

Segment Routing Configuration Guide for Cisco NCS 6000 Series Routers, IOS XR Release 7.1.x

First Published: 2020-01-20 **Last Modified:** 2020-07-30

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387) Fax: 408 527-0883 $^{\circ}$ 2020 Cisco Systems, Inc. All rights reserved.

CONTENTS

PREFACE

Preface ix

Changes to This Document ix

Communications, Services, and Additional Information ix

CHAPTER 1

New and Changed Information for Segment Routing Features 1

New and Changed Segment Routing Features 1

CHAPTER 2

About Segment Routing 3

Scope 3

Need 4

Benefits 4

Workflow for Deploying Segment Routing 5

CHAPTER 3

Configure Segment Routing Global Block 7

About the Segment Routing Global Block 7

Setup a Non-Default Segment Routing Global Block Range 9

CHAPTER 4

Configure Segment Routing for IS-IS Protocol 11

Enabling Segment Routing for IS-IS Protocol 11

Configuring a Prefix-SID on the IS-IS Enabled Loopback Interface 13

IS-IS Prefix Attributes for Extended IPv4 and IPv6 Reachability 16

Prefix Attribute Flags 16

IPv4 and IPv6 Source Router ID 17

Configuring Prefix Attribute N-flag-clear 18

IS-IS Multi-Domain Prefix SID and Domain Stitching: Example 19

Configure IS-IS Multi-Domain Prefix SID 20

```
Distribute IS-IS Link-State Data
CHAPTER 5
                     Configure Segment Routing for OSPF Protocol 23
                          Enabling Segment Routing for OSPF Protocol 23
                          Configuring a Prefix-SID on the OSPF-Enabled Loopback Interface 25
                          Configuring an Adjacency SID 27
CHAPTER 6
                     Configure Segment Routing for BGP 31
                          Segment Routing for BGP 31
                          Configure BGP Prefix Segment Identifiers
                          Segment Routing Egress Peer Engineering
                            Configure Segment Routing Egress Peer Engineering 33
                          Configure BGP Link-State 35
                          Use Case: Configuring SR-EPE and BGP-LS 37
CHAPTER 7
                     Configure SR-TE Policies 41
                          SR-TE Policy Overview 41
                          Usage Guidelines and Limitations
                          Instantiation of an SR Policy 42
                            Manually Provisioned SR Policy 42
                          SR-TE Policy Path Types 42
                            Dynamic Paths 43
                              Optimization Objectives 43
                              Constraints 44
                              Configure SR Policy with Dynamic Path 46
                            Explicit Paths 47
                              SR-TE Policy with Explicit Path 47
                              Configuring Explicit Path with Affinity Constraint Validation 50
                          Protocols 52
                            Path Computation Element Protocol 52
                            BGP SR-TE 52
                              Configure BGP SR Policy Address Family at SR-TE Head-End 52
                          Traffic Steering 55
```

Configure Common Router ID 21

```
Using Binding Segments 56
                               Stitching SR-TE Polices Using Binding SID: Example 56
                            L2VPN Preferred Path 59
                             Policy-Based Tunnel Selection for SR-TE Policy 60
                           Miscellaneous 61
                             Configure Seamless Bidirectional Forwarding Detection 61
                               Configure the SBFD Reflector 62
                               Configure the SBFD Initiator 64
                            SR-TE Reoptimization Timers 68
CHAPTER 8
                     Enabling Segment Routing Flexible Algorithm 71
                          Prerequisites for Flexible Algorithm 71
                          Building Blocks of Segment Routing Flexible Algorithm 71
                            Flexible Algorithm Definition 71
                            Flexible Algorithm Membership 72
                            Flexible Algorithm Definition Advertisement 72
                            Flexible Algorithm Prefix-SID Advertisement 72
                            Calculation of Flexible Algorithm Path 72
                             Installation of Forwarding Entries for Flexible Algorithm Paths 73
                          Configuring Flexible Algorithm 73
                          Example: Configuring IS-IS Flexible Algorithm 75
                          Example: Traffic Steering to Flexible Algorithm Paths 75
                             BGP Routes on PE – Color Based Steering 75
CHAPTER 9
                     Configure Segment Routing Path Computation Element 81
                           About SR-PCE 81
                          Configure SR-PCE 82
                             Configure the Disjoint Policy (Optional) 84
                             Global Maximum-delay Constraint 85
CHAPTER 10
                     Configure Performance Measurement 87
                          Measurement Modes
                          Link Delay Measurement
```

Automated Steering 55

SR Policy	Liveness	Monitoring	- Hardware	Offloading	100
Dit I oney	Liveness	Widilitoling	Traraware	Officualing	100

CHAPTER 11 Configure Topology-Independent Loop-Free Alternate (TI-LFA) 101

Usage Guidelines and Limitations 102

Configuring TI-LFA for IS-IS 103

Configuring TI-LFA for OSPF 105

CHAPTER 12 Configure Segment Routing Microloop Avoidance 107

About Segment Routing Microloop Avoidance 107

Configure Segment Routing Microloop Avoidance for IS-IS 109

Configure Segment Routing Microloop Avoidance for OSPF 110

CHAPTER 13 Configure Segment Routing Mapping Server 113

Segment Routing Mapping Server 113

Usage Guidelines and Restrictions 114

Segment Routing and LDP Interoperability 114

Example: Segment Routing LDP Interoperability 114

Configuring Mapping Server 117

Enable Mapping Advertisement 119

Configure Mapping Advertisement for IS-IS 119

Configure Mapping Advertisement for OSPF 120

Enable Mapping Client 121

CHAPTER 14 Using Segment Routing Traffic Matrix 123

Segment Routing Traffic Matrix 123

Traffic Collector Process 123

Configuring Traffic Collector 124

Displaying Traffic Information 126

CHAPTER 15 Using Segment Routing OAM 129

MPLS Ping and Traceroute for BGP and IGP Prefix-SID 129

Examples: MPLS Ping, Traceroute, and Tree Trace for Prefix-SID 130

MPLS LSP Ping and Traceroute Nil FEC Target 131

Examples: LSP Ping and Traceroute for Nil_FEC Target 132

Segment Routing Ping and Traceroute 133

Segment Routing Ping 133

Segment Routing Traceroute 135

Contents

Preface

Note

This release has reached end-of-life status. For more information, see the End-of-Life and End-of-Sale Notices.

The Segment Routing Configuration Guide for Cisco NCS 6000 Series Routers preface contains these sections:

- Changes to This Document, on page ix
- Communications, Services, and Additional Information, on page ix

Changes to This Document

This table lists the changes made to this document since it was first printed.

Date	Change Summary
January 2020	Initial release of this document
August 2020	Replublished for Release 7.1.2

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.

New and Changed Information for Segment Routing Features

This table summarizes the new and changed feature information for the *Segment Routing Configuration Guide* for Cisco NCS 6000 Series Routers, and lists where they are documented.

• New and Changed Segment Routing Features , on page 1

New and Changed Segment Routing Features

Segment Routing Features Added or Modified in IOS XR Release 7.1.x

Feature	Description	Introduced/Changed in Release	Where Documented
Segment Routing Performance Measurement - Link Delay Measurement using RFC5357 (TWAMP Light) Encoding	This feature is introduced.	Release 7.1.2	Configure Performance Measurement, on page 87
Segment Routing Traffic Matrix Collection for Telemetry	This feature is introduced.	Release 7.1.1	Displaying Traffic Information, on page 126
Segment Routing for Flexible Algorithm	This feature is introduced.	Release 7.1.1	Enabling Segment Routing Flexible Algorithm, on page 71
Policy-Based Tunnel Selection for SR-TE Policy	This feature is introduced.	Release 7.1.1	Policy-Based Tunnel Selection for SR-TE Policy, on page 60

New and Changed Segment Routing Features

About Segment Routing

This chapter introduces the concept of segment routing and provides a workflow for configuring segment routing.

- Scope, on page 3
- Need, on page 4
- Benefits, on page 4
- Workflow for Deploying Segment Routing, on page 5

Scope

Segment routing is a method of forwarding packets on the network based on the source routing paradigm. The source chooses a path and encodes it in the packet header as an ordered list of segments. Segments are an identifier for any type of instruction. For example, topology segments identify the next hop toward a destination. Each segment is identified by the segment ID (SID) consisting of a flat unsigned 20-bit integer.

Segments

Interior gateway protocol (IGP) distributes two types of segments: prefix segments and adjacency segments. Each router (node) and each link (adjacency) has an associated segment identifier (SID).

• A prefix SID is associated with an IP prefix. The prefix SID is manually configured from the segment routing global block (SRGB) range of labels, and is distributed by IS-IS or OSPF. The prefix segment steers the traffic along the shortest path to its destination. A node SID is a special type of prefix SID that identifies a specific node. It is configured under the loopback interface with the loopback address of the node as the prefix.

A prefix segment is a global segment, so a prefix SID is globally unique within the segment routing domain.

• An adjacency segment is identified by a label called an adjacency SID, which represents a specific adjacency, such as egress interface, to a neighboring router. The adjacency SID is distributed by IS-IS or OSPF. The adjacency segment steers the traffic to a specific adjacency.

An adjacency segment is a local segment, so the adjacency SID is locally unique relative to a specific router.

By combining prefix (node) and adjacency segment IDs in an ordered list, any path within a network can be constructed. At each hop, the top segment is used to identify the next hop. Segments are stacked in order at

the top of the packet header. When the top segment contains the identity of another node, the receiving node uses equal cost multipaths (ECMP) to move the packet to the next hop. When the identity is that of the receiving node, the node pops the top segment and performs the task required by the next segment.

Dataplane

Segment routing can be directly applied to the Multiprotocol Label Switching (MPLS) architecture with no change in the forwarding plane. A segment is encoded as an MPLS label. An ordered list of segments is encoded as a stack of labels. The segment to process is on the top of the stack. The related label is popped from the stack, after the completion of a segment.

Services

Segment Routing integrates with the rich multi-service capabilities of MPLS, including Layer 3 VPN (L3VPN), Virtual Private Wire Service (VPWS), Virtual Private LAN Service (VPLS), and Ethernet VPN (EVPN).

Segment Routing for Traffic Engineering

Segment routing for traffic engineering (SR-TE) takes place through a between a source and destination pair. Segment routing for traffic engineering uses the concept of source routing, where the source calculates the path and encodes it in the packet header as a segment. Each segment is an end-to-end path from the source to the destination, and instructs the routers in the provider core network to follow the specified path instead of the shortest path calculated by the IGP. The destination is unaware of the presence of the .

Need

With segment routing for traffic engineering (SR-TE), the network no longer needs to maintain a per-application and per-flow state. Instead, it simply obeys the forwarding instructions provided in the packet.

SR-TE utilizes network bandwidth more effectively than traditional MPLS-TE networks by using ECMP at every segment level. It uses a single intelligent source and relieves remaining routers from the task of calculating the required path through the network.

Benefits

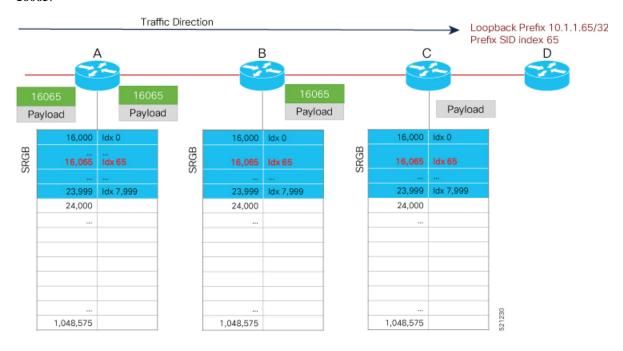
- **Ready for SDN**: Segment routing was built for SDN and is the foundation for Application Engineered Routing (AER). SR prepares networks for business models, where applications can direct network behavior. SR provides the right balance between distributed intelligence and centralized optimization and programming.
- Minimal configuration: Segment routing for TE requires minimal configuration on the source router.
- Load balancing: Unlike in RSVP-TE, load balancing for segment routing can take place in the presence of equal cost multiple paths (ECMPs).
- **Supports Fast Reroute (FRR)**: Fast reroute enables the activation of a pre-configured backup path within 50 milliseconds of path failure.
- **Plug-and-Play deployment**: Segment routing are interoperable with existing MPLS control and data planes and can be implemented in an existing deployment.

Workflow for Deploying Segment Routing

Follow this workflow to deploy segment routing.

- 1. Configure the Segment Routing Global Block (SRGB)
- 2. Enable Segment Routing and Node SID for the IGP
- 3. Configure Segment Routing for BGP
- **4.** Configure the SR-TE Policy
- 5. Configure TI-LFA and Microloop Avoidance
- **6.** Configure the Segment Routing Mapping Server
- 7. Collect Traffic Statistics

Workflow for Deploying Segment Routing


Configure Segment Routing Global Block

Local label allocation is managed by the label switching database (LSD). The Segment Routing Global Block (SRGB) is the range of label values preserved for segment routing in the LSD.

- About the Segment Routing Global Block, on page 7
- Setup a Non-Default Segment Routing Global Block Range, on page 9

About the Segment Routing Global Block

The Segment Routing Global Block (SRGB) is a range of labels reserved for Segment Routing global segments. A prefix-SID is advertised as a domain-wide unique index. The prefix-SID index points to a unique label within the SRGB range. The index is zero-based, meaning that the first index is 0. The MPLS label assigned to a prefix is derived from the Prefix-SID index plus the SRGB base. For example, considering an SRGB range of 16,000 to 23,999, a prefix 10.1.1.65/32 with prefix-SID index of **65** is assigned the label value of **16065**.

To keep the configuration simple and straightforward, we strongly recommended that you use a homogenous SRGB (meaning, the same SRGB range across all nodes). Using a heterogenous SRGB (meaning, a different SRGB range of the same size across nodes) is also supported but is not recommended.

Behaviors and Limitations

- The default SRGB in IOS XR has a size of 8000 starting from label value 16000. The default range is 16000 to 23,999. With this size, and assuming one loopback prefix per router, an operator can assign prefix SIDs to a network with 8000 routers.
- There are instances when you might need to define a different SRGB range. For example:
 - Non-IOS XR nodes with a SRGB range that is different than the default IOS XR SRGB range.
 - The default SRGB range is not large enough to accommodate all required prefix SIDs.
- A non-default SRGB can be configured following these guidelines:
 - The SRGB starting value can be configured anywhere in the dynamic label range space (16,000 to 1,048,575).
 - In Cisco IOS XR release earlier than 6.6.3, the SRGB can have a maximum configurable size of 262,143.
 - In Cisco IOS XR release 6.6.3 and later, the SRGB can be configured to any size value that fits within the dynamic label range space.
- Allocating an SRGB label range does not mean that all the labels in this range are programmed in the
 forwarding table. The label range is just reserved for SR and not available for other purposes. Furthermore,
 a platform may limit the number of local labels that can be programmed.
- We recommend that the non-default SRGB be configured under the **segment-routing** global configuration mode. By default, all IGP instances and BGP use this SRGB.
- You can also configure a non-default SRGB under the IGP, but it is not recommended.

SRGB Label Conflicts

When you define a non-default SRGB range, there might be a label conflict (for example, if labels are already allocated, statically or dynamically, in the new SRGB range). The following system log message indicates a label conflict:

```
%ROUTING-ISIS-4-SRGB_ALLOC_FAIL: SRGB allocation failed: 'SRGB reservation not successful for [16000,80000], SRGB (16000 80000, SRGB_ALLOC_CONFIG_PENDING, 0x2) (So far 16 attempts). Make sure label range is free'
```

To remove this conflict, you must reload the router to release the currently allocated labels and to allocate the new SRGB.

After the system reloads, LSD does not accept any dynamic label allocation before IS-IS/OSPF/BGP have registered with LSD. Upon IS-IS/OSPF/BGP registration, LSD allocates the requested SRGB (either the default range or the customized range).

After IS-IS/OSPF/BGP have registered and their SRGB is allocated, LSD starts serving dynamic label requests from other clients.

Note

To avoid a potential router reload due to label conflicts, and assuming that the default SRGB size is large enough, we recommend that you use the default IOS XR SRGB range.

Note

Allocating a non-default SRGB in the upper part of the MPLS label space increases the chance that the labels are available and a reload can be avoided.

Caution

Modifying a SRGB configuration is disruptive for traffic and may require a reboot if the new SRGB is not available entirely.

Setup a Non-Default Segment Routing Global Block Range

This task explains how to configure a non-default SRGB range.

SUMMARY STEPS

- 1. configure
- 2. segment-routing global-block starting_value ending_value
- **3.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	segment-routing global-block starting_value ending_value	Enter the lowest value that you want the SRGB range to
	Example:	include as the starting value. Enter the highest value that you want the SRGB range to include as the ending value.
	RP/0/RP0/CPU0:router(config)# segment-routing global-block 16000 80000	
Step 3	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.

C	Command or Action	Purpose
		 No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Use the **show mpls label table** [label label-value] command to verify the SRGB configuration:

```
Router# show mpls label table label 16000 detail
Table Label Owner State Rewrite
---- 0 16000 ISIS(A):1 InUse No
(Lbl-blk SRGB, vers:0, (start_label=16000, size=64001)
```

What to do next

Configure prefix SIDs and enable segment routing.

Configure Segment Routing for IS-IS Protocol

Integrated Intermediate System-to-Intermediate System (IS-IS), Internet Protocol Version 4 (IPv4), is a standards-based Interior Gateway Protocol (IGP). The Cisco IOS XR software implements the IP routing capabilities described in International Organization for Standardization (ISO)/International Engineering Consortium (IEC) 10589 and RFC 1995, and adds the standard extensions for single topology and multitopology IS-IS for IP Version 6 (IPv6).

This module provides the configuration information used to enable segment routing for IS-IS.

Note

For additional information on implementing IS-IS on your Cisco NCS 6000 Series Routers, see the *Implementing IS-IS* module in the *Routing Configuration Guide for Cisco NCS 6000 Series Routers*.

- Enabling Segment Routing for IS-IS Protocol, on page 11
- Configuring a Prefix-SID on the IS-IS Enabled Loopback Interface, on page 13
- IS-IS Prefix Attributes for Extended IPv4 and IPv6 Reachability, on page 16
- IS-IS Multi-Domain Prefix SID and Domain Stitching: Example, on page 19

Enabling Segment Routing for IS-IS Protocol

Segment routing on the IS-IS control plane supports the following:

- IPv4 and IPv6 control plane
- Level 1, level 2, and multi-level routing
- Prefix SIDs for host prefixes on loopback interfaces
- Adjacency SIDs for adjacencies
- MPLS penultimate hop popping (PHP) and explicit-null signaling

This task explains how to enable segment routing for IS-IS.

Before you begin

Your network must support the MPLS Cisco IOS XR software feature before you enable segment routing for IS-IS on your router.

Note

You must enter the commands in the following task list on every IS-IS router in the traffic-engineered portion of your network.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [unicast]
- 4. metric-style wide [level $\{1 \mid 2\}$]
- **5.** router-id loopback loopback interface used for prefix-sid
- **6.** segment-routing mpls
- 7. exit
- **8.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters XR Config mode.	
	Example:		
	RP/0/RP0/CPU0:router# configure		
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing instance,	
	Example:	and places the router in router configuration mode.	
	RP/0/RP0/CPU0:router(config)# router isis isp	Note You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.	
Step 3	address-family { ipv4 ipv6 } [unicast] Example:	Specifies the IPv4 or IPv6 address family, and enters rout address family configuration mode.	
	RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast		
Step 4	metric-style wide [level { 1 2 }]	Configures a router to generate and accept only wide link	
	Example:	metrics in the Level 1 area.	
	<pre>RP/0/RP0/CPU0:router(config-isis-af)# metric-style wide level 1</pre>		
Step 5	router-id loopback loopback interface used for prefix-sid	Configures router ID for each address-family (IPv4/IPv6).	
	Example: RP/0/RP0/CPU0:router(config-isis-af)#router-id loopback0	IS-IS advertises the router ID in TLVs 134 (for IPv4 address family) and 140 (for IPv6 address family). Required when traffic engineering is used.	

	Command or Action	Purpose
Step 6	segment-routing mpls	Segment routing is enabled by the following actions:
	Example:	 MPLS forwarding is enabled on all interfaces where IS-IS is active.
	<pre>RP/0/RP0/CPU0:router(config-isis-af) # segment-routing mpls</pre>	 All known prefix-SIDs in the forwarding plain are programmed, with the prefix-SIDs advertised by remote routers or learned through local or remote mapping server.
		• The prefix-SIDs locally configured are advertised.
Step 7	exit	
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-isis-af)# exit RP/0/RP0/CPU0:router(config-isis)# exit</pre>	
Step 8	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		 Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

What to do next

Configure the prefix SID.

Configuring a Prefix-SID on the IS-IS Enabled Loopback Interface

A prefix segment identifier (SID) is associated with an IP prefix. The prefix SID is manually configured from the segment routing global block (SRGB) range of labels. A prefix SID is configured under the loopback interface with the loopback address of the node as the prefix. The prefix segment steers the traffic along the shortest path to its destination.

A prefix SID can be a node SID or an Anycast SID. A node SID is a type of prefix SID that identifies a specific node. An Anycast SID is a type of prefix SID that identifies a set of nodes, and is configured with n-flag clear. The set of nodes (Anycast group) is configured to advertise a shared prefix address and prefix SID. Anycast routing enables the steering of traffic toward multiple advertising nodes. Packets addressed to an Anycast address are forwarded to the topologically nearest nodes.

Strict-SPF SIDs are used to forward traffic strictly along the SPF path. Strict-SPF SIDs are not forwarded to SR-TE . IS-IS advertises the SR Algorithm sub Type Length Value (TLV) (in the SR Router Capability SubTLV) to include both algorithm 0 (SPF) and algorithm 1 (Strict-SPF). When the IS-IS area or level is Strict-SPF TE-capable, Strict-SPF SIDs are used to build the SR-TE Strict-SPF SIDs are also used to program the backup paths for prefixes, node SIDs, and adjacency SIDs.

Note

The same SRGB is used for both regular SIDs and strict-SPF SIDs.

The prefix SID is globally unique within the segment routing domain.

This task explains how to configure prefix segment identifier (SID) index or absolute value on the IS-IS enabled Loopback interface.

Before you begin

Ensure that segment routing is enabled on the corresponding address family.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. interface Loopback instance
- 4. address-family { ipv4 | ipv6 } [unicast]
- **5. prefix-sid** [strict-spf] {index SID-index | absolute SID-value} [n-flag-clear] [explicit-null]
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters XR Config mode.	
	Example:		
	RP/0/RP0/CPU0:router# configure		
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing instance,	
	Example:	and places the router in router configuration mode.	
	RP/0/RP0/CPU0:router(config)# router isis 1	• You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.	
Step 3	interface Loopback instance	Specifies the loopback interface and instance.	
	Example:		
	<pre>RP/0/RP0/CPU0:router(config-isis)# interface Loopback0</pre>		

	Command or Action	Purpose	
Step 4	address-family { ipv4 ipv6 } [unicast] Example: The following is an example for ipv4 address family: RP/0/RP0/CPU0:router(config-isis-if)#	Specifies the IPv4 or IPv6 address family, and enters router address family configuration mode.	
	address-family ipv4 unicast		
Step 5	<pre>prefix-sid [strict-spf] {index SID-index absolute SID-value} [n-flag-clear] [explicit-null]</pre>	Configures the prefix-SID index or absolute value for the interface.	
	Example:	Specify strict-spf to configure the prefix-SID to use the SPF path instead of the SR-TE.	
	<pre>RP/0/RP0/CPU0:router(config-isis-if-af)# prefix-sic index 1001</pre>	Specify index <i>SID-index</i> for each node to create a prefix SID based on the lower boundary of the SRGB + the index.	
	<pre>RP/0/RP0/CPU0:router(config-isis-if-af)# prefix-sic strict-spf index 101</pre>	Specify absolute <i>SID-value</i> for each node to create a specific prefix SID within the SRGB.	
	<pre>RP/0/RP0/CPU0:router(config-isis-if-af)# prefix-sic absolute 17001</pre>	By default, the n-flag is set on the prefix-SID, indicating that it is a node SID. For specific prefix-SID (for example, Anycast prefix-SID), enter the n-flag-clear keyword. IS-IS does not set the N flag in the prefix-SID sub Type Length Value (TLV).	
		To disable penultimate-hop-popping (PHP) and add explicit-Null label, enter explicit-null keyword. IS-IS sets the E flag in the prefix-SID sub TLV.	
		Note IS-IS does not advertise separate explicit-NULL or flags for regular SIDs and strict-SPF SIDs. The settings in the regular SID are used if the settings are different.	
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end —Prompts user to take one of these actions:	
		Yes — Saves configuration changes and exits the configuration session.	
		• No —Exits the configuration session without committing the configuration changes.	
		Cancel —Remains in the configuration session, without committing the configuration changes.	

Verify the prefix-SID configuration:

RP/0/RP0/CPU0:router# show isis database verbose

IS-IS 1 (Level-2) Link State Database

```
LSPID
                     LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
router.00-00
                 * 0x0000039b 0xfc27
                                                1079
                                                                0/0/0
 Area Address: 49.0001
 NLPID:
               0xcc
               0x8e
 NLPID:
               Standard (IPv4 Unicast)
 MT:
                                                                0/0/0
 MT:
               IPv6 Unicast
              router
 Hostname:
  IP Address: 10.0.0.1
  IPv6 Address: 2001:0db8:1234::0a00:0001
  Router Cap: 10.0.0.1, D:0, S:0
    Segment Routing: I:1 V:1, SRGB Base: 16000 Range: 8000
    SR Algorithm:
     Algorithm: 0
     Algorithm: 1
<...>
  Metric: 0
                    IP-Extended 10.0.0.1/32
   Prefix-SID Index: 1001, Algorithm: 0, R: 0 N: 1 P: 0 E: 0 V: 0 L: 0
   Prefix-SID Index: 101, Algorithm:1, R:0 N:1 P:0 E:0 V:0 L:0
```

IS-IS Prefix Attributes for Extended IPv4 and IPv6 Reachability

The following sub-TLVs support the advertisement of IPv4 and IPv6 prefix attribute flags and the source router ID of the router that originated a prefix advertisement, as described in RFC 7794.

