# lacp system-priority 200
Device(config)# interface gigabitethernet 0/1/1
Device(config-if)# lacp port-priority 500
Device(config-if)# end

This example shows how to verify the LACP configuration:

Device# **show lacp sys-id** 200.abdc.abcd.abcd

Adding and Removing Interfaces from a Link Bundle

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

	Command or Action	Purpose	
Step 3	interface type slot/subslot/port	Configures a Gigabit Ethernet interface.	
	Example:		
	Device(config)# interface gigabitethernet 0/0/5		
Step 4	channel-group channel-group-number mode {active passive}	Adds an interface to a channel group and enters interface configuration mode.	
	Example:	• In this instance, the interface from Step 3	
	Device(config-if)# channel-group 5 mode active	is added.	
Step 5	no channel-group channel-group-number	Removes the Gigabit Ethernet interface from	
	Example:	channel group.	
	Device(config-if)# no channel-group 5		
Step 6	end	Returns to privileged EXEC mode.	
	Example:		
	Device(config-if)# end		

Removing a Channel Group from a Port

Perform this task to remove a Gigabit Ethernet port channel group from a physical port.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	no interface port-channel number	Removes the specified port channel group from
	Example:	a physical port.
	Device(config) # no interface port-channel 1	• number—Valid range is from 1 to 64.
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	Device(config)# end	

Example

Device> enable
Device# configure terminal
Device(config)# no interface port-channel 1
Device(config)# end

Monitoring LACP Status

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	$ \begin{array}{c} \textbf{show lacp } \{number \mid \textbf{counters} \mid \textbf{internal} \mid \\ \textbf{neighbor} \mid \textbf{sys-id} \} \end{array} $	Displays internal device information.
	Example:	
	Device# show lacp internal	

Troubleshooting Tips

To verify and isolate a fault, start at the highest level maintenance domain and do the following:

- 1. Check the device error status.
- **2.** When a error exists, perform a loopback test to confirm the error.
- **3.** Run a traceroute to the destination to isolate the fault.
- **4.** If the fault is identified, correct the fault.
- 5. If the fault is not identified, go to the next lower maintenance domain and repeat steps 1 through 4 at that maintenance domain level.
- **6.** Repeat the first four steps, as needed, to identify and correct the fault.

Displaying Gigabit EtherChannel Information

To display Gigabit Ethernet port channel information, use the **show interfaces port-channel** command in user EXEC mode or privileged EXEC mode. The following example shows information about port channels configured on ports 0/2 and 0/3. The default MTU is set to 1500 bytes.

```
Device# show interfaces port-channel 1
Port-channel1 is up, line protocol is up
Hardware is GEChannel, address is 0013.19b3.7748 (bia 0000.0000.0000)
MTU 1500 bytes, BW 2000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
```

```
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 04:00:00
No. of active members in this channel: 2
\texttt{Member 0: GigabitEthernet0/0/3, Full-duplex, 1000Mb/s Member 1: GigabitEthernet0/1/7, Instance of the property of the prop
Full-duplex, 1000Mb/s
Last input 00:00:05, output never, output hang never
Last clearing of "show interface" counters 00:04:40
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Interface Port-channell queueing strategy: PXF First-In-First-Out
Output queue 0/8192, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
O packets input, O bytes, O no buffer
Received 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
3 packets output, 180 bytes, 0 underruns
O output errors, O collisions, O interface resets
O babbles, O late collision, O deferred
O lost carrier, O no carrier, O PAUSE output
O output buffer failures, O output buffers swapped out
```

The table below describes the significant fields shown in the display.

Table 2: show interfaces port-channel Field Descriptions

Field	Description
Port-channel1 is up, line protocol is up	Indicates the bundle interface is currently active and can transmit and receive or it has been taken down by an administrator.
Hardware is	Hardware type (Gigabit EtherChannel).
address is	Address being used by the interface.
MTU	Maximum transmission unit of the interface.
BW	Bandwidth of the interface, in kilobits per second.
DLY	Delay of the interface, in microseconds.
reliability	Reliability of the interface as a fraction of 255 (255/255 is 100 percent reliability), calculated as an exponential average over 5 minutes.
tx load rxload	Transmit and receive load on the interface as a fraction of 255 (255/255 is completely saturated), calculated as an exponential average over 5 minutes. The calculation uses the value from the bandwidth interface configuration command.
Encapsulation	Encapsulation type assigned to the interface.
loopback	Indicates if loopbacks are set.
keepalive	Indicates if keepalives are set.
ARP type	Address Resolution Protocol (ARP) type on the interface.
ARP Timeout	Number of hours, minutes, and seconds an ARP cache entry stays in the cache.

Field	Description
No. of active members in this channel	Number of bundled ports (members) currently active and part of the port channel group.
Member <no.> Gigabit Ethernet: <no. no.=""></no.></no.>	Number of the bundled port and associated Gigabit Ethernet port channel interface.
Last input	Number of hours, minutes, and seconds since the last packet was successfully received by an interface and processed locally on the Device. Useful for knowing when a dead interface failed. This counter is updated only when packets are process-switched, not when packets are fast-switched.
output	Number of hours, minutes, and seconds since the last packet was successfully transmitted by an interface. This counter is updated only when packets are process-switched, not when packets are fast-switched.
output hang	Number of hours, minutes, and seconds since the interface was last reset because of a transmission that took too long. When the number of hours in any of the "last" fields exceeds 24 hours, the number of days and hours is printed. If that field overflows, asterisks are printed.
last clearing	Time at which the counters that measure cumulative statistics (such as number of bytes transmitted and received) shown in this report were last reset to zero. Variables that might affect routing (for example, load and reliability) are not cleared when the counters are cleared.
	*** indicates that the elapsed time is too long to be displayed.
	0:00:00 indicates that the counters were cleared more than 231 ms and less than 232 ms ago.
Input queue	Number of packets in the input queue and the maximum size of the queue.
Queueing strategy	First-in, first-out queueing strategy (other queueing strategies you might see are priority-list, custom-list, and weighted fair).
Output queue	Number of packets in the output queue and the maximum size of the queue.
5 minute input rate 5 minute output rate	Average number of bits and packets received or transmitted per second in the last 5 minutes.
packets input	Total number of error-free packets received by the system.
bytes (input)	Total number of bytes, including data and MAC encapsulation, in the error-free packets received by the system.
no buffer	Number of received packets discarded because there was no buffer space in the main system. Broadcast storms on Ethernet lines and bursts of noise on serial lines are often responsible for no input buffer events.
broadcasts	Total number of broadcast or multicast packets received by the interface.
runts	Number of packets that are discarded because they are smaller than the minimum packet size for the medium.

Field	Description
giants	Number of packets that are discarded because they exceed the maximum packet size for the medium.
input errors	Total number of no buffer, runts, giants, cyclic redundancy checks (CRCs), frame, overrun, ignored, and terminated counts. Other input-related errors can also increment the count, so that this sum might not balance with the other counts.
CRC	CRC generated by the originating LAN station or far-end device does not match the checksum calculated from the data received. On a LAN, this usually indicates noise or transmission problems on the LAN interface or the LAN bus. A high number of CRCs is usually the result of collisions or a station transmitting bad data. On a serial link, CRCs usually indicate noise, gain hits or other transmission problems on the data link.
frame	Number of packets received incorrectly having a CRC error and a noninteger number of octets. On a serial line, this is usually the result of noise or other transmission problems.
overrun	Number of times the serial receiver hardware was unable to pass received data to a hardware buffer because the input rate exceeded the receiver's capacity for handling the data.
ignored	Number of received packets ignored by the interface because the interface hardware ran low on internal buffers. These buffers are different than the system buffers mentioned previously in the buffer description. Broadcast storms and bursts of noise can cause the ignored count to be incremented.
watchdog	Number of times the watchdog receive timer expired.
multicast	Number of multicast packets received.
packets output	Total number of messages transmitted by the system.
bytes (output)	Total number of bytes, including data and MAC encapsulation, transmitted by the system.
underruns	Number of times that the far-end transmitter has been running faster than the near-end Device's receiver can handle.
output errors	Sum of all errors that prevented the final transmission of datagrams out of the interface being examined. Note that this might not balance with the sum of the enumerated output errors, as some datagrams can have more than one error, and others can have errors that do not fall into any of the specifically tabulated categories.
collisions	Number of messages retransmitted because of an Ethernet collision. A packet that collides is counted only once in output packets.

Field	Description
interface resets	Number of times an interface has been completely reset. This can happen if packets queued for transmission were not sent within a certain interval. If the system notices that the carrier detect line of an interface is up but the line protocol is down, the system periodically resets the interface in an effort to restart that interface. Interface resets can also occur when an unrecoverable interface processor error occurred, or when an interface is looped back or shut down.
babbles	The transmit jabber timer expired.
late collision	Number of late collisions. Late collision happens when a collision occurs after transmitting the preamble. The most common cause of late collisions is that your Ethernet cable segments are too long for the speed at which you are transmitting.
deferred	Indicates that the chip had to defer while ready to transmit a frame because the carrier was asserted.
lost carrier	Number of times the carrier was lost during transmission.
no carrier	Number of times the carrier was not present during the transmission.
PAUSE output	Not supported.
output buffer failures	Number of times that a packet was not output from the output hold queue because of a shortage of shared memory.
output buffers swapped out	Number of packets stored in main memory when the output queue is full; swapping buffers to main memory prevents packets from being dropped when output is congested. The number is high when traffic is bursty.

Configuration Examples for IEEE 802.3ad Link Bundling

Example: Configuring LACP for Gigabit Interfaces

The following example shows how to configure Gigabit Ethernet ports 0/2 and 0/4into port channel 1 with LACP parameters.

```
Device> enable

Device# configure terminal

Device(config)# lacp system-priority 65535

Device(config)# interface port-channel 1

Device(config-if)# lacp max-bundle 1

Device(config-if)# ip address 10.1.1.1 255.255.255.0

Device(config-if)# exit

Device(config-if)# no ip address

Device(config-if)# lacp port-priority 100

Device(config-if)# channel-group 1 mode passive

Device(config-if)# exit

Device(config-if)# interface gigabitethernet 0/4

Device(config-if)# interface gigabitethernet 0/4

Device(config-if)# no ip address

Device(config-if)# lacp port-priority 200
```

```
Device(config-if)# channel-group 1 mode passive
Device(config-if)# end
```

Example Associating a Channel Group with a Port Channel

This example shows how to configure channel group number 5 and include it in the channel group.

```
Device1# configure terminal
Enter configuration commands, one per line. End with \mathtt{CNTL}/\mathtt{Z}.
Device1 (config) # interface port 5
Device1(config-if)#
*Aug 20 17:06:14.417: %LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channel5, changed
state to down
*Aug 20 17:06:25.413: %LINK-3-UPDOWN: Interface Port-channel5, changed state to down
Device1(config-if)#
Device1(config-if) # interface gigabitethernet 0/0/2
Device1(config-if) # channel-group 5 mode active
Device1(config-if)#
*Aug 20 17:07:43.713: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/2, changed state to down
*Aug 20 17:07:44.713: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/2,
changed state to down
*Aug 20 17:07:45.093: %C10K ALARM-6-INFO: ASSERT CRITICAL GigE 0/0/2 Physical Port Link
Down
*Aug 20 17:07:45.093: %C10K ALARM-6-INFO: CLEAR CRITICAL GigE 0/0/2 Physical Port Link Down
*Aug 20 17:07:47.093: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/2, changed state to up
*Aug 20 17:07:48.093: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/2,
changed state to up
*Aug 20 17:07:48.957: GigabitEthernet0/0/2 added as member-1 to port-channel5
*Aug 20 17:07:51.957: %LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channel5, changed
state to up
Device1(config-if)# end
Device1#
*Aug 20 17:08:00.933: %SYS-5-CONFIG I: Configured from console by console
Device1# show etherchannel summary
Flags: D - down P/bndl - bundled in port-channel
        I - stand-alone s/susp - suspended
        H - Hot-standby (LACP only)
        R - Layer3 S - Layer2
        U - in use
                       f - failed to allocate aggregator
        M - not in use, minimum links not met
        u - unsuitable for bundling
        w - waiting to be aggregated
        d - default port
Number of channel-groups in use: 1
Number of aggregators:
Group Port-channel Protocol Ports
      Pol(RU) LACP
                               Te0/3/0(bndl) Te0/3/1(hot-sby)
RU - L3 port-channel UP State
SU - L2 port-channel UP state
P/bndl - Bundled
S/susp - Suspended
Device1# show running-config int po1
Building configuration...
```

```
Current configuration: 87 bytes
interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
end
Device1# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
                                        P - Device is in Passive mode
       A - Device is in Active mode
Channel group 5
                           LACP port
                                        Admin
                                                   Oper
                                                           Port
                                                                       Port
Port
         Flags State
                          Priority
                                        Kev
                                                   Kev
                                                           Number
                                                                       State
Gi0/0/7 SA
                                                   0x5
                bndl
                                         0x5
                                                           0 \times 4.3
                                                                       0x3D
                           32768
Device1# show interface port 5
Port-channel5 is up, line protocol is up
  Hardware is GEChannel, address is 0014.a93d.4aa8 (bia 0000.0000.0000)
  MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
   No. of active members in this channel: 1
       Member 0 : GigabitEthernet0/0/2 , Full-duplex, 1000Mb/s
  Last input 00:00:05, output never, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Interface Port-channel5 queueing strategy: PXF First-In-First-Out
  Output queue 0/8192, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     0 packets input, 0 bytes, 0 no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog, 0 multicast, 0 pause input
     9 packets output, 924 bytes, 0 underruns
     O output errors, O collisions, O interface resets
     O babbles, O late collision, O deferred
     O lost carrier, O no carrier, O PAUSE output
     O output buffer failures, O output buffers swapped out
```

