Interface and Hardware Component Configuration Guide for Cisco NCS 6000 Series Routers, Release 6.1.x Creation Date: August 12, 2016 ### **Americas Headquarters** Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 Text Part Number: THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental. Interface and Hardware Component Configuration Guide for Cisco NCS 6000 Series Routers, Release 6.1.x © 2016 Cisco Systems, Inc. All rights reserved. ### Preface 19 Changes to This Document 19 Obtaining Documentation and Submitting a Service Request 19 ### New and Changed Interface and Hardware Component Feature Information 11 New and Changed Information 111 ### **Preconfiguring Physical Interfaces** 11 Contents 11 Prerequisites for Preconfiguring Physical Interfaces 12 Information About Preconfiguring Physical Interfaces 12 Physical Interface Preconfiguration Overview 12 Benefits of Interface Preconfiguration 13 Use of the Interface Preconfigure Command 13 Active and Standby RPs and Virtual Interface Configuration 13 How to Preconfigure Physical Interfaces 14 Configuration Examples for Preconfiguring Physical Interfaces 15 Preconfiguring an Interface: Example 15 Additional References 16 Related Documents 16 Standards 16 MIBs 16 RFCs 16 Technical Assistance 1 ### Advanced Configuration and Modification of the Management Ethernet Interface 19 Contents 19 Prerequisites for Configuring Management Ethernet Interfaces 110 Information About Configuring Management Ethernet Interfaces 110 Default Interface Settings 110 How to Perform Advanced Management Ethernet Interface Configuration 111 Configuring a Management Ethernet Interface 111 Configuring the Duplex Mode for a Management Ethernet Interface 113 Configuring the Speed for a Management Ethernet Interface 114 ``` Modifying the MAC Address for a Management Ethernet Interface Verifying Management Ethernet Interface Configuration Configuration Examples for Management Ethernet Interfaces 118 Configuring a Management Ethernet Interface: Example 118 Additional References 118 Related Documents 119 Standards 119 MIBs 119 RFCs 119 Technical Assistance 119 Configuring Ethernet Interfaces Contents 122 Prerequisites for Configuring Ethernet Interfaces Information About Configuring Ethernet 123 Default Configuration Values for Gigabit Ethernet and 10-Gigabit Ethernet Default Configuration Values for Fast Ethernet Layer 2 VPN on Ethernet Interfaces Gigabit Ethernet Protocol Standards Overview 125 IEEE 802.3 Physical Ethernet Infrastructure 125 IEEE 802.3ab 1000BASE-T Gigabit Ethernet IEEE 802.3z 1000 Mbps Gigabit Ethernet IEEE 802.3ae 10 Gbps Ethernet IEEE 802.3ba 100 Gbps Ethernet MAC Address 126 MAC Accounting Ethernet MTU 127 Flow Control on Ethernet Interfaces 802.10 VLAN VRRP 128 HSRP 128 Duplex Mode on Fast Ethernet Interfaces Fast Ethernet Interface Speed 129 Link Autonegotiation on Ethernet Interfaces 129 Link Layer Discovery Protocol (LLDP) LLDP Frame Format 131 LLDP Operation 131 Supported LLDP Functions Unsupported LLDP Functions 132 Carrier Delay on Ethernet Interfaces ``` ``` How to Configure Ethernet Configuring Ethernet Interfaces 133 Configuring Gigabit Ethernet Interfaces 133 What to Do Next 136 What to Do Next 136 Configuring MAC Accounting on an Ethernet Interface 136 Configuring a L2VPN Ethernet Port What to Do Next 140 Configuring LLDP 140 LLDP Default Configuration Enabling LLDP Globally 142 Configuring Global LLDP Operational Characteristics Disabling Transmission of Optional LLDP TLVs Disabling LLDP Receive and Transmit Operations for an Interface Verifying the LLDP Configuration Configuration Examples for Ethernet Configuring an Ethernet Interface: Example Configuring MAC-Accounting: Example Configuring a Layer 2 VPN AC: Example Configuring LLDP: Examples Where to Go Next 151 Additional References Related Documents Standards 152 MIBs 152 RFCs 152 Technical Assistance 152 Configuring Ethernet OAM 153 Contents 154 Prerequisites for Configuring Ethernet OAM Information About Configuring Ethernet OAM 155 Ethernet Link OAM 155 Neighbor Discovery Link Monitoring MIB Retrieval 156 ``` ``` Miswiring Detection (Cisco-Proprietary) SNMP Traps 156 How to Configure Ethernet OAM 156 Configuring Ethernet Link OAM 156 Configuring an Ethernet OAM Profile Attaching an Ethernet OAM Profile to an Interface Configuring Ethernet OAM at an Interface and Overriding the Profile Configuration Verifying the Ethernet OAM Configuration 164 Configuration Examples for Ethernet OAM Configuration Examples for EOAM Interfaces 165 Configuring an Ethernet OAM Profile Globally: Example Configuring Ethernet OAM Features on an Individual Interface: Example Configuring Ethernet OAM Features to Override the Profile on an Individual Interface: Example 166 Clearing Ethernet OAM Statistics on an Interface: Example 167 Enabling SNMP Server Traps on a Router: Example Where to Go Next 167 Additional References Related Documents Standards 168 MIBs 168 RFCs 168 Technical Assistance 168 Configuring Link Bundling 169 Contents 169 Prerequisites for Configuring Link Bundling Prerequisites for Configuring Link Bundling Information About Configuring Link Bundling 170 Link Bundling Overview 170 Features and Compatible Characteristics of Link Bundles