- Prefix Attribute Flags
- IPv4 and IPv6 Source Router ID

Prefix Attribute Flags

The Prefix Attribute Flag sub-TLV supports the advertisement of attribute flags associated with prefix advertisements. Knowing if an advertised prefix is directly connected to the advertising router helps to determine how labels that are associated with an incoming packet should be processed.

This section describes the behavior of each flag when a prefix advertisement is learned from one level to another.

Note

Prefix attributes are only added when wide metric is used.

Prefix Attribute Flags Sub-TLV Format

Prefix Attribute Flags Sub-TLV Fields

Field	Description	
X (External Prefix Flag)	This flag is set if the prefix has been redistributed from another protocol. The value of the flag is preserved when the prefix is propagated to another level.	
R (Re-advertisement Flag)	This flag is set to 1 by the Level 1-2 router when the prefix is propagated between IS-IS levels (from Level 1 to Level 2, or from Level 2 to Level 1).	
	This flag is set to 0 when the prefix is connected locally to an IS-IS-enabled interface (regardless of the level configured on the interface).	
N (Node Flag)	For prefixes that are propagated from another level:	
	1. Copy the N-flag from the prefix attribute sub-TLV, if present in the source level.	
	2. Copy the N-flag from the prefix-SID sub-TLV, if present in the source level.	
	3. Otherwise, set to 0.	
	For connected prefixes:	
	1. Set to 0 if prefix-attributes n-flag-clear is configured (see Configuring Prefix Attribute N-flag-clear).	
	2. Set to 0 if n-flag-clear { n-flag-clear <i>SID-index</i> n-flag-clear <i>SID-value</i> } n-flag-clear is configured (see Configuring a Prefix-SID on the IS-IS Enabled Loopback Interface).	
	3. Otherwise, set to 1 when the prefix is a host prefix (/32 for IPV4, /128 for IPv6) that is associated with a loopback address.	
	Note If the flag is set and the prefix length is not a host prefix, then the flag must be ignored.	

IPv4 and IPv6 Source Router ID

The Source Router ID sub-TLV identifies the source of the prefix advertisement. The IPv4 and IPv6 source router ID is displayed in the output of the **show isis database verbose** command.

The Source Router ID sub-TLV is added when the following conditions are met:

- 1. The prefix is locally connected.
- 2. The N-flag is set to 1 (when it's a host prefix and the **n-flag-clear** configuration is not used).
- **3.** The router ID is configured in the corresponding address family.

The source router ID is propagated between levels.

Table 1: Source Router Sub-TLV Format

IPv4 Source Router ID	Type: 11
	Length: 4
	Value: IPv4 Router ID of the source of the prefix advertisement
IPv6 Source Router ID	Type: 12
	Length: 16
	Value: IPv6 Router ID of the source of the prefix advertisement

Configuring Prefix Attribute N-flag-clear

The N-flag is set to 1 when the prefix is a host prefix (/32 for IPV4, /128 for IPv6) that is associated with a loopback address. The advertising router can be configured to not set this flag. This task explains how to clear the N-flag.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. interface Loopback instance
- 4. prefix-attributes n-flag-clear [Level-1 | Level-2]
- **5.** Use the **commit** or **end** command.

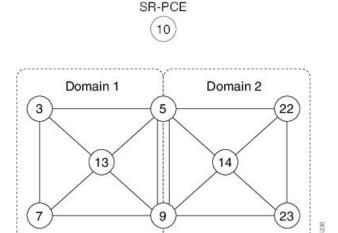
DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router isis instance-id	
	Example:	
	RP/0/RP0/CPU0:router(config)# router isis 1	
Step 3	interface Loopback instance	Specifies the loopback interface.
	Example:	
	RP/0/RP0/CPU0:router(config)# interface Loopback0	
Step 4	prefix-attributes n-flag-clear [Level-1 Level-2]	Clears the prefix attribute N-flag explicitly.
	Example:	

	Command or Action	Purpose
	<pre>RP/0/RP0/CPU0:router(config-if)# isis prefix-attributes n-flag-clear</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Verify the prefix attribute configuration:

```
RP/0/RP0/CPU0:router# show isis database verbose
```


```
IS-IS 1 (Level-2) Link State Database
                    LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
router.00-00
                   * 0x0000039b 0xfc27 1079
                                                                0/0/0
 Area Address: 49.0001
  NLPID:
 NLPID:
               0x8e
              Standard (IPv4 Unicast)
 MT:
 MT:
              IPv6 Unicast
                                                                0/0/0
 Hostname: router IP Address: 10.0.0.1
  IPv6 Address: 2001:0db8:1234::0a00:0001
  Router Cap: 10.0.0.1, D:0, S:0
   Segment Routing: I:1 V:1, SRGB Base: 16000 Range: 8000
   SR Algorithm:
     Algorithm: 0
     Algorithm: 1
                   IP-Extended 10.0.0.1/32
 Metric: 0
   Prefix-SID Index: 1001, Algorithm: 0, R:1 N:0 P:1 E:0 V:0 L:0
   Prefix Attribute Flags: X:0 R:1 N:0
  Metric: 10
                   IP-Extended 10.0.0.2/32
    Prefix-SID Index: 1002, Algorithm:0, R:0 N:1 P:0 E:0 V:0 L:0
   Prefix Attribute Flags: X:0 R:0 N:1
   Source Router ID: 10.0.0.2
```

IS-IS Multi-Domain Prefix SID and Domain Stitching: Example

IS-IS Multi-Domain Prefix SID and Domain Stitching allows you to configure multiple IS-IS instances on the same loopback interface for domain border nodes. You specify a loopback interface and prefix SID under multiple IS-IS instances to make the prefix and prefix SID reachable in different domains.

This example uses the following topology. Node 5 and 9 are border nodes between two IS-IS domains (Domain1 and Domain2). Node 10 is configured as the Segment Routing Path Computation Element (SR-PCE).

Figure 1: Multi-Domain Topology

Configure IS-IS Multi-Domain Prefix SID

Specify a loopback interface and prefix SID under multiple IS-IS instances on each border node:

```
Example: Border Node 5
router isis Domain1
interface Loopback0
address-family ipv4 unicast
prefix-sid absolute 16005
router isis Domain2
interface Loopback0
address-family ipv4 unicast
prefix-sid absolute 16005
```

```
Example: Border Node 9
router isis Domain1
interface Loopback0
address-family ipv4 unicast
prefix-sid absolute 16009

router isis Domain2
interface Loopback0
address-family ipv4 unicast
prefix-sid absolute 16009
```

Border nodes 5 and 9 each run two IS-IS instances (Domain1 and Domain2) and advertise their Loopback0 prefix and prefix SID in both domains.

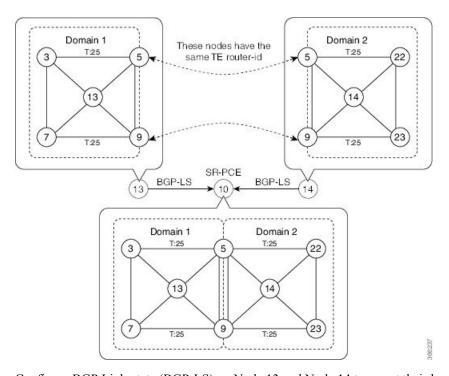
Nodes in both domains can reach the border nodes by using the same prefix and prefix SID. For example, Node 3 and Node 22 can reach Node 5 using prefix SID 16005.

Configure Common Router ID

On each border node, configure a common TE router ID under each IS-IS instance:

Example: Border Node 5 router isis Domain1

address-family ipv4 unicast router-id loopback0


router isis Domain2
address-family ipv4 unicast
router-id loopback0

Example: Border Node 9

router isis Domain1
address-family ipv4 unicast
router-id loopback0

router isis Domain2
address-family ipv4 unicast
router-id loopback0

Distribute IS-IS Link-State Data

Configure BGP Link-state (BGP-LS) on Node 13 and Node 14 to report their local domain to Node 10:

Example: Node 13
router isis Domain1

distribute link-state instance-id instance-id

Example: Node 14 router isis Domain2

distribute link-state instance-id instance-id

Link-state ID starts from 32. One ID is required per IGP domain. Different domain IDs are essential to identify that the SR-TE TED belongs to a particular IGP domain.

Nodes 13 and 14 each reports its local domain in BGP-LS to Node 10.

Node 10 identifies the border nodes (Nodes 5 and 9) by their common advertised TE router ID, then combines (stitches) the domains on these border nodes for end-to-end path computations.

Configure Segment Routing for OSPF Protocol

Open Shortest Path First (OSPF) is an Interior Gateway Protocol (IGP) developed by the OSPF working group of the Internet Engineering Task Force (IETF). Designed expressly for IP networks, OSPF supports IP subnetting and tagging of externally derived routing information. OSPF also allows packet authentication and uses IP multicast when sending and receiving packets.

This module provides the configuration information to enable segment routing for OSPF.

Note

For additional information on implementing OSPF on your Cisco NCS 6000 Series Routers, see the *Implementing OSPF* module in the *Routing Configuration Guide for Cisco NCS 6000 Series Routers*.

- Enabling Segment Routing for OSPF Protocol, on page 23
- Configuring a Prefix-SID on the OSPF-Enabled Loopback Interface, on page 25
- Configuring an Adjacency SID, on page 27

Enabling Segment Routing for OSPF Protocol

Segment routing on the OSPF control plane supports the following:

- OSPFv2 control plane
- Multi-area
- IPv4 prefix SIDs for host prefixes on loopback interfaces
- Adjacency SIDs for adjacencies
- MPLS penultimate hop popping (PHP) and explicit-null signaling

This section describes how to enable segment routing MPLS and MPLS forwarding in OSPF. Segment routing can be configured at the instance, area, or interface level.

Before you begin

Your network must support the MPLS Cisco IOS XR software feature before you enable segment routing for OSPF on your router.

Note

You must enter the commands in the following task list on every OSPF router in the traffic-engineered portion of your network.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. segment-routing mpls
- 4. area area
- 5. segment-routing mpls
- 6. exit
- **7.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router ospf process-name	Enables OSPF routing for the specified routing process and places the router in router configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config)# router ospf 1	
Step 3	segment-routing mpls	Enables segment routing using the MPLS data plane on the
	<pre>Example: RP/0/RP0/CPU0:router(config-ospf)# segment-routing mpls</pre>	routing process and all areas and interfaces in the routing process.
Step 4	area area	Enters area configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config-ospf)# area 0	
Step 5	segment-routing mpls	(Optional) Enables segment routing using the MPLS data
	Example:	plane on the area and all interfaces in the area. Enables segment routing fowarding on all interfaces in the area and installs the SIDs received by OSPF in the forwarding table.
	<pre>RP/0/RP0/CPU0:router(config-ospf-ar)# segment-routing mpls</pre>	
Step 6	exit	
	Example:	

	Command or Action	Purpose
	<pre>RP/0/RP0/CPU0:router(config-ospf-ar)# exit RP/0/RP0/CPU0:router(config-ospf)# exit</pre>	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

What to do next

Configure the prefix SID.

Configuring a Prefix-SID on the OSPF-Enabled Loopback Interface

A prefix segment identifier (SID) is associated with an IP prefix. The prefix SID is manually configured from the segment routing global block (SRGB) range of labels. A prefix SID is configured under the loopback interface with the loopback address of the node as the prefix. The prefix segment steers the traffic along the shortest path to its destination.

A prefix SID can be a node SID or an Anycast SID. A node SID is a type of prefix SID that identifies a specific node. An Anycast SID is a type of prefix SID that identifies a set of nodes, and is configured with n-flag clear. The set of nodes (Anycast group) is configured to advertise a shared prefix address and prefix SID. Anycast routing enables the steering of traffic toward multiple advertising nodes. Packets addressed to an Anycast address are forwarded to the topologically nearest nodes.

The prefix SID is globally unique within the segment routing domain.

This task describes how to configure prefix segment identifier (SID) index or absolute value on the OSPF-enabled Loopback interface.

Before you begin

Ensure that segment routing is enabled on an instance, area, or interface.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. area value

- 4. interface Loopback interface-instance
- **5. prefix-sid** [strict-spf] {index SID-index | absolute SID-value } [n-flag-clear] [explicit-null]
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router ospf process-name	Enables OSPF routing for the specified routing process, and places the router in router configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config)# router ospf 1	
Step 3	area value	Enters area configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config-ospf)# area 0	
Step 4	interface Loopback interface-instance	Specifies the loopback interface and instance.
	Example:	
	RP/0/RP0/CPU0:router(config-ospf-ar)# interface Loopback0 passive	
Step 5	prefix-sid [strict-spf] {index SID-index absolute SID-value } [n-flag-clear] [explicit-null]	Configures the prefix-SID index or absolute value for the interface.
	Example:	Specify strict-spf to configure the prefix-SID to use the SPF path instead of the SR-TE tunnel.
	<pre>RP/0/RP0/CPU0:router(config-ospf-ar)# prefix-sid index 1001</pre>	Specify index <i>SID-index</i> for each node to create a prefix SID based on the lower boundary of the SRGB + the index.
	<pre>RP/0/RP0/CPU0:router(config-ospf-ar)# prefix-sid absolute 17001</pre>	Specify absolute <i>SID-value</i> for each node to create a specific prefix SID within the SRGB.
		By default, the n-flag is set on the prefix-SID, indicating that it is a node SID. For specific prefix-SID (for example, Anycast prefix-SID), enter the n-flag-clear keyword. OSPF does not set the N flag in the prefix-SID sub Type Length Value (TLV).
		To disable penultimate-hop-popping (PHP) and add an explicit-Null label, enter the explicit-null keyword. OSPF sets the E flag in the prefix-SID sub TLV.
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.

Command or Action	Purpose
	end —Prompts user to take one of these actions:
	• Yes — Saves configuration changes and exits the configuration session.
	 No —Exits the configuration session without committing the configuration changes.
	• Cancel —Remains in the configuration session, without committing the configuration changes.

Verify the prefix-SID configuration:

```
RP/0/RP0/CPU0:router# show ospf database opaque-area 7.0.0.1 self-originate
OSPF Router with ID (10.0.0.1) (Process ID 1)
               Type-10 Opaque Link Area Link States (Area 0)
   Extended Prefix TLV: Length: 20
     Route-type: 1
     ΑF
               : 0x40
     Flags
     Prefix
             : 10.0.0.1/32
     SID sub-TLV: Length: 8
               : 0x0
       Flags
                 : 0
       MTID
       Alao
                : 0
       SID Index: 1001
```

Configuring an Adjacency SID

An adjacency SID (Adj-SID) is associated with an adjacency to a neighboring node. The adjacency SID steers the traffic to a specific adjacency. Adjacency SIDs have local significance and are only valid on the node that allocates them.

An adjacency SID can be allocated dynamically from the dynamic label range or configured manually from the segment routing local block (SRLB) range of labels.

Adjacency SIDs that are dynamically allocated do not require any special configuration, however there are some limitations:

- A dynamically allocated Adj-SID value is not known until it has been allocated, and a controller will not know the Adj-SID value until the information is flooded by the IGP.
- Dynamically allocated Adj-SIDs are not persistent and can be reallocated after a reload or a process restart.
- Each link is allocated a unique Adj-SID, so the same Adj-SID cannot be shared by multiple links.

Manually allocated Adj-SIDs are persistent over reloads and restarts. They can be provisioned for multiple adjacencies to the same neighbor or to different neighbors. You can specify that the Adj-SID is protected. If

the Adj-SID is protected on the primary interface and a backup path is available, a backup path is installed. By default, manual Adj-SIDs are not protected.

Adjacency SIDs are advertised using the existing OSPF Adj-SID sub-TLV. The P-flag is defined for manually allocated Adj-SIDs.

Table 2: Adjacency Segment Identifier (Adj-SID) Flags Sub-TLV Fields

Field	Description	
P (Persistent)	This flag is set if the Adj-SID is persistent (manually allocated).	

This task explains how to configure an Adj-SID on an interface.

Before you begin

Ensure that segment routing is enabled on the corresponding address family.

Use the **show mpls label table detail** command to verify the SRLB range.

SUMMARY STEPS

- 1. configure
- **2.** router ospf process-name
- 3. area area
- **4. interface** *type interface-path-id*
- **5.** adjacency-sid {index adj-SID-index | absolute adj-SID-value} [protected]
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters XR Config mode.	
	Example:		
	RP/0/RP0/CPU0:router# configure		
Step 2	router ospf process-name	Enables OSPF routing for the specified routing instance	
	Example:	and places the router in router configuration mode.	
	RP/0/RP0/CPU0:router(config)# router ospf 1		
Step 3	area area	Enters area configuration mode.	
	Example:		
	RP/0/RP0/CPU0:router(config-ospf)# area 0		

	Command or Action	Purpose
Step 4	<pre>interface type interface-path-id Example: RP/0/RP0/CPU0:router(config-ospf-ar)# interface HundredGigE0/0/0/1</pre>	Specifies the interface and enters interface configuration mode.
Step 5	adjacency-sid {index adj-SID-index absolute adj-SID-value} [protected]	Configures the Adj-SID index or absolute value for the interface.
	Example: RP/0/RP0/CPU0:router(config-config-ospf-ar-if)# adjacency-sid index 10 RP/0/RP0/CPU0:router(config-config-ospf-ar-if)# adjacency-sid absolute 15010	Specify index <i>adj-SID-index</i> for each link to create an Ajd-SID based on the lower boundary of the SRLB + the index. Specify absolute <i>adj-SID-value</i> for each link to create a specific Ajd-SID within the SRLB. Specify if the Adj-SID is protected . For each primary path, if the Adj-SID is protected on the primary interface and a backup path is available, a backup path is installed. By
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session. end —Prompts user to take one of these actions: • Yes — Saves configuration changes and exits the configuration session. • No —Exits the configuration session without committing the configuration changes. • Cancel —Remains in the configuration changes.

What to do next

Configure the SR-TE policy.

Configuring an Adjacency SID

Configure Segment Routing for BGP

Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free inter-domain routing between autonomous systems. An autonomous system is a set of routers under a single technical administration. Routers in an autonomous system can use multiple Interior Gateway Protocols (IGPs) to exchange routing information inside the autonomous system and an EGP to route packets outside the autonomous system.

This module provides the configuration information used to enable Segment Routing for BGP.

Note

For additional information on implementing BGP on your Cisco NCS 6000 Series Routers, see the *Implementing BGP* module in the *Routing Configuration Guide for Cisco NCS 6000 Series Routers*.

- Segment Routing for BGP, on page 31
- Configure BGP Prefix Segment Identifiers, on page 32
- Segment Routing Egress Peer Engineering, on page 33
- Configure BGP Link-State, on page 35
- Use Case: Configuring SR-EPE and BGP-LS, on page 37

Segment Routing for BGP

In a traditional BGP-based data center (DC) fabric, packets are forwarded hop-by-hop to each node in the autonomous system. Traffic is directed only along the external BGP (eBGP) multipath ECMP. No traffic engineering is possible.

In an MPLS-based DC fabric, the eBGP sessions between the nodes exchange BGP labeled unicast (BGP-LU) network layer reachability information (NLRI). An MPLS-based DC fabric allows any leaf (top-of-rack or border router) in the fabric to communicate with any other leaf using a single label, which results in higher packet forwarding performance and lower encapsulation overhead than traditional BGP-based DC fabric. However, since each label value might be different for each hop, an MPLS-based DC fabric is more difficult to troubleshoot and more complex to configure.

BGP has been extended to carry segment routing prefix-SID index. BGP-LU helps each node learn BGP prefix SIDs of other leaf nodes and can use ECMP between source and destination. Segment routing for BGP simplifies the configuration, operation, and troubleshooting of the fabric. With segment routing for BGP, you can enable traffic steering capabilities in the data center using a BGP prefix SID.

Configure BGP Prefix Segment Identifiers

Segments associated with a BGP prefix are known as BGP prefix SIDs. The BGP prefix SID is global within a segment routing or BGP domain. It identifies an instruction to forward the packet over the ECMP-aware best-path computed by BGP to the related prefix. The BGP prefix SID is manually configured from the segment routing global block (SRGB) range of labels.

Each BGP speaker must be configured with an SRGB using the **segment-routing global-block** command. See the About the Segment Routing Global Block section for information about the SRGB.

Note

Because the values assigned from the range have domain-wide significance, we recommend that all routers within the domain be configured with the same range of values.

To assign a BGP prefix SID, first create a routing policy using the **set label-index** attribute, then associate the index to the node.

Note

A routing policy with the **set label-index** attribute can be attached to a network configuration or redistribute configuration. Other routing policy language (RPL) configurations are possible. For more information on routing policies, refer to the "Implementing Routing Policy" chapter in the *Routing Configuration Guide for Cisco NCS 6000 Series Routers*.

Example

The following example shows how to configure the SRGB, create a BGP route policy using a \$SID parameter and **set label-index** attribute, and then associate the prefix-SID index to the node.

```
RP/0/RSP0/CPU0:router(config)# segment-routing global-block 16000 23999
RP/0/RSP0/CPU0:router(config)# route-policy SID($SID)
RP/0/RSP0/CPU0:router(config-rpl) # set label-index $SID
RP/0/RSP0/CPU0:router(config-rpl)# end policy
RP/0/RSP0/CPU0:router(config)# router bgp 1
RP/0/RSP0/CPU0:router(config-bgp) # bgp router-id 10.1.1.1
RP/0/RSP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-af) # network 10.1.1.3/32 route-policy SID(3)
RP/0/RSP0/CPU0:router(config-bgp-af) # allocate-label all
RP/0/RSP0/CPU0:router(config-bgp-af) # commit
RP/0/RSP0/CPU0:router(config-bgp-af)# end
RP/0/RSP0/CPU0:router# show bgp 10.1.1.3/32
BGP routing table entry for 10.1.1.3/32
Versions:
  Process
                    bRIB/RIB SendTblVer
                          74
  Speaker
   Local Label: 16003
Last Modified: Sep 29 19:52:18.155 for 00:07:22
Paths: (1 available, best #1)
  Advertised to update-groups (with more than one peer):
    0.2
```

```
Path #1: Received by speaker 0
Advertised to update-groups (with more than one peer):
0.2
3
99.3.21.3 from 99.3.21.3 (10.1.1.3)
Received Label 3
Origin IGP, metric 0, localpref 100, valid, external, best, group-best Received Path ID 0, Local Path ID 1, version 74
Origin-AS validity: not-found
Label Index: 3
```

Segment Routing Egress Peer Engineering

Segment routing egress peer engineering (EPE) uses a controller to instruct an ingress provider edge, or a content source (node) within the segment routing domain, to use a specific egress provider edge (node) and a specific external interface to reach a destination. BGP peer SIDs are used to express source-routed inter-domain paths.

Below are the BGP-EPE peering SID types:

- PeerNode SID—To an eBGP peer. Pops the label and forwards the traffic on any interface to the peer.
- PeerAdjacency SID—To an eBGP peer via interface. Pops the label and forwards the traffic on the related interface.

The controller learns the BGP peer SIDs and the external topology of the egress border router through BGP-LS EPE routes. The controller can program an ingress node to steer traffic to a destination through the egress node and peer node using BGP labeled unicast (BGP-LU).

EPE functionality is only required at the EPE egress border router and the EPE controller.

Configure Segment Routing Egress Peer Engineering

This task explains how to configure segment routing EPE on the EPE egress node.

SUMMARY STEPS

- 1. router bgp as-number
- 2. **neighbor** *ip-address*
- 3. remote-as as-number
- 4. egress-engineering
- 5. exit
- **6.** Use the **commit** or **end** command.

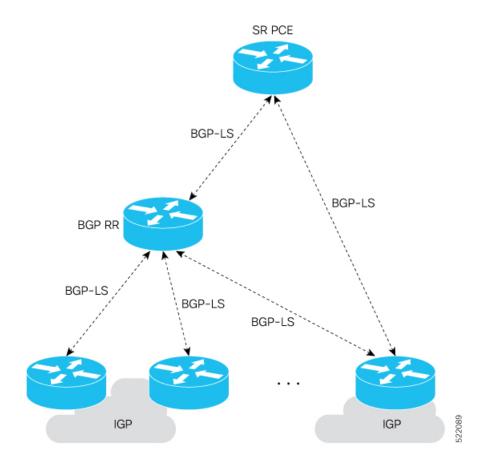
DETAILED STEPS

	Command or Action	Purpose
Step 1	<pre>router bgp as-number Example: RP/0/RSP0/CPU0:router(config)# router bgp 1</pre>	Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.
Step 2	<pre>neighbor ip-address Example: RP/0/RSP0/CPU0:router(config-bgp) # neighbor 192.168.1.3</pre>	Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.
Step 3	<pre>remote-as as-number Example: RP/0/RSP0/CPU0:router(config-bgp-nbr)# remote-as 3</pre>	Creates a neighbor and assigns a remote autonomous system number to it.
Step 4	<pre>egress-engineering Example: RP/0/RSP0/CPU0:router(config-bgp-nbr)# egress-engineering</pre>	Configures the egress node with EPE for the eBGP peer.
Step 5	<pre>exit Example: RP/0/RSP0/CPU0:router(config-bgp-nbr)# exit RP/0/RSP0/CPU0:router(config-bgp)# exit RP/0/RSP0/CPU0:router(config)#</pre>	
Step 6	Use the commit or end command.	 commit —Saves the configuration changes and remains within the configuration session. end —Prompts user to take one of these actions: Yes — Saves configuration changes and exits the configuration session. No —Exits the configuration session without committing the configuration changes. Cancel —Remains in the configuration session, without committing the configuration changes.

Example

Running Config:

```
router bgp 1
neighbor 192.168.1.3
remote-as 3
egress-engineering
!
```


Configure BGP Link-State

BGP Link-State (LS) is an Address Family Identifier (AFI) and Sub-address Family Identifier (SAFI) originally defined to carry interior gateway protocol (IGP) link-state information through BGP. The BGP Network Layer Reachability Information (NLRI) encoding format for BGP-LS and a new BGP Path Attribute called the BGP-LS attribute are defined in RFC7752. The identifying key of each Link-State object, namely a node, link, or prefix, is encoded in the NLRI and the properties of the object are encoded in the BGP-LS attribute.

The BGP-LS Extensions for Segment Routing are documented in RFC9085.

BGP-LS applications like an SR Path Computation Engine (SR-PCE) can learn the SR capabilities of the nodes in the topology and the mapping of SR segments to those nodes. This can enable the SR-PCE to perform path computations based on SR-TE and to steer traffic on paths different from the underlying IGP-based distributed best-path computation.