Example Adding and Removing Interfaces from a Bundle

The following example shows how to add an interface to a bundle:

```
Device1# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
        F - Device is requesting Fast LACPDUs
        A - Device is in Active mode
                                        P - Device is in Passive mode
Channel group 5
                            LACP port
                                         Admin
                                                    Oper
                                                            Port
         Flags State
                            Priority
                                          Key
                                                    Key
                                                            Number
                                                                        State
Gi0/0/7 SA
                 bndl
                            32768
                                          0x5
                                                            0x43
                                                                        0 \times 3D
                                                    0x5
Device1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device1(config)# interface gigabitethernet 0/0/5
Device1(config-if) # channel-group 5 mode active
Device1(config-if)#
*Aug 20 17:10:19.057: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/5, changed state to down
*Aug 20 17:10:19.469: %C10K ALARM-6-INFO: ASSERT CRITICAL GigE 0/0/5 Physical Port Link
```

```
Down
*Aug 20 17:10:19.473: %C10K ALARM-6-INFO: CLEAR CRITICAL GigE 0/0/5 Physical Port Link Down
*Aug 20 17:10:21.473: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/5, changed state to up
*Aug 20 17:10:21.473: GigabitEthernet0/0/7 taken out of port-channel5
*Aug 20 17:10:23.413: GigabitEthernet0/0/5 added as member-1 to port-channel5
*Aug 20 17:10:23.473: %LINK-3-UPDOWN: Interface Port-channel5, changed state to up
Device1(config-if)# end
Device1#
*Aug 20 17:10:27.653: %SYS-5-CONFIG I: Configured from console by console
*Aug 20 17:11:40.717: GigabitEthernet0/0/7 added as member-2 to port-channel5
Device1# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
        F - Device is requesting Fast LACPDUs
        A - Device is in Active mode
                                          P - Device is in Passive mode
Channel group 5
                            LACP port
                                          Admin
                                                    Oper
                                                             Port.
                                                                         Port.
                                                             Number
Port
          Flags
                 State
                            Priority
                                          Kev
                                                    Kev
                                                                         State
Gi0/0/7
          SA
                  bndl
                            32768
                                          0x5
                                                    0x5
                                                            0x43
                                                                         0x3D
Gi0/0/7
         SA
                  bndl
                            32768
                                          0x5
                                                    0 \times 5
                                                            0 \times 42
                                                                         0 \times 3D
Device1#
Device1# show interface port 5
Port-channel5 is up, line protocol is up
  Hardware is GEChannel, address is 0014.a93d.4aa8 (bia 0000.0000.0000)
  MTU 1500 bytes, BW 2000000 Kbit, DLY 10 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
    No. of active members in this channel: 2
       {\tt Member 0: GigabitEthernet 0/0/5, Full-duplex, 1000Mb/s} < ---- added to port channel}
 bundle
        Member 1 : GigabitEthernet0/0/7 , Full-duplex, 1000Mb/s
  Last input 00:00:00, output never, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/150/0/0 (size/max/drops/flushes); Total output drops: 0
  Interface Port-channel5 queueing strategy: PXF First-In-First-Out
  Output queue 0/8192, 0 drops; input queue 0/150, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     O packets input, O bytes, O no buffer
    Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog, 0 multicast, 0 pause input
     104 packets output, 8544 bytes, 0 underruns
     O output errors, O collisions, O interface resets
     O babbles, O late collision, O deferred
     O lost carrier, O no carrier, O PAUSE output
     O output buffer failures, O output buffers swapped out
The following example shows how to remove an interface from a bundle:
Device1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device1(config)# interface gigabitethernet 0/0/7
Device1(config-if) # no channel-group 5 mode active
Device1(config-if)#
*Aug 20 17:15:49.433: GigabitEthernet0/0/7 taken out of port-channel5
*Aug 20 17:15:49.557: %C10K_ALARM-6-INFO: ASSERT CRITICAL GigE 0/0/5 Physical Port Link
*Aug 20 17:15:50.161: %C10K ALARM-6-INFO: CLEAR CRITICAL GigE 0/0/5 Physical Port Link Down
```

```
*Aug 20 17:15:51.433: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/7, changed state to down
*Aug 20 17:15:52.433: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/7,
changed state to down
Device1(config-if)# end
Device1#
*Aug 20 17:15:58.209: %SYS-5-CONFIG I: Configured from console by console
Device1#
*Aug 20 17:15:59.257: %C10K ALARM-6-INFO: ASSERT CRITICAL GigE 0/0/7 Physical Port Link
*Aug 20 17:15:59.257: %C10K ALARM-6-INFO: CLEAR CRITICAL GigE 0/0/7 Physical Port Link Down
Device1#
*Aug 20 17:16:01.257: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/7, changed state to up
*Aug 20 17:16:02.257: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/7,
changed state to up
Device1# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
       A - Device is in Active mode P - Device is in Passive mode
Channel group 5
                                                                   Port
                         LACP port Admin
                                                Oper Port
Port.
         Flags State Priority Key Key Number
                                                                  State
Gi0/0/5
        SA
                bndl
                          32768
                                      0x5
                                                0x5
                                                        0x42
                                                                    0x3D
```

Example Monitoring LACP Status

The following example shows LACP activity that you can monitor by using the **show lacp** command.

```
Device1# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
       A - Device is in Active mode {\tt P} - Device is in Passive mode
Channel group 5
                          LACP port Admin
                                                  Oper
                                                           Port
                                                                       Port
Port Flags State Priority Key Gi0/0/5 SA bndl 32768 0x5
                                                  Key Number
                                                                      State
                                                  0x5
                                                         0x42
                                                                       0x3D
Device1# show lacp 5 counters
       LACPDUS Marker Marker Response
Sent Recv Sent Recv Sent Recv
                                                           LACPDUs
Port
                                                           Pkts Err
Channel group: 5
                 18 0
Gi0/0/5
                                  0
                                           0
                                                 0
        21
Device1# show lacp 5 internal
Flags: S - Device is requesting Slow LACPDUs
       {\tt F} - Device is requesting Fast LACPDUs
       A - Device is in Active mode P - Device is in Passive mode
Channel group 5
                                                                      Port.
                          LACP port Admin
                                                   Oper
                                                           Port
Port Flags State Gi0/0/5 SA bndl
                        Priority Key
32768 0x5
                                                  Key
0x5
                                                           Number
                                                                       State
                                                           0x42
                                                                       0x3D
Device1# show lacp 5 neighbor
Flags: S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
       A - Device is in Active mode P - Device is in Passive mode
Channel group 5 neighbors
Partner's information:
         Partner Partner LACP Partner Partner Partner Partner
                                                                       Partner
Port Flags State Port Priority Admin Key Oper Key Port Number Port State GiO/O/5 SP 32768 0011.2026.7300 11s 0x1 0x14 0x3C
Device1# show lacp counters
         LACPDUS Marker Marker Response
Sent Recv Sent Recv Sent Recv
                                        Marker Response
                                                           LACPDUs
                                                           Pkts Err
```

```
Channel group: 5
Gi0/0/5 23 20 0 0 0 0 0
Device1# show lacp sys-id
32768,0014.a93d.4a00
```

Example: Displaying Port-Channel Interface Information

The following example shows how to display the configuration of port-channel interface 1.

```
Device# show interface port-channel 1
Port-channell is up, line protocol is up
Hardware is GEChannel, address is 0013.19b3.7748 (bia 0000.0000.0000)
MTU 1500 bytes, BW 2000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 04:00:00
No. of active members in this channel: 2
\texttt{Member 0: GigabitEthernet0/0/3, Full-duplex, 1000Mb/s Member 1: GigabitEthernet0/0/7, Instance of the property of the prop
Full-duplex, 1000Mb/s
Last input 00:00:05, output never, output hang never
Last clearing of "show interface" counters 00:04:40
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Interface Port-channel1 queueing strategy: PXF First-In-First-Out
Output queue 0/8192, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
O packets input, O bytes, O no buffer
Received 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
3 packets output, 180 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
O babbles, O late collision, O deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
O output buffer failures, O output buffers swapped out
```

Example: Displaying Port-Channel Interface Information

Multichassis LACP

In Carrier Ethernet networks, various redundancy mechanisms provide resilient interconnection of nodes and networks. The choice of redundancy mechanisms depends on various factors such as transport technology, topology, single node versus entire network multihoming, capability of devices, autonomous system (AS) boundaries or service provider operations model, and service provider preferences.

Carrier Ethernet network high-availability can be achieved by employing both intra- and interchassis redundancy mechanisms. Cisco's Multichassis EtherChannel (MCEC) solution addresses the need for interchassis redundancy mechanisms, where a carrier wants to "dual home" a device to two upstream points of attachment (PoAs) for redundancy. Some carriers either cannot or will not run loop prevention control protocols in their access networks, making an alternative redundancy scheme necessary. MCEC addresses this issue with enhancements to the 802.3ad Link Aggregation Control Protocol (LACP) implementation. These enhancements are provided in the Multichassis LACP (mLACP) feature described in this document.

- Prerequisites for mLACP, on page 31
- Restrictions for mLACP, on page 32
- Information About mLACP, on page 33
- How to Configure mLACP, on page 46
- Configuration Examples for mLACP, on page 64
- Glossary, on page 80

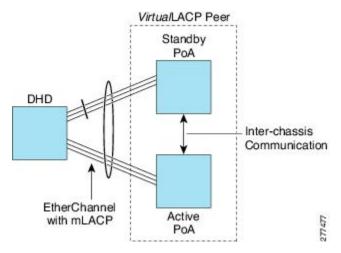
Prerequisites for mLACP

- The command **lacp max-bundle** must be used on all PoAs in order to operate in PoA control and shared control modes.
 - The maximum number of links configured cannot be less than the total number of interfaces in the link aggregation group (LAG) that is connected to the PoA.
 - Each PoA may be connected to a dual-homed device (DHD) with a different number of links for the LAG (configured with a different number of maximum links).
- Each PoA must be configured using the **lacp min-bundle** command with the desired minimum number of links to maintain the LAG in the active state.
- For DHD control there must be an equal number of links going to each PoA.
- The max-bundle value must equal the number of active links connected locally to the PoA (no local intra-PoA active or standby protection).

• LACP fast switchover must be configured on all devices to speed convergence.

Restrictions for mLACP

- mLACP does not support Fast Ethernet.
- mLACP does not support half-duplex links.
- mLACP does not support multiple neighbors.
- Converting a port channel to mLACP can cause a service disruption.
- The maximum number of member links per LAG per PoA is restricted by the maximum number of ports per port channel, as limited by the platform.
- System priority on a DHD must be a lesser priority than on PoAs.
- MAC Tunneling Protocol (MTP) supports only one member link in a port channel.
- A port-channel or its member links may flap while LACP stabilizes.
- DHD-based control does not function when min-links is not configured.
- DHD-controlled revertive behavior with min-links is not supported.
- Brute-force failover always causes min-link failures.
- Any failure with brute-force failover behaves revertively.
- The maximum number of member links per Link Access Group (LAG) per points of attachment
- (PoA) is restricted by the maximum number of ports per port channel, as limited by the platform.
- The lacp max-bundle max-links command must be used on all the PoAs in order to operate in PoA control
 and shared control modes.
 - The value of the max-links variable must not be less than the total number of interfaces in the LAG, which are connected to the PoA.
 - Each PoA may be connected to the dual-homed device (DHD) with a different number of links for the LAG (and hence configured with a different value for the max-links value) variable.
- The **lacp min-bundle min-links** command has local scope only. Each PoA needs to be configured with the required minimum number of links to maintain the LAG in active state.
- When implementing the Virtual Private LAN Services (VPLS), the pseudowire states are decoupled from the attachment circuit (AC) status by default. The mLACP access state is not relayed on the VPLS pseudowires and the pseudowire continues to operate only in the decoupled mode. Coupled mode is not supported.
- mLACP and Pseudo-mLACP (P-mLACP) feature interoperation between the Cisco 7600 Series Routers and the Cisco 920 Series Aggregation Services Routers is not supported when the former is used as one PoA and the Cisco ASR 920 as another PoA in the same redundancy group.
- MAC Tunneling Protocol (MTP) is not supported.
- The following commands are not supported:


- ethernet mac-flush notification mirp
- show ethernet service instance id mac-tunnel
- errdisable recovery cause mlacp
- The port-channels configured between POAs & DHD should the same port-channel number.