Link Aggregation Through LACP IEEE 802.3ad Standard 173 LACP Short Period Time Intervals Load Balancing 174 VLANs on an Ethernet Link Bundle Link Bundle Configuration Overview 175 Nonstop Forwarding During RP Switchover Link Switchover 176 Bundle Fast Convergence 176 ``` ``` BFC Functionality 176 Condition for BFC 176 Sample BFC Data 177 How to Configure Link Bundling Configuring Ethernet Link Bundles 178 Configuring EFP Load Balancing on an Ethernet Link Bundle Configuring VLAN Bundles 184 Configuring the Default LACP Short Period Time Interval 191 Configuring Custom LACP Short Period Time Intervals Configuration Examples for Link Bundling Example: Configuring an Ethernet Link Bundle Example: Configuring a VLAN Link Bundle Example: Configuring EFP Load Balancing on an Ethernet Link Bundle Examples: Configuring LACP Short Periods Additional References 1102 Related Documents 1102 Standards 1102 MIBs 1102 RFCs 1102 Technical Assistance 1102 Configuring Virtual Loopback and Null Interfaces 1103 Contents 1103 Prerequisites for Configuring Virtual Interfaces Information About Configuring Virtual Interfaces 1104 Virtual Loopback Interface Overview Null Interface Overview 1104 Virtual Management Interface Overview Active and Standby RPs and Virtual Interface Configuration How to Configure Virtual Interfaces 1106 Configuring Virtual Loopback Interfaces Restrictions Configuring Null Interfaces Configuring Virtual IPv4 Interfaces Configuration Examples for Virtual Interfaces Configuring a Loopback Interface: Example Configuring a Null Interface: Example Configuring a Virtual IPv4 Interface: Example Additional References 1111 ``` ``` Standards 1111 MIBs 1111 RFCs 1111 Technical Assistance 1112 Configuring 802.10 VLAN Interfaces 1113 Contents 1113 Prerequisites for Configuring 802.10 VLAN Interfaces Information About Configuring 802.10 VLAN Interfaces 1114 802.10 VLAN Overview 1114 802.10 Tagged Frames 1114 Subinterfaces 1114 Subinterface MTU 1115 Native VLAN 1115 VLAN Sub-interfaces on Ethernet Bundles 1115 How to Configure 802.10 VLAN Interfaces 1115 Configuring 802.10 VLAN Subinterfaces 1115 1117 Configuring an Attachment Circuit on a VLAN What to Do Next 1121 Removing an 802.10 VLAN Subinterface 1121 1122 Configuration Examples for VLAN Interfaces 1123 VLAN Subinterfaces: Example 1123 Additional References 1125 Related
Documents 1125 Standards 1125 MIBs 1125 Technical Assistance 1125 Configuring Tunnel Interfaces 1127 Contents 1127 Prerequisites for Configuring Tunnel Interfaces Information About Configuring Tunnel Interfaces Tunnel Interfaces Overview 1128 Virtual Interface Naming Convention 1128 Tunnel-IPSec Overview 1129 Tunnel-IPSec Naming Convention ``` Related Documents 1111 ``` Crypto Profile Sets How to Configure Tunnel Interfaces Configuring Tunnel-IPSec Interfaces Prerequisites 1130 Configuration Examples for Tunnel Interfaces 1132 Tunnel-IPSec: Example 1132 Where to Go Next 1133 Additional References 1133 Related Documents Standards 1133 MIBs 1134 RFCs 1134 Technical Assistance 1134 Configuring Dense Wavelength Division Multiplexing Controllers Contents HC-135 Prerequisites for Configuring DWDM Controller Interfaces Information About the DWDM Controllers HC-136 Information about IPoDWDM HC-136 How to Configure DWDM Controllers HC-137 Configuring the Optical Parameters Configuring G.709 Parameters Prerequisites HC-139 What to Do Next HC-141 Configuring IPoDWDM HC-141 Configuring the Optical Layer DWDM Ports Configuring the Administrative State of DWDM Optical Ports HC-143 Configuration Examples HC-145 Turning On the Laser: Example HC-145 Turning Off the Laser: Example IPoDWDM Configuration: Examples HC-146 Optical Layer DWDM Port Configuration: Examples Administrative State of DWDM Optical Ports Configuration: Examples Additional References HC-146 Related Documents HC-146 Standards HC-147 MIBs HC-147 RFCs HC-147 Technical Assistance HC-147 ``` Contents Index ## **Preface** The Interface and Hardware Component Configuration Guide for Cisco NCS 6000 Series Routers provides information and procedures related to router interface and hardware configuration. The preface contains the following sections: - Changes to This Document - Obtaining Documentation and Submitting a Service Request # **Changes to This Document** Table 1 lists the technical changes made to this document since it was first printed. Table 1 Changes to This Document | Date | Change Summary | |-------------|-----------------------------------| | August 2016 | Initial release of this document. | # **Obtaining Documentation and Submitting a Service Request** For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly *What's New in Cisco Product Documentation*, which also lists all new and revised Cisco technical documentation, at: http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html Subscribe to the *What's New in Cisco Product Documentation* as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0. # New and Changed Interface and Hardware Component Feature Information This table summarizes the new and changed feature information for the *Interface and Hardware Component Configuration Guide for Cisco NCS 6000 Series Routerss*, and tells you where they are documented. • New and