The following figure shows a typical deployment scenario. In each IGP area, one or more nodes (BGP speakers) are configured with BGP-LS. These BGP speakers form an iBGP mesh by connecting to one or more route-reflectors. This way, all BGP speakers (specifically the route-reflectors) obtain Link-State information from all IGP areas (and from other ASes from eBGP peers).

Usage Guidelines and Limitations

- BGP-LS supports IS-IS and OSPFv2.
- The identifier field of BGP-LS (referred to as the Instance-ID) identifies the IGP routing domain where the NLRI belongs. The NLRIs representing link-state objects (nodes, links, or prefixes) from the same IGP routing instance must use the same Instance-ID value.
- When there is only a single protocol instance in the network where BGP-LS is operational, we recommend configuring the Instance-ID value to **0**.
- Assign consistent BGP-LS Instance-ID values on all BGP-LS Producers within a given IGP domain.
- NLRIs with different Instance-ID values are considered to be from different IGP routing instances.
- Unique Instance-ID values must be assigned to routing protocol instances operating in different IGP domains. This allows the BGP-LS Consumer (for example, SR-PCE) to build an accurate segregated multi-domain topology based on the Instance-ID values, even when the topology is advertised via BGP-LS by multiple BGP-LS Producers in the network.
- If the BGP-LS Instance-ID configuration guidelines are not followed, a BGP-LS Consumer may see duplicate link-state objects for the same node, link, or prefix when there are multiple BGP-LS Producers deployed. This may also result in the BGP-LS Consumers getting an inaccurate network-wide topology.

Exchange Link State Information with BGP Neighbor

The following example shows how to exchange link-state information with a BGP neighbor:

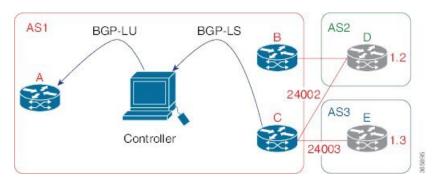
```
Router# configure
Router(config)# router bgp 1
Router(config-bgp)# neighbor 10.0.0.2
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# address-family link-state link-state
Router(config-bgp-nbr-af)# exit
```

IGP Link-State Database Distribution

A given BGP node may have connections to multiple, independent routing domains. IGP link-state database distribution into BGP-LS is supported for both OSPF and IS-IS protocols in order to distribute this information on to controllers or applications that desire to build paths spanning or including these multiple domains.

To distribute IS-IS link-state data using BGP-LS, use the **distribute link-state** command in router configuration mode.

```
Router# configure
Router(config)# router isis isp
Router(config-isis)# distribute link-state instance-id 32
```


To distribute OSPFv2 link-state data using BGP-LS, use the **distribute link-state** command in router configuration mode.

```
Router# configure
Router(config)# router ospf 100
Router(config-ospf)# distribute link-state instance-id 32
```

Use Case: Configuring SR-EPE and BGP-LS

In the following figure, segment routing is enabled on autonomous system AS1 with ingress node A and egress nodes B and C. In this example, we configure EPE on egress node C.

Figure 2: Topology

Step 1 Configure node C with EPE for eBGP peers D and E.

Example:

```
RP/0/RSP0/CPU0:router C(config)# router bgp 1
RP/0/RSP0/CPU0:router C(config-bgp) # neighbor 192.168.1.3
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# remote-as 3
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# description to E
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# egress-engineering
RP/0/RSP0/CPU0:router_C(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router_C(config-bgp-nbr-af)# route-policy bgp_in in
RP/0/RSP0/CPU0:router C(config-bgp-nbr-af) # route-policy bgp out out
RP/0/RSP0/CPU0:router C(config-bgp-nbr-af)# exit
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# exit
RP/0/RSP0/CPU0:router C(config-bgp) # neighbor 192.168.1.2
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# remote-as 2
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# description to D
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# egress-engineering
RP/0/RSP0/CPU0:router_C(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router C(config-bgp-nbr-af)# route-policy bgp in in
RP/0/RSP0/CPU0:router_C(config-bgp-nbr-af)# route-policy bgp_out out
RP/0/RSP0/CPU0:router C(config-bgp-nbr-af)# exit
RP/0/RSP0/CPU0:router C(config-bgp-nbr)# exit
```

Step 2 Configure node C to advertise peer node SIDs to the controller using BGP-LS.

Example:

```
RP/0/RSP0/CPU0:router_C(config-bgp) # neighbor 172.29.50.71
RP/0/RSP0/CPU0:router_C(config-bgp-nbr) # remote-as 1
RP/0/RSP0/CPU0:router_C(config-bgp-nbr) # description to EPE_controller
RP/0/RSP0/CPU0:router_C(config-bgp-nbr) # address-family link-state link-state
RP/0/RSP0/CPU0:router_C(config-bgp-nbr) # exit
RP/0/RSP0/CPU0:router C(config-bgp) # exit
```

Step 3 Commit the configuration.

Example:

```
RP/0/RSP0/CPU0:router C(config)# commit
```

Version: 3, rn version: 3

Step 4 Verify the configuration.

Example:

```
Egress Engineering Peer Set: 192.168.1.2/32 (10b87210)
    Nexthop: 192.168.1.2
    Version: 2, rn_version: 2
        Flags: 0x00000002
    Local ASN: 1
    Remote ASN: 2
    Local RID: 10.1.1.3
    Remote RID: 10.1.1.4
    First Hop: 192.168.1.2
        NHID: 3
        Label: 24002, Refcount: 3
        rpc_set: 10b9d408

Egress Engineering Peer Set: 192.168.1.3/32 (10be61d4)
        Nexthop: 192.168.1.3
```

RP/0/RSP0/CPU0:router C# show bgp egress-engineering

```
Flags: 0x00000002

Local ASN: 1

Remote ASN: 3

Local RID: 10.1.1.3

Remote RID: 10.1.1.5

First Hop: 192.168.1.3

NHID: 4

Label: 24003, Refcount: 3

rpc set: 10be6250
```

The output shows that node C has allocated peer SIDs for each eBGP peer.

Example:

RP/0/RSP0/CPU0:router_C# show mpls forwarding labels 24002 24003					
Local	Outgoing	Prefix	Outgoing	Next Hop	Bytes
Label	Label	or ID	Interface		Switched
24002	Don	No ID	Te0/3/0/0	100 100 1 0	0
24002	POP	No ID	TeU/3/0/0	192.168.1.2	U

The output shows that node C installed peer node SIDs in the Forwarding Information Base (FIB).

Use Case: Configuring SR-EPE and BGP-LS

Configure SR-TE Policies

This module provides information about segment routing for traffic engineering (SR-TE) policies, how to configure SR-TE policies, and how to steer traffic into an SR-TE policy.

- SR-TE Policy Overview, on page 41
- Usage Guidelines and Limitations, on page 42
- Instantiation of an SR Policy, on page 42
- SR-TE Policy Path Types, on page 42
- Protocols, on page 52
- Traffic Steering, on page 55
- Miscellaneous, on page 61

SR-TE Policy Overview

Segment routing for traffic engineering (SR-TE) uses a "policy" to steer traffic through the network. An SR-TE policy path is expressed as a list of segments that specifies the path, called a segment ID (SID) list. Each segment is an end-to-end path from the source to the destination, and instructs the routers in the network to follow the specified path instead of following the shortest path calculated by the IGP. If a packet is steered into an SR-TE policy, the SID list is pushed on the packet by the head-end. The rest of the network executes the instructions embedded in the SID list.

An SR-TE policy is identified as an ordered list (head-end, color, end-point):

- Head-end Where the SR-TE policy is instantiated
- Color A numerical value that distinguishes between two or more policies to the same node pairs (Head-end End point)
- End-point The destination of the SR-TE policy

Every SR-TE policy has a color value. Every policy between the same node pairs requires a unique color value.

An SR-TE policy uses one or more candidate paths. A candidate path is a single segment list (SID-list) or a set of weighted SID-lists (for weighted equal cost multi-path [WECMP]). A candidate path is either dynamic or explicit. See *SR-TE Policy Path Types* section for more information.

Usage Guidelines and Limitations

Observe the following guidelines and limitations for the platform.

- Before configuring SR-TE policies, use the distribute link-state command under IS-IS or OSPF to distribute the link-state database to external services.
- GRE tunnel as primary interface for an SR policy is not supported.
- GRE tunnel as backup interface for an SR policy with TI-LFA protection is not supported.
- Head-end computed inter-domain SR policy with Flex Algo constraint and IGP redistribution is not supported.

Instantiation of an SR Policy

An SR policy is instantiated, or implemented, at the head-end router.

The following sections provide details on the SR policy instantiation methods:

• Manually Provisioned SR Policy, on page 42

Manually Provisioned SR Policy

Manually provisioned SR policies are configured on the head-end router. These policies can use dynamic paths or explicit paths. See the SR-TE Policy Path Types, on page 42 section for information on manually provisioning an SR policy using dynamic or explicit paths.

SR-TE Policy Path Types

A **dynamic** path is based on an optimization objective and a set of constraints. The head-end computes a solution, resulting in a SID-list or a set of SID-lists. When the topology changes, a new path is computed. If the head-end does not have enough information about the topology, the head-end might delegate the computation to a Segment Routing Path Computation Element (SR-PCE). For information on configuring SR-PCE, see *Configure Segment Routing Path Computation Element* chapter.

An **explicit** path is a specified SID-list or set of SID-lists.

An SR-TE policy initiates a single (selected) path in RIB/FIB. This is the preferred valid candidate path.

A candidate path has the following characteristics:

- It has a preference If two policies have same {color, endpoint} but different preferences, the policy with the highest preference is selected.
- It is associated with a single binding SID (BSID) A BSID conflict occurs when there are different SR policies with the same BSID. In this case, the policy that is installed first gets the BSID and is selected.
- It is valid if it is usable.

A path is selected when the path is valid and its preference is the best among all candidate paths for that policy.

Note

The protocol of the source is not relevant in the path selection logic.

Dynamic Paths

Behaviors and Limitations

For a dynamic path that traverses a specific interface between nodes (segment), the algorithm may encode this segment using an Adj-SID. The SR-TE process prefers the protected Adj-SID of the link, if one is available.

Optimization Objectives

Optimization objectives allow the head-end router to compute a SID-list that expresses the shortest dynamic path according to the selected metric type:

- IGP metric Refer to the "Implementing IS-IS" and "Implementing OSPF" chapters in the *Routing Configuration Guide for Series Routers*.
- TE metric See the Configure Interface TE Metrics, on page 43 section for information about configuring TE metrics.

This example shows a dynamic path from head-end router 1 to end-point router 3 that minimizes IGP or TE metric:

- The blue path uses the minimum IGP metric: Min-Metric (1 \rightarrow 3, IGP) = SID-list <16003>; cumulative IGP metric: 20
- The green path uses the minimum TE metric: Min-Metric (1 → 3, TE) = SID-list <16005, 16004, 16003>; cumulative TE metric: 23

Configure Interface TE Metrics

Use the **metric** *value* command in SR-TE interface submode to configure the TE metric for interfaces. The *value* range is from 0 to 2147483647.

```
Router# configure
Router(config)# segment-routing
Router(config-sr)# traffic-eng
Router(config-sr-te)# interface type interface-path-id
Router(config-sr-te-if)# metric value
```

Configuring TE Metric: Example

The following configuration example shows how to set the TE metric for various interfaces:

```
segment-routing
traffic-eng
interface TenGigE0/0/0/0
metric 100
!
interface TenGigE0/0/0/1
metric 1000
!
interface TenGigE0/0/2/0
metric 50
!
!
end
```

Constraints

Constraints allow the head-end router to compute a dynamic path according to the selected metric type:

- Affinity You can apply a color or name to links or interfaces by assigning affinity bit-maps to them.
 You can then specify an affinity (or relationship) between an SR policy path and link colors. SR-TE
 computes a path that includes or excludes links that have specific colors,or combinations of colors. See
 the Named Interface Link Admin Groups and SR-TE Affinity Maps, on page 44 section for information
 on named interface link admin groups and SR-TE Affinity Maps.
- Disjoint SR-TE computes a path that is disjoint from another path in the same disjoint-group. Disjoint paths do not share network resources. Path disjointness may be required for paths between the same pair of nodes, between different pairs of nodes, or a combination (only same head-end or only same end-point).
- Flexible Algorithm Flexible Algorithm allows for user-defined algorithms where the IGP computes paths based on a user-defined combination of metric type and constraint.

Named Interface Link Admin Groups and SR-TE Affinity Maps

Named Interface Link Admin Groups and SR-TE Affinity Maps provide a simplified and more flexible means of configuring link attributes and path affinities to compute paths for SR-TE policies.

In the traditional TE scheme, links are configured with attribute-flags that are flooded with TE link-state parameters using Interior Gateway Protocols (IGPs), such as Open Shortest Path First (OSPF).

Named Interface Link Admin Groups and SR-TE Affinity Maps let you assign, or map, up to color names for affinity and attribute-flag attributes instead of 32-bit hexadecimal numbers. After mappings are defined, the attributes can be referred to by the corresponding color name in the CLI. Furthermore, you can define constraints using *include-any*, *include-all*, and *exclude-any* arguments, where each statement can contain up to 10 colors.

Note

You can configure affinity constraints using attribute flags or the Flexible Name Based Policy Constraints scheme; however, when configurations for both schemes exist, only the configuration pertaining to the new scheme is applied.

Configure Named Interface Link Admin Groups and SR-TE Affinity Maps

Use the **affinity name** *NAME* command in SR-TE interface submode to assign affinity to interfaces. Configure this on routers with interfaces that have an associated admin group attribute.

```
Router# configure
Router(config)# segment-routing
Router(config-sr)# traffic-eng
Router(config-sr-te)# interface TenGigEO/0/1/2
Router(config-sr-if)# affinity
Router(config-sr-if-affinity)# name RED
```

Use the **affinity-map name** *NAME* **bit-position** *bit-position* command in SR-TE sub-mode to define affinity maps. The *bit-position* range is from 0 to 255.

Configure affinity maps on the following routers:

- Routers with interfaces that have an associated admin group attribute.
- Routers that act as SR-TE head-ends for SR policies that include affinity constraints.

```
Router# configure
Router(config)# segment-routing
Router(config-sr)# traffic-eng
Router(config-sr-te)# affinity-map
Router(config-sr-te-affinity-map)# name RED bit-position 23
```

Configuring Link Admin Group: Example

The following example shows how to assign affinity to interfaces and to define affinity maps. This configuration is applicable to any router (SR-TE head-end or transit node) with colored interfaces.

```
segment-routing
traffic-eng
 interface TenGigE0/0/1/1
  affinity
   name CROSS
   name RED
 interface TenGigE0/0/1/2
  affinity
   name RED
 interface TenGigE0/0/2/0
  affinity
   name BLUE
   1
 affinity-map
  name RED bit-position 23
  name BLUE bit-position 24
  name CROSS bit-position 25
```

! end

Configure SR Policy with Dynamic Path

To configure a SR-TE policy with a dynamic path, optimization objectives, and affinity constraints, complete the following configurations:

- 1. Define the optimization objectives. See the Optimization Objectives, on page 43 section.
- 2. Define the constraints. See the Constraints, on page 44 section.
- **3.** Create the policy.

Behaviors and Limitations

For a dynamic path that traverses a specific interface between nodes (segment), the algorithm may encode this segment using an Adj-SID. The SR-TE process prefers the protected Adj-SID of the link, if one is available.

Examples

The following example shows a configuration of an SR policy at an SR-TE head-end router. The policy has a dynamic path with optimization objectives and affinity constraints computed by the head-end router.

```
segment-routing
traffic-eng
policy foo
  color 100 end-point ipv4 10.1.1.2
  candidate-paths
  preference 100
    dynamic
    metric
       type te
    !
    !
    constraints
    affinity
       exclude-any
      name RED
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    !
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
```

The following example shows a configuration of an SR policy at an SR-TE head-end router. The policy has a dynamic path with optimization objectives and affinity constraints computed by the SR-PCE.

```
segment-routing
traffic-eng
policy baa
  color 101 end-point ipv4 10.1.1.2
  candidate-paths
  preference 100
    dynamic
    pcep
  !
    metric
    type te
```

```
!
!
constraints
affinity
exclude-any
name BLUE
!
!
!
```

Explicit Paths

SR-TE Policy with Explicit Path

An explicit segment list is defined as a sequence of one or more segments. A segment can be configured as an IP address or an MPLS label representing a node or a link.

An explicit segment list can be configured with the following:

- IP-defined segments
- MPLS label-defined segments
- · A combination of IP-defined segments and MPLS label-defined segments

Behaviors and Limitations

- An IP-defined segment can be associated with an IPv4 address (for example, a link or a Loopback address).
- When a segment of the segment list is defined as an MPLS label, subsequent segments can only be configured as MPLS labels.
- When configuring an explicit path using IP addresses of links along the path, the SR-TE process prefers the protected Adj-SID of the link, if one is available.

Configure Local SR-TE Policy Using Explicit Paths

To configure an SR-TE policy with an explicit path, complete the following configurations:

- 1. Create the segment list.
- **2.** Create the SR-TE policy.

Create a segment list with IPv4 addresses:

```
Router# configure
Router(config)# segment-routing
Router(config-sr)# traffic-eng
Router(config-sr-te)# segment-list name SIDLIST1
Router(config-sr-te-sl)# index 10 address ipv4 10.1.1.2
Router(config-sr-te-sl)# index 20 address ipv4 10.1.1.3
Router(config-sr-te-sl)# index 30 address ipv4 10.1.1.4
```

```
Router(config-sr-te-sl)# exit
```

Create a segment list with MPLS labels:

```
Router(config-sr-te)# segment-list name SIDLIST2
Router(config-sr-te-sl)# index 10 mpls label 16002
Router(config-sr-te-sl)# index 20 mpls label 16003
Router(config-sr-te-sl)# index 30 mpls label 16004
Router(config-sr-te-sl)# exit
```

Create a segment list with IPv4 addresses and MPLS labels:

```
Router(config-sr-te)# segment-list name SIDLIST3
Router(config-sr-te-sl)# index 10 address ipv4 10.1.1.2
Router(config-sr-te-sl)# index 20 mpls label 16003
Router(config-sr-te-sl)# index 30 mpls label 16004
Router(config-sr-te-sl)# exit
```

Create the SR-TE policy:

```
Router(config-sr-te)# policy POLICY2
Router(config-sr-te-policy)# color 20 end-point ipv4 10.1.1.4
Router(config-sr-te-policy)# candidate-paths
Router(config-sr-te-policy-path)# preference 200
Router(config-sr-te-policy-path-pref)# explicit segment-list SIDLIST2
Router(config-sr-te-pp-info)# exit
Router(config-sr-te-policy-path-pref)# exit
Router(config-sr-te-policy-path)# preference 100
Router(config-sr-te-policy-path-pref)# explicit segment-list SIDLIST1
Router(config-sr-te-pp-info)# exit
Router(config-sr-te-pp-info)# exit
```

Running Configuration

Router# show running-configuration

```
segment-routing
traffic-eng
 segment-list SIDLIST1
   index 10 address ipv4 10.1.1.2
  index 20 address ipv4 10.1.1.3
  index 30 address ipv4 10.1.1.4
 segment-list SIDLIST2
  index 10 mpls label 16002
   index 20 mpls label 16003
  index 30 mpls label 16004
  segment-list SIDLIST3
  index 10 address ipv4 10.1.1.2
   index 20 mpls label 16003
  index 30 mpls label 16004
  segment-list SIDLIST4
  index 10 mpls label 16009
  index 20 mpls label 16003
   index 30 mpls label 16004
 policy POLICY1
  color 10 end-point ipv4 10.1.1.4
   candidate-paths
   preference 100
    explicit segment-list SIDLIST1
```

```
!
    !
 policy POLICY2
  color 20 end-point ipv4 10.1.1.4
  candidate-paths
   preference 100
    explicit segment-list SIDLIST1
    - 1
   preference 200
    explicit segment-list SIDLIST2
  -1
 policy POLICY3
  color 30 end-point ipv4 10.1.1.4
  candidate-paths
   preference 100
    explicit segment-list SIDLIST3
    !
   !
   1
!
1
```

Verification

Verify the SR-TE policy configuration using:

```
Router# show segment-routing traffic-eng policy name srte c 20 ep 10.1.1.4
SR-TE policy database
Color: 20, End-point: 10.1.1.4
  Name: srte c 20 ep 10.1.1.4
  Status:
   Admin: up Operational: up for 00:00:15 (since Jul 14 00:53:10.615)
  Candidate-paths:
   Preference: 200 (configuration) (active)
     Name: POLICY2
      Requested BSID: dynamic
        Protection Type: protected-preferred
        Maximum SID Depth: 8
      Explicit: segment-list SIDLIST2 (active)
        Weight: 1, Metric Type: TE
         16002
          16003
          16004
    Preference: 100 (configuration) (inactive)
      Name: POLICY2
      Requested BSID: dynamic
        Protection Type: protected-preferred
        Maximum SID Depth: 8
      Explicit: segment-list SIDLIST1 (inactive)
        Weight: 1, Metric Type: TE
          [Adjacency-SID, 10.1.1.2 - <None>]
          [Adjacency-SID, 10.1.1.3 - <None>]
          [Adjacency-SID, 10.1.1.4 - <None>]
```

```
Attributes:
Binding SID: 51301
Forward Class: Not Configured
Steering labeled-services disabled: no
Steering BGP disabled: no
IPv6 caps enable: yes
Invalidation drop enabled: no
```

Configuring Explicit Path with Affinity Constraint Validation

To fully configure SR-TE flexible name-based policy constraints, you must complete these high-level tasks in order:

- 1. Assign Color Names to Numeric Values
- 2. Associate Affinity-Names with SR-TE Links
- 3. Associate Affinity Constraints for SR-TE Policies

```
/* Enter the global configuration mode and assign color names to numeric values
Router# configure
Router(config) # segment-routing
Router(config-sr) # traffic-eng
Router(config-sr-te) # affinity-map
Router(config-sr-te-affinity-map) # blue bit-position 0
Router(config-sr-te-affinity-map) # green bit-position 1
Router (config-sr-te-affinity-map) # red bit-position 2
Router(config-sr-te-affinity-map) # exit
/* Associate affinity-names with SR-TE links
Router(config-sr-te)# interface Gi0/0/0/0
Router(config-sr-te-if) # affinity
Router(config-sr-te-if-affinity) # blue
Router(config-sr-te-if-affinity)# exit
Router(config-sr-te-if) # exit
Router(config-sr-te) # interface Gi0/0/0/1
Router(config-sr-te-if) # affinity
Router(config-sr-te-if-affinity) # blue
Router(config-sr-te-if-affinity)# green
Router(config-sr-te-if-affinity)# exit
Router(config-sr-te-if) # exit
Router(config-sr-te)#
/* Associate affinity constraints for SR-TE policies
Router(config-sr-te)# segment-list name SIDLIST1
Router(config-sr-te-sl) # index 10 address ipv4 10.1.1.2
Router(config-sr-te-sl) # index 20 address ipv4 2.2.2.23
Router(config-sr-te-sl) # index 30 address ipv4 10.1.1.4
Router(config-sr-te-sl)# exit
Router(config-sr-te)# segment-list name SIDLIST2
Router(config-sr-te-sl) # index 10 address ipv4 10.1.1.2
Router(config-sr-te-sl) # index 30 address ipv4 10.1.1.4
Router(config-sr-te-sl)# exit
Router(config-sr-te) # segment-list name SIDLIST3
Router(config-sr-te-sl) # index 10 address ipv4 10.1.1.5
Router(config-sr-te-sl) # index 30 address ipv4 10.1.1.4
Router(config-sr-te-sl)# exit
```

```
Router(config-sr-te) # policy POLICY1
Router(config-sr-te-policy) # color 20 end-point ipv4 10.1.1.4
Router(config-sr-te-policy) # binding-sid mpls 1000
Router(config-sr-te-policy) # candidate-paths
Router(config-sr-te-policy-path) # preference 200
Router(config-sr-te-policy-path-pref) # constraints affinity exclude-any red
Router(config-sr-te-policy-path-pref) # explicit segment-list SIDLIST1
Router(config-sr-te-pp-info) # exit
Router(config-sr-te-pp-info) # exit
Router(config-sr-te-pp-info) # exit
Router(config-sr-te-policy-path-pref) # exit
Router(config-sr-te-policy-path) # preference 100
Router(config-sr-te-policy-path-pref) # explicit segment-list SIDLIST3
```

Running Configuration

```
Router# show running-configuration
segment-routing
 traffic-eng
 interface GigabitEthernet0/0/0/0
  affinity
   blue
   !
 interface GigabitEthernet0/0/0/1
  affinity
   blue
   areen
  segment-list name SIDLIST1
  index 10 address ipv4 10.1.1.2
   index 20 address ipv4 2.2.2.23
  index 30 address ipv4 10.1.1.4
  segment-list name SIDLIST2
  index 10 address ipv4 10.1.1.2
   index 30 address ipv4 10.1.1.4
 segment-list name SIDLIST3
  index 10 address ipv4 10.1.1.5
  index 30 address ipv4 10.1.1.4
 policy POLICY1
  binding-sid mpls 1000
  color 20 end-point ipv4 10.1.1.4
  candidate-paths
   preference 100
    explicit segment-list SIDLIST3
    1
   preference 200
    explicit segment-list SIDLIST1
     explicit segment-list SIDLIST2
     constraints
     affinity
```

```
exclude-any
red
!
!
!
!
!
!
affinity-map
blue bit-position 0
green bit-position 1
red bit-position 2
!
```

Protocols

Path Computation Element Protocol

The path computation element protocol (PCEP) describes a set of procedures by which a path computation client (PCC) can report and delegate control of head-end label switched paths (LSPs) sourced from the PCC to a PCE peer. The PCE can request the PCC to update and modify parameters of LSPs it controls. The stateful model also enables a PCC to allow the PCE to initiate computations allowing the PCE to perform network-wide orchestration.

BGP SR-TE

BGP may be used to distribute SR Policy candidate paths to an SR-TE head-end. Dedicated BGP SAFI and NLRI have been defined to advertise a candidate path of an SR Policy. The advertisement of Segment Routing policies in BGP is documented in the IETF drafthttps://datatracker.ietf.org/doc/draft-ietf-idr-segment-routing-te-policy/

SR policies with IPv4 and IPv6 end-points can be advertised over BGPv4 or BGPv6 sessions between the SR-TE controller and the SR-TE headend.