Information About mLACP

Overview of Multichassis EtherChannel

In Multichassis EtherChannel (MCEC), the DHD is dual-homed to two upstream PoAs. The DHD is incapable of running any loop prevention control protocol such as Multiple Spanning Tree (MST). Therefore, another mechanism is required to prevent forwarding loops over the redundant setup. One method is to place the DHD's uplinks in a LAG, commonly referred to as EtherChannel. This method assumes that the DHD is capable of running only IEEE 802.3ad LACP for establishing and maintaining the LAG.

LACP, as defined in IEEE 802.3ad, is a link-level control protocol that allows the dynamic negotiation and establishment of LAGs. An extension of the LACP implementation to PoAs is required to convey to a DHD that it is connected to a single virtual LACP peer and not to two disjointed devices. This extension is called Multichassis LACP or mLACP. The figure below shows this setup.

The PoAs forming a virtual LACP peer, from the perspective of the DHD, are defined as members of a redundancy group. For the PoAs in a redundancy group to appear as a single device to the DHD, the states between them must be synchronized through the Interchassis Communication Protocol (ICCP), which provides a control-only interchassis communication channel (ICC).

In Cisco IOS Release 12.2(33)SRE, the system functions in active/standby redundancy mode. In this mode DHD uplinks that connect to only a single PoA can be active at any time. The DHD recognizes one PoA as active and the other as standby but does not preclude a given PoA from being active for one DHD and standby for another. This capability allows two PoAs to perform load sharing for different services.

Interactions with the MPLS Pseudowire Redundancy Mechanism

The network setup shown in the figure above can be used to provide provider edge (PE) node redundancy for Virtual Private LAN Service (VPLS) and Virtual Private Wire Service (VPWS) deployments over Multiprotocol Label Switching (MPLS). In these deployments, the uplinks of the PoAs host the MPLS pseudowires that provide redundant connectivity over the core to remote PE nodes. Proper operation of the network requires interaction between the redundancy mechanisms employed on the attachment circuits (for example, mLACP) and those employed on the MPLS pseudowires. This interaction ensures the state (active or standby) is synchronized between the attachment circuits and pseudowires for a given PoA.

RFC 4447 introduced a mechanism to signal pseudowire status via the Link Distribution Protocol (LDP) and defined a set of status codes to report attachment circuit as well as pseudowire fault information. The Preferential Forwarding Status bit (*draft-ietf-pwe3-redundancy-bit*) definition proposes to extend these codes to include two bits for pseudowire redundancy applications:

- Preferential forwarding status: active or standby
- Request pseudowire switchover

The draft also proposes two modes of operation:

- Independent mode--The local PE decides on its pseudowire status independent of the remote PE.
- Primary and secondary modes--One of the PEs determines the state of the remote side through a handshake mechanism.

For the mLACP feature, operation is based on the independent mode. By running ICC between the PoAs, only the preferential forwarding status bit is required; the request pseudowire switchover bit is not used.

The local pseudowire status (active or standby) is determined independently by the PoAs in a redundancy group and then relayed to the remote PEs in the form of a notification. Similarly, the remote PEs perform their own selection of their pseudowire status and notify the PoAs on the other side of the core.

After this exchange of local states, the pseudowires used for traffic forwarding are those selected to be active independently on both local and remote ends.

The attachment circuit redundancy mechanism determines and controls the pseudowire redundancy mechanism. mLACP determines the status of the attachment circuit on a given PoA according to the configured LACP system and port priorities, and then the status of the pseudowires on a given PoA is synchronized with that of the local attachment circuits. This synchronization guarantees that the PoA with the active attachment circuits has its pseudowires active. Similarly, the PoA with the standby attachment circuits has its pseudowires in standby mode. By ensuring that the forwarding status of the attachment circuits is synchronized with that of the pseudowires, the need to forward data between PoA nodes within a redundancy group can be avoided. This synchronization saves platform bandwidth that would otherwise be wasted on inter-PoA data forwarding in case of failures.

Redundancy Mechanism Processes

The Carrier Ethernet redundancy solution should include the following processes (and how they apply to the mLACP solution):

• Attachment circuit active or standby status selection--This selection can be performed by the access node or network, the aggregation node, or combination of the two. For mLACP, the attachment circuit status selection is determined through collaboration between the DHD and the PoAs.

- Pseudowire forwarding status notification--This notification is mandatory for mLACP operation in VPWS and VPLS deployments; that is, when the PoA uplinks employ pseudowire technology. When the PoAs decide on either an active or standby role, they need to signal the status of the associated pseudowires to the PEs on the far end of the network. For MPLS pseudowires, this is done using LDP.
- MAC flushing indication--This indication is mandatory for any redundancy mechanism in order to speed convergence time and eliminate potential traffic failure. The mLACP redundancy mechanism should be integrated with relevant 802.1Q/802.1ad/802.1ah MAC flushing mechanisms as well as MAC flushing mechanisms for VPLS.

Note

Failure occurs when incoming traffic is dropped without informing the source that the data did not reach its intended recipient. Failure can be detected only when lost traffic is monitored.

• Active VLAN notification--For mLACP, this notification is not required as long as the PoAs follow the active/standby redundancy model.

The figure below shows redundancy mechanisms in Carrier Ethernet networks.

Dual-Homed Topology Using mLACP

The mLACP feature allows the LACP state machine and protocol to operate in a dual-homed topology. The mLACP feature decouples the existing LACP implementation from the multichassis specific requirements, allowing LACP to maintain its adherence to the IEEE 802.3ad standard. The mLACP feature exposes a single virtual instance of IEEE 802.3ad to the DHD for each redundancy group. The virtual LACP instance interoperates with the DHD according to the IEEE 802.3ad standard to form LAGs spanning two or more chassis.

LACP and 802.3ad Parameter Exchange

In IEEE 802.3ad, the concatenation of the LACP system MAC address and system priority form an LACP system ID (8 bytes). The system ID is formed by taking the two-byte system priority value as the most significant two octets of the system ID. The system MAC address makes up the remainder of the system ID (octets 3 to 8). System ID priority comparisons are based on the lower numerically valued ID.

To provide the highest LACP priority, the mLACP module communicates the system MAC address and priority values for the given redundancy group to its redundancy group peer(s) and vice versa. The mLACP then chooses the lowest system ID value among the PoAs in the given redundancy group to use as the system ID of the virtual LACP instance of the redundancy group.

Cisco IOS Release 12.2(33)SRE introduces two LACP configuration commands to specify the system MAC address and system priority used for a given redundancy group: **mlacp system-mac** *mac-address* and **mlacp system-priority** *priority-value*. These commands provide better settings to determine which side of the attachment circuit will control the selection logic of the LAG. The default value for the system MAC address is the chassis backplane default MAC address. The default value for the priority is 32768.

Port Identifier

IEEE 802.3ad uses a 4-byte port identifier to uniquely identify a port within a system. The port identifier is the concatenation of the port priority and port number (unique per system) and identifies each port in the system. Numerical comparisons between port IDs are performed by unsigned integer comparisons where the 2-byte Port Priority field is placed in the most significant two octets of the port ID. The 2-byte port number makes up the third and fourth octets. The mLACP feature coordinates the port IDs for a given redundancy group to ensure uniqueness.

Port Number

A port number serves as a unique identifier for a port within a device. The LACP port number for a port is equal to the port's ifIndex value (or is based on the slot and subslot identifiers on the Cisco 7600 router).

LACP relies on port numbers to detect rewiring. For multichassis operation, you must enter the **mlacp node-id** *node-id* command to coordinate port numbers between the two PoAs in order to prevent overlap.

Port Priority

Port priority is used by the LACP selection logic to determine which ports should be activated and which should be left in standby mode when there are hardware or software limitations on the maximum number of links allowed in a LAG. For multichassis operation in active/standby redundancy mode, the port priorities for all links connecting to the active PoA must be higher than the port priorities for links connecting to the standby PoA. These port priorities can either be guaranteed through explicit configuration or the system can automatically adjust the port priorities depending on selection criteria. For example, select the PoA with the highest port priority to be the active PoA and dynamically adjust the priorities of all other links with the same port key to an equal value.

In Cisco IOS Release 12.2(33)SRE, the mLACP feature supports only the active/standby redundancy model. The LACP port priorities of the individual member links should be the same for each link belonging to the LAG of a given PoA. To support this requirement, the **mlacp lag-priority** command is implemented in interface configuration mode in the command-line interface (CLI). This command sets the LACP port priorities for all the local member links in the LAG. Individual member link LACP priorities (configured by the **lacp port-priority** command) are ignored on links belonging to mLACP port channels.

The **mlacp lag-priority** command may also be used to force a PoA failover during operation in the following two ways:

- Set the active PoA's LAG priority to a value greater than the LAG priority on the standby PoA. This setting results in the quickest failover because it requires the fewest LACP link state transitions on the standby links before they turn active.
- Set the standby PoA's LAG priority to a value numerically less than the LAG priority on the active PoA. This setting results in a slightly longer failover time because standby links have to signal OUT_OF_SYNC to the DHD before the links can be brought up and go active.

In some cases, the operational priority and the configured priority may differ when using dynamic port priority management to force failovers. In this case, the configured version will not be changed unless the port channel is operating in nonrevertive mode. Enter the **show lacp multichassis port-channel** command to view the current operational priorities. The configured priority values can be displayed by using the **show running-config** command.

Multichassis Considerations

Because LACP is a link layer protocol, all messages exchanged over a link contain information that is specific and local to that link. The exchanged information includes:

- · System attributes--priority and MAC address
- Link attributes--port key, priority, port number, and state

When extending LACP to operate over a multichassis setup, synchronization of the protocol attributes and states between the two chassis is required.

System MAC Address

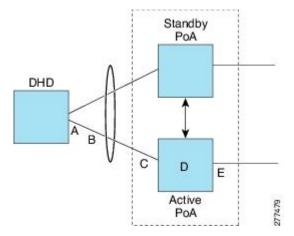
LACP relies on the system MAC address to determine the identity of the remote device connected over a particular link. Therefore, to mask the DHD from its connection to two disjointed devices, coordination of the system MAC address between the two PoAs is essential. In Cisco IOS software, the LACP system MAC address defaults to the ROM backplane base MAC address and cannot be changed by configuration. For multichassis operation the following two conditions are required:

- System MAC address for each PoA should be communicated to its peer--For example, the PoAs elect
 the MAC address with the lower numeric value to be the system MAC address. The arbitration scheme
 must resolve to the same value. Choosing the lower numeric MAC address has the advantage of providing
 higher system priority.
- System MAC address is configurable--The system priority depends, in part, on the MAC address, and a service provider would want to guarantee that the PoAs have higher priority than the DHD (for example, if both DHD and PoA are configured with the same system priority and the service provider has no control over DHD). A higher priority guarantees that the PoA port priorities take precedence over the DHD's port priority configuration. If you configure the system MAC address, you must ensure that the addresses are uniform on both PoAs; otherwise, the system will automatically arbitrate the discrepancy, as when a default MAC address is selected.

System Priority

LACP requires that a system priority be associated with every device to determine which peer's port priorities should be used by the selection logic when establishing a LAG. In Cisco IOS software, this parameter is

configurable through the CLI. For multichassis operation, this parameter is coordinated by the PoAs so that the same value is advertised to the DHD.


Port Key

The port key indicates which links can form a LAG on a given system. The key is locally significant to an LACP system and need not match the key on an LACP peer. Two links are candidates to join the same LAG if they have the same key on the DHD and the same key on the PoAs; however, the key on the DHD is not required to be the same as the key on the PoAs. Given that the key is configured according to the need to aggregate ports, there are no special considerations for this parameter for multichassis operation.

Failure Protection Scenarios

The mLACP feature provides network resiliency by protecting against port, link, and node failures. These failures can be categorized into five types. The figure below shows the failure points in a network, denoted by the letters A through E.

- A--Failure of the uplink port on the DHD
- B--Failure of the Ethernet link
- C--Failure of the downlink port on the active PoA
- D--Failure of the active PoA node
- E--Failure of the active PoA uplinks

When any of these faults occur, the system reacts by triggering a switchover from the active PoA to the standby PoA. The switchover involves failing over the PoA's uplinks and downlinks simultaneously.

Failure points A and C are port failures. Failure point B is an Ethernet link failure and failure point D is a node failure. Failure point E can represent one of four different types of uplink failures when the PoAs connect to an MPLS network:

- Pseudowire failure--Monitoring individual pseudowires (for example, using VCCV-BFD) and, upon a pseudowire failure, declare uplink failure for the associated service instances.
- Remote PE IP path failure--Monitoring the IP reachability to the remote PE (for example, using IP Route-Watch) and, upon route failure, declare uplink failure for all associated service instances.

- LSP failure--Monitoring the LSP to a given remote PE (for example, using automated LSP-Ping) and, upon LSP failure, declare uplink failure for all associated service instances.
- PE isolation--Monitoring the physical core-facing interfaces of the PE. When all of these interfaces go
 down, the PE effectively becomes isolated from the core network, and the uplink failure is declared for
 all affected service instances.

As long as the IP/MPLS network employs native redundancy and resiliency mechanisms such as MPLS fast reroute (FRR), the mLACP solution is sufficient for providing protection against PE isolation. Pseudowire, LSP, and IP path failures are managed by the native IP/MPLS protection procedures. That is, interchassis failover via mLACP is triggered only when a PE is completely isolated from the core network, because native IP/MPLS protection mechanisms are rendered useless. Therefore, failure point E is used to denote PE isolation from the core network.

Note

The set of core-facing interfaces that should be monitored are identified by explicit configuration. The set of core-facing interfaces must be defined independently per redundancy group. Failure point E (unlike failure point A, B, or C) affects and triggers failover for all the multichassis LAGs configured on a given PoA.

Operational Variants

LACP provides a mechanism by which a set of one or more links within a LAG are placed in standby mode to provide link redundancy between the devices. This redundancy is normally achieved by configuring more ports with the same key than the number of links a device can aggregate in a given LAG (due to hardware or software restrictions, or due to configuration). For example, for active/standby redundancy, two ports are configured with the same port key, and the maximum number of allowed links in a LAG is configured to be 1. If the DHD and PoAs are all capable of restricting the number of links per LAG by configuration, three operational variants are possible.

DHD-based Control

The value of PoAs must be greater than the value of DHD. In DHD-based control, maximum number of links per bundle should be one. The PoAs must be configured to limit the maximum number of links per bundle to be greater than one. Thus, the selection of the active/standby link is the responsibility of the DHD. Which link is designated active and which is marked standby depends on the relative port priority, as configured on the system with the higher system priority. A PoA configured with a higher system priority can still determine the selection outcome. The DHD makes the selection and places the link with lower port priority in standby mode.

To accommodate DHD-controlled failover, the DHD must be configured with the max-bundle value equal to a number of links (L), where L is the fewest number of links connecting the DHD to a PoA. The max-bundle value restricts the DHD from bundling links to both PoAs at the same time (active/active). Although the DHD controls the selection of active/standby links, the PoA can still dictate the individual member link priorities by configuring the PoA's virtual LACP instance with a lower system priority value than the DHD's system priority.

The DHD control variant must be used with a PoA minimum link threshold failure policy where the threshold is set to L (same value for L as described above). A minimum link threshold must be configured on each of the PoAs because an A, B, or C link failure that does not trigger a failover (minimum link threshold is still satisfied) causes the DHD to add one of the standby links going to the standby PoA to the bundle. This added link results in the unsupported active/active scenario.

Note

DHD control does not use the mLACP hot-standby state on the standby PoA, which results in higher failover times than the other variants.

DHD control eliminates the split brain problem on the attachment circuit side by limiting the DHD's attempts to bundle all the links.

PoA Control

In PoA control, the PoA is configured to limit the maximum number of links per bundle to be equal to the number of links (L) going to the PoA. The DHD is configured with that parameter set to some value greater than L. Thus, the selection of the active/standby links becomes the responsibility of the PoA.

Shared Control (PoA and DHD)

In shared control, both the DHD and the PoA are configured to limit the maximum number of links per bundle to L--the number of links going to the PoA. In this configuration, each device independently selects the active/standby link. Shared control is advantageous in that it limits the split-brain problem in the same manner as DHD control, and shared control is not susceptible to the active/active tendencies that are prevalent in DHD control. A disadvantage of shared control is that the failover time is determined by both the DHD and the PoA, each changing the standby links to SELECTED and waiting for each of the WAIT_WHILE_TIMERs to expire before moving the links to IN_SYNC. The independent determination of failover time and change of link states means that both the DHD and PoAs need to support the LACP fast-switchover feature in order to provide a failover time of less than one second.

mLACP Failover

The mLACP forces a PoA failover to the standby PoA when one of the following failures occurs:

- Failure of the DHD uplink port, Ethernet link, or downlink port on the active PoA—A policy failover is triggered via a configured failover policy and is considered a forced failover. When the number of active and SELECTED links to the active PoA goes below the configured minimum threshold, mLACP forces a failover to the standby PoA's member links. This minimum threshold is configured using the lacp min-links command in interface configuration mode. The PoAs determine the failover independent of the operational control variant in use.
- Failure of the active PoA—This failure is detected by the standby PoA. mLACP automatically fails over to standby because mLACP on the standby PoA is notified of failure via ICRM and brings up its local member links. In the DHD-controlled variant, this failure looks the same as a total member link failure, and the DHD activates the standby links.
- Failure of the active PoA uplinks—mLACP is notified by ICRM of PE isolation and relinquishes its active member links. This failure is a "forced failover" and is determined by the PoAs independent of the operational control variant in use.

Dynamic Port Priority

The default failover mechanism uses dynamic port priority changes on the local member links to force the LACP selection logic to move the required standby link(s) to the SELECTED and Collecting_Distributing state. This state change occurs when the LACP actor port priority values for all affected member links on the currently active PoA are changed to a higher numeric value than the standby PoA's port priority (which gives

the standby PoA ports a higher claim to bundle links). Changing the actor port priority triggers the transmission of an mLACP Port Config Type-Length-Value (TLV) message to all peers in the redundancy group. These messages also serve as notification to the standby PoA(s) that the currently active PoA is attempting to relinquish its role. The LACP then transitions the standby link(s) to the SELECTED state and moves all the currently active links to STANDBY.

Dynamic port priority changes are not automatically written back to the running configuration or to the NVRAM configuration. If you want the current priorities to be used when the system reloads, the **mlacp lag-priority** command must be used and the configuration must be saved.

Revertive and Nonrevertive Modes

Dynamic port priority functionality is used by the mLACP feature to provide both revertive mode and nonrevertive mode. The default operation is revertive, which is the default behavior in single chassis LACP. Nonrevertive mode can be enabled on a per port-channel basis by using the **lacp failover non-revertive**command in interface configuration mode. In Cisco IOS Release 12.2(33)SRE this command is supported only for mLACP.

Nonrevertive mode is used to limit failover and, therefore, possible traffic loss. Dynamic port priority changes are utilized to ensure that the newly activated PoA remains active after the failed PoA recovers.

Revertive mode operation forces the configured primary PoA to return to active state after it recovers from a failure. Dynamic port priority changes are utilized when necessary to allow the recovering PoA to resume its active role.

Brute Force Shutdown

Note

This feature is not applicable for Cisco ASR 903 RSP3 Module.

A brute-force shutdown is a forced failover mechanism to bring down the active physical member link interface(s) for the given LAG on the PoA that is surrendering its active status. The port-channel and any remaining active member link goes to an "err-disabled" state. This mechanism does not depend on the DHD's ability to manage dynamic port priority changes and compensates for deficiencies in the DHD's LACP implementation.

The brute-force shutdown changes the status of each member link to ADMIN_DOWN to force the transition of the standby links to the active state. Note that this process eliminates the ability of the local LACP implementation to monitor the link state.

The brute-force shutdown operates in revertive mode, so dynamic port priorities cannot be used to control active selection. The brute-force approach is configured by the **lacp failover brute-force** command in interface configuration mode. This command is not allowed in conjunction with a nonrevertive configuration.

Brute Force Failure recovery sequence

To avoid traffic outage during brute force shutdown failure recovery process, you need to:

- 1. Un-shut the port-channel interface which has currently undergone maintenance activity by brute force operation.
- **2.** Un-shut all the port-channel members on the port-channel.

Peer Monitoring with Interchassis Redundancy Manager

There are two ways in which a peer can be monitored with Interchassis Redundancy Manager (ICRM):

- Routewatch (RW)--This method is the default.
- Bidirectional Forwarding Detection (BFD)--You must configure the redundancy group with the monitor peer bfd command.

Note

In Cisco IOS XE Everest 16.5.1 release, RSP3 Module only supports single-hop BFD, hence only single-hop BFD is applicable for mLACP peer monitoring.

Note

For stateful switchover (SSO) deployments (with redundant support in the chassis), BFD monitoring and a static route for the ICCP connection are required to prevent "split brain" after an SSO failover.

For each redundancy group, for each peer (member IP), a monitoring adjacency is created. If there are two peers with the same IP address, the adjacency is shared regardless of the monitoring mode. For example, if redundancy groups 1 and 2 are peered with member IP 10.10.10.10, there is only one adjacency to 10.10.10.10, which is shared in both redundancy groups. Furthermore, redundancy group 1 can use BFD monitoring while redundancy group 2 is using RW.

Note

BFD is completely dependent on RW--there must be a route to the peer for ICRM to initiate BFD monitoring. BFD implies RW and sometimes the status of the adjacency may seem misleading but is accurately representing the state. Also, if the route to the peer PoA is not through the directly connected (back-to-back) link between the systems, BFD can give misleading results.

An example of output from the **show redundancy interchassis** command follows:

Device# show redundancy interchassis

To interpret the adjacency status displayed by the **show redundancy interchassis** command, refer to the table below.

Table 3: Status Information from the show redundancy interchassis command

Adjacency Type	Adjacency Status	Meaning
RW	DOWN	RW or BFD is configured, but there is no route for the given IP address.

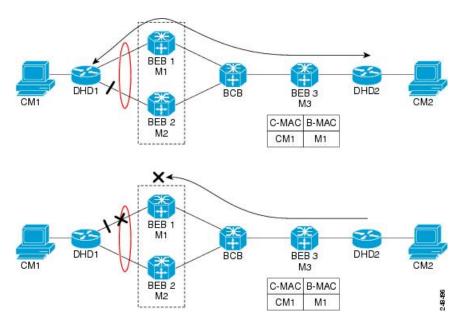
Adjacency Type	Adjacency Status	Meaning
RW	UP	RW or BFD is configured. RW is up, meaning there is a valid route to the peer. If BFD is configured and the adjacency status is UP, BFD is probably not configured on the interface of the route's adjacency.
BFD	DOWN	BFD is configured. A route exists and the route's adjacency is to an interface that has BFD enabled. BFD is started but the peer is down. The DOWN status can be because the peer is not present or BFD is not configured on the peer's interface.
BFD	UP	BFD is configured and operational.

Note

If the adjacency type is "BFD," RW is UP regardless of the BFD status.

MAC Flushing Mechanisms

When mLACP is used to provide multichassis redundancy in multipoint bridged services (for example, VPLS), there must be a MAC flushing notification mechanism in order to prevent potential traffic failure.


At the failover from a primary PoA to a secondary PoA, a service experiences traffic failure when the DHD in question remains inactive and while other remote devices in the network are attempting to send traffic to that DHD. Remote bridges in the network have stale MAC entries pointing to the failed PoA and direct traffic destined to the DHD to the failed PoA, where the traffic is dropped. This failure continues until the remote devices age out their stale MAC address table entries (which typically takes five minutes). To prevent this anomaly, the newly active PoA, which has taken control of the service, transmits a MAC flush notification message to the remote devices in the network to flush their stale MAC address entries for the service in question.

The exact format of the MAC flushing message depends on the nature of the network transport: native 802.1Q/802.1ad Ethernet, native 802.1ah Ethernet, VPLS, or provider backbone bridge (PBB) over VPLS. Furthermore, in the context of 802.1ah, it is important to recognize the difference between mechanisms used for customer-MAC (C-MAC) address flushing versus bridge-MAC (B-MAC) address flushing.

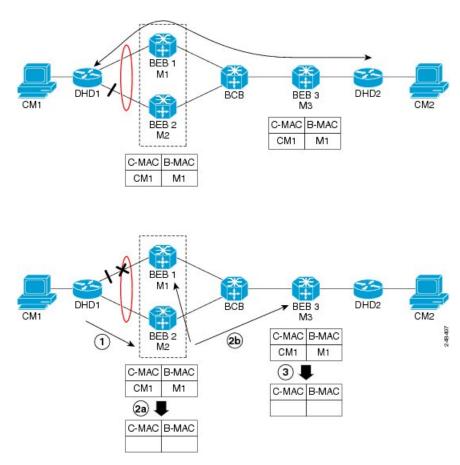
The details of the various mechanisms are discussed in the following sections.