The Cisco IOS-XR implementation supports the following combinations:

- IPv4 SR policy advertised over BGPv4 session
- IPv6 SR policy advertised over BGPv4 session
- IPv6 SR policy advertised over BGPv6 session

Configure BGP SR Policy Address Family at SR-TE Head-End

Perform this task to configure BGP SR policy address family at SR-TE head-end:

SUMMARY STEPS

- 1. configure
- 2. router bgp as-number

- 3. bgp router-id ip-address
- 4. address-family {ipv4 | ipv6} sr-policy
- 5. exit
- 6. neighbor ip-address
- **7. remote-as** *as-number*
- 8. address-family $\{ipv4 \mid ipv6\}$ sr-policy
- **9.** route-policy route-policy-name {in | out}

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	
Step 2	router bgp as-number Example:	Specifies the BGP AS number and enters the BGP configuration mode, allowing you to configure the BGP routing process.
	RP/0/RSP0/CPU0:router(config)# router bgp 65000	
Step 3	bgp router-id ip-address Example:	Configures the local router with a specified router ID.
	<pre>RP/0/RSP0/CPU0:router(config-bgp)# bgp router-id 10.1.1.1</pre>	
Step 4	<pre>address-family {ipv4 ipv6} sr-policy Example: RP/0/RSP0/CPU0:router(config-bgp)# address-family ipv4 sr-policy</pre>	Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.
Step 5	exit	
Step 6	<pre>neighbor ip-address Example: RP/0/RSP0/CPU0:router(config-bgp)# neighbor 10.10.0.1</pre>	Places the router in neighbor configuration mode for BGP routing and configures the neighbor IP address as a BGP peer.
Step 7	<pre>remote-as as-number Example: RP/0/RSP0/CPU0:router(config-bgp-nbr)# remote-as 1</pre>	Creates a neighbor and assigns a remote autonomous system number to it.

	Command or Action	Purpose
Step 8	address-family {ipv4 ipv6} sr-policy Example:	Specifies either the IPv4 or IPv6 address family and enters address family configuration submode.
	<pre>RP/0/RSP0/CPU0:router(config-bgp-nbr) # address-family ipv4 sr-policy</pre>	
Step 9	route-policy route-policy-name {in out}	Applies the specified policy to IPv4 or IPv6 unicast routes.
	Example:	
	<pre>RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# route-policy pass out</pre>	

Example: BGP SR-TE with BGPv4 Neighbor to BGP SR-TE Controller

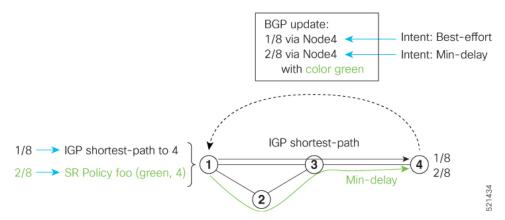
The following configuration shows the an SR-TE head-end with a BGPv4 session towards a BGP SR-TE controller. This BGP session is used to signal both IPv4 and IPv6 SR policies.

```
router bgp 65000
bgp router-id 10.1.1.1
!
address-family ipv4 sr-policy
!
address-family ipv6 sr-policy
!
neighbor 10.1.3.1
remote-as 10
description *** eBGP session to BGP SRTE controller ***
address-family ipv4 sr-policy
route-policy pass in
route-policy pass out
!
address-family ipv6 sr-policy
route-policy pass in
route-policy pass in
route-policy pass in
route-policy pass in
route-policy pass out
!
```

Example: BGP SR-TE with BGPv6 Neighbor to BGP SR-TE Controller

The following configuration shows an SR-TE head-end with a BGPv6 session towards a BGP SR-TE controller. This BGP session is used to signal IPv6 SR policies.

```
router bgp 65000
bgp router-id 10.1.1.1
address-family ipv6 sr-policy
!
neighbor 3001::10:1:3:1
remote-as 10
description *** eBGP session to BGP SRTE controller ***
address-family ipv6 sr-policy
route-policy pass in
route-policy pass out
!
!
!
```


Traffic Steering

Automated Steering

Automated steering (AS) allows service traffic to be automatically steered onto the required transport SLA path programmed by an SR policy.

With AS, BGP automatically steers traffic onto an SR Policy based on the next-hop and color of a BGP service route. The color of a BGP service route is specified by a color extended community attribute. This color is used as a transport SLA indicator, such as min-delay or min-cost.

When the next-hop and color of a BGP service route matches the end-point and color of an SR Policy, BGP automatically installs the route resolving onto the BSID of the matching SR Policy. Recall that an SR Policy on a head-end is uniquely identified by an end-point and color.

When a BGP route has multiple extended-color communities, each with a valid SR Policy, the BGP process installs the route on the SR Policy giving preference to the color with the highest numerical value.

The granularity of AS behaviors can be applied at multiple levels, for example:

- At a service level—When traffic destined to all prefixes in a given service is associated to the same transport path type. All prefixes share the same color.
- At a destination/prefix level—When traffic destined to a prefix in a given service is associated to a specific transport path type. Each prefix could be assigned a different color.
- At a flow level—When flows destined to the same prefix are associated with different transport path types

AS behaviors apply regardless of the instantiation method of the SR policy, including:

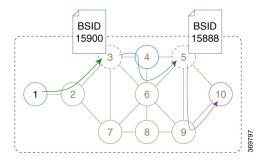
- On-demand SR policy
- Manually provisioned SR policy
- PCE-initiated SR policy

Using Binding Segments

The binding segment is a local segment identifying an SR-TE policy. Each SR-TE policy is associated with a binding segment ID (BSID). The BSID is a local label that is automatically allocated for each SR-TE policy when the SR-TE policy is instantiated.

BSID can be used to steer traffic into the SR-TE policy and across domain borders, creating seamless end-to-end inter-domain SR-TE policies. Each domain controls its local SR-TE policies; local SR-TE policies can be validated and rerouted if needed, independent from the remote domain's head-end. Using binding segments isolates the head-end from topology changes in the remote domain.

Packets received with a BSID as top label are steered into the SR-TE policy associated with the BSID. When the BSID label is popped, the SR-TE policy's SID list is pushed.


BSID can be used in the following cases:

- Multi-Domain (inter-domain, inter-autonomous system)—BSIDs can be used to steer traffic across domain borders, creating seamless end-to-end inter-domain SR-TE policies.
- Large-Scale within a single domain—The head-end can use hierarchical SR-TE policies by nesting the end-to-end (edge-to-edge) SR-TE policy within another layer of SR-TE policies (aggregation-to-aggregation). The SR-TE policies are nested within another layer of policies using the BSIDs, resulting in seamless end-to-end SR-TE policies.
- Label stack compression—If the label-stack size required for an SR-TE policy exceeds the platform capability, the SR-TE policy can be seamlessly stitched to, or nested within, other SR-TE policies using a binding segment.
- BGP SR-TE Dynamic—The head-end steers the packet into a BGP-based FIB entry whose next hop is a binding-SID.

Stitching SR-TE Polices Using Binding SID: Example

In this example, three SR-TE policies are stitched together to form a seamless end-to-end path from node 1 to node 10. The path is a chain of SR-TE policies stitched together using the binding-SIDs of intermediate policies, providing a seamless end-to-end path.

Figure 3: Stitching SR-TE Polices Using Binding SID

Step 1 On node 5, do the following:

- a) Define an SR-TE policy with an explicit path configured using the loopback interface IP addresses of node 9 and node 10.
- b) Define an explicit binding-SID (mpls label 15888) allocated from SRLB for the SR-TE policy.

Example:

Node 5

```
segment-routing
traffic-eng
  segment-list PATH-9 10
  index 10 address ipv4 10.1.1.9
  index 20 address ipv4 10.1.1.10
 policy foo
  binding-sid mpls 15888
   color 777 end-point ipv4 10.1.1.10
   candidate-paths
   preference 100
    explicit segment-list PATH5-9 10
    !
  1
 !
RP/0/RSP0/CPU0:Node-5# show segment-routing traffic-eng policy color 777
SR-TE policy database
Color: 777, End-point: 10.1.1.10
 Name: srte c 777 ep 10.1.1.10
 Status:
   Admin: up Operational: up for 00:00:52 (since Aug 19 07:40:12.662)
  Candidate-paths:
   Preference: 100 (configuration) (active)
     Name: foo
     Requested BSID: 15888
     PCC info:
       Symbolic name: cfg foo discr 100
       PLSP-ID: 70
      Explicit: segment-list PATH-9 10 (valid)
        Weight: 1, Metric Type: TE
         16009 [Prefix-SID, 10.1.1.9]
         16010 [Prefix-SID, 10.1.1.10]
  Attributes:
   Binding SID: 15888 (SRLB)
    Forward Class: 0
    Steering BGP disabled: no
   IPv6 caps enable: yes
```

Step 2 On node 3, do the following:

- a) Define an SR-TE policy with an explicit path configured using the following:
 - Loopback interface IP address of node 4
 - Interface IP address of link between node 4 and node 6
 - Loopback interface IP address of node 5
 - Binding-SID of the SR-TE policy defined in Step 1 (mpls label 15888)

Note This last segment allows the stitching of these policies.

b) Define an explicit binding-SID (mpls label 15900) allocated from SRLB for the SR-TE policy.

Example:

Node 3

```
segment-routing
traffic-eng
  segment-list PATH-4 4-6 5 BSID
  index 10 address ipv4 10.1.1.4
  index 20 address ipv4 10.4.6.6
  index 30 address ipv4 10.1.1.5
  index 40 mpls label 15888
 policy baa
  binding-sid mpls 15900
  color 777 end-point ipv4 10.1.1.5
   candidate-paths
   preference 100
    explicit segment-list PATH-4 4-6 5 BSID
     !
    1
  !
\label{eq:rp_operator} \mbox{RP/O/RSPO/CPU0:Node-3$\# show segment-routing traffic-eng policy color 777}
SR-TE policy database
Color: 777, End-point: 10.1.1.5
 Name: srte_c_777_ep_10.1.1.5
 Status:
   Admin: up Operational: up for 00:00:32 (since Aug 19 07:40:32.662)
 Candidate-paths:
    Preference: 100 (configuration) (active)
     Name: baa
      Requested BSID: 15900
      PCC info:
        Symbolic name: cfg_baa_discr_100
        PLSP-ID: 70
      Explicit: segment-list PATH-4 4-6 5 BSID (valid)
        Weight: 1, Metric Type: TE
          16004 [Prefix-SID, 10.1.1.4]
          80005 [Adjacency-SID, 10.4.6.4 - 10.4.6.6]
          16005 [Prefix-SID, 10.1.1.5]
          15888
 Attributes:
   Binding SID: 15900 (SRLB)
    Forward Class: 0
    Steering BGP disabled: no
    IPv6 caps enable: yes
```

Step 3 On node 1, define an SR-TE policy with an explicit path configured using the loopback interface IP address of node 3 and the binding-SID of the SR-TE policy defined in step 2 (mpls label 15900). This last segment allows the stitching of these policies.

Example:

Node 1

```
segment-routing
traffic-eng
```

```
segment-list PATH-3 BSID
  index 10 address ipv4 10.1.1.3
  index 20 mpls label 15900
 policy bar
  color 777 end-point ipv4 10.1.1.3
   candidate-paths
   preference 100
    explicit segment-list PATH-3 BSID
    - !
   1
RP/0/RSP0/CPU0:Node-1# show segment-routing traffic-eng policy color 777
SR-TE policy database
Color: 777, End-point: 10.1.1.3
 Name: srte c 777 ep 10.1.1.3
   Admin: up Operational: up for 00:00:12 (since Aug 19 07:40:52.662)
  Candidate-paths:
   Preference: 100 (configuration) (active)
     Name: bar
      Requested BSID: dynamic
      PCC info:
       Symbolic name: cfg_bar_discr_100
       PLSP-ID: 70
      Explicit: segment-list PATH-3 BSID (valid)
        Weight: 1, Metric Type: TE
          16003 [Prefix-SID, 10.1.1.3]
         15900
  Attributes:
   Binding SID: 80021
   Forward Class: 0
   Steering BGP disabled: no
   IPv6 caps enable: yes
```

L2VPN Preferred Path

EVPN VPWS Preferred Path over SR-TE Policy feature allows you to set the preferred path between the two end-points for EVPN VPWS pseudowire (PW) using SR-TE policy.

L2VPN VPLS or VPWS Preferred Path over SR-TE Policy feature allows you to set the preferred path between the two end-points for L2VPN Virtual Private LAN Service (VPLS) or Virtual Private Wire Service (VPWS) using SR-TE policy.

Refer to the EVPN VPWS Preferred Path over SR-TE Policy and L2VPN VPLS or VPWS Preferred Path over SR-TE Policy sections in the "L2VPN Services over Segment Routing for Traffic Engineering Policy" chapter of the *L2VPN and Ethernet Services Configuration Guide*.

Policy-Based Tunnel Selection for SR-TE Policy

Policy-Based Tunnel Selection (PBTS) is a mechanism that lets you direct traffic into specific SR-TE policies based on different classification criteria. PBTS benefits Internet service providers (ISPs) that carry voice and data traffic through their networks, who want to route this traffic to provide optimized voice service.

PBTS works by selecting SR-TE policies based on the classification criteria of the incoming packets, which are based on the IP precedence, experimental (EXP), differentiated services code point (DSCP), or type of service (ToS) field in the packet. Default-class configured for paths is always zero (0). If there is no TE for a given forward-class, then the default-class (0) will be tried. If there is no default-class, then the packet is dropped. PBTS supports up to seven (exp 1 - 7) EXP values associated with a single SR-TE policy.

For more information about PBTS, refer to the "Policy-Based Tunnel Selection" section in the MPLS Configuration Guide for Cisco NCS 6000 Series RoutersMPLS Configuration Guide.

Configure Policy-Based Tunnel Selection for SR-TE Policies

The following section lists the steps to configure PBTS for an SR-TE policy.

Note

Steps 1 through 4 are detailed in the "Implementing MPLS Traffic Engineering" chapter of the MPLS Configuration Guide for Cisco NCS 6000 Series RoutersMPLS Configuration Guide.

- 1. Define a class-map based on a classification criteria.
- 2. Define a policy-map by creating rules for the classified traffic.
- 3. Associate a forward-class to each type of ingress traffic.
- **4.** Enable PBTS on the ingress interface, by applying this service-policy.
- 5. Create one or more egress SR-TE policies (to carry packets based on priority) to the destination and associate the egress SR-TE policy to a forward-class.

Configuration Example

```
Router(config) # segment-routing traffic-eng
Router(config-sr-te)# policy POLICY-PBTS
Router(config-sr-te-policy)# color 1001 end-point ipv4 10.1.1.20
Router(config-sr-te-policy)# autoroute
Router(config-sr-te-policy-autoroute) # include all
Router(config-sr-te-policy-autoroute) # forward-class 1
Router(config-sr-te-policy-autoroute) # exit
Router (config-sr-te-policy) # candidate-paths
Router(config-sr-te-policy-path)# preference 1
Router(config-sr-te-policy-path-pref)# explicit segment-list SIDLIST1
Router(config-sr-te-policy-path-pref)# exit
Router(config-sr-te-pp-info) # exit
Router(config-sr-te-policy-path-pref)# exit
Router(config-sr-te-policy-path) # preference 2
Router(config-sr-te-policy-path-pref) # dynamic
Router(config-sr-te-pp-info) # metric
Router(config-sr-te-path-metric) # type te
Router(config-sr-te-path-metric)# commit
```

Running Configuration

```
segment-routing
traffic-eng
policy POLICY-PBTS
  color 1001 end-point ipv4 10.1.1.20
  autoroute
  include all
  forward-class 1
!
  candidate-paths
  preference 1
   explicit segment-list SIDLIST1
  !
  preference 2
  dynamic
  metric
  type te
```

Miscellaneous

Configure Seamless Bidirectional Forwarding Detection

Bidirectional forwarding detection (BFD) provides low-overhead, short-duration detection of failures in the path between adjacent forwarding engines. BFD allows a single mechanism to be used for failure detection over any media and at any protocol layer, with a wide range of detection times and overhead. The fast detection of failures provides immediate reaction to failure in the event of a failed link or neighbor.

In BFD, each end of the connection maintains a BFD state and transmits packets periodically over a forwarding path. Seamless BFD (SBFD) is unidirectional, resulting in faster session activation than BFD. The BFD state and client context is maintained on the head-end (initiator) only. The tail-end (reflector) validates the BFD packet and responds, so there is no need to maintain the BFD state on the tail-end.

Initiators and Reflectors

SBFD runs in an asymmetric behavior, using initiators and reflectors.

The following figure represents the roles of the SBFD initiator and reflector.

SBFD Initiator

SBFD Reflector

1 2 3 4 5

22 24

11 12 13 14 15

Domain1 Domain2

Figure 4: SBFD Initiator and Reflector

The initiator is an SBFD session on a network node that performs a continuity test to a remote entity by sending SBFD packets. The initiator injects the SBFD packets into the segment-routing traffic-engineering (SRTE) policy. The initiator triggers the SBFD session and maintains the BFD state and client context.

The reflector is an SBFD session on a network node that listens for incoming SBFD control packets to local entities and generates response SBFD control packets. The reflector is stateless and only reflects the SBFD packets back to the initiator.

A node can be both an initiator and a reflector, if you want to configure different SBFD sessions.

For SR-TE, SBFD control packets are label switched in forward and reverse direction. For SBFD, the tail-end node is the reflector node; other nodes cannot be a reflector. When using SBFD with SR-TE, if the forward and return directions are label-switched paths, SBFD need not be configured on the reflector node.

Discriminators

The BFD control packet carries 32-bit discriminators (local and remote) to demultiplex BFD sessions. SBFD requires globally unique SBFD discriminators that are known by the initiator.

The SBFD control packets contain the discriminator of the initiator, which is created dynamically, and the discriminator of the reflector, which is configured as a local discriminator on the reflector.

Configure the SBFD Reflector

To ensure the SBFD packet arrives on the intended reflector, each reflector has at least one globally unique discriminator. Globally unique discriminators of the reflector are known by the initiator before the session starts. An SBFD reflector only accepts BFD control packets where "Your Discriminator" is the reflector discriminator.

This task explains how to configure local discriminators on the reflector.

Before you begin

Enable mpls oam on the reflector to install a routing information base (RIB) entry for 127.0.0.0/8.

```
Router_5# configure
Router_5(config)# mpls oam
Router_5(config-oam)#
```

SUMMARY STEPS

- 1. configure
- 2. sbfd
- **3.** local-discriminator $\{ipv4-address \mid 32-bit-value \mid dynamic \mid interface interface\}$
- 4. commit

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	sbfd	Enters SBFD configuration mode.
	Example:	
	Router_5(config)# sbfd	
Step 3	local-discriminator {ipv4-address 32-bit-value dynamic interface interface}	Configures the local discriminator. You can configure multiple local discriminators.
	Example:	
	Router_5(config-sbfd)# local-discriminator 10.1.1.5 Router_5(config-sbfd)# local-discriminator 987654321 Router_5(config-sbfd)# local-discriminator dynamic	
	<pre>Router_5(config-sbfd)# local-discriminator interface Loopback0</pre>	
Step 4	commit	

Verify the local discriminator configuration.

Example

Router_5# show bfd target-identifier local

Local Targe	et Identifier	Table		
Discr	Discr Src	VRF Name	Status	Flags
16843013 987654321 2147483649	Local Local Local	default default default	enable enable enable	ia- v
Legend: TII a d i v	d - Dynamic mod i - Interface n			

What to do next

Configure the SBFD initiator.

Configure the SBFD Initiator

Perform the following configurations on the SBFD initiator.

Enable Line Cards to Host BFD Sessions

The SBFD initiator sessions are hosted by the line card CPU.

This task explains how to enable line cards to host BFD sessions.

SUMMARY STEPS

- 1. configure
- 2. bfd
- 3. multipath include location node-id

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	bfd	Enters BFD configuration mode.
	Example:	
	Router_1(config)# bfd	
Step 3	multipath include location node-id	Configures BFD multiple path on specific line card. Any of the configured line cards can be instructed to host a BFD
	Example: Router 1 (config-bfd) # multipath include location	of the configured line cards can be instructed to host a BFI session.

0/1/CPU0 Router 1(config-bfd) # multipath include location	
Poutor 1 (config-hfd) # multipath include location	
0/2/CPU0	
Router_1(config-bfd)# multipath include location 0/3/cpU0	

What to do next

Map a destination address to a remote discriminator.

Map a Destination Address to a Remote Discriminator

The SBFD initiator uses a Remote Target Identifier (RTI) table to map a destination address (Target ID) to a remote discriminator.

This task explains how to map a destination address to a remote discriminator.

SUMMARY STEPS

- 1. configure
- 2. sbfd
- **3. remote-target ipv4** *ipv4-address*
- 4. remote-discriminator remote-discriminator

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	sbfd	Enters SBFD configuration mode.
	Example:	
	Router_1(config)# sbfd	
Step 3	remote-target ipv4 ipv4-address	Configures the remote target.
	Example:	
	Router_1(config-sbfd) # remote-target ipv4 10.1.1.5	i i
Cton A		Manual de desirado de alderes (Terres de ID) de accordo
Step 4	remote-discriminator remote-discriminator Example:	Maps the destination address (Target ID) to a remote discriminator.
	Router_1(config-sbfd-nnnn)# remote-discriminator	

	Command or Action	Purpose
•	16843013	

Verify the remote discriminator configuration.

Example

Router 1# show bfd target-identifier remote

What to do next

Enable SBFD on an SR-TE policy.

Enable Seamless BFD Under an SR-TE Policy or SR-ODN Color Template

This example shows how to enable SBFD on an SR-TE policy or an SR on-demand (SR-ODN) color template.

Note

Do not use BFD with disjoint paths. The reverse path might not be disjoint, causing a single link failure to bring down BFD sessions on both the disjoint paths.

Enable BFD

• Use the **bfd** command in SR-TE policy configuration mode to enable BFD and enters BFD configuration mode.

```
Router(config) # segment-routing traffic-eng
Router(config-sr-te) # policy POLICY1
Router(config-sr-te-policy) # bfd
Router(config-sr-te-policy-bfd) #
```

Use the **bfd** command in SR-ODN configuration mode to enable BFD and enters BFD configuration mode.

```
Router(config) # segment-routing traffic-eng
Router(config-sr-te) # on-demand color 10
Router(config-sr-te-color) # bfd
Router(config-sr-te-color-bfd) #
```

Configure BFD Options

• Use the **minimum-interval** *milliseconds* command to set the interval between sending BFD hello packets to the neighbor. The range is from 15 to 200. The default is 15.

```
Router(config-sr-te-policy-bfd) # minimum-interval 50
```

• Use the **multiplier** *multiplier* command to set the number of times a packet is missed before BFD declares the neighbor down. The range is from 2 to 10. The default is 3.

```
Router(config-sr-te-policy-bfd) # multiplier 2
```

- Use the **invalidation-action** {**down** | **none**} command to set the action to be taken when BFD session is invalidated.
 - down: LSP can only be operationally up if the BFD session is up
 - none: BFD session state does not affect LSP state, use for diagnostic purposes

```
Router(config-sr-te-policy-bfd) # invalidation-action down
```

• (SR-TE policy only) Use the reverse-path binding-label *label* command to specify BFD packets return to head-end by using a binding label.

By default, the S-BFD return path (from tail-end to head-end) is via IPv4. You can use a reverse binding label so that the packet arrives at the tail-end with the reverse binding label as the top label. This label is meant to point to a policy that will take the BFD packets back to the head-end. The reverse binding label is configured per-policy.

Note that when MPLS return path is used, BFD uses echo mode packets, which means the tail-end's BFD reflector does not process BFD packets at all.

The MPLS label value at the tail-end and the head-end must be synchronized by the operator or controller. Because the tail-end binding label should remain constant, configure it as an explicit BSID, rather than dynamically allocated.

```
Router(config-sr-te-policy-bfd) # reverse-path binding-label 24036
```

• Use the **logging session-state-change** command to log when the state of the session changes

```
Router(config-sr-te-policy-bfd) # logging session-state-change
```

Examples

This example shows how to enable SBFD on an SR-TE policy.

```
Router(config) # segment-routing traffic-eng
Router(config-sr-te) # policy POLICY1
Router(config-sr-te-policy) # bfd
Router(config-sr-te-policy-bfd) # invalidation-action down
Router(config-sr-te-policy-bfd) # minimum-interval 50
Router(config-sr-te-policy-bfd) # multiplier 2
Router(config-sr-te-policy-bfd) # reverse-path binding-label 24036
Router(config-sr-te-policy-bfd) # logging session-state-change
segment-routing
```

```
traffic-eng
policy POLICY1
bfd
minimum-interval 50
multiplier 2
invalidation-action down
reverse-path
binding-label 24036
!
logging
session-state-change
!
!
!
```

This example shows how to enable SBFD on an SR-ODN color.

```
Router (config) # segment-routing traffic-eng
Router(config-sr-te)# on-demand color 10
Router(config-sr-te-color)# bfd
Router (config-sr-te-color-bfd) # minimum-interval 50
Router(config-sr-te-color-bfd) # multiplier 2
Router(config-sr-te-color-bfd) # logging session-state-change
Router(config-sr-te-color-bfd) # invalidation-action down
segment-routing
 traffic-eng
  on-demand color 10
   minimum-interval 50
    multiplier 2
    invalidation-action down
    logging
     session-state-change
  !
```

SR-TE Reoptimization Timers

SR-TE path re-optimization occurs when the head-end determines that there is a more optimal path available than the one currently used. For example, in case of a failure along the SR-TE LSP path, the head-end could detect and revert to a more optimal path by triggering re-optimization.

Re-optimization can occur due to the following events:

- The explicit path hops used by the primary SR-TE LSP explicit path are modified
- The head-end determines the currently used path-option are invalid due to either a topology path disconnect, or a missing SID in the SID database that is specified in the explicit-path
- A more favorable path-option (lower index) becomes available

For event-based re-optimization, you can specify various delay timers for path re-optimization. For example, you can specify how long to wait before switching to a reoptimized path

Additionally, you can configure a timer to specify how often to perform reoptimization of policies. You can also trigger an immediate reoptimization for a specific policy or for all policies.