Multiple I-SID Registration Protocol

Multiple I-SID Registration Protocol (MIRP) is enabled by default on 802.1ah service instances. The use of MIRP in 802.1ah networks is shown in the figure below.

Device DHD1 is dual-homed to two 802.1ah backbone edge bridges (BEB1 and BEB2). Assume that initially the primary path is through BEB1. In this configuration BEB3 learns that the host behind DHD1 (with MAC address CM1) is reachable via the destination B-MAC M1. If the link between DHD1 and BEB1 fails and the host behind DHD1 remains inactive, the MAC cache tables on BEB3 still refer to the BEB1 MAC address even though the new path is now via BEB2 with B-MAC address M2. Any bridged traffic destined from the host behind DHD2 to the host behind DHD1 is wrongfully encapsulated with B-MAC M1 and sent over the MAC tunnel to BEB1, where the traffic fails.

To circumvent the traffic failure problem when the link between DHD1 and BEB1 fails, BEB2 performs two tasks:


- Flushes its own MAC address table for the service or services in question.
- Transmits an MIRP message on its uplink to signal the far end BEB (BEB3) to flush its MAC address table. Note that the MIRP message is transparent to the backbone core bridges (BCBs). The MIRP message is processed on a BEB because only BCBs learn and forward based on B-MAC addresses and they are transparent to C-MAC addresses.

Note

MIRP triggers C-MAC address flushing for both native 802.1ah and PBB over VPLS. This is not applicable for Cisco ASR 903 RSP3 Module.

The figure below shows the operation of the MIRP.

The MIRP has not been defined in IEEE but is expected to be based on the IEEE 802.1ak Multiple Registration Protocol (MRP). MRP maintains a complex finite state machine (FSM) for generic attribute registration. In the case of MIRP, the attribute is an I-SID. As such, MIRP provides a mechanism for BEBs to build and prune a per I-SID multicast tree. The C-MAC flushing notification capability of MIRP is a special case of attribute registration in which the device indicates that an MIRP declaration is "new," meaning that this notification is the first time a BEB is declaring interest in a particular I-SID.

LDP MAC Address Withdraw

When the mLACP feature is used for PE redundancy in traditional VPLS (that is, not PBB over VPLS), the MAC flushing mechanism is based on the LDP MAC Address Withdraw message as defined in RFC 4762.

The required functional behavior is as follows: Upon a failover from the primary PoA to the standby PoA, the standby PoA flushes its local MAC address table for the affected services and generates the LDP MAC Address Withdraw messages to notify the remote PEs to flush their own MAC address tables. One message is generated for each pseudowire in the affected virtual forwarding instances (VFIs).

How to Configure mLACP

Configuring Interchassis Group and Basic mLACP Commands (Global Redundancy Group Configuration)

Perform this task to set up the communication between multiple PoAs and to configure them in the same group.

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 redundancy

Example:

Router(config)# redundancy

Enters redundancy configuration mode.

Step 4 interchassis group group-id

Example:

Router(config-red) # interchassis group 50

Configures an interchassis group within the redundancy configuration mode and enters interchassis redundancy mode.

Step 5 monitor peer bfd

Example:

Router(config-r-ic) # monitor peer bfd

Configures the BFD option to monitor the state of the peer. The default option is route-watch.

Step 6 member ip ip-address

Example:

Router(config-r-ic) # member ip 172.3.3.3

Configures the IP address of the mLACP peer member group.

Step 7 mlacp node-id node-id

Example:

Router(config-r-ic) # mlacp node-id 5

Defines the node ID used in the LACP Port ID field by this member of the mLACP redundancy group.

• The valid range is 0 to 7, and the value should be different from the peer values.

Step 8 mlacp system-mac mac-address

Example:

Router(config-r-ic) # mlacp system-mac aa12.be45.d799

Defines and advertises the system MAC address value to the mLACP members of the redundancy group for arbitration.

• The format of the mac-address argument must be in standard MAC address format: aabb.ccdd.eeff.

Step 9 mlacp system-priority *priority-value*

Example:

```
Router(config-r-ic)# mlacp system-priority 100
```

Defines the system priority advertised to the other mLACP members of the redundancy group.

- System priority values are 1 to 65535. Default value is 32768.
- The assigned values should be lower than the DHD.

Step 10 backbone interface *type number*

Example:

```
Router(config-r-ic)#
backbone interface GigabitEthernet2/3
```

Defines the backbone interface for the mLACP configuration.

Step 11 end

Example:

```
Router(config-r-ic) # end
```

Returns the CLI to privileged EXEC mode.

Configuring the mLACP Interchassis Group and Other Port-Channel Commands

Perform this task to set up mLACP attributes specific to a port channel. The **mlacp interchassis group** command links the port-channel interface to the interchassis group that was created in the previous Configuring Interchassis Group and Basic mLACP Commands (Global Redundancy Group Configuration), on page 46.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface port-channel port-channel-number	Configures the port channel and enters interface configuration mode.
	Example:	
	Router(config) # interface port-channel1	
Step 4	lacp max-bundle max-bundles	Configures the max-bundle links that are
	Example:	connected to the PoA. The value of the <i>max-bundles</i> argument should not be less than the total number of links in the LAG that are
	Router(config-if)# lacp max-bundle 4	connected to the PoA.
		Determines whether the redundancy group is under DHD control, PoA control, or both.
		• Range is 1 to 8. Default value is 8.
Step 5	lacp failover {brute-force non-revertive}	Sets the mLACP switchover to nonrevertive
	Example:	or brute force. This command is optional.
	Router(config-if)# lacp failover	Default value is revertive (with 180-second delay).
	Diuce-Ioice	 If you configure brute force, a minimum link failure for every mLACP failure occurs or the dynamic lag priority value is modified.
Step 6	exit	Exits interface configuration mode.
	Example:	

	Command or Action	Purpose
	Router(config-if)# exit	
Step 7	redundancy	Enters redundancy configuration mode.
	Example:	
	Router(config)# redundancy	
Step 8	interchassis group group-id	Specifies that the port channel is an mLACP
	Example:	port channel. The <i>group-id</i> should match the configured redundancy group.
	Router(config-red)# interchassis group 230	
Step 9	exit	Exits interchassis redundancy mode.
	Example:	
	Router(config-r-ic)# exit	
Step 10	exit	Exits redundancy configuration mode.
	Example:	
	Router(config-red)# exit	
Step 11	errdisable recovery cause mlacp-minlink	Enables automatic recovery from a failover
	Example:	state of the port channel.
	Router(config)# errdisable recovery cause mlacp-minlink	
Step 12	end	Returns the CLI to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring Redundancy for VPWS

Perform this task to provide Layer 2 VPN service redundancy for VPWS.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	

	Command or Action	Purpose	
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 3	pseudowire-class pw-class-name	Specifies the name of a Layer 2 pseudowire	
	Example:	class and enters pseudowire class configuration mode.	
	Router(config)# pseudowire-class ether-pw		
Step 4	encapsulation mpls	Specifies that MPLS is used as the data	
	Example:	encapsulation method for tunneling Layer 2 traffic over the pseudowire.	
	Router(config-pw-class)# encapsulation mpls		
Step 5	status peer topology dual-homed	Enables the reflection of the attachment circuit	
	Example:	status onto both the primary and secondary pseudowires. This condition is necessary if the	
	Router(config-pw-class)# status peer topology dual-homed	peer PEs are connected to a dual-homed device.	
Step 6	exit	Exits pseudowire class configuration mode.	
	Example:		
	Router(config-pw-class)# exit		
Step 7	interface port-channel port-channel-number	1	
	Example:	interface configuration mode.	
	Router(config) # interface port-channel1		
Step 8	no ip address	Specifies that the VLAN interface does not	
	Example:	have an IP address assigned to it.	
	Router(config-if)# no ip address		
Step 9	lacp fast-switchover	Enables LACP 1-to-1 link redundancy.	
	Example:		
	Router(config-if)# lacp fast-switchover		
Step 10	lacp max-bundle max-bundles	Configures the max-bundle links that are	
	Example:	connected to the PoA. The value of the <i>max-bundles</i> argument should not be less than	
	Router(config-if)# lacp max-bundle 4	the total number of links in the LAG that are connected to the PoA.	

	Command or Action	Purpose
		Determines whether the redundancy group is under DHD control, PoA control, or both.
		• Range is 1 to 8. Default value is 8.
Step 11	exit	Exits interface configuration mode.
	Example:	
	Router(config-if)# exit	
Step 12	redundancy	Enters redundancy configuration mode.
	Example:	
	Router(config) # redundancy	
Step 13	interchassis group group-id	Specifies that the port channel is an mLACP
	Example:	port channel.
	Router(config-red)# interchassis group 230	The <i>group-id</i> should match the configured redundancy group.
Step 14	exit	Exits interchassis redundancy mode.
	Example:	
	Router(config-r-ic)# exit	
Step 15	exit	Exits redundancy configuration mode.
	Example:	
	Router(config-red)# exit	
Step 16	interface port-channel port-channel-number	Configures the port channel and enters
	Example:	interface configuration mode.
	Router(config)# interface port-channel1	
Step 17	service instance id ethernet [evc-name]	Configures an Ethernet service instance.
	Example:	
	Router(config-if)# service instance 1 ethernet	
Step 18	encapsulation dot1q vlan-id [, vlan-id[-vlan-id]] [native]	Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.
	Example:	

	Command or Action	Purpose
	Router(config-if-srv)# encapsulation dot1q 100	
Step 19	exit	Exits service instance configuration mode.
	Example:	
	Router(config-if-srv)# exit	
Step 20	xconnect peer-ip-address vc-id {encapsulation mpls pw-class pw-class-name} [pw-class pw-class-name] [sequencing {transmit receive both}]	Binds an attachment circuit to a pseudowire.
	Example:	
	Router(config-if)# xconnect 10.0.3.201 123 pw-class ether-pw	
Step 21	backup peer peer-router-ip-addr vcid [pw-class pw-class-name] [priority value]	Specifies a redundant peer for a pseudowire virtual circuit.
	Example:	
	Router(config-if)# backup peer 10.1.1.1 123 pw-class ether-pw	
Step 22	end	Returns the CLI to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Configuring Redundancy for VPLS

Coupled and Decoupled Modes for VPLS

VPLS can be configured in either coupled mode or decoupled mode. Coupled mode is when at least one attachment circuit in VFI changes state to active, all pseudowires in VFI advertise active. When all attachment circuits in VFI change state to standby, all pseudowires in VFI advertise standby mode. See the figure below.

VPLS decoupled mode is when all pseudowires in the VFI are always active and the attachment circuit state is independent of the pseudowire state. This mode provides faster switchover time when a platform does not support pseudowire status functionality, but extra flooding and multicast traffic will be dropped on the PE with standby attachment circuits. However, if the attachment circuit is down, all pseudowires also go down. See the figure below.

Steps for Configuring Redundancy for VPLS

Perform the following task to configure redundancy for VPLS.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	12 vfi name manual	Establishes a Layer 2 VFI between two
	Example:	separate networks and enters VFI configuration mode.
	Router(config)# 12 vfi vfi1 manual	
Step 4	vpn id vpn-id	Sets or updates a Virtual Private Network
	Example:	(VPN) ID on a VPN routing and forwarding (VRF) instance.
	Router(config-vfi) # vpn id 100	
Step 5	status decoupled	(Optional) Enables decoupled mode. The state
	Example:	of the attachment circuits on the user-facing Provider Edge (uPE) is decoupled from the
	Router(config-vfi)# status decoupled	state of the pseudowires. The mLACP controls the state of the attachment circuits.
Step 6	neighbor neighbor ip-address vc-id	Specifies the routers that should form a VFI connection
	{encapsulation mpls pw-class pw-class-name}	
	Example:	Repeat this command for each neighbor.
	Router(config-vfi) # neighbor 10.1.1.1 50 encapsulation mpls	
Step 7	exit	Exits VFI configuration mode and returns to
	Example:	global configuration mode.

	Command or Action	Purpose
	Router(config-vfi)# exit	
Step 8	interface port-channel port-channel-number	Configures the port channel and enters interface configuration mode.
	Example:	
	Router(config) # interface port-channel1	
Step 9	no ip address	Specifies that the VLAN interface does not
	Example:	have an IP address assigned to it.
	Router(config-if)# no ip address	
Step 10	lacp fast-switchover	Enables LACP 1-to-1 link redundancy.
	Example:	
	Router(config-if)# lacp fast-switchover	
Step 11	lacp max-bundle max-bundles	Configures the max-bundle links that are
	Example:	connected to the PoA. The value of the <i>max-bundles</i> argument should not be less than
	Router(config-if)# lacp max-bundle 2	the total number of links in the LAG that are connected to the PoA.
		Determines whether the redundancy group is under DHD control, PoA control, or both.
		• Range is 1 to 8. Default value is 8.
Step 12	exit	Exits interface configuration mode.
	Example:	
	Router(config-if)# exit	
Step 13	redundancy	Enters redundancy configuration mode.
	Example:	
	Router(config)# redundancy	
Step 14	interchassis group group-id	Specifies that the port channel is an mLACP
	Example:	port-channel.
	Router(config-red)# interchassis group 230	 The group-id should match the configured redundancy group.
Step 15	exit	Exits interchassis redundancy mode.