SR-TE Reoptimization

To trigger an immediate SR-TE reoptimization, use the **segment-routing traffic-eng reoptimization** command in Exec mode:

```
Router# segment-routing traffic-eng reoptimization {all | name policy}
```

Use the **all** option to trigger an immediate reoptimization for all policies. Use the **name** *policy* option to trigger an immediate reoptimization for a specific policy.

Configuring SR-TE Reoptimization Timers

Use these commands in SR-TE configuration mode to configure SR-TE reoptimization timers:

- timers candidate-path cleanup-delay seconds—Specifies the delay before cleaning up candidate paths, in seconds. The range is from 0 (immediate clean-up) to 86400; the default value is 120
- **timers cleanup-delay** *seconds*—Specifies the delay before cleaning up previous path, in seconds. The range is from 0 (immediate clean-up) to 300; the default value is 10.
- timers init-verify-restart seconds Specifies the delay for topology convergence after the topology starts populating due to a restart, in seconds. The range is from 10 to 10000; the default is 40.
- timers init-verify-startup seconds—Specifies the delay for topology convergence after topology starts populating for due to startup, in seconds. The range is from 10 to 10000; the default is 300
- timers init-verify-switchover *seconds*—Specifies the delay for topology convergence after topology starts populating due to a switchover, in seconds. The range is from 10 to 10000; the default is 60.
- **timers install-delay** *seconds*—Specifies the delay before switching to a reoptimized path, in seconds. The range is from 0 (immediate installation of new path) to 300; the default is 10.
- timers periodic-reoptimization seconds—Specifies how often to perform periodic reoptimization of policies, in seconds. The range is from 0 to 86400; the default is 600.

Example Configuration

```
Router(config)# segment-routing traffic-eng
Router(config-sr-te)# timers
Router(config-sr-te-timers)# candidate-path cleanup-delay 600
Router(config-sr-te-timers)# cleanup-delay 60
Router(config-sr-te-timers)# init-verify-restart 120
Router(config-sr-te-timers)# init-verify-startup 600
Router(config-sr-te-timers)# init-verify-switchover 30
Router(config-sr-te-timers)# install-delay 60
Router(config-sr-te-timers)# periodic-reoptimization 3000
```

Running Config

```
segment-routing
traffic-eng
timers
install-delay 60
periodic-reoptimization 3000
cleanup-delay 60
```

```
candidate-path cleanup-delay 600
init-verify-restart 120
init-verify-startup 600
init-verify-switchover 30
!
!
!
```


Enabling Segment Routing Flexible Algorithm

Segment Routing Flexible Algorithm allows operators to customize IGP shortest path computation according to their own needs. An operator can assign custom SR prefix-SIDs to realize forwarding beyond link-cost-based SPF. As a result, Flexible Algorithm provides a traffic engineered path automatically computed by the IGP to any destination reachable by the IGP.

The SR architecture associates prefix-SIDs to an algorithm which defines how the path is computed. Flexible Algorithm allows for user-defined algorithms where the IGP computes paths based on a user-defined combination of metric type and constraint.

This document describes the IS-IS extension to support Segment Routing Flexible Algorithm on an MPLS data-plane.

- Prerequisites for Flexible Algorithm, on page 71
- Building Blocks of Segment Routing Flexible Algorithm, on page 71
- Configuring Flexible Algorithm, on page 73
- Example: Configuring IS-IS Flexible Algorithm, on page 75
- Example: Traffic Steering to Flexible Algorithm Paths, on page 75

Prerequisites for Flexible Algorithm

Segment routing must be enabled on the router before the Flexible Algorithm functionality is activated.

Building Blocks of Segment Routing Flexible Algorithm

This section describes the building blocks that are required to support the SR Flexible Algorithm functionality in IS-IS.

Flexible Algorithm Definition

Many possible constraints may be used to compute a path over a network. Some networks are deployed with multiple planes. A simple form of constraint may be to use a particular plane. A more sophisticated form of constraint can include some extended metric, like delay, as described in [RFC7810]. Even more advanced case could be to restrict the path and avoid links with certain affinities. Combinations of these are also possible. To provide a maximum flexibility, the mapping between the algorithm value and its meaning can be defined by the user. When all the routers in the domain have the common understanding what the particular algorithm

value represents, the computation for such algorithm is consistent and the traffic is not subject to looping. Here, since the meaning of the algorithm is not defined by any standard, but is defined by the user, it is called a Flexible Algorithm.

Flexible Algorithm Membership

An algorithm defines how the best path is computed by IGP. Routers advertise the support for the algorithm as a node capability. Prefix-SIDs are also advertised with an algorithm value and are tightly coupled with the algorithm itself.

An algorithm is a one octet value. Values from 128 to 255 are reserved for user defined values and are used for Flexible Algorithm representation.

Flexible Algorithm Definition Advertisement

To guarantee the loop free forwarding for paths computed for a particular Flexible Algorithm, all routers in the network must share the same definition of the Flexible Algorithm. This is achieved by dedicated router(s) advertising the definition of each Flexible Algorithm. Such advertisement is associated with the priority to make sure that all routers will agree on a single and consistent definition for each Flexible Algorithm.

Definition of Flexible Algorithm includes:

- Metric type
- · Affinity constraints

To enable the router to advertise the definition for the particular Flexible Algorithm, **advertise-definition** command is used. At least one router in the area, preferably two for redundancy, must advertise the Flexible Algorithm definition. Without the valid definition being advertised, the Flexible Algorithm will not be functional.

Flexible Algorithm Prefix-SID Advertisement

To be able to forward traffic on a Flexible Algorithm specific path, all routers participating in the Flexible Algorithm will install a MPLS labeled path for the Flexible Algorithm specific SID that is advertised for the prefix. Only prefixes for which the Flexible Algorithm specific Prefix-SID is advertised is subject to Flexible Algorithm specific forwarding.

Calculation of Flexible Algorithm Path

A router may compute path for multiple Flexible Algorithms. A router must be configured to support particular Flexible Algorithm before it can compute any path for such Flexible Algorithm. A router must have a valid definition of the Flexible Algorithm before Flexible Algorithm is used.

The router uses the following rules to prune links from the topology during the Flexible Algorithm computation:

- All nodes that don't advertise support for Flexible Algorithm are pruned from the topology.
- · Affinities:
 - Check if any exclude affinity rule is part of the Flexible Algorithm Definition. If such exclude rule exists, check if any color that is part of the exclude rule is also set on the link. If such a color is set, the link must be pruned from the computation.

- Check if any include-any affinity rule is part of the Flexible Algorithm Definition. If such include-any rule exists, check if any color that is part of the include-any rule is also set on the link. If no such color is set, the link must be pruned from the computation.
- Check if any include-all affinity rule is part of the Flexible Algorithm Definition. If such include-all rule exists, check if all colors that are part of the include-all rule are also set on the link. If all such colors are not set on the link, the link must be pruned from the computation

Note

See #unique_79 unique_79_Connect_42_section_khh_5k1_hwb.

• Router uses the metric that is part of the Flexible Algorithm definition. If the metric isn't advertised for the particular link, the link is pruned from the topology.

Configuring Microloop Avoidance for Flexible Algorithm

By default, Microloop Avoidance per Flexible Algorithm instance follows Microloop Avoidance configuration for algo-0. For information about configuring Microloop Avoidance, see Configure Segment Routing Microloop Avoidance, on page 107.

You can disable Microloop Avoidance for Flexible Algorithm using the following commands:

```
router isis instance flex-algo algo microloop avoidance disable router ospf process flex-algo algo microloop avoidance disable
```

Configuring LFA / TI-LFA for Flexible Algorithm

By default, LFA/TI-LFA per Flexible Algorithm instance follows LFA/TI-LFA configuration for algo-0. For information about configuring TI-LFA, see Configure Topology-Independent Loop-Free Alternate (TI-LFA), on page 101.

You can disable TI-LFA for Flexible Algorithm using the following commands:

```
router isis instance flex-algo algo fast-reroute disable router ospf process flex-algo algo fast-reroute disable
```

Installation of Forwarding Entries for Flexible Algorithm Paths

Flexible Algorithm path to any prefix must be installed in the forwarding using the Prefix-SID that was advertised for such Flexible Algorithm. If the Prefix-SID for Flexible Algorithm is not known, such Flexible Algorithm path is not installed in forwarding for such prefix..

Only MPLS to MPLS entries are installed for a Flexible Algorithm path. No IP to IP or IP to MPLS entries are installed. These follow the native IPG paths computed based on the default algorithm and regular IGP metrics.

Configuring Flexible Algorithm

The following IS-IS configuration sub-mode is used to configure Flexible Algorithm:

```
router isis instance flex-algo algo
router ospf process flex-algo algo
algo—value from 128 to 255
```

Configuring Flexible Algorithm Definitions

The following commands are used to configure Flexible Algorithm definition under the flex-algo sub-mode:

• metric-type delay

Note

By default the regular IGP metric is used. If delay metric is enabled, the advertised delay on the link is used as a metric for Flexible Algorithm computation.

```
affinity exclude-any name1, name2, ...
name—name of the affinity map
priority priority value
```

The following command is used to enable advertisement of the Flexible Algorithm definition in IS-IS:

priority value—priority used during the Flexible Algorithm definition election.

```
router isis instance flex-algo algo advertise-definition
```

Configuring Affinity

The following command is used for defining the affinity-map. Affinity-map associates the name with the particular bit positions in the Extended Admin Group bitmask.

```
router isis instance flex-algo algo affinity-map name bit-position bit number
router ospf process flex-algo algo affinity-map name bit-position bit number
name—name of the affinity-map
```

Configuring Prefix-SID Advertisement

The following command is used to advertise prefix-SID for default and strict-SPF algorithm:

```
router isis instance interface type interface-path-id address-family {ipv4 | ipv6} [unicast]
prefix-sid [strict-spf | algorithm algorithm-number] [index | absolute] sid value

router ospf process area area interface Loopback interface-instance prefix-sid [strict-spf | algorithm algorithm-number] [index | absolute] sid value
```

- algorithm-number—Flexible Algorithm number
- sid value—SID value

Example: Configuring IS-IS Flexible Algorithm

```
router isis 1
 affinity-map red bit-position 65
 affinity-map blue bit-position 8
affinity-map green bit-position 201
 flex-algo 128
 advertise-definition
  affinity exclude-any red
 affinity include-any blue
 flex-algo 129
 affinity exclude-any green
address-family ipv4 unicast
segment-routing mpls
interface Loopback0
address-family ipv4 unicast
 prefix-sid algorithm 128 index 100
 prefix-sid algorithm 129 index 101
interface GigabitEthernet0/0/0/0
affinity flex-algo red
interface GigabitEthernet0/0/0/1
affinity flex-algo blue red
interface GigabitEthernet0/0/0/2
affinity flex-algo blue
```

Example: Traffic Steering to Flexible Algorithm Paths

BGP Routes on PE – Color Based Steering

SR-TE On Demand Next-Hop (ODN) feature can be used to steer the BGP traffic towards the Flexible Algorithm paths.

The following example configuration shows how to setup BGP steering local policy, assuming two router: R1 (2.2.2.2) and R2 (4.4.4.4), in the topology.

Configuration on router R1:

```
vrf Test
address-family ipv4 unicast
  import route-target
  1:150
!
  export route-policy SET_COLOR_RED_HI_BW
  export route-target
  1:150
!
```

```
interface Loopback0
ipv4 address 2.2.2.2 255.255.255.255
interface Loopback150
vrf Test
ipv4 address 2.2.2.222 255.255.255.255
interface TenGigE0/1/0/3/0
description exrl to cxrl
ipv4 address 10.0.20.2 255.255.255.0
extcommunity-set opaque color129-red-igp
 129
end-set
route-policy PASS
 pass
end-policy
route-policy SET_COLOR_RED_HI_BW
 set extcommunity color color129-red-igp
  pass
end-policy
router isis 1
is-type level-2-only
net 49.0001.0000.0000.0002.00
log adjacency changes
affinity-map RED bit-position 28
flex-algo 128
 priority 228
address-family ipv4 unicast
 metric-style wide
 advertise link attributes
 router-id 2.2.2.2
 segment-routing mpls
interface Loopback0
 address-family ipv4 unicast
  prefix-sid index 2
  prefix-sid algorithm 128 index 282
interface TenGigE0/1/0/3/0
 point-to-point
  address-family ipv4 unicast
router bgp 65000
bgp router-id 2.2.2.2
address-family ipv4 unicast
address-family vpnv4 unicast
 retain route-target all
neighbor-group RR-services-group
 remote-as 65000
  update-source Loopback0
  address-family ipv4 unicast
  address-family vpnv4 unicast
```

```
neighbor 4.4.4.4
 use neighbor-group RR-services-group
vrf Test
 rd auto
 address-family ipv4 unicast
  redistribute connected
segment-routing
traffic-eng
 logging
  policy status
 segment-list sl-cxr1
  index 10 mpls label 16294
 policy pol-foo
  color 129 end-point ipv4 4.4.4.4
  candidate-paths
   preference 100
    explicit segment-list sl-cxr1
    - !
   !
   !
```

Configuration on router R2:

```
address-family ipv4 unicast
 import route-target
  1:150
 export route-policy SET COLOR RED HI BW
  export route-target
  1:150
!
!
interface TenGigE0/1/0/1
description cxrl to exrl
ipv4 address 10.0.20.1 255.255.255.0
extcommunity-set opaque color129-red-igp
 129
end-set
!
route-policy PASS
 pass
end-policy
route-policy SET_COLOR_RED_HI_BW
 set extcommunity color color129-red-igp
 pass
end-policy
router isis 1
is-type level-2-only
net 49.0001.0000.0000.0004.00
log adjacency changes
```

```
affinity-map RED bit-position 28
affinity-map BLUE bit-position 29
affinity-map GREEN bit-position 30
flex-algo 128
 priority 228
flex-algo 129
 priority 229
flex-algo 130
 priority 230
address-family ipv4 unicast
 metric-style wide
  advertise link attributes
 router-id 4.4.4.4
  segment-routing mpls
interface Loopback0
 address-family ipv4 unicast
  prefix-sid index 4
  prefix-sid algorithm 128 index 284
  prefix-sid algorithm 129 index 294
  prefix-sid algorithm 130 index 304
1
interface GigabitEthernet0/0/0/0
 point-to-point
  address-family ipv4 unicast
interface TenGigE0/1/0/1
 point-to-point
  address-family ipv4 unicast
router bgp 65000
bgp router-id 4.4.4.4
address-family ipv4 unicast
address-family vpnv4 unicast
neighbor-group RR-services-group
  remote-as 65000
  update-source Loopback0
  address-family ipv4 unicast
  address-family vpnv4 unicast
neighbor 10.1.1.1
 use neighbor-group RR-services-group
neighbor 2.2.2.2
 use neighbor-group RR-services-group
vrf Test
 rd auto
  address-family ipv4 unicast
  redistribute connected
  neighbor 25.1.1.2
  remote-as 4
   address-family ipv4 unicast
```

```
route-policy PASS in
route-policy PASS out
!
!!
!
segment-routing
end
```

BGP Routes on PE – Color Based Steering

Configure Segment Routing Path Computation Element

The Segment Routing Path Computation Element (SR-PCE) provides stateful PCE functionality by extending the existing IOS-XR PCEP functionality with additional capabilities. SR-PCE is supported on the MPLS data plane and IPv4 control plane.

- About SR-PCE, on page 81
- Configure SR-PCE, on page 82

About SR-PCE

The path computation element protocol (PCEP) describes a set of procedures by which a path computation client (PCC) can report and delegate control of head-end label switched paths (LSPs) sourced from the PCC to a PCE peer. The PCE can request the PCC to update and modify parameters of LSPs it controls. The stateful model also enables a PCC to allow the PCE to initiate computations allowing the PCE to perform network-wide orchestration.

Note

For more information on PCE, PCC, and PCEP, refer to the Path Computation Element section in the MPLS Configuration Guide for Cisco NCS 6000 Series Routers.

SR-PCE learns topology information by way of IGP (OSPF or IS-IS) or through BGP Link-State (BGP-LS).

SR-PCE is capable of computing paths using the following methods:

- TE metric—SR-PCE uses the TE metric in its path calculations to optimize cumulative TE metric.
- IGP metric—SR-PCE uses the IGP metric in its path calculations to optimize reachability.
- LSP Disjointness—SR-PCE uses the path computation algorithms to compute a pair of disjoint LSPs. The disjoint paths can originate from the same head-end or different head-ends. Disjoint level refers to the type of resources that should not be shared by the two computed paths. SR-PCE supports the following disjoint path computations:
 - Link Specifies that links are not shared on the computed paths.
 - Node Specifies that nodes are not shared on the computed paths.

- SRLG Specifies that links with the same SRLG value are not shared on the computed paths.
- SRLG-node Specifies that SRLG and nodes are not shared on the computed paths.

When the first request is received with a given disjoint-group ID, the first LSP is computed, encoding the shortest path from the first source to the first destination. When the second LSP request is received with the same disjoint-group ID, information received in both requests is used to compute two disjoint paths: one path from the first source to the first destination, and another path from the second source to the second destination. Both paths are computed at the same time.

Configure SR-PCE

This task explains how to configure SR-PCE.

SUMMARY STEPS

- 1. configure
- 2. pce
- 3. address ipv4 address
- 4. state-sync ipv4 address
- 5. tcp-buffer size size
- **6.** password {clear | encrypted} password
- **7.** segment-routing {strict-sid-only | te-latency}
- 8. timers
- 9. keepalive time
- 10. minimum-peer-keepalive time
- 11. reoptimization time
- **12**. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	pce	Enables PCE and enters PCE configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config)# pce	
Step 3	address ipv4 address	Configures a PCE IPv4 address.
	Example:	
	RP/0/RP0/CPU0:router(config-pce)# address ipv4	

	Command or Action	Purpose
	192.168.0.1	
Step 4	state-sync ipv4 address Example:	Configures the remote peer for state synchronization.
	RP/0/RP0/CPU0:router(config-pce)# state-sync ipv4 192.168.0.3	
Step 5	tcp-buffer size size Example:	Configures the transmit and receive TCP buffer size for each PCEP session, in bytes. The default buffer size is 256000. The valid range is from 204800 to 1024000.
	<pre>RP/0/RP0/CPU0:router(config-pce) # tcp-buffer size 1024000</pre>	
Step 6	<pre>password {clear encrypted} password Example: RP/0/RP0/CPU0:router(config-pce) # password encrypted pwd1</pre>	Enables TCP MD5 authentication for all PCEP peers. Any TCP segment coming from the PCC that does not contain a MAC matching the configured password will be rejected. Specify if the password is encrypted or clear text.
Step 7	<pre>segment-routing {strict-sid-only te-latency} Example: RP/0/RP0/CPU0:router(config-pce) # segment-routing strict-sid-only</pre>	Configures the segment routing algorithm to use strict SID or TE latency. Note This setting is global and applies to all LSPs that request a path from this controller.
Step 8	timers Example:	Enters timer configuration mode.
Step 9	<pre>RP/0/RP0/CPU0:router(config-pce) # timers keepalive time Example: RP/0/RP0/CPU0:router(config-pce-timers) # keepalive 60</pre>	Configures the timer value for locally generated keep-alive messages. The default time is 30 seconds.
Step 10	minimum-peer-keepalive time Example: RP/0/RP0/CPU0:router(config-pce-timers)# minimum-peer-keepalive 30	Configures the minimum acceptable keep-alive timer that the remote peer may propose in the PCEP OPEN message during session establishment. The default time is 20 seconds.

	Command or Action	Purpose
Step 11	reoptimization time	Configures the re-optimization timer. The default timer is
	Example:	1800 seconds.
	<pre>RP/0/RP0/CPU0:router(config-pce-timers)# reoptimization 600</pre>	
Step 12	exit	Exits timer configuration mode and returns to PCE
	Example:	configuration mode.
	RP/0/RP0/CPU0:router(config-pce-timers)# exit	

Configure the Disjoint Policy (Optional)

This task explains how to configure the SR-PCE to compute disjointness for a pair of LSPs signaled by PCCs that do not include the PCEP association group-ID object in their PCEP request. This can be beneficial for deployments where PCCs do not support this PCEP object or when the network operator prefers to manage the LSP disjoint configuration centrally.

SUMMARY STEPS

- 1. disjoint-path
- 2. group-id value type {link | node | srlg | srlg-node} [sub-id value]
- 3 strict
- **4. lsp** {1 | 2} **pcc ipv4** *address* **lsp-name** *lsp_name* [**shortest-path**]

DETAILED STEPS

	Command or Action	Purpose
Step 1	disjoint-path	Enters disjoint configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config-pce)# disjoint-path	
Step 2	<pre>group-id value type {link node srlg srlg-node} [sub-id value] Example: RP/0/RP0/CPU0:router(config-pce-disjoint)# group-id 1 type node sub-id 1</pre>	Configures the disjoint group ID and defines the preferred level of disjointness (the type of resources that should not be shared by the two paths): • link—Specifies that links are not shared on the computed paths. • node—Specifies that nodes are not shared on the computed paths. • srlg—Specifies that links with the same SRLG value are not shared on the computed paths.

	Command or Action	Purpose
		• srlg-node—Specifies that SRLG and nodes are not shared on the computed paths.
		If a pair of paths that meet the requested disjointness level cannot be found, then the paths will automatically fallback to a lower level:
		If the requested disjointness level is SRLG or node, then link-disjoint paths will be computed.
		If the requested disjointness level was link, or if the first fallback from SRLG or node disjointness failed, then the lists of segments encoding two shortest paths, without any disjointness constraint, will be computed.
Step 3	strict	(Optional) Prevents the automatic fallback behavior of the preferred level of disjointness. If a pair of paths that meet
	Example:	the requested disjointness level cannot be found, the disjoint
	RP/0/RP0/CPU0:router(config-pce-disjoint)# strict	calculation terminates and no new path is provided. The existing path is not modified.
Step 4	lsp {1 2} pcc ipv4 address lsp-name lsp_name	Adds LSPs to the disjoint group.
	[shortest-path]	The shortest-path keyword forces one of the disjoint paths
	Example:	to follow the shortest path from the source to the destination. This option can only be applied to the the first LSP
	<pre>RP/0/RP0/CPU0:router(config-pce-disjoint)# lsp 1</pre>	specified.
	<pre>pcc ipv4 192.168.0.1 lsp-name rtrA_t1 shortest-path RP/0/RP0/CPU0:router(config-pce-disjoint) # lsp 2 pcc ipv4 192.168.0.5 lsp-name rtrE_t2</pre>	

Global Maximum-delay Constraint

This feature allows a PCE to compare the cumulative latency of a computed path against a global maximum-delay constraint value. If the latency of the computed path exceeds this global constraint, the path is not considered valid. This ensures that all latency-based paths computed by the PCE and signaled to the PCCs in the network do not exceed this maximum-delay constraint.

```
pce
constraints
bounds
cumulative
type
latency <1-4294967295> Bound metric value in microseconds
```

Configuration

To configure a PCE for specifying maximum cumulative latency metric, you must complete the following configurations:

```
RP/0/RSP0/CPU0:ios(config) # pce
RP/0/RSP0/CPU0:ios(config-pce) # constraints
RP/0/RSP0/CPU0:ios(config-pce-constr) # bounds
RP/0/RSP0/CPU0:ios(config-pce-constr-bounds) # cumulative
RP/0/RSP0/CPU0:ios(config-pce-constr-bounds-type) # type latency 1000000
RP/0/RSP0/CPU0:ios(config-pce-constr-bounds-type) #
```

Verification

Verify using the **show** command:

```
RP/0/RSP0/CPU0:ios(config-pce-constr-bounds-type)# show
Wed Oct 12 22:18:22.962 UTC
pce
  constraints
  bounds
   cumulative
    type latency 1000000
  !
  !
  !
  !
  !
}
```


Configure Performance Measurement

Network performance metrics is a critical measure for traffic engineering (TE) in service provider networks. Network performance metrics include the following:

- · Packet loss
- Delay
- Delay variation
- · Bandwidth utilization

These network performance metrics provide network operators information about the performance characteristics of their networks for performance evaluation and help to ensure compliance with service level agreements. The service-level agreements (SLAs) of service providers depend on the ability to measure and monitor these network performance metrics. Network operators can use Segment Routing Performance Measurement (SR-PM) feature to monitor the network metrics for links and end-to-end TE label switched paths (LSPs).

The following table explains the functionalities supported by performance measurement feature for measuring delay for links.

Table 3: Performance Measurement Functionalities

Functionality	Details
Profiles	You can configure different profiles for different types of delay measurements. Use the "interfaces" delay profile type for link-delay measurement. Delay profile allows you to schedule probe and configure metric advertisement parameters for delay measurement.
Protocols	Two-Way Active Measurement Protocol (TWAMP) Light (using RFC 5357 with IP/UDP encap).
Probe and burst scheduling	Schedule probes and configure metric advertisement parameters for delay measurement.
Metric advertisements	Advertise measured metrics periodically using configured thresholds. Also supports accelerated advertisements using configured thresholds.
Measurement history and counters	Maintain packet delay and loss measurement history, session counters, and packet advertisement counters.

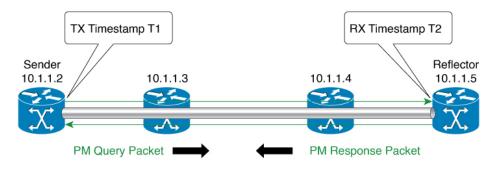
521501

- Measurement Modes, on page 88
- Link Delay Measurement, on page 89
- SR Policy Liveness Monitoring Hardware Offloading, on page 100

Measurement Modes

The following table compares the different hardware and timing requirements for the measurement modes supported in SR PM.

Table 4: Measurement Mode Requirements


Measurement Mode	Sender:	Reflector:	PTP Clock Synchronization
	PTP-Capable HW and HW Timestamping	PTP-Capable HW and HW Timestamping	between Sender and Reflector
One-way	Required	Required	Required
Two-way	Required	Required	Not Required

One-Way

One-way measurement mode provides the most precise form of one-way delay measurement. PTP-capable hardware and hardware timestamping are required on both Sender and Reflector, with PTP Clock Synchronization between Sender and Reflector.

Delay measurement in one-way mode is calculated as (T2 - T1).