	Command or Action	Purpose
	Router(config-r-ic)# exit	
Step 16	exit	Exits redundancy configuration mode.
	Example:	
	Router(config-red)# exit	
Step 17	interface port-channel port-channel- number	Configures the port channel and enters interface configuration mode.
	Example:	
	Router(config) # interface port-channel1	
Step 18	service instance id ethernet [evc-name]	Configures an Ethernet service instance and
	Example:	enters Ethernet service configuration mode.
	Router(config-if)# service instance 1 ethernet	
Step 19	encapsulation dot1q vlan-id [, vlan-id[-vlan-id]] [native]	Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.
	Example:	
	Router(config-if-srv)# encapsulation dot1q 100	
Step 20	bridge-domain bridge-id [split-horizon	Configures the bridge domain. Binds the
	[group group-id]]	service instance to a bridge domain instance where <i>domain-number</i> is the identifier for the
	Example:	bridge domain instance.
	Router(config-if-srv)# bridge-domain 200	
Step 21	exit	Exits service instance configuration mode.
	Example:	
	Router(config-if-srv)# exit	
Step 22	interface vlan vlanid	Creates a dynamic switch virtual interface
	Example:	(SVI).
	Router(config-if)# interface vlan 200	
Step 23	no ip address	Specifies that the VLAN interface does not
	Example:	have an IP address assigned to it.
	Router(config-if) # no ip address	

	Command or Action	Purpose
Step 24	xconnect vfi vfi-name Example:	Specifies the Layer 2 VFI that you are binding to the VLAN port.
	Router(config-if)# xconnect vfi vfi-16	
Step 25	end	Returns the CLI to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Configuring Hierarchical VPLS

Perform this task to configure Hierarchical VPLS (H-VPLS).

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	pseudowire-class pw-class-name	Specifies the name of a Layer 2 pseudowire
	Example:	class and enters pseudowire class configuration mode.
	Router(config) # pseudowire-class ether-pw	
Step 4	encapsulation mpls	Specifies that MPLS is used as the data
	Example:	encapsulation method for tunneling Layer 2 traffic over the pseudowire.
	Router(config-pw-class)# encapsulation mpls	
Step 5	status peer topology dual-homed	Enables the reflection of the attachment circuit
	Example:	status onto both the primary and secondary pseudowires. This configuration is necessary
	Router(config-pw-class)# status peer topology dual-homed	if the peer PEs are connected to a dual-homed device.

	Command or Action	Purpose
Step 6	<pre>status decoupled Example: Router(config-pw-class)# status decoupled</pre>	(Optional) Enables decoupled mode. The state of the attachment circuits on the uPE is decoupled from the state of the pseudowires. The mLACP controls the state of the attachment circuits.
Step 7	<pre>exit Example: Router(config-pw-class) # exit</pre>	Exits pseudowire class configuration mode and returns to global configuration mode.
Step 8	<pre>interface port-channel port-channel- number Example: Router(config) # interface port-channel1</pre>	Configures the port channel and enters interface configuration mode.
Step 9	<pre>no ip address Example: Router(config-if) # no ip address</pre>	Specifies that the VLAN interface does not have an IP address assigned to it.
Step 10	<pre>lacp fast-switchover Example: Router(config-if) # lacp fast-switchover</pre>	Enables LACP 1-to-1 link redundancy.
Step 11	lacp max-bundle max-bundles Example: Router(config-if) # lacp max-bundle 4	Configures the max-bundle links that are connected to the PoA. The value of the <i>max-bundles</i> argument should not be less than the total number of links in the LAG that are connected to the PoA. • Determines whether the redundancy group is under DHD control, PoA control, or both. • Range is 1 to 8. Default value is 8.
Step 12	<pre>exit Example: Router(config-if) # exit</pre>	Exits interface configuration mode.
Step 13	redundancy Example: Router(config) # redundancy	Enters redundancy configuration mode.

	Command or Action	Purpose
Step 14	interchassis group group-id Example:	Specifies that the port channel is an mLACP port channel.
	Router(config-red) # interchassis group 230	The <i>group-id</i> should match the configured redundancy group.
Step 15	exit	Exits interchassis redundancy mode.
	Example:	
	Router(config-r-ic)# exit	
Step 16	exit	Exits redundancy configuration mode.
	Example:	
	Router(config-red)# exit	
Step 17	interface port-channel port-channel-number	Configures the port channel and enters interface configuration mode.
	Example:	
	Router(config) # interface port-channel1	
Step 18	service instance id ethernet [evc-name]	Configures an Ethernet service instance and
	Example:	enters Ethernet service configuration mode.
	Router(config-if)# service instance 1 ethernet	
Step 19	encapsulation dot1q vlan-id [, vlan-id[-vlan-id]] [native]	Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.
	Example:	
	Router(config-if-srv)# encapsulation dot1q 100	
Step 20	exit	Exits service instance configuration mode.
	Example:	
	Router(config-if-srv)# exit	
Step 21	xconnect peer-ip-address vc-id {encapsulation mpls pw-class pw-class-name} [pw-class pw-class-name] [sequencing {transmit receive both}]	Binds an attachment circuit to a pseudowire, and configures an Any Transport over MPLS (AToM) static pseudowire.
	Example:	
	Router(config-if)# xconnect 10.0.3.201 123 pw-class vlan-xconnect	

	Command or Action	Purpose
Step 22	backup peer peer-router-ip-addr vcid [pw-class pw-class-name] [priority value]	Specifies a redundant peer for a pseudowire virtual circuit.
	Example:	
	Router(config-if)# backup peer 10.1.1.1 123 pw-class ether-pw	
Step 23	end	Returns the CLI to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Troubleshooting mLACP

Debugging mLACP

Use these **debug** commands for general mLACP troubleshooting.

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 debug redundancy interchassis {all | application | error | event | monitor}

Example:

Router# debug redundancy interchassis all

• Enables debugging of the interchassis redundancy manager.

Step 3 debug mpls ldp iccp

Example:

Router# debug mpls ldp iccp

• Enables debugging of the InterChassis Control Protocol (ICCP).

Step 4 debug lacp [all | event| fsm| misc| multi-chassis [all | database | lacp-mgr | redundancy-group | user-interface] | packet]

Example:

Router# debug lacp multi-chassis all

Enables debugging of LACP activity.

• This command is run on the switch processor.

Step 5 debug lacp etherchannel

Example:

Router# debug lacp etherchannel

Enables debugging for etherchannel component.

Debugging mLACP on an Attachment Circuit or EVC

Use these **debug** commands for troubleshooting mLACP on an attachment circuit or on an EVC.

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 debug acircuit {checkpoint | error | event}

Example:

Router# debug acircuit event

Displays checkpoints, errors, and events that occur on the attachment circuits between the PE and CE routers.

Step 3 debug ethernet service {all | api | error | evc [evc-id] | ha | instance [id id | interface type number | qos] | interface type number | microblock | oam-mgr}

Example:

Router# debug ethernet service all

Enables debugging of Ethernet customer service instances.

Debugging mLACP on AToM Pseudowires

Use the **debug mpls l2transport vc** command for troubleshooting mLACP on AToM pseudowires.

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 debug mpls l2transport vc {event | fsm | ldp | sss | status {event | fsm}}}

Example:

Router# debug mpls 12transport status event

Displays information about the status of AToM virtual circuits (VCs).

Debugging Cross-Connect Redundancy Manager and Session Setup

Use the following **debug**commands to troubleshoot cross-connect, redundancy manager, and session setup.

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 debug sss error

Example:

Router# debug sss error

Displays diagnostic information about errors that may occur during a subscriber service switch (SSS) call setup.

Step 3 debug sss events

Example:

Router# debug sss event

Displays diagnostic information about SSS call setup events.

Step 4 debug xconnect {error | event}

Example:

Router# debug xconnect event

Displays errors or events related to a cross-connect configuration.

Debugging VFI

Use the **debug vfi**command for troubleshooting a VFI.

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 debug vfi {checkpoint | error | event | fsm {error | event}}}

Example:

Router# debug vfi checkpoint

Displays checkpoint information about a VFI.

Debugging the Segment Switching Manager (Switching Setup)

Use the **debug ssm**command for troubleshooting a segment switching manager (SSM).

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 debug ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}

Example:

Router# debug ssm cm events

Displays diagnostic information about the SSM for switched Layer 2 segments.

Debugging High Availability Features in mLACP

Use the following **debug**commands for troubleshooting High Availability features in mLACP.

Procedure

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 debug mpls l2transport checkpoint

Example:

Router# debug mpls 12transport checkpoint

Enables the display of AToM events when AToM is configured for nonstop forwarding/stateful switchover (NSF/SSO) and Graceful Restart.

Step 3 debug acircuit checkpoint

Example:

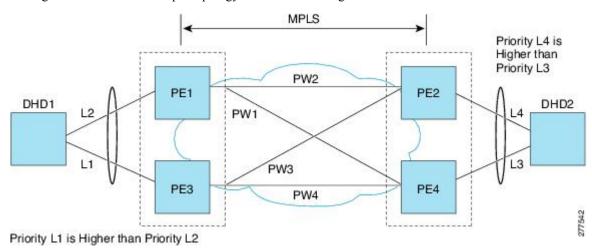
Router# debug acircuit checkpoint

Enables the display of attachment circuit events when AToM is configured for NSF/SSO and Graceful Restart.

Step 4 debug vfi checkpoint

Example:

Router# debug vfi checkpoint


Enables the display of VFI events when AToM is configured for NSF/SSO and Graceful Restart.

Configuration Examples for mLACP

Example Configuring VPWS

Two sample configurations for VPWS follow: one example for an active PoA and the other for a standby PoA.

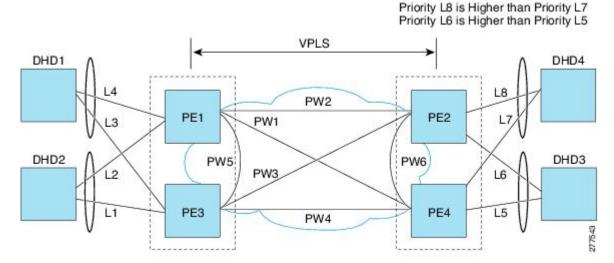
The figure below shows a sample topology for a VPWS configuration.

Active PoA for VPWS

The following VPWS sample configuration is for an active PoA:

```
mpls ldp graceful-restart
mpls label protocol ldp
redundancy
mode sso
interchassis group 1
 member ip 201.0.0.1
 backbone interface Ethernet0/2
 backbone interface Ethernet1/2
 backbone interface Ethernet1/3
 monitor peer bfd
  mlacp node-id 0
pseudowire-class mpls-dhd
 encapsulation mpls
status peer topology dual-homed
interface Loopback0
ip address 200.0.0.1 255.255.255.255
interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
mlacp interchassis group 1
hold-queue 300 in
```

```
service instance 1 ethernet
encapsulation dot1q 100
xconnect 210.0.0.1 10 pw-class mpls-dhd
backup peer 211.0.0.1 10 pw-class mpls-dhd!
interface Ethernet0/0
no ip address
channel-group 1 mode active!
interface Ethernet1/3
ip address 10.0.0.200 255.255.255.0
mpls ip
bfd interval 50 min rx 150 multiplier 3
```


Standby PoA for VPWS

The following VPWS sample configuration is for a standby PoA:

```
mpls ldp graceful-restart
mpls label protocol ldp
mpls ldp graceful-restart
mpls label protocol ldp
Redundancy
mode sso
 interchassis group 1
 member ip 200.0.0.1
 backbone interface Ethernet0/2
 backbone interface Ethernet1/2
 backbone interface Ethernet1/3
 monitor peer bfd
 mlacp node-id 1
pseudowire-class mpls-dhd
 encapsulation mpls
status peer topology dual-homed
interface Loopback0
ip address 201.0.0.1 255.255.255.255
interface Port-channel1
no ip address
 lacp fast-switchover
lacp max-bundle 1
mlacp lag-priority 40000
mlacp interchassis group 1
hold-queue 300 in
 service instance 1 ethernet
 encapsulation dot1q 100
 xconnect 210.0.0.1 10 pw-class mpls-dhd
  backup peer 211.0.0.1 10 pw-class mpls-dhd
interface Ethernet1/0
no ip address
channel-group 1 mode active
interface Ethernet1/3
ip address 10.0.0.201 255.255.255.0
mpls ip
bfd interval 50 \min_{x} 150  multiplier 3
```

Example Configuring VPLS

Two sample configurations for VPLS follow: one example for an active PoA and the other for a standby PoA. The figure below shows a sample topology for a VPLS configuration.

Priority L1 is Higher than Priority L2 Priority L3 is Higher than Priority L4

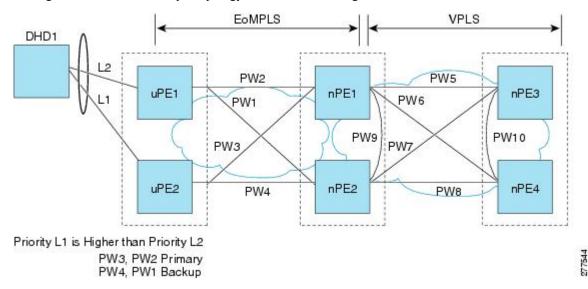
Active PoA for VPLS

The following VPLS sample configuration is for an active PoA:

```
mpls ldp graceful-restart
mpls label protocol ldp
redundancy
mode sso
interchassis group 1
 member ip 201.0.0.1
 backbone interface Ethernet0/2
 monitor peer bfd
 mlacp node-id 0
12 vfi VPLS 200 manual
vpn id 10
neighbor 210.0.0.1 encapsulation mpls
neighbor 211.0.0.1 encapsulation mpls
neighbor 201.0.0.1 encapsulation mpls
interface Loopback0
ip address 200.0.0.1 255.255.255.255
interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
mlacp interchassis group 1
 service instance 1 ethernet
 encapsulation dot1q 100
 bridge-domain 200
```

```
! interface Ethernet0/0 no ip address channel-group 1 mode active ! interface Ethernet1/3 ip address 10.0.0.200 255.255.255.0 mpls ip bfd interval 50 min_rx 150 multiplier 3 ! interface Vlan200 no ip address xconnect vfi VPLS 200
```

Standby PoA for VPLS


The following VPLS sample configuration is for a standby PoA:

```
mpls ldp graceful-restart
mpls label protocol ldp
redundancy
interchassis group 1
 member ip 200.0.0.1
 backbone interface Ethernet0/2
 monitor peer bfd
 mlacp node-id 1
12 vfi VPLS1 manual
vpn id 10
neighbor 210.0.0.1 encapsulation mpls
neighbor 211.0.0.1 encapsulation mpls
neighbor 200.0.0.1 encapsulation mpls
interface Loopback0
ip address 201.0.0.1 255.255.255.255
interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
mlacp lag-priority 40000
mlacp interchassis group 1
service instance 1 ethernet
 encapsulation dot1q 100
 bridge-domain 200
interface Ethernet1/0
no ip address
channel-group 1 mode active
interface Ethernet1/3
ip address 10.0.0.201 255.255.255.0
mpls ip
bfd interval 50 min_rx 150 multiplier 3
interface Vlan200
no ip address
 xconnect vfi VPLS 200
```

Example Configuring H-VPLS

Two sample configurations for H-VPLS follow: one example for an active PoA and the other for a standby PoA.

The figure below shows a sample topology for a H-VPLS configuration.

Active PoA for H-VPLS

The following H-VPLS sample configuration is for an active PoA:

```
mpls ldp graceful-restart
mpls label protocol ldp
redundancy
mode sso
interchassis group 1
 member ip 201.0.0.1
 backbone interface Ethernet0/2
  backbone interface Ethernet1/2
 backbone interface Ethernet1/3
 monitor peer bfd
 mlacp node-id 0
pseudowire-class mpls-dhd
 encapsulation mpls
status peer topology dual-homed
interface Loopback0
ip address 200.0.0.1 255.255.255.255
interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
mlacp interchassis group 1
hold-queue 300 in
 service instance 1 ethernet
 encapsulation dot1g 100
  xconnect 210.0.0.1 10 pw-class mpls-dhd
```

```
backup peer 211.0.0.1 10 pw-class mpls-dhd
!
interface Ethernet0/0
no ip address
channel-group 1 mode active
!
interface Ethernet1/3
ip address 10.0.0.200 255.255.255.0
mpls ip
bfd interval 50 min_rx 150 multiplier 3
```

Standby PoA for H-VPLS

The following H-VPLS sample configuration is for a standby PoA:

```
mpls ldp graceful-restart
mpls label protocol ldp
Redundancy
mode sso
 interchassis group 1
 member ip 200.0.0.1
 backbone interface Ethernet0/2
 backbone interface Ethernet1/2
 backbone interface Ethernet1/3
 monitor peer bfd
 mlacp node-id 1
pseudowire-class mpls-dhd
encapsulation mpls
status peer topology dual-homed
interface Loopback()
ip address 201.0.0.1 255.255.255.255
interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
mlacp lag-priority 40000
mlacp interchassis group 1
hold-queue 300 in
 service instance 1 ethernet
 encapsulation dot1q 100
 xconnect 210.0.0.1 10 pw-class mpls-dhd
  backup peer 211.0.0.1 10 pw-class mpls-dhd
interface Ethernet1/0
no ip address
channel-group 1 mode active
interface Ethernet1/3
ip address 10.0.0.201 255.255.255.0
mpls ip
bfd interval 50 min_rx 150 multiplier 3
```

Example Verifying VPWS on an Active PoA

The following **show** commands can be used to display statistics and configuration parameters to verify the operation of the mLACP feature on an active PoA:

show lacp multichassis group

Use the **show lacp multichassis group** command to display the interchassis redundancy group value and the operational LACP parameters.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
RG State: Synchronized
System-Id:
            200.000a.f331.2680
ICCP Version: 0
Backbone Uplink Status: Connected
Local Configuration:
Node-id: 0
System-Id: 200.000a.f331.2680
Peer Information:
State: Up
Node-id:
           7
System-Id: 2000.0014.6a8b.c680
ICCP Version: 0
State Flags: Active
                           - S
           Standby
           Down
                           - D
           AdminDown - AD
           Standby Reverting - SR
           Unknown
mLACP Channel-groups
Channel State Priority
                              Active Links Inactive Links
Group Local/Peer Local/Peer
                             Local/Peer Local/Peer
         A/S 28000/32768
                               4/4
                                                0/0
```

show lacp multichassis port-channel

Use the **show lacp multichassis port-channel** command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.

```
Router# show lacp multichassis port-channel1
Interface Port-channel1
Local Configuration:
Address: 000a.f331.2680
Channel Group: 1
State: Active
LAG State: Up
Priority: 28000
Inactive Links: 0
Total Active Links: 4
          Bundled: 4
          Selected: 4
          Standby: 0
       Unselected: 0
Peer Configuration:
Interface: Port-channel1
Address: 0014.6a8b.c680
Channel Group: 1
State: Standby
LAG State: Up
Priority: 32768
Inactive Links: 0
Total Active Links: 4
                           Bundled: 0
```

```
Selected: 0
Standby: 4
Unselected: 0
```

show mpls ldp iccp

Use the **show mpls ldp iccp** command to display the LDP session and ICCP state information.

```
Router# show mpls ldp iccp
ICPM RGID Table
  iccp:
    rg id: 100, peer addr: 172.3.3.3
   ldp session 0x3, client id 0
   iccp state: ICPM ICCP CONNECTED
   app type: MLACP
       app state: ICPM APP CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
 iccp:
    rg id: 100, peer addr: 172.3.3.3
    ldp_session 0x3, client id 0
   iccp state: ICPM ICCP CONNECTED
    app type: MLACP
       app state: ICPM APP CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1
```

show mpls l2transport

Use the **show mpls l2transport** command to display the local interface and session details, destination address, and status.

Router# show mpls 12transport vc 2							
Local intf	Local circuit	Dest address	VC ID	Status			
Po1	Eth VLAN 2	172.2.2.2	2	UP			
Po1	Eth VLAN 2	172.4.4.4	2	STANDBY			

show etherchannel summary

Use the **show etherchannel summary** command to display the status and identity of the mLACP member links.

```
Router# show etherchannel summary
Flags: D - down P - bundled in port-channel
      I - stand-alone s - suspended
      H - Hot-standby (LACP only)
      R - Layer3 S - Layer2
                  f - failed to allocate aggregator
      U - in use
      M - not in use, minimum links not met
      u - unsuitable for bundling
      w - waiting to be aggregated
      d - default port
Number of channel-groups in use: 2
Number of aggregators:
Group Port-channel Protocol
                          Ports
-----
                         Gi2/9(P) Gi2/20(P) Gi2/31(P)
                 LACP
```

show etherchannel number port-channel

Use the **show etherchannel number port-channel** command to display the status and identity of the EtherChannel and and port channel.

```
Router# show etherchannel 51 port-c
             Port-channels in the group:
Port-channel: Po51 (Primary Aggregator)
_____
Age of the Port-channel = 0d:02h:25m:23s
Logical slot/port = 14/11 Number of ports = 2
HotStandBy port = null
Passive port list = Gi9/15 Gi9/16
Port state = Port-channel L3-Ag Ag-Inuse
               = LACP
Protocol
Fast-switchover
               = enabled
Direct Load Swap = disabled
Ports in the Port-channel:
                   EC state No of bits
Index Load Port
----+-----
     55 Gi9/15 mLACP-stdby 4
 0
 1
     AA Gi9/16 mLACP-stdby 4
Time since last port bundled: Od:01h:03m:39s
                                        Gi9/16
Time since last port Un-bundled: 0d:01h:03m:40s
                                         Gi9/16
Last applied Hash Distribution Algorithm: Fixed Channel-group Iedge Counts:
----:
Access ref count : 0
Iedge session count : 0
```

show lacp internal

Use the **show lacp internal**command to display the device, port, and member-link information.

```
Router# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
       A - Device is in Active mode P - Device is in Passive mode
Channel group 1
                            LACP port
                                          Admin
                                                                          Port.
                                                     Oper Port
        Flags State Priority Key
SA bndl-act 28000 0x1
Port
                                                    Key Number
                                                                         State
      Flags Scale
SA bndl-act 28000
Gi2/9
                                         0x1
                                                    0x1
                                                            0x820A
                                                                         0x3D
                                         0x1
0x1
0x1
                                                    0x1 0x8215
Gi2/20 SA
                 bndl-act 28000
                                                                          U×3D
Gi2/31 SA bndl-act 28000
Gi2/40 SA bndl-act 28000
                                                     0x1
                                                             0x8220
                                                                          0x3D
                                                     0x1
                                                             0x8229
                                                                          0x3D
Peer (MLACP-PE3) mLACP member links
Gi3/11 FA hot-sby 32768 0x1 0x1 0xF30C
Gi3/21 FA hot-sby 32768 0x1 0x1 0xF316
Gi3/32 FA hot-sby 32768 0x1 0x1 0xF321
Gi3/2 FA hot-sby 32768 0x1 0x1 0xF303
                                                                         0x5
                                                    0x1 0xF316
                                                                          0x5
                                                                          0x7
                                                                          0x7
```

Example Verifying VPWS on a Standby PoA

The following **show** commands can be used to display statistics and configuration parameters to verify the operation of the mLACP feature on a standby PoA:

show lacp multichassis group

Use the **show lacp multichassis group** command to display the LACP parameters, local configuration, status of the backbone uplink, peer information, node ID, channel, state, priority active, and inactive links.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
RG State: Synchronized
System-Id: 200.000a.f331.2680
ICCP Version: 0
Backbone Uplink Status: Connected
Local Configuration:
Node-id:
System-Id: 2000.0014.6a8b.c680
Peer Information:
           0
Node-id:
System-Id: 200.000a.f331.2680
ICCP Version: 0
State Flags: Active
           Standby
                            - D
           AdminDown - AD
            Standby Reverting - SR
            Unknown - U
mLACP Channel-groups
Channel State
                   Priority Active Links Inactive Links
                              Local/Peer Local/Peer
 Group Local/Peer Local/Peer
          S/A 32768/28000
                                 4/4
                                                   0/0
```

show lacp multichassis portchannel

Use the **show lacp multichassis portchannel** command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.

```
Router# show lacp multichassis port-channel1
Interface Port-channel1
Local Configuration:
Address: 0014.6a8b.c680
Channel Group: 1
State: Standby
LAG State: Up
Priority: 32768
Inactive Links: 0
Total Active Links: 4
          Bundled: 0
          Selected: 0
          Standby: 4
       Unselected: 0
Peer Configuration:
Interface: Port-channel1
Address: 000a.f331.2680
Channel Group: 1
```

```
State: Active
LAG State: Up
Priority: 28000
Inactive Links: 0
Total Active Links: 4

Bundled: 4
Selected: 4
Standby: 0
Unselected: 0
```

show mpls ldp iccp

Use the **show mpls ldp iccp**command to display the LDP session and ICCP state information.

```
Router# show mpls ldp iccp
ICPM RGID Table
 iccp:
   rg id: 100, peer addr: 172.1.1.1
    ldp session 0x2, client id 0
   iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
       app state: ICPM APP CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
    rg id: 100, peer addr: 172.1.1.1
    ldp session 0x2, client id 0
   iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
       app state: ICPM APP CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1
```

show mpls l2transport

Use the **show mpls l2transport** command to display the local interface and session details, destination address, and status.