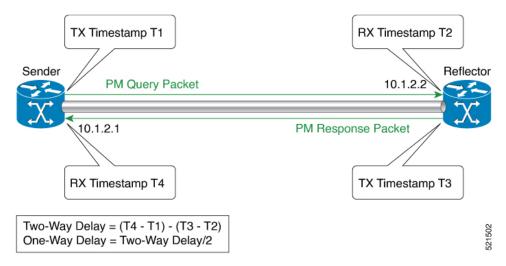
Figure 5: One-Way

- One Way Delay = (T2 T1)
- Hardware clock synchronized using PTP (IEEE 1588) between sender and reflector nodes (all nodes for higher accuracy)

The PM query and response for one-way delay measurement can be described in the following steps:

- 1. The local-end router sends PM query packets periodically to the remote side once the egress line card on the router applies timestamps on packets.
- 2. The ingress line card on the remote-end router applies time-stamps on packets as soon as they are received.
- 3. The remote-end router sends the PM packets containing time-stamps back to the local-end router.

4. One-way delay is measured using the time-stamp values in the PM packet.


Two-Way

Two-way measurement mode provides two-way measurements. PTP-capable hardware and hardware timestamping are required on both Sender and Reflector, but PTP clock synchronization between Sender and Reflector is not required.

Delay measurements in two-way mode are calculated as follows:

- Two-Way Delay = (T4 T1) (T3 T2)
- One-Way Delay = Two-Way Delay/2

Figure 6: Two-Way

The PM query and response for two-way delay measurement can be described in the following steps:

- 1. The local-end router sends PM query packets periodically to the remote side once the egress line card on the router applies timestamps on packets.
- 2. Ingress line card on the remote-end router applies time-stamps on packets as soon as they are received.
- **3.** The remote-end router sends the PM packets containing time-stamps back to the local-end router. The remote-end router time-stamps the packet just before sending it for two-way measurement.
- 4. The local-end router time-stamps the packet as soon as the packet is received for two-way measurement.
- 5. One-way delay and optionally two-way delay is measured using the time-stamp values in the PM packet.

Link Delay Measurement

The PM for link delay uses the IP/UDP packet format defined in RFC 5357 (TWAMP-Light) for probes. Two-Way Active Measurement Protocol (TWAMP) adds two-way or round-trip measurement capabilities. TWAMP employs time stamps applied at the echo destination (reflector) to enable greater accuracy. In the case of TWAMP Light, the Session-Reflector doesn't necessarily know about the session state. The Session-Reflector simply copies the Sequence Number of the received packet to the Sequence Number field

of the reflected packet. The controller receives the reflected test packets and collects two-way metrics. This architecture allows for collection of two-way metrics.

Usage Guidelines and Restrictions for PM for Link Delay

The following restrictions and guidelines apply for the PM for link delay feature for different links.

- For broadcast links, only point-to-point (P2P) links are supported. P2P configuration on IGP is required for flooding the value.
- For one-way delay measurement, clocks should be synchronized on two end-point nodes of the link using PTP.

Configuration Example: PM for Link Delay

This example shows how to configure performance-measurement functionalities for link delay as a global default profile. The default values for the different parameters in the PM for link delay is given as follows:

- **probe measurement mode**: The default measurement mode for probe is two-way delay measurement. If you are configuring one-way delay measurement, hardware clocks must be synchronized between the local-end and remote-end routers using precision time protocol (PTP). See Measurement Modes, on page 88 for more information.
- protocol: Interface delay measurement using RFC 5357 with IP/UDP encap (TWAMP-Light).
- burst interval: Interval for sending probe packet. The default value is 3000 milliseconds and the range is from 30 to 15000 milliseconds.
- computation interval: Interval for metric computation. Default is 30 seconds; range is 1 to 3600 seconds.
- periodic advertisement: Periodic advertisement is enabled by default.
- **periodic-advertisement interval**: The default value is 120 seconds and the interval range is from 30 to 3600 seconds.
- **periodic-advertisement threshold**: Checks the minimum-delay metric change for threshold crossing for periodic advertisement. The default value is 10 percent and the range is from 0 to 100 percent.
- **periodic-advertisement minimum change**: The default value is 1000 microseconds (usec) and the range is from 0 to 100000 microseconds.
- accelerated advertisement: Accelerated advertisement is disabled by default.
- accelerated-advertisement threshold: Checks the minimum-delay metric change for threshold crossing for accelerated advertisement. The default value is 20 percent and the range is from 0 to 100 percent.
- accelerated-advertisement minimum change: The default value is 500 microseconds and the range is from 0 to 100000 microseconds.

```
RP/0/0/CPU0:router(config) # performance-measurement delay-profile interfaces
RP/0/0/CPU0:router(config-pm-dm-intf) # probe
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # measurement-mode one-way
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # burst-interval 60
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # computation-interval 60
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # exit

RP/0/0/CPU0:router(config-pm-dm-intf) # advertisement periodic
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per) # interval 120
```

```
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per) # threshold 20
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per) # minimum-change 1000
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per) # exit

RP/0/0/CPU0:router(config-pm-dm-intf) # advertisement accelerated
RP/0/0/CPU0:router(config-pm-dm-intf-adv-acc) # threshold 30
RP/0/0/CPU0:router(config-pm-dm-intf-adv-acc) # minimum-change 1000
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per) # exit
```

Configure the UDP Destination Port

Configuring the UDP port for TWAMP-Light protocol is optional. By default, PM uses port 862 as the TWAMP-reserved UDP destination port for delay.

The UDP port is configured for each PM measurement probe type (delay, loss, protocol, authentication mode, etc.) on querier and responder nodes. If you configure a different UDP port, the UDP port for each PM measurement probe type must match on the querier and the responder nodes.

Note

The same UDP destination port is used for delay measurement for links and SR Policy.

This example shows how to configure the UDP destination port for delay.

```
Router(config)# performance-measurement

Router(config-perf-meas)# protocol twamp-light

Router(config-pm-protocol)# measurement delay unauthenticated

Router(config-pm-proto-mode)# querier-dst-port 12000
```

Enable PM for Link Delay Over an Interface

This example shows how to enable PM for link delay over an interface.

```
RP/0/0/CPU0:router(config)# performance-measurement
RP/0/0/CPU0:router(config-perf-meas)# interface TenGigE0/0/0/
RP/0/0/CPU0:router(config-pm-intf)# delay-measurement
RP/0/0/CPU0:router(config-pm-intf-dm)# exit
```

The source and destination IP addresses used in the OAM packet are determined by the IP address present on the interface where the delay-measurement operation is enabled.

the following rules apply to determine the source and destination IP addresses used in the OAM packet:

- If an IPv4 address is configured under the interface, then:
 - OAM packet source IP address = Interface's IPv4 address
 - OAM packet destination IP address = 127.0.0.0
- Else, if an IPv6 global address is configured under the interface, then:
 - OAM packet source IP address = Interface's IPv6 global address
 - OAM packet destination IP address = 0::ff:127.0.0.0

This example shows how to enable PM for link delay over an interface with IPv4 address configured:

```
interface TenGigE0/0/0/0
  ipv4 address 10.10.10.1 255.255.255.0
performance-measurement
  interface TenGigE0/0/0/0
  delay-measurement
```

This example shows how to enable PM for link delay over an interface IPv6 address configured:

```
interface TenGigE0/0/0/0
  ipv6 address 10:10:10::1/64

performance-measurement
  interface TenGigE0/0/0/0
   delay-measurement
```

Verification

```
RP/0/0/CPU0:router# show performance-measurement profile interface
Thu Dec 12 14:13:16.029 PST
0/0/CPU0
Interface Delay-Measurement:
 Profile configuration:
   Measurement Type
                                             : Two-Way
   Probe computation interval
                                            : 30 (effective: 30) seconds
   Type of services
                                             : Traffic Class: 6, DSCP: 48
   Burst interval
                                             : 3000 (effective: 3000) mSec
                                             : 10 packets
   Burst count
                                             : UDP
   Encap mode
   Payload Type
                                             : TWAMP-light
                                            : Disabled
   Destination sweeping mode
   Periodic advertisement
                                             : Enabled
                                             : 120 (effective: 120) sec
     Interval
     Threshold
                                             : 10%
     Minimum-Change
                                            : 500 uSec
   Advertisement accelerated
                                            : Disabled
    Threshold crossing check
                                             : Minimum-delay
RP/0/0/CPU0:router# show performance-measurement summary detail location 0/2/CPU0
Thu Dec 12 14:09:59.162 PST
Total interfaces
                                             : 1
Total SR Policies
                                             : 0
Total RSVP-TE tunnels
                                             : 0
Total Maximum PPS
                                             : 2000 pkts/sec
Total Interfaces PPS
                                             : 0 pkts/sec
Maximum Allowed Multi-hop PPS
                                            : 2000 pkts/sec
Multi Hop Requested PPS
                                            : 0 pkts/sec (0% of max allowed)
Dampened Multi Hop Requested PPS
                                            : 0% of max allowed
Inuse Burst Interval Adjustment Factor
                                            : 100% of configuration
```

Interface Delay-Measurement:

```
Total active sessions
                                               : 1
  Counters:
   Packets:
                                               : 26
     Total sent
     Total received
                                               : 26
   Errors:
       TX:
         Reason interface down
                                              : 0
         Reason no MPLS caps
                                              : 0
                                              : 0
         Reason no IP address
                                               : 0
         Reason other
       RX:
                                              : 0
         Reason negative delay
         Reason negative delay : 0
Reason delay threshold exceeded : 0
         Reason missing TX timestamp
                                              : 0
         Reason missing RX timestamp
                                               : 0
         Reason probe full
         Reason probe not started
                                               : 0
         Reason control code error
                                              : 0
         Reason control code notif
                                              : 0
   Probes:
                                               : 3
     Total started
      Total completed
                                               : 2
     Total incomplete
                                              : 0
     Total advertisements
                                              : 0
SR Policy Delay-Measurement:
  Total active sessions
                                               : 0
  Counters:
   Packets:
     Total sent
                                               : 0
                                               : 0
     Total received
   Errors:
       TX:
         Reason interface down
                                              : 0
                                              : 0
         Reason no MPLS caps
         Reason no IP address
                                              : 0
         Reason other
                                              : 0
       RX:
         Reason negative delay
         Reason delay threshold exceeded : 0
Reason missing TX timestamp : 0
                                              : 0
         Reason missing RX timestamp
                                              : 0
         Reason probe full
         Reason probe full
Reason probe not started
                                               : 0
         Reason control code error
                                              : 0
         Reason control code notif
                                              : 0
   Probes:
                                               : 0
     Total started
      Total completed
                                               : 0
                                               : 0
     Total incomplete
     Total advertisements
                                              : 0
RSVP-TE Delay-Measurement:
  Total active sessions
                                               : 0
  Counters:
   Packets:
     Total sent
                                               : 0
     Total received
                                               : 0
   Errors:
                                              : 0
         Reason interface down
         Reason no MPLS caps
                                               : 0
         Reason no IP address
                                              : 0
```

```
Reason other
                                             : 0
       RX:
         Reason negative delay
                                             : 0
         Reason delay threshold exceeded
                                             : 0
         Reason missing TX timestamp
                                             : 0
         Reason missing RX timestamp
         Reason probe full
                                             . 0
         Reason probe not started
                                            : 0
         Reason control code error
                                            : 0
         Reason control code notif
                                            : 0
    Probes:
     Total started
                                             : 0
     Total completed
                                             : 0
     Total incomplete
                                             : 0
     Total advertisements
                                             : 0
Global Delay Counters:
                                             : 26
 Total packets sent
 Total query packets received
                                             : 26
 Total invalid session id
                                             : 0
 Total missing session
                                             · 0
\texttt{RP/0/0/CPU0:} router \texttt{\# show performance-measurement interfaces detail}
Thu Dec 12 14:16:09.692 PST
______
0/2/CPU0
Interface Name: GigabitEthernet0/2/0/0 (ifh: 0x1004060)
 Delay-Measurement : Enabled
                                : Disabled : 10.10.10.2
 Loss-Measurement
 Configured IPv4 Address
 Configured IPv6 Address
                                : 10:10:10::2
 Link Local IPv6 Address
                                : fe80::3a:6fff:fec9:cd6b
 Configured Next-hop Address : Unknown
 Local MAC Address
                                 : 023a.6fc9.cd6b
 Next-hop MAC Address
                                 : 0291.e460.6707
 Primary VLAN Tag
                                : None
 Secondary VLAN Tag
                                : None
 State
                                 : Up
  Delay Measurement session:
   Session ID
   Last advertisement:
     Advertised at: Dec 12 2019 14:10:43.138 (326.782 seconds ago)
     Advertised reason: First advertisement
     Advertised delays (uSec): avg: 839, min: 587, max: 8209, variance: 297
   Next advertisement:
     Threshold check scheduled in 1 more probe (roughly every 120 seconds)
     Aggregated delays (uSec): avg: 751, min: 589, max: 905, variance: 112
     Rolling average (uSec): 756
    Current Probe:
     Started at Dec 12 2019 14:15:43.154 (26.766 seconds ago)
     Packets Sent: 9, received: 9
     Measured delays (uSec): avg: 795, min: 631, max: 1199, variance: 164
     Next probe scheduled at Dec 12 2019 14:16:13.132 (in 3.212 seconds)
     Next burst packet will be sent in 0.212 seconds
```

```
Burst packet sent every 3.0 seconds
Probe samples:
  Packet Rx Timestamp
                          Measured Delay (nsec)
  Dec 12 2019 14:15:43.156
                                 689223
  Dec 12 2019 14:15:46.156
                                   876561
  Dec 12 2019 14:15:49.156
                                   913548
  Dec 12 2019 14:15:52.157
                                  1199620
  Dec 12 2019 14:15:55.156
                                   794008
  Dec 12 2019 14:15:58.156
                                   631437
  Dec 12 2019 14:16:01.157
                                   656440
  Dec 12 2019 14:16:04.157
                                    658267
  Dec 12 2019 14:16:07.157
                                    736880
```

You can also use the following commands for verifying the PM for link delay on the local-end router.

Command	Description	
show performance-measurement history probe interfaces [interface]	Displays the PM link-delay probe history for interfaces.	
show performance-measurement history aggregated interfaces [interface]	Displays the PM link-delay aggregated history for interfaces.	
show performance-measurement history advertisement interfaces [interface]	Displays the PM link-delay advertisement history for interfaces.	
show performance-measurement counters [interface interface] [location location-name]	Displays the PM link-delay session counters.	

You can also use the following commands for verifying the PM for link-delay configuration on the remote-end router.

Command	Description	
show performance-measurement responder summary [location location-name]	Displays the PM for link-delay summary on the remote-end router (responder).	
show performance-measurement responder interfaces [interface]	Displays PM for link-delay for interfaces on the remote-end router.	
show performance-measurement responder counters [interface interface] [location location-name]	Displays the PM link-delay session counters on the remote-end router.	

Configure a Static Delay Value on an Interface

You can configure an interface to advertise a static delay value, instead of the measured delay value. When you configure a static delay value, the advertisement is triggered immediately. The average, minimum, and maximum advertised values will use the static delay value, with a variance of 0.

Scheduled probes will continue, and measured delay metrics will be aggregated and stored in history buffer. However, advertisement threshold checks are suppressed so that there are no advertisements of the actual measured delay values. If the configured static delay value is removed, the next scheduled advertisement threshold check will update the advertised measured delay values.

The static delay value can be configured from 1 to 16777215 microseconds (16.7 seconds).

This example shows how to configure a static delay of 1000 microseconds:

```
RP/0/0/CPU0:router(config) # performance-measurement
RP/0/0/CPU0:router(config-perf-meas) # interface TenGigE0/0/0/0
RP/0/0/CPU0:router(config-pm-intf) # delay-measurement
RP/0/0/CPU0:router(config-pm-intf-dm) # advertise-delay 1000
```

Running Configuration

```
performance-measurement
  interface GigabitEthernet0/0/0/0
  delay-measurement
   advertise-delay 1000
  !
  !
!
```

Verification

```
RP/0/RSP0/CPU0:ios# show performance-measurement interfaces detail

0/0/CPU0

Interface Name: GigabitEthernet0/0/0/0 (ifh: 0x0)
Delay-Measurement : Enabled

...

Last advertisement:
Advertised at: Nov 29 2021 21:53:00.656 (7.940 seconds ago)
Advertised reason: Advertise delay config
Advertised delays (uSec): avg: 1000, min: 1000, max: 1000, variance: 0
```

SR Performance Measurement Named Profiles

You can create a named performance measurement profile for delay or liveness.

Delay Profile

This example shows how to create a named SR performance measurement delay profile.

```
Router(config) # performance-measurement delay-profile sr-policy name profile2
Router(config-pm-dm-srpolicy) # probe
Router(config-pm-dm-srpolicy-probe) # burst-interval 60
Router(config-pm-dm-srpolicy-probe) # computation-interval 60
Router(config-pm-dm-srpolicy-probe) # protocol twamp-light
Router(config-pm-dm-srpolicy-probe) # tos dscp 63

Router(config-pm-dm-srpolicy) # advertisement
Router(config-pm-dm-srpolicy-adv) # periodic
Router(config-pm-dm-srpolicy-adv-per) # interval 60
Router(config-pm-dm-srpolicy-adv-per) # minimum-change 1000
Router(config-pm-dm-srpolicy-adv-per) # threshold 20
Router(config-pm-dm-srpolicy-adv-per) # commit

Apply the delay profile for an SR Policy.
```

Router(config) # segment-routing traffic-eng

Router(config-sr-te) # policy TEST

```
Router(config-sr-te-policy) # color 4 end-point ipv4 10.10.10.10
Router(config-sr-te-policy) # performance-measurement
Router(config-sr-te-policy-perf-meas) # delay-measurement delay-profile name profile2
Router(config-sr-te-policy) #candidate-paths
Router(config-sr-te-policy-path) #preference 100
Router(config-sr-te-policy-path-pref) #explicit segment-list LIST1
Router(config-sr-te-pp-info) #weight 2
Router(config-sr-te-policy-path-pref) #explicit segment-list LIST2
Router(config-sr-te-pp-info) #weight 3
```

Running Configuration

Router# show run segment-routing traffic-eng policy TEST

```
segment-routing
traffic-eng
policy TEST
color 4 end-point ipv4 10.10.10.10
candidate-paths
preference 100
explicit segment-list LIST1
weight 2
!
explicit segment-list LIST2
weight 3
!
!
performance-measurement
delay-measurement
delay-profile name profile2
```

Verification

Router# show performance-measurement profile named-profile delay sr-policy name profile2

```
_____
0/RSP0/CPU0
SR Policy Delay Measurement Profile Name: profile2
 Profile configuration:
   Measurement mode
                                             : One-way
                                             : TWAMP-light
   Protocol type
   Encap mode
                                             : UDP
   Type of service:
     PM-MPLS traffic class
                                            : 6
     TWAMP-light DSCP
                                            : 63
   Probe computation interval
                                            : 60 (effective: 60) seconds
                                            : 60 (effective: 60) mSec
   Burst interval
    Packets per computation interval
                                             : 1000
   Periodic advertisement
                                             : Enabled
     Interval
                                            : 60 (effective: 60) sec
     Threshold
                                             : 20%
                                            : 1000 uSec
     Minimum-change
   Advertisement accelerated
                                             : Disabled
   Advertisement logging:
    Delay exceeded
                                            : Disabled (default)
   Threshold crossing check
                                            : Maximum-delay
   Router alert
                                            : Disabled (default)
                                             : Disabled
   Destination sweeping mode
   Liveness detection parameters:
     Multiplier
                                             : 3
                                             : Disabled
     Logging state change
```

On-Demand SR Policy

```
Router(config-sr-te)# on-demand color 20
Router(config-sr-te-color)# performance-measurement delay-measurement
Router(config-sr-te-color-delay-meas)# delay-profile name profile2
Router(config-sr-te-color-delay-meas)# commit
```

Running Configuration

```
Router# show run segment-routing traffic-eng on-demand color 20
segment-routing
traffic-eng
on-demand color 20
performance-measurement
delay-measurement
delay-profile name profile2
```

Liveness Profile

This example shows how to create a *named* SR performance measurement liveness profile.

```
Router(config) # performance-measurement liveness-profile sr-policy name profile3
Router(config-pm-ld-srpolicy) # probe
Router(config-pm-ld-srpolicy-probe) # burst-interval 60
Router(config-pm-ld-srpolicy-probe) # measurement-mode loopback
Router(config-pm-ld-srpolicy-probe) # tos dscp 10
Router(config-pm-ld-srpolicy-probe) # liveness-detection
Router(config-pm-ld-srpolicy-probe) # multiplier 5
Router(config-pm-ld-srpolicy-probe) # commit
```

Apply the liveness profile for the SR policy

This example shows how to enable PM for SR policy liveness for a specific policy.

For the same policy, you cannot enable delay-measurement (delay-profile) and liveness-detection (liveness-profile) at the same time. For example, if delay measurement is enabled, use the **no delay-measurement** command to disable it, and then enable the following command for enabling liveness detection.

```
Router(config) # segment-routing traffic-eng
Router(config-sr-te) # policy TRST2
Router(config-sr-te-policy) # color 40 end-point ipv4 20.20.20.20
Router(config-sr-te-policy) #candidate-paths
Router(config-sr-te-policy-path) #preference 50
Router(config-sr-te-policy-path-pref) #explicit segment-list LIST3
Router(config-sr-te-pp-info) #weight 2

Router(config-sr-te-policy-path-pref) #explicit segment-list LIST4
Router(config-sr-te-policy-path-pref) #explicit segment-list LIST4
Router(config-sr-te-pp-info) #weight 3

Router(config-sr-te-policy) # performance-measurement
Router(config-sr-te-policy-perf-meas) # liveness-detection liveness-profile name profile3
```

Running Configuration

Router# show run segment-routing traffic-eng policy TRST2

```
segment-routing
traffic-eng
policy TRST2
color 40 end-point ipv4 20.20.20.20
candidate-paths
preference 50
explicit segment-list LIST3
```

```
weight 2
!
explicit segment-list LIST4
  weight 3
!
!
!
performance-measurement
liveness-detection
liveness-profile name profile3
```

Verification

Router# show performance-measurement profile named-profile delay sr-policy name profile3

```
0/RSP0/CPU0
SR Policy Liveness Detection Profile Name: profile1
 Profile configuration:
   Measurement mode
                                               : Loopback
   Protocol type
                                               : TWAMP-light
   Type of service:
     TWAMP-light DSCP
                                               : 10
   Burst interval
                                               : 60 (effective: 60) mSec
   Destination sweeping mode
                                               : Disabled
   Liveness detection parameters:
                                               : 3
     Multiplier
     Logging state change
                                               : Disabled
SR Policy Liveness Detection Profile Name: profile3
 Profile configuration:
   Measurement mode
                                               : TWAMP-light
   Protocol type
   Type of service:
     TWAMP-light DSCP
                                               : 10
   Burst interval
                                               : 60 (effective: 60) mSec
                                               : Disabled
    Destination sweeping mode
   Liveness detection parameters:
     Multiplier
                                              : 3
                                              : Disabled
      Logging state change
```

On-Demand SR Policy

For the same policy, you cannot enable delay-measurement (delay-profile) and liveness-detection (liveness-profile) at the same time. For example, to disable delay measurement, use the **no delay-measurement** command, and then enable the following command for enabling liveness detection.

```
Router(config-sr-te) #on-demand color 30
Router(config-sr-te-color) #performance-measurement
Router(config-sr-te-color-pm) # liveness-detection liveness-profile name profile1
Router(config-sr-te-color-delay-meas) # commit
```

Running Configuration

Router# show run segment-routing traffic-eng on-demand color 30

```
segment-routing
traffic-eng
on-demand color 30
performance-measurement
liveness-detection
```

```
liveness-profile name profile3!
```

Verification

Router# show performance-measurement profile named-profile liveness sr-policy name profile3

```
0/RSP0/CPU0
SR Policy Liveness Detection Profile Name: profile3
 Profile configuration:
   Measurement mode
   Protocol type
                                               : TWAMP-light
   Type of service:
     TWAMP-light DSCP
                                               : 10
                                               : 60 (effective: 60) mSec
   Burst interval
    Destination sweeping mode
                                               : Disabled
   Liveness detection parameters:
                                               : 3
     Multiplier
     Logging state change
                                               : Disabled
```

SR Policy Liveness Monitoring - Hardware Offloading

Table 5: Feature History Table

Feature Name	Release	Description
SR Policy Liveness Monitoring - Hardware Offloading	Release 7.10.1	The liveliness monitoring in Performance Measurement can now be offloaded to the hardware, which is the Network Processing Unit (NPU), on the platform.
		This feature verifies the liveness of the path or policy between nodes and helps in optimization, and scalability.

Performance Measurement (PM) hardware offload feature allows the offload of PM transmission (Tx) to the Network Processing Unit (NPU) on the platform, which considerably improves scale and reduces the overall network convergence detection time. This improvement is done by sending rapid failure detection probes (messages) to the routing protocols for recalculating the routing table.

This feature is required in order to quickly react on delay-bound Service Level Agreement (SLAs), for example 5G low-latency, where SRTE policy can quickly re-optimize once the SLA is violated.

Advantages of the PM Hardware Offloading feature are as listed:

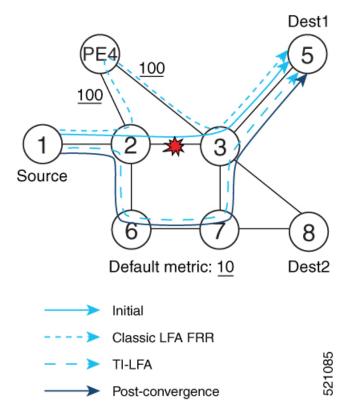
- Probes are sent every three milli-seconds
- Complete liveness of endpoint is now reduced to 10ms from 50ms
- Hardware offloaded probes for liveness, delay (where headend and endpoint add timestamps), and loss (where endpoint adds counters)
- You can now scale up to 2000 probes per system

Configure Topology-Independent Loop-Free Alternate (TI-LFA)

Topology-Independent Loop-Free Alternate (TI-LFA) uses segment routing to provide link protection in topologies where other fast reroute techniques cannot provide protection.

- Classic Loop-Free Alternate (LFA) is topology dependent, and therefore cannot protect all destinations in all networks. A limitation of LFA is that, even if one or more LFAs exist, the optimal LFA may not always be provided.
- Remote LFA (RLFA) extends the coverage to 90-95% of the destinations, but it also does not always provide the most desired repair path. RLFA also adds more operational complexity by requiring a targeted LDP session to the RLFAs to protect LDP traffic.

TI-LFA provides a solution to these limitations while maintaining the simplicity of the IPFRR solution.


The goal of TI-LFA is to reduce the packet loss that results while routers converge after a topology change due to a link failure. Rapid failure repair (< 50 msec) is achieved through the use of pre-calculated backup paths that are loop-free and safe to use until the distributed network convergence process is completed.

The optimal repair path is the path that the traffic will eventually follow after the IGP has converged. This is called the post-convergence path. This path is preferred for the following reasons:

- Optimal for capacity planning During the capacity-planning phase of the network, the capacity of a link is provisioned while taking into consideration that such link with be used when other links fail.
- Simple to operate There is no need to perform a case-by-case adjustments to select the best LFA among multiple candidate LFAs.
- Fewer traffic transitions Since the repair path is equal to the post-convergence path, the traffic switches paths only once.

The following topology illustrates the optimal and automatic selection of the TI-LFA repair path.

Figure 7: TI-LFA Repair Path

Node 2 protects traffic to destination Node 5.

With classic LFA, traffic would be steered to Node 4 after a failure of the protected link. This path is not optimal, since traffic is routed over edge node Node 4 that is connected to lower capacity links.

TI-LFA calculates a post-convergence path and derives the segment list required to steer packets along the post-convergence path without looping back.

In this example, if the protected link fails, the shortest path from Node2 to Node5 would be:

$$Node2 \rightarrow Node6 \rightarrow Node7 \rightarrow Node3 \rightarrow Node5$$

Node7 is the PQ-node for destination Node5. TI-LFA encodes a single segment (prefix SID of Node7) in the header of the packets on the repair path.

- Usage Guidelines and Limitations, on page 102
- Configuring TI-LFA for IS-IS, on page 103
- Configuring TI-LFA for OSPF, on page 105

Usage Guidelines and Limitations

The TI-LFA guidelines and limitations are listed below:

TI-LFA Functionality	IS-IS ¹	OSPFv2
Protected Traffic Types		

TI-LFA Functionality	IS-IS ¹	OSPFv2
Protection for SR labeled traffic	Supported	Supported
Protection of IPv4 unlabeled traffic	Supported (IS-ISv4)	Supported
Protection of IPv6 unlabeled traffic	Unsupported	N/A
Protection Types		
Link Protection	Supported	Supported
Node Protection	Supported	Supported
Local SRLG Protection	Supported	Supported
Weighted Remote SRLG Protection		
Line Card Disjoint Protection	Supported	Unsupported
Interface Types		
Ethernet Interfaces	Supported	Supported
Ethernet Bundle Interfaces	Supported	Supported
TI-LFA over GRE Tunnel as Protecting Interface		
Additional Functionality		
BFD-triggered	Supported	Supported
BFDv6-triggered	Supported	N/A
Prefer backup path with lowest total metric	Supported	Supported
Prefer backup path from ECMP set	Supported	Supported
Prefer backup path from non-ECMP set	Supported	Supported
Load share prefixes across multiple backups paths	Supported	Supported
Limit backup computation up to the prefix priority	Supported	Supported

¹ Unless specified, IS-IS support is IS-ISv4 and IS-ISv6

Configuring TI-LFA for IS-IS

This task describes how to enable per-prefix Topology Independent Loop-Free Alternate (TI-LFA) computation to converge traffic flows around link failures.

Before you begin

Ensure that the following topology requirements are met:

- Routers are configured with IS-IS.
- Segment routing for IS-IS is configured. See Enabling Segment Routing for IS-IS Protocol, on page 11.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3. interface** *type interface-path-id*
- 4. address-family ipv4 [unicast]
- **5.** fast-reroute per-prefix
- 6. fast-reroute per-prefix ti-lfa

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.
	Example:	Note You can change the level of routing to be
	RP/0/RP0/CPU0:router(config)# router isis 1	performed by a particular routing instance by using the is-type router configuration command.
Step 3	interface type interface-path-id	Enters interface configuration mode.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-isis) # interface GigabitEthernet0/0/2/1</pre>	
Step 4	address-family ipv4 [unicast]	Specifies the IPv4 address family, and enters router address
	Example:	family configuration mode.
	<pre>RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast</pre>	
Step 5	fast-reroute per-prefix	Enables per-prefix fast reroute.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-isis-if-af)# fast-reroute per-prefix</pre>	
Step 6	fast-reroute per-prefix ti-lfa	Enables per-prefix TI-LFA fast reroute link protection.
	Example:	
	RP/0/RP0/CPU0:router(config-isis-if-af)#	

Command or Action	Purpose
fast-reroute per-prefix ti-lfa	

TI-LFA has been successfully configured for segment routing.

Configuring TI-LFA for OSPF

This task describes how to enable per-prefix Topology Independent Loop-Free Alternate (TI-LFA) computation to converge traffic flows around link failures.

Note

TI-LFA can be configured on the instance, area, or interface. When configured on the instance or area, all interfaces in the instance or area inherit the configuration.

Before you begin

Ensure that the following topology requirements are met:

- Routers are configured with OSPF.
- Segment routing for OSPF is configured. See Enabling Segment Routing for OSPF Protocol, on page 23.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. area area-id
- **4. interface** *type interface-path-id*
- 5. fast-reroute per-prefix
- 6. fast-reroute per-prefix ti-lfa

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router ospf process-name	Enables OSPF routing for the specified routing process,
	Example:	and places the router in router configuration mode.
	RP/0/RP0/CPU0:router(config)# router ospf 1	

	Command or Action	Purpose
Step 3	area area-id	Enters area configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config-ospf)# area 1	
Step 4	interface type interface-path-id	Enters interface configuration mode.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-ospf-ar)# interface GigabitEthernet0/0/2/1</pre>	
Step 5	fast-reroute per-prefix	Enables per-prefix fast reroute.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-ospf-ar-if)# fast-reroute per-prefix</pre>	
Step 6	fast-reroute per-prefix ti-lfa	Enables per-prefix TI-LFA fast reroute link protection.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-ospf-ar-if)# fast-reroute per-prefix ti-lfa</pre>	

TI-LFA has been successfully configured for segment routing.

Configure Segment Routing Microloop Avoidance

The Segment Routing Microloop Avoidance feature enables link-state routing protocols, such as IS-IS, to prevent or avoid microloops during network convergence after a topology change.

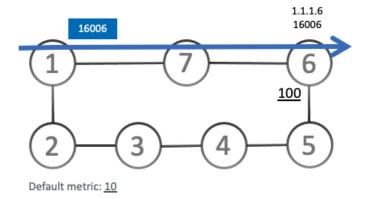
- About Segment Routing Microloop Avoidance, on page 107
- Configure Segment Routing Microloop Avoidance for IS-IS, on page 109
- Configure Segment Routing Microloop Avoidance for OSPF, on page 110

About Segment Routing Microloop Avoidance

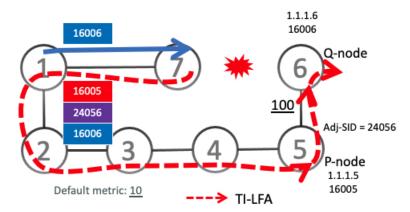
IP hop-by-hop routing may induce microloops (uLoops) at any topology transition. Microloops are a day-one IP challenge. Microloops are brief packet loops that occur in the network following a topology change (link down, link up, or metric change events). Microloops are caused by the non-simultaneous convergence of different nodes in the network. If a node converges and sends traffic to a neighbor node that has not converged yet, traffic may be looped between these two nodes, resulting in packet loss, jitter, and out-of-order packets.

Segment Routing resolves the microloop problem. A router with the Segment Routing Microloop Avoidance feature detects if microloops are possible for a destination on the post-convergence path following a topology change associated with a remote link event.

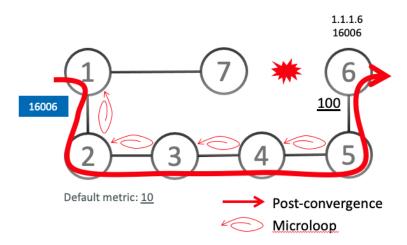
If a node determines that a microloop could occur on the new topology, the IGP computes a microloop-avoidant path to steer the traffic to that destination loop-free over the post-convergence path.


The IGP updates the forwarding table and temporarily (based on a RIB update delay timer) installs the SID-list imposition entries associated with the microloop-avoidant path for the destination with possible microloops.

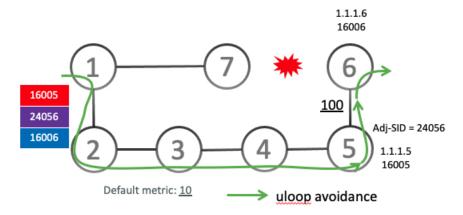
After the RIB update delay timer expires, IGP updates the forwarding table, removing the microloop-avoidant SID list and traffic now natively follows the post-convergence path.

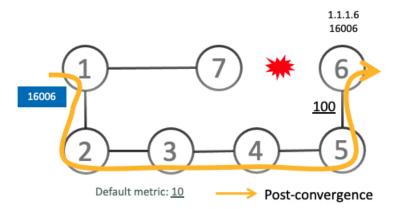

SR microloop avoidance is a local behavior and therefore not all nodes need to implement it to get the benefits.

In the topology below, microloops can occur after the failure of the link between Node6 and Node7.


At steady state, Node1 sends traffic to node 6 (16006) via Node7. Node 7 is configured with TI-LFA to protect traffic to Node6.

TI-LFA on Node7 pre-computes a backup path for traffic to Node6 (prefix SID 16006) that will be activated if the link between Node7 and Node6 goes down. In this network, the backup path would steer traffic toward Node5 (prefix SID 16005) and then via link between Node5 and Node6 (adj-SID 24056). All nodes are notified of the topology change due to the link failure.


However, if nodes along the path do not converge at the same time, microloops can be introduced. For example, if Node2 converged before Node3, Node3 would send traffic back to Node2 as the shortest IGP path to Node6. The traffic between Node2 and Node3 creates a microloop.


With microloop avoidance configured on Node1, a post-convergence path is computed and possible microloops on the post-convergence path for any destination are detected.

If microloops are possible on the post-convergence path to Node6, a microloop-avoidant path is constructed to steer the traffic to Node6 loop-free over the microloop-avoidant path {16005, 24056, 16006}.

Node1 updates the forwarding table and installs the SID-list imposition entries for those destinations with possible microloops, such as Node6. All nodes converge and update their forwarding tables, using SID lists where needed.

After the RIB update delay timer expires, the microloop-avoidant path is replaced with regular forwarding paths; traffic now natively follows the post-convergence path.

Configure Segment Routing Microloop Avoidance for IS-IS

This task describes how to enable Segment Routing Microloop Avoidance and set the Routing Information Base (RIB) update delay value for IS-IS.

Before you begin

Ensure that the following topology requirements are met:

- Routers are configured with IS-IS.
- Segment routing for IS-IS is configured. See Enabling Segment Routing for IS-IS Protocol, on page 11.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family ipv4 [unicast]
- 4. microloop avoidance segment-routing
- 5. microloop avoidance rib-update-delay delay-time

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing instance,
	Example:	and places the router in router configuration mode.
	RP/0/RP0/CPU0:router(config)# router isis 1	You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.
Step 3	address-family ipv4 [unicast]	Specifies the IPv4 address family and enters router address
	Example:	family configuration mode.
	<pre>RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast</pre>	
Step 4	microloop avoidance segment-routing	Enables Segment Routing Microloop Avoidance.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-isis-af)# microloop avoidance segment-routing</pre>	
Step 5	microloop avoidance rib-update-delay delay-time	Specifies the amount of time the node uses the microloop
	Example:	avoidance policy before updating its forwarding table. The <i>delay-time</i> is in milliseconds. The range is from 1-60000.
	RP/0/RP0/CPU0:router(config-isis-af)# microloop avoidance rib-update-delay 3000	The default value is 5000.

Configure Segment Routing Microloop Avoidance for OSPF

This task describes how to enable Segment Routing Microloop Avoidance and set the Routing Information Base (RIB) update delay value for OSPF.

Before you begin

Ensure that the following topology requirements are met:

- Routers are configured with OSPF.
- Segment routing for OSPF is configured. See Enabling Segment Routing for OSPF Protocol, on page 23.

SUMMARY STEPS

- 1. configure
- 2. router ospf process-name
- 3. microloop avoidance segment-routing
- 4. microloop avoidance rib-update-delay delay-time

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router ospf process-name	Enables OSPF routing for the specified routing process,
	Example:	and places the router in router configuration mode.
	RP/0/RP0/CPU0:router(config)# router ospf 1	
Step 3	microloop avoidance segment-routing	Enables Segment Routing Microloop Avoidance.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-ospf)# microloop avoidance segment-routing</pre>	
Step 4	microloop avoidance rib-update-delay delay-time	Specifies the amount of time the node uses the microloop
	Example:	avoidance path before updating its forwarding table. The <i>delay-time</i> is in milliseconds. The range is from 1-60000.
	<pre>RP/0/RP0/CPU0:router(config-ospf)# microloop avoidance rib-update-delay 3000</pre>	The default value is 5000.

Configure Segment Routing Microloop Avoidance for OSPF

Configure Segment Routing Mapping Server

The mapping server is a key component of the interworking between LDP and segment routing. It enables SR-capable nodes to interwork with LDP nodes. The mapping server advertises Prefix-to-SID mappings in IGP on behalf of other non-SR-capable nodes.

- Segment Routing Mapping Server, on page 113
- Segment Routing and LDP Interoperability, on page 114
- Configuring Mapping Server, on page 117
- Enable Mapping Advertisement, on page 119
- Enable Mapping Client, on page 121

Segment Routing Mapping Server

The mapping server functionality in Cisco IOS XR segment routing centrally assigns prefix-SIDs for some or all of the known prefixes. A router must be able to act as a mapping server, a mapping client, or both.

- A router that acts as a mapping server allows the user to configure SID mapping entries to specify the prefix-SIDs for some or all prefixes. This creates the local SID-mapping policy. The local SID-mapping policy contains non-overlapping SID-mapping entries. The mapping server advertises the local SID-mapping policy to the mapping clients.
- A router that acts as a mapping client receives and parses remotely received SIDs from the mapping server to create remote SID-mapping entries.
- A router that acts as a mapping server and mapping client uses the remotely learnt and locally configured mapping entries to construct the non-overlapping consistent active mapping policy. IGP instance uses the active mapping policy to calculate the prefix-SIDs of some or all prefixes.

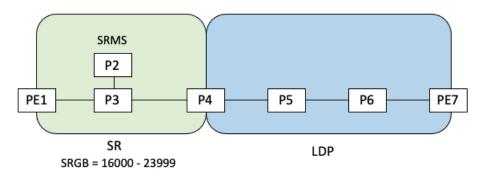
The mapping server automatically manages the insertions and deletions of mapping entries to always yield an active mapping policy that contains non-overlapping consistent SID-mapping entries.

- Locally configured mapping entries must not overlap each other.
- The mapping server takes the locally configured mapping policy, as well as remotely learned mapping entries from a particular IGP instance, as input, and selects a single mapping entry among overlapping mapping entries according to the preference rules for that IGP instance. The result is an active mapping policy that consists of non-overlapping consistent mapping entries.
- At steady state, all routers, at least in the same area or level, must have identical active mapping policies.

Usage Guidelines and Restrictions

- The position of the mapping server in the network is not important. However, since the mapping advertisements are distributed in IGP using the regular IGP advertisement mechanism, the mapping server needs an IGP adjacency to the network.
- The role of the mapping server is crucial. For redundancy purposes, you should configure multiple mapping servers in the networks.
- The mapping server functionality does not support a scenario where SID-mapping entries learned through one IS-IS instance are used by another IS-IS instance to determine the prefix-SID of a prefix. For example, mapping entries learnt from remote routers by 'router isis 1' cannot be used to calculate prefix-SIDs for prefixes learnt, advertised, or downloaded to FIB by 'router isis 2'. A mapping server is required for each IS-IS instance.
- Segment Routing Mapping Server does not support Virtual Routing and Forwarding (VRF) currently.

Segment Routing and LDP Interoperability

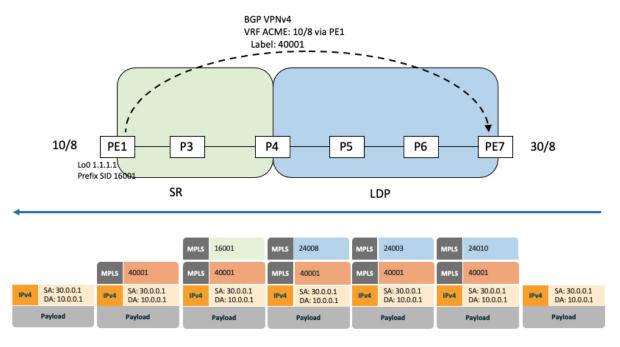

IGP provides mechanisms through which segment routing (SR) interoperate with label distribution protocol (LDP). The control plane of segment routing co-exists with LDP.

The Segment Routing Mapping Server (SRMS) functionality in SR is used to advertise SIDs for destinations, in the LDP part of the network, that do not support SR. SRMS maintains and advertises segment identifier (SID) mapping entries for such destinations. IGP propagates the SRMS mapping entries and interacts with SRMS to determine the SID value when programming the forwarding plane. IGP installs prefixes and corresponding labels, into routing information base (RIB), that are used to program the forwarding information base (FIB).

Example: Segment Routing LDP Interoperability

Consider a network with a mix of segment routing (SR) and label distribution protocol (LDP). A continuous multiprotocol label switching (MPLS) LSP (Labeled Switched Path) can be established by facilitating interoperability. One or more nodes in the SR domain act as segment routing mapping server (SRMS). SRMS advertises SID mappings on behalf of non-SR capable nodes. Each SR-capable node learns about SID assigned to non-SR capable nodes without explicitly configuring individual nodes.

Consider a network as shown in the following figure. This network is a mix of both LDP and SR-capable nodes.

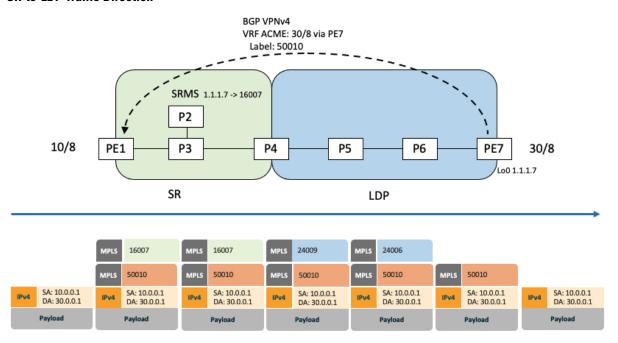


In this mixed network:

- Nodes PE1, P2, P3, and P4 are SR-capable
- Nodes P4, P5, P6, and PE7 are LDP-capable
- Nodes PE1, P2, P3, and P4 are configured with segment routing global block (SRGB) range of 16000 to 23999
- Nodes PE1, P2, P3, and P4 are configured with node segments of 16001, 16002, 16003, and 16004 respectively

A service flow must be established from PE1 to PE3 over a continuous MPLS tunnel. This requires SR and LDP to interoperate.

LDP-to-SR Traffic Direction


The traffic flow in the LDP-to-SR direction involves the following:

- 1. PE7 learns a service route with service label 40001 and BGP nhop PE1.
- 2. PE7 has an LDP label binding (24010) from the nhop P6 for the FEC PE1. PE7 forwards the packet to P6.
- 3. P6 has an LDP label binding (24003) from its nhop P5 for the FEC PE1. P6 forwards the packet to P5.
- 4. P5 has an LDP label binding (24008) from its nhop P4 for the FEC PE1. P5 forwards the packet to P4.
- **5.** P4 does not have an LDP binding from its nhop P3 for the FEC PE1. But P4 has an SR node segment to the IGP route PE1. P4 forwards the packet to P3 and swaps its local LDP label (24008) for FEC PE1 by the equivalent node segment 16001. This process is called label merging.
- **6.** P3 pops 16001, assuming PE1 has advertised its node segment 16001 with the penultimate-pop flag set and forwards to PE1.

7. PE1 receives the packet and processes the service label.

The end-to-end MPLS LSP is established from an LDP LSP from PE7 to P4 and the related node segment from P4 to PE1.

SR-to-LDP Traffic Direction

Suppose that the operator configures P2 as a Segment Routing Mapping Server (SRMS) and advertises the mappings (1.1.1.7, 16007 for PE7). Because PE7 is non-SR capable, the operator configures that mapping policy at the SRMS; the SRMS advertises the mapping on behalf of the non-SR capable nodes. Multiple SRMS servers can be provisioned in a network for redundancy. The mapping server advertisements are only understood by the SR-capable nodes. The SR-capable routers install the related node segments in the MPLS data plane in exactly the same manner as if node segments were advertised by the nodes themselves.

The traffic flow in the SR to LDP direction involves the following:

- 1. PE1 learns a service route with service label 50010 and BGP nhop PE7.
- 2. PE1 has an SR label binding (16007) learned from the SRMS (P2) for PE7.
- 3. PE1 installs the node segment 16007 following the IGP shortest-path with nhop P3.
- **4.** P3 swaps 16007 for 16007 and forwards to P4.
- 5. The nhop for P4 for the IGP route PE7 is non-SR capable, since P5 does not advertise the SR capability. However, P4 has an LDP label binding from that nhop for the same FEC (for example, LDP label 24009). P4 would then swap 16007 for 24009 and forward to P5. We refer to this process as label merging.
- **6.** P5 swaps this label with the LDP label received from P6 (for example, LDP label 24006) and forwards to P6.
- 7. P6 pops the LDP label and forwards to PE7.
- **8.** PE7 receives the packet and processes the service label.

The end-to-end MPLS LSP is established from an SR node segment from PE1 to P4 and an LDP LSP from P4 to PE7.

Observe that the capabilities provided by the SRMS are only required in the SR-to-LDP direction.

Configuring Mapping Server

Perform these tasks to configure the mapping server and to add prefix-SID mapping entries in the active local mapping policy.

SUMMARY STEPS

- 1. configure
- 2. segment-routing
- 3. mapping-server
- 4. prefix-sid-map
- 5. address-family ipv4 | ipv6
- **6.** ip-address/prefix-length first-SID-value range range
- **7.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters XR Config mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	segment-routing	Enables segment routing.
	Example:	
	RP/0/RP0/CPU0:router(config)# segment-routing	
Step 3	mapping-server	Enables mapping server configuration mode.
	Example:	
	RP/0/RP0/CPU0:router(config-sr)# mapping-server	
Step 4	prefix-sid-map	Enables prefix-SID mapping configuration mode.
	Example:	Note Two-way prefix SID can be enabled directly under IS-IS or through a mapping server.
	RP/0/RP0/CPU0:router(config-sr-ms)# prefix-sid-map	
Step 5	address-family ipv4 ipv6	Configures address-family for IS-IS.
	Example:	
	This example shows the address-family for ipv4:	

Command or Action	Purpose
<pre>RP/0/RP0/CPU0:router(config-sr-ms-map) # address-family ipv4</pre>	
This example shows the address-family for ipv6:	
<pre>RP/0/RP0/CPU0:router(config-sr-ms-map)# address-family ipv6</pre>	
ip-address/prefix-length first-SID-value range range Example:	Adds SID-mapping entries in the active local mapping policy. In the configured example:
RP/0/RP0/CPU0:router(config-sr-ms-map-af)# 10.1.1.1/32 10 range 200 RP/0/RP0/CPU0:router(config-sr-ms-map-af)# 20.1.0.0/16 400 range 300	 Prefix 10.1.1.1/32 is assigned prefix-SID 10, prefix 10.1.1.2/32 is assigned prefix-SID 11,, prefix 10.1.1.199/32 is assigned prefix-SID 200 Prefix 20.1.0.0/16 is assigned prefix-SID 400, prefix 20.2.0.0/16 is assigned prefix-SID 401,, and so on.
Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
	 end —Prompts user to take one of these actions: Yes — Saves configuration changes and exits the configuration session. No —Exits the configuration session without committing the configuration changes. Cancel —Remains in the configuration session, without committing the configuration changes.
	RP/0/RP0/CPU0:router(config-sr-ms-map) # address-family ipv4 This example shows the address-family for ipv6: RP/0/RP0/CPU0:router(config-sr-ms-map) # address-family ipv6 ip-address/prefix-length first-SID-value range range Example: RP/0/RP0/CPU0:router(config-sr-ms-map-af) # 10.1.1.1/32 10 range 200 RP/0/RP0/CPU0:router(config-sr-ms-map-af) # 20.1.0.0/16 400 range 300

Verify information about the locally configured prefix-to-SID mappings.

Note

Specify the address family for IS-IS.

```
{\tt RP/0/RP0/CPU0:} router \# \ \textbf{show segment-routing mapping-server prefix-sid-map ipv4}
              SID Index
Prefix
                                  Range
                                               Flags
20.1.1.0/24
                     400
                                  300
10.1.1.1/32
                     10
                                  200
Number of mapping entries: 2
RP/0/RP0/CPU0:router# show segment-routing mapping-server prefix-sid-map ipv4 detail
Prefix
20.1.1.0/24
                400
300
   SID Index:
   Range:
   Last Prefix: 20.2.44.0/24
   Last SID Index: 699
   Flags:
10.1.1.1/32
```

SID Index: 10
Range: 200
Last Prefix: 10.1.1.200/32
Last SID Index: 209
Flags:

Number of mapping entries: 2

What to do next

Enable the advertisement of the local SID-mapping policy in the IGP.

Enable Mapping Advertisement

In addition to configuring the static mapping policy, you must enable the advertisement of the mappings in the IGP.

Perform these steps to enable the IGP to advertise the locally configured prefix-SID mapping.