Router# show mpls 12transport vc 2							
Local intf	Local circuit	Dest address	VC ID	Status			
Po1	Eth VLAN 2	172.2.2.2	2	STANDBY			
Po1	Eth VLAN 2	172.4.4.4	2	STANDBY			

show etherchannel summary

Use the **show etherchannel summary** command to display the status and identity of the mLACP member links.

```
Number of aggregators: 2

Group Port-channel Protocol Ports
----+

1 Pol(RU) LACP Gi3/2(P) Gi3/11(P) Gi3/21(P)

Gi3/32(P)
```

show lacp internal

Use the **show lacp internal** command to display the device, port, and member-link information.

```
Router# show lacp 1 internal
Flags: S - Device is requesting Slow LACPDUs
         F - Device is requesting Fast LACPDUs
         A - Device is in Active mode P - Device is in Passive mode
Channel group 1
                                LACP port Admin
          Flags State Priority Key
32768 0x1
                                                            Oper
                                                                    Port
                                                                                    Port
                                                                    Number
Port
                                                            Kev
                                                                                    State
          FA bndl-sby 32768
                                                                    0xF303
Gi3/2
                                                           0x1
                                                                                   0x7
         FA bndl-sby 32768 0x1 0x1 0xF30C
FA bndl-sby 32768 0x1 0x1 0xF316
FA bndl-sby 32768 0x1 0x1 0xF321
Gi3/11 FA
                                                                                    0x5
Gi3/21
                                                                                    0x5
Gi3/32
                                                                                    0x7
Peer (MLACP-PE1) mLACP member links
Gi2/20 SA bndl 28000 0x1 0x1 0x8215
Gi2/31 SA bndl 28000 0x1 0x1 0x8220
Gi2/40 SA bndl 28000 0x1 0x1 0x8229
Gi2/9 SA bndl 28000 0x1 0x1 0x820A
                                                                                   0x3D
                                                                                   0x3D
                                                                                    U×3D
                                                                                    0x3D
```

Example Verifying VPLS on an Active PoA

The following **show** commands can be used to display statistics and configuration parameters to verify the operation of the mLACP feature on an active PoA:

show lacp multichassis group

Use the **show lacp multichassis group** command to display the LACP parameters, local configuration, status of the backbone uplink, peer information, node ID, channel, state, priority active, and inactive links.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
RG State: Synchronized System-Id: 200.000a.f331.2680
ICCP Version: 0
Backbone Uplink Status: Connected
Local Configuration:
Node-id: 0
System-Id: 200.000a.f331.2680
Peer Information:
State:
Node-id:
System-Id: 2000.0014.6a8b.c680
ICCP Version: 0
State Flags: Active
                              - s
             Standby
             Down
             AdminDown
                             - AD
             Standby Reverting - SR
             Unknown
```

```
mLACP Channel-groups
Channel State Priority Active Links Inactive Links
Group Local/Peer Local/Peer Local/Peer

1 A/S 28000/32768 4/4 0/0
```

show lacp multichassis port-channel

Use the **show lacp multichassis port-channel** command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.

```
Router# show lacp multichassis port-channel1
Interface Port-channel1
Local Configuration:
Address: 000a.f331.2680
Channel Group: 1
State: Active
LAG State: Up
Priority: 28000
Inactive Links: 0
Total Active Links: 4
          Bundled: 4
         Selected: 4
          Standby: 0
       Unselected: 0
Peer Configuration:
Interface: Port-channel1
Address: 0014.6a8b.c680
Channel Group: 1
State: Standby
LAG State: Up
Priority: 32768
Inactive Links: 0
Total Active Links: 4
                           Bundled: 0
          Selected: 0
          Standby: 4
        Unselected: 0
```

show mpls ldp iccp

Use the **show mpls ldp iccp** command to display the LDP session and ICCP state information.

```
Router# show mpls ldp iccp
ICPM RGID Table
  iccp:
    rg id: 100, peer addr: 172.3.3.3
    ldp_session 0x3, client_id 0
   iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
       app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
  iccp:
    rg id: 100, peer addr: 172.3.3.3
    ldp session 0x3, client id 0
    iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
       app state: ICPM APP CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1
```

show mpls I2transport

Use the **show mpls l2transport** command to display the local interface and session details, destination address, and the status.

Router# show mpls 12transport vc 4000							
Local intf	Local circuit	Dest address	VC ID	Status			
VFI VPLS	VFI	172.2.2.2	4000	UP			
VFI VPLS	VFI	172.4.4.4 400	0	UP			

show etherchannel summary

Use the **show etherchannel summary** command to display the status and identity of the mLACP member links.

```
Router# show etherchannel summary
Flags: D - down P - bundled in port-channel
        I - stand-alone s - suspended
        H - Hot-standby (LACP only)
        R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
        \mbox{\it M} - not in use, minimum links not met
        u - unsuitable for bundling
        w - waiting to be aggregated
        d - default port
Number of channel-groups in use: 2
Number of aggregators:
Group Port-channel Protocol
                                 Ports
                                Gi2/9(P)
1
      Pol(RU)
                       TACP
                                           Gi2/20(P) Gi2/31(P)
                                 Gi2/40(P)
```

show lacp internal

Use the **show lacp internal** command to display the device, port, and member-link information.

```
Router# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
       A - Device is in Active mode P - Device is in Passive mode
Channel group 1
                         LACP port
                                     Admin
                                               Oper
                                                      Port.
                                                                 Port.
Port
        Flags State
                         Priority
                                    Kev
                                               Kev
                                                      Number
                                                                 State
        SA
Gi2/9
              bndl-act 28000
                                     0x1
                                               0x1
                                                     0x820A
                                                                 0x3D
                                               0x1
                                                     0x8215
Gi2/20
       SA
               bndl-act 28000
                                     0x1
                                                                 U×3D
               bndl-act 28000
bndl-act 28000
Gi2/31
        SA
                                     0x1
                                               0x1
                                                      0x8220
                                                                 0x3D
       SA
Gi2/40
                                     0x1
                                               0x1
                                                      0x8229
                                                                 0x3D
Peer (MLACP-PE3) mLACP member links
Gi3/11 FA hot-sby 32768 0x1
Gi3/21 FA hot-sby 32768 0x1
                                             0x1 0xF30C
                                                                 0x5
                                     0x1
0x1
                                               0x1 0xF316
                                                                 0 \times 5
                                               0x1
Gi3/32
        FΑ
                hot-sby 32768
                                                      0xF321
                                                                  0x7
Gi3/2
        FΑ
                hot-sby 32768
                                      0x1
                                               0x1
                                                      0xF303
                                                                  0x7
```

Example Verifying VPLS on a Standby PoA

The **show** commands in this section can be used to display statistics and configuration parameters to verify the operation of the mLACP feature:

show lacp multichassis group

Use the **show lacp multichassis group** *interchassis group number* command to display the LACP parameters, local configuration, status of the backbone uplink, peer information, node ID, channel, state, priority, active, and inactive links.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
RG State:
          Synchronized
System-Id:
            200.000a.f331.2680
ICCP Version: 0
Backbone Uplink Status: Connected
Local Configuration:
Node-id: 7
System-Id: 2000.0014.6a8b.c680
Peer Information:
            Uр
Node-id:
            0
System-Id: 200.000a.f331.2680
ICCP Version: 0
State Flags: Active
           Standby
                            - D
           Down
           AdminDown
                           - AD
           Standby Reverting - SR
           Unknown
                            - 11
mLACP Channel-groups
Channel State Priority
                              Active Links Inactive Links
Group Local/Peer Local/Peer
                               Local/Peer
                                             Local/Peer
  1
         S/A 32768/28000
                                4/4
                                                  0/0
```

show lacp multichassis portchannel

Use the **show lacp multichassis portchannel** command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.

```
Router# show lacp multichassis port-channel1
Interface Port-channel1
Local Configuration:
Address: 0014.6a8b.c680
Channel Group: 1
State: Standby
LAG State: Up
Priority: 32768
Inactive Links: 0
Total Active Links: 4
          Bundled: 0
          Selected: 0
          Standby: 4
       Unselected: 0
Peer Configuration:
Interface: Port-channel1
Address: 000a.f331.2680
Channel Group: 1
State: Active
LAG State: Up
Priority: 28000
Inactive Links: 0
Total Active Links: 4
```

```
Bundled: 4
Selected: 4
Standby: 0
Unselected: 0
```

show mpls ldp iccp

Use the **show mpls ldp iccp** command to display the LDP session and ICCP state information.

```
Router# show mpls ldp iccp
ICPM RGID Table
  iccp:
    rg id: 100, peer addr: 172.1.1.1
    ldp session 0x2, client id 0
    iccp state: ICPM ICCP CONNECTED
   app type: MLACP
       app state: ICPM APP CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
 iccp:
    rg id: 100, peer addr: 172.1.1.1
    ldp_session 0x2, client id 0
   iccp state: ICPM ICCP CONNECTED
    app type: MLACP
       app state: ICPM APP CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1
```

show mpls l2transport

Use the **show mpls l2transport** command to display the local interface and session details, destination address, and status.

Router# show mpls 12transport vc 4000 Local intf Local circuit Dest address VC ID Status VFI VPLS VFI 172.2.2.2 4000 UP VFI VPLS VFI 172.4.4.4 4000 UP

showetherchannelsummary

Use the **show etherchannel summary** command to display the status and identity of the mLACP member links.

Router# show etherchannel summary

```
Flags: D - down P - bundled in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
M - not in use, minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port

Number of channel-groups in use: 2

Number of aggregators: 2

Group Port-channel Protocol Ports
```

1	Pol(RU)	LACP	Gi3/2(P)	Gi3/11(P)	Gi3/21(P)
			Gi3/32(P)		

show lacp internal

Use the **show lacp internal** command to display the device, port, and member-link information.

Router# show lacp 1 internal							
Flags: S - Device is requesting Slow LACPDUs							
	F - Device is requesting Fast LACPDUs A - Device is in Active mode P - Device is in Passive mode						ode
Channel	group 1						
			LACP port	Admin	Oper	Port	Port
Port	Flags	State	Priority	Key	Key	Number	State
Gi3/2	FA	bndl-sby	32768	0x1	0x1	0xF303	0x7
Gi3/11	FA	bndl-sby	32768	0x1	0x1	0xF30C	0x5
Gi3/21	FA	bndl-sby	32768	0x1	0x1	0xF316	0x5
Gi3/32	FA	bndl-sby	32768	0x1	0x1	0xF321	0x7
Peer (MLACP-PE1) mLACP member links							
Gi2/20	SA	bndl	28000	0x1	0x1	0x8215	0x3D
Gi2/31	SA	bndl	28000	0x1	0x1	0x8220	0x3D
Gi2/40	SA	bndl	28000	0x1	0x1	0x8229	0x3D
Gi2/9	SA	bndl	28000	0x1	0x1	0x820A	0x3D

Glossary

active attachment circuit—The link that is actively forwarding traffic between the DHD and the active PoA. **active PW**—The pseudowire that is forwarding traffic on the active PoA.

BD-bridge domain.

BFD—bidirectional forwarding detection.

DHD—dual-homed device. A node that is connected to two switches over a multichassis link aggregation group for the purpose of redundancy.

DHN—dual-homed network. A network that is connected to two switches to provide redundancy.

H-VPLS—Hierarchical Virtual Private LAN Service.

ICC—Interchassis Communication Channel.

ICCP—Interchassis Communication Protocol.

ICPM—Interchassis Protocol Manager.

ICRM—Interchassis Redundancy Manager.

LACP—Link Aggregation Control Protocol.

LAG—link aggregation group.

LDP—Link Distribution Protocol.

MCEC—Multichassis EtherChannel.

mLACP—Multichassis LACP.

PoA—point of attachment. One of a pair of switches running multichassis link aggregation group with a DHD.

PW-RED—pseudowire redundancy.

standby attachment circuit—The link that is in standby mode between the DHD and the standby PoA.

standby PW—The pseudowire that is in standby mode on either an active or a standby PoA.

uPE—user-facing Provider Edge.

VPLS—Virtual Private LAN Service.

VPWS—Virtual Private Wire Service.

Glossary