Configure Mapping Advertisement for IS-IS

SUMMARY STEPS

- 1. router isis instance-id
- 2. address-family { ipv4 | ipv6 } [unicast]
- 3. segment-routing prefix-sid-map advertise-local
- **4.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	router isis instance-id	Enables IS-IS routing for the specified routing instance,
	Example:	and places the router in router configuration mode.
	<pre>RP/0/RP0/CPU0:router(config)# router isis 1</pre>	• You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.
Step 2	address-family { ipv4 ipv6 } [unicast]	Specifies the IPv4 or IPv6 address family, and enters router
	Example:	address family configuration mode.
	The following is an example for ipv4 address family:	
	<pre>RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast</pre>	
Step 3	segment-routing prefix-sid-map advertise-local	Configures IS-IS to advertise locally configured prefix-SID
	Example:	mappings.

	Command or Action	Purpose	
	<pre>RP/0/RP0/CPU0:router(config-isis-af)# segment-routing prefix-sid-map advertise-local</pre>		
Step 4	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	
		end —Prompts user to take one of these actions:	
		 Yes — Saves configuration changes and exits the configuration session. 	
		 No —Exits the configuration session without committing the configuration changes. 	
		• Cancel —Remains in the configuration session, without committing the configuration changes.	

Verify IS-IS prefix-SID mapping advertisement and TLV.

```
RP/0/RP0/CPU0:router# show isis database verbose
<...removed...>

SID Binding: 10.1.1.1/32 F:0 M:0 S:0 D:0 A:0 Weight:0 Range:200
    SID: Start:10, Algorithm:0, R:0 N:0 P:0 E:0 V:0 L:0

SID Binding: 20.1.1.0/24 F:0 M:0 S:0 D:0 A:0 Weight:0 Range:300
    SID: Start:400, Algorithm:0, R:0 N:0 P:0 E:0 V:0 L:0
```

Configure Mapping Advertisement for OSPF

SUMMARY STEPS

- 1. router ospf process-name
- 2. segment-routing prefix-sid-map advertise-local
- **3.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	router ospf process-name	Enables OSPF routing for the specified routing instance,	
	Example:	and places the router in router configuration mode.	
	RP/0/RP0/CPU0:router(config)# router ospf 1		
Step 2	segment-routing prefix-sid-map advertise-local	Configures OSPF to advertise locally configured prefix-SID	
	Example:	mappings.	

	Command or Action	Purpose
	<pre>RP/0/RP0/CPU0:router(config-ospf)# segment-routing prefix-sid-map advertise-local</pre>	
Step 3	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		 Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Verify OSP prefix-SID mapping advertisement and TLV.

Enable Mapping Client

By default, mapping client functionality is enabled.

You can disable the mapping client functionality by using the **segment-routing prefix-sid-map receive disable** command.

You can re-enable the mapping client functionality by using the **segment-routing prefix-sid-map receive** command.

The following example shows how to enable the mapping client for IS-IS:

```
RP/0/RP0/CPU0:router(config)# router isis 1
RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-af)# segment-routing prefix-sid-map receive
```

The following example shows how to enable the mapping client for OSPF:

RP/0/RP0/CPU0:router(config) # router ospf 1
RP/0/RP0/CPU0:router(config-ospf) # segment-routing prefix-sid-map receive

Using Segment Routing Traffic Matrix

This module provides information about the Segment Routing Traffic Matrix (SR-TM) and the Traffic Collector process, and describes how to configure the TM border and the Traffic Collector and to display traffic information.

- Segment Routing Traffic Matrix, on page 123
- Traffic Collector Process, on page 123
- Configuring Traffic Collector, on page 124
- Displaying Traffic Information, on page 126

Segment Routing Traffic Matrix

A network's traffic matrix is a description, measure, or estimation of the aggregated traffic flows that enter, traverse, and leave a network.

The Segment Routing Traffic Matrix (SR-TM) is designed to help users understand traffic patterns on a router. The Traffic Matrix border divides the network into two parts: internal (interfaces that are inside the border) and external (interfaces that are outside the border). By default, all interfaces are internal. You can configure an interface as external.

Traffic Collector Process

The Traffic Collector collects packet and byte statistics from router components such as prefix counters, tunnel counters, and the TM counter. The TM counter increments when traffic that comes from an external interface to the network is destined for a segment routing prefix-SID. The Traffic Collector keeps histories of the statistics and makes them persistent across process restarts, failovers, and ISSU. Histories are retained for a configurable length of time.

Pcounters

A Pcounter is a packet and byte pair of counters. There is one Pcounter per tunnel. There are two Pcounters per prefix-SID:

- Base Pcounter any packet that is switched on the prefix-SID forwarding information base (FIB) entry
- TM Pcounter any packet from an external interface and switched on the prefix-SID FIB entry

The Traffic Collector periodically collects the Base Pcounters and TM Pcounters of all prefix-SIDs, and the Pcounters of all tunnel interfaces.

For each Pcounter, the Traffic Collector calculates the number of packets and bytes that have been forwarded during the last interval. The Traffic Collector keeps a history of the per-interval statistics for each of the Pcounters. Each entry in the history contains:

- The start and end time of the interval
- The number of packets forwarded during the interval
- The number of bytes forwarded during the interval

Feature Support and Limitations

- Pcounters for IPv4 SR Prefix SIDs are supported.
- Pcounters for IPv6 SR Prefix SIDs are not supported.
- TM Pcounters increment for incoming SR-labeled and IP traffic destined for an SR Prefix SID.
- External interface support can be enabled on all Ethernet interfaces except Management, Bundle, and sub interfaces. Tunnels may not be set as external interfaces.
- Default VRF is supported. Non-default VRF is not supported.

Configuring Traffic Collector

Perform these tasks to configure the traffic collector.

SUMMARY STEPS

- 1. configure
- 2. traffic-collector
- 3. statistics collection-interval value
- 4. statistics history-size value
- 5. statistics history-timeout value
- **6. interface** type 13-interface-address
- 7. Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose		
Step 1	configure	Enters XR Config mode.		
	Example:			
	RP/0/RP0/CPU0:router# configure			
Step 2	traffic-collector	Enables traffic collector and places the router in traffic		
	Example:	collector configuration mode.		

	Command or Action	Purpose		
	RP/0/RP0/CPU0:router(config)# traffic-collector			
Step 3	<pre>statistics collection-interval value Example: RP/0/RP0/CPU0:router(config-tc)# statistics collection-interval 5</pre>	(Optional) Sets the frequency that the traffic collector collects and posts data, in minutes. Valid values are 1, 2, 3, 4, 5, 6, 10, 12,15, 20, 30, and 60. The default interval is 1.		
Step 4	statistics history-size value Example:	(Optional) Specifies the number of entries kept in the history database. Valid values are from 1 to 10. The default is 5.		
	RP/0/RP0/CPU0:router(config-tc)# statistics history-size 10	Note The number of entries affects how the average packet and average byte rates are calculated. The rates are calculated over the range of the histories and are not averages based in real time.		
Step 5	<pre>statistics history-timeout value Example: RP/0/RP0/CPU0:router(config-tc)# statistics history-timeout 24</pre>	(Optional) When a prefix SID or a tunnel-te interface is deleted, the history-timeout sets the length of time, in hours that the prefix SID and tunnel statistics are retained in the history before they are removed. The minimum is one hour the maximum is 720 hours. The default is 48.		
	miscory cimedat 24	Note Enter 0 to disable the history timeout. (No history is retained.)		
Step 6	<pre>interface type l3-interface-address Example: RP/0/RP0/CPU0:router(config-tc) # interface TenGigE</pre>	Identifies interfaces that handle external traffic. Only L3 interfaces are supported for external traffic.		
Step 7	Use the commit or end command.	 commit — Saves the configuration changes and remains within the configuration session. end — Prompts user to take one of these actions: Yes — Saves configuration changes and exits the configuration session. No — Exits the configuration session without committing the configuration changes. Cancel — Remains in the configuration session, without committing the configuration changes. 		

This completes the configuration for the traffic collector.

Displaying Traffic Information

The following show commands display information about the interfaces and tunnels:

Note

For detailed information about the command syntax for the following **show** commands, see the *Segment Routing Command Reference Guide*.

• Display the configured external interfaces:

```
RP/0/RSP0/CPU0:router# show traffic-collector external-interface
Interface Status
-----
Te0/1/0/3 Enabled
Te0/1/0/4 Enabled
```

• Display the counter history database for a prefix-SID:

```
RP/0/RSP0/CPU0:router# show traffic-collector ipv4 counters prefix 10.1.1.10/32 detail
Prefix: 10.1.1.10/32 Label: 16010 State: Active
   Average over the last 5 collection intervals:
       Packet rate: 9496937 pps, Byte rate: 9363979882 Bps
   History of counters:
        23:01 - 23:02: Packets 9379529, Bytes: 9248215594
        23:00 - 23:01: Packets 9687124, Bytes: 9551504264
        22:59 - 23:00: Packets 9539200, Bytes: 9405651200
        22:58 - 22:59: Packets 9845278, Bytes: 9707444108
        22:57 - 22:58: Packets 9033554, Bytes: 8907084244
TM Counters:
   Average over the last 5 collection intervals:
        Packet rate: 9528754 pps, Byte rate: 9357236821 Bps
    History of counters:
        23:01 - 23:02: Packets 9400815, Bytes: 9231600330
        23:00 - 23:01: Packets 9699455, Bytes: 9524864810
        22:59 - 23:00: Packets 9579889, Bytes: 9407450998
        22:58 - 22:59: Packets 9911734, Bytes: 9733322788
        22:57 - 22:58: Packets 9051879, Bytes: 8888945178
```

This output shows the average Pcounter (packets, bytes), the Pcounter history, and the collection interval of the Base and TM for the specified prefix-SID.

• Display the counter history database for a policy:

```
23:13 - 23:14: Packets 9553048 , Bytes: 9457517520 23:12 - 23:13: Packets 9647265 , Bytes: 9550792350 23:11 - 23:12: Packets 9756654 , Bytes: 9659087460 23:10 - 23:11: Packets 9694434 , Bytes: 9548235180
```

This output shows the average Pcounter (packets, bytes), the Pcounter history, and the collection interval for the policy.

Configuring Telemetry Session to Export SR-TM Statistics

The following configuration shows how to enable the SR-TM and the corresponding model-driven streaming Telemetry paths for exporting SR-TM statistics. Refer to the *Telemetry Configuration Guide for Cisco NCS 6000 Series Routers* for details on telemetry.

```
/* Configure the SR-TM */
traffic-collector
interface TenGigE0/3/0/0/8
 statistics
 history-size 10
 history-timeout 1
/* Configure streaming telemetry */
telemetry model-driven
 destination-group test-collector-1
 address-family ipv4 10.1.201.250 port 1624
   encoding self-describing-gpb
  protocol tcp
 1
 destination-group test-collector-2
 address-family ipv4 10.30.110.147 port 31500
   encoding self-describing-gpb
   protocol tcp
/* Configure telemetry paths for SR-TM */
 sensor-group test-sg-SRTM
 sensor-path Cisco-IOS-XR-infra-tc-oper:traffic-collector/summary
 sensor-path Cisco-IOS-XR-infra-tc-oper:traffic-collector/afs/af/counters/tunnels/tunnel
 sensor-path Cisco-IOS-XR-infra-tc-oper:traffic-collector/afs/af/counters/prefixes/prefix
  sensor-path
Cisco-IOS-XR-infra-tc-oper:traffic-collector/external-interfaces/external-interface
Cisco-IOS-XR-infra-tc-oper:traffic-collector/vrf-table/default-vrf/afs/af/counters/tunnels/tunnel
  sensor-path
Cisco-IOS-XR-infra-tc-oper:traffic-collector/vrf-table/default-vrf/afs/af/counters/prefixes/prefix
 subscription test-subscription
 sensor-group-id test-sg-SRTM sample-interval 60000
  destination-id test-collector-1
 destination-id test-collector-2
 source-interface Loopback0
!
```

Displaying Traffic Information

Using Segment Routing OAM

Segment Routing Operations, Administration, and Maintenance (OAM) helps service providers to monitor label-switched paths (LSPs) and quickly isolate forwarding problems to assist with fault detection and troubleshooting in the network. The Segment Routing OAM feature provides support for BGP prefix SIDs, Nil-FEC (forwarding equivalence classes) LSP Ping and Traceroute functionality.

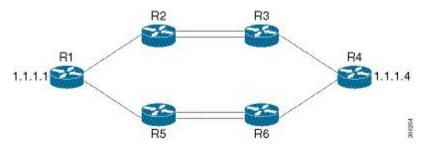
- MPLS Ping and Traceroute for BGP and IGP Prefix-SID, on page 129
- Examples: MPLS Ping, Traceroute, and Tree Trace for Prefix-SID, on page 130
- MPLS LSP Ping and Traceroute Nil FEC Target, on page 131
- Examples: LSP Ping and Traceroute for Nil_FEC Target, on page 132
- Segment Routing Ping and Traceroute, on page 133

MPLS Ping and Traceroute for BGP and IGP Prefix-SID

MPLS Ping and Traceroute operations for Prefix SID are supported for various BGP and IGP scenarios, for example:

- Within an IS-IS level or OSPF area
- Across IS-IS levels or OSPF areas
- Route redistribution from IS-IS to OSPF and from OSPF to IS-IS
- Anycast Prefix SID
- Combinations of BGP and LDP signaled LSPs

The MPLS LSP Ping feature is used to check the connectivity between ingress Label Switch Routers (LSRs) and egress LSRs along an LSP. MPLS LSP ping uses MPLS echo request and reply messages, similar to Internet Control Message Protocol (ICMP) echo request and reply messages, to validate an LSP. The destination IP address of the MPLS echo request packet is different from the address used to select the label stack. The destination IP address is defined as a 127.x.y.z/8 address and it prevents the IP packet from being IP switched to its destination, if the LSP is broken.


The MPLS LSP Traceroute feature is used to isolate the failure point of an LSP. It is used for hop-by-hop fault localization and path tracing. The MPLS LSP Traceroute feature relies on the expiration of the Time to Live (TTL) value of the packet that carries the echo request. When the MPLS echo request message hits a transit node, it checks the TTL value and if it is expired, the packet is passed to the control plane, else the message is forwarded. If the echo message is passed to the control plane, a reply message is generated based on the contents of the request message.

The MPLS LSP Tree Trace (traceroute multipath) operation is also supported for BGP and IGP Prefix SID. MPLS LSP Tree Trace provides the means to discover all possible equal-cost multipath (ECMP) routing paths of an LSP to reach a destination Prefix SID. It uses multipath data encoded in echo request packets to query for the load-balancing information that may allow the originator to exercise each ECMP. When the packet TTL expires at the responding node, the node returns the list of downstream paths, as well as the multipath information that can lead the operator to exercise each path in the MPLS echo reply. This operation is performed repeatedly for each hop of each path with increasing TTL values until all ECMP are discovered and validated.

MPLS echo request packets carry Target FEC Stack sub-TLVs. The Target FEC sub-TLVs are used by the responder for FEC validation. The BGP and IGP IPv4 prefix sub-TLV has been added to the Target FEC Stack sub-TLV. The IGP IPv4 prefix sub-TLV contains the prefix SID, the prefix length, and the protocol (IS-IS or OSPF). The BGP IPv4 prefix sub-TLV contains the prefix SID and the prefix length.

Examples: MPLS Ping, Traceroute, and Tree Trace for Prefix-SID

These examples use the following topology:

MPLS Ping for Prefix-SID

MPLS Traceroute for Prefix-SID

```
RP/0/RP0/CPU0:router-arizona# traceroute mpls ipv4 10.1.1.4/32
Thu Dec 17 14:45:05.563 PST
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
```

```
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

0 12.12.12.1 MRU 4470 [Labels: 16004 Exp: 0]
L 1 12.12.12.2 MRU 4470 [Labels: 16004 Exp: 0] 3 ms
L 2 23.23.23.3 MRU 4470 [Labels: implicit-null Exp: 0] 3 ms
! 3 34.34.34.4 11 ms
```

MPLS Tree Trace for Prefix-SID

```
RP/0/RP0/CPU0:router-arizona# traceroute mpls multipath ipv4 10.1.1.4/32
Thu Dec 17 14:55:46.549 PST
Starting LSP Path Discovery for 10.1.1.4/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
T.T.!
Path 0 found,
output interface TenGigE0/0/0/0 nexthop 12.12.12.2 source 12.12.12.1 destination 127.0.0.0
T. !
Path 1 found,
output interface TenGigE0/0/0/0 nexthop 12.12.12.2 source 12.12.12.1 destination 127.0.0.2
T_1T_1!
output interface TenGigE0/0/0/1 nexthop 15.15.15.5 source 15.15.15.1 destination 127.0.0.1
output interface TenGigE0/0/0/1 nexthop 15.15.15.5 source 15.15.15.1 destination 127.0.0.0
Paths (found/broken/unexplored) (4/0/0)
Echo Request (sent/fail) (10/0)
 Echo Reply (received/timeout) (10/0)
 Total Time Elapsed 53 ms
```

MPLS LSP Ping and Traceroute Nil FEC Target

The Nil-FEC LSP ping and traceroute operations are extensions of regular MPLS ping and traceroute.

Nil-FEC LSP Ping/Traceroute functionality supports segment routing and MPLS Static. It also acts as an additional diagnostic tool for all other LSP types. This feature allows operators to provide the ability to freely test any label stack by allowing them to specify the following:

· label stack

- · outgoing interface
- nexthop address

In the case of segment routing, each segment nodal label and adjacency label along the routing path is put into the label stack of an echo request message from the initiator Label Switch Router (LSR); MPLS data plane forwards this packet to the label stack target, and the label stack target sends the echo message back.

The following table shows the syntax for the ping and traceroute commands.

Table 6: LSP Ping and Traceroute Nil FEC Commands

Command Syntax
ping mpls nil-fec labels {label[,label]} [output {interface tx-interface} [nexthop nexthop-ip-addr]]

Examples: LSP Ping and Traceroute for Nil_FEC Target

These examples use the following topology:

RP/0/RP0/CPU0:router-utah# show mpls forwarding

Tue Ju	1 5 13:44:3	1.999 E	DT			
Local	Outgoing	Prefix		Outgoing	Next Hop	Bytes
Label	Label	or ID		Interface		Switched
16004	Pop	No ID		Gi0/2/0/1	10.1.1.4	1392
	Pop	No ID		Gi0/2/0/2	10.1.2.2	0
16005	16005	No ID		Gi0/2/0/0	10.1.1.4	0
	16005	No ID		Gi0/2/0/1	10.1.2.2	0
16007	16007	No ID		Gi0/2/0/0	10.1.1.4	4752
	16007	No ID		Gi0/2/0/1	10.1.2.2	0
24000	Pop	SR Adj	(idx 0)	Gi0/2/0/0	10.1.1.4	0
24001	Pop	SR Adj	(idx 2)	Gi0/2/0/0	10.1.1.4	0
24002	Pop	SR Adj	(idx 0)	Gi0/2/0/1	10.1.2.2	0
24003	Pop	SR Adj	(idx 2)	Gi0/2/0/1	10.1.2.2	0
24004	Pop	No ID		tt10	point2point	0
24005	Pop	No ID		tt11	point2point	0
24006	Pop	No ID		tt12	point2point	0
24007	Pop	No ID		tt13	point2point	0
24008	Pop	No ID		tt30	point2point	0

Ping Nil FEC Target

RP/0/RP0/CPU0:router-arizona# ping mpls nil-fec labels 16005,16007 output interface

```
GigabitEthernet 0/2/0/1 nexthop 10.1.1.4 repeat 1
Sending 1, 72-byte MPLS Echos with Nil FEC labels 16005,16007,
    timeout is 2 seconds, send interval is 0 msec:

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'I' - unknown upstream index,
    'd' - see DDMAP for return code,
    'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.
!
Success rate is 100 percent (1/1), round-trip min/avg/max = 1/1/1 ms
Total Time Elapsed 0 ms
```

Traceroute Nil FEC Target

```
RP/0/RP0/CPU0:router-arizona# traceroute mpls nil-fec labels 16005,16007 output interface
GigabitEthernet 0/2/0/1 nexthop 10.1.1.4
Tracing MPLS Label Switched Path with Nil FEC labels 16005,16007, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'd' - see DDMAP for return code,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.1.1.3 MRU 1500 [Labels: 16005/16007/explicit-null Exp: 0/0/0]
L 1 10.1.1.4 MRU 1500 [Labels: implicit-null/16007/explicit-null Exp: 0/0/0] 1 ms
L 2 10.1.1.5 MRU 1500 [Labels: implicit-null/explicit-null Exp: 0/0] 1 ms
! 3 10.1.1.7 1 ms
```

Segment Routing Ping and Traceroute

Segment Routing Ping

The MPLS LSP ping feature is used to check the connectivity between ingress and egress of LSP. MPLS LSP ping uses MPLS echo request and reply messages, similar to Internet Control Message Protocol (ICMP) echo request and reply messages, to validate an LSP. Segment routing ping is an extension of the MPLS LSP ping to perform the connectivity verification on the segment routing control plane.

Note

Segment routing ping can only be used when the originating device is running segment routing.

You can initiate the segment routing ping operation only when Segment Routing control plane is available at the originator, even if it is not preferred. This allows you to validate the SR path before directing traffic over

the path. Segment Routing ping can use either generic FEC type or SR control-plane FEC type (SR-OSPF, SR-ISIS). In mixed networks, where some devices are running MPLS control plane (for example, LDP) or do not understand SR FEC, generic FEC type allows the device to successfully process and respond to the echo request. By default, generic FEC type is used in the target FEC stack of segment routing ping echo request. Generic FEC is not coupled to a particular control plane; it allows path verification when the advertising protocol is unknown or might change during the path of the echo request. If you need to specify the target FEC, you can select the FEC type as OSPF, IS-IS, or BGP. This ensures that only devices that are running segment routing control plane, and can therefore understand the segment routing IGP FEC, respond to the echo request.

Configuration Examples

These examples show how to use segment routing ping to test the connectivity of a segment routing control plane. In the first example, FEC type is not specified. You can also specify the FEC type as shown in the other examples.

```
RP/0/RP0/CPU0:router# ping sr-mpls 10.1.1.2/32
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32,
      timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/5 ms
RP/0/RP0/CPU0:router# ping sr-mpls 10.1.1.2/32 fec-type generic
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32,
      timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/2 ms
RP/0/RP0/CPU0:router# ping sr-mpls 10.1.1.2/32 fec-type iqp ospf
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32,
      timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
```

```
'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/2 ms
RP/0/RP0/CPU0:router# ping sr-mpls 10.1.1.2/32 fec-type igp isis
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32,
      timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/2 ms
RP/0/RP0/CPU0:router# ping sr-mpls 10.1.1.2/32 fec-type bgp
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32,
      timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/2 ms
```

Segment Routing Traceroute

The MPLS LSP traceroute is used to isolate the failure point of an LSP. It is used for hop-by-hop fault localization and path tracing. The MPLS LSP traceroute feature relies on the expiration of the Time to Live (TTL) value of the packet that carries the echo request. When the MPLS echo request message hits a transit node, it checks the TTL value and if it is expired, the packet is passed to the control plane, else the message is forwarded. If the echo message is passed to the control plane, a reply message is generated based on the contents of the request message. Segment routing traceroute feature extends the MPLS LSP traceroute functionality to segment routing networks.

Similar to segment routing ping, you can initiate the segment routing traceroute operation only when Segment Routing control plane is available at the originator, even if it is not preferred. Segment Routing traceroute can use either generic FEC type or SR control-plane FEC type (SR-OSPF, SR-ISIS). By default, generic FEC

type is used in the target FEC stack of segment routing traceroute echo request. If you need to specify the target FEC, you can select the FEC type as OSPF, IS-IS, or BGP. This ensures that only devices that are running segment routing control plane, and can therefore understand the segment routing IGP FEC, respond to the echo request.

The existence of load balancing at routers in an MPLS network provides alternate paths for carrying MPLS traffic to a target router. The multipath segment routing traceroute feature provides a means to discover all possible paths of an LSP between the ingress and egress routers.

Configuration Examples

These examples show how to use segment routing traceroute to trace the LSP for a specified IPv4 prefix SID address. In the first example, FEC type is not specified. You can also specify the FEC type as shown in the other examples.

```
RP/0/RP0/CPU0:router# traceroute sr-mpls 10.1.1.2/32
Tracing MPLS Label Switched Path to 10.1.1.2/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.12.12.1 MRU 1500 [Labels: implicit-null Exp: 0]
! 1 10.12.12.2 3 ms
RP/0/RP0/CPU0:router# traceroute sr-mpls 10.1.1.2/32 fec-type generic
Tracing MPLS Label Switched Path to 10.1.1.2/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.12.12.1 MRU 1500 [Labels: implicit-null Exp: 0]
! 1 10.12.12.2 2 ms
RP/0/RP0/CPU0:router# traceroute sr-mpls 10.1.1.2/32 fec-type igp ospf
Tracing MPLS Label Switched Path to 10.1.1.2/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
```

Type escape sequence to abort.

```
0 10.12.12.1 MRU 1500 [Labels: implicit-null Exp: 0]
! 1 10.12.12.2 2 ms
RP/0/RP0/CPU0:router# traceroute sr-mpls 10.1.1.2/32 fec-type igp isis
Tracing MPLS Label Switched Path to 10.1.1.2/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.12.12.1 MRU 1500 [Labels: implicit-null Exp: 0]
! 1 10.12.12.2 2 ms
RP/0/RP0/CPU0:router#traceroute sr-mpls 10.1.1.2/32 fec-type bgp
Tracing MPLS Label Switched Path to 10.1.1.2/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
 0 10.12.12.1 MRU 1500 [Labels: implicit-null/implicit-null Exp: 0/0]
! 1 10.12.12.2 2 ms
This example shows how to use multipath traceroute to discover all the possible paths for a IPv4 prefix SID.
RP/0/RP0/CPU0:router# traceroute sr-mpls multipath 10.1.1.2/32
Starting LSP Path Discovery for 10.1.1.2/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  \mbox{'M'} - malformed request, \mbox{'m'} - unsupported tlvs, \mbox{'N'} - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Path 0 found,
output interface GigabitEthernet0/0/0/2 nexthop 10.13.13.2
source 10.13.13.1 destination 127.0.0.0
!
```

Path 1 found, output interface Bundle-Ether1 nexthop 10.12.12.2 source 10.12.12.1 destination 127.0.0.0

Paths (found/broken/unexplored) (2/0/0) Echo Request (sent/fail) (2/0) Echo Reply (received/timeout) (2/0) Total Time Elapsed 14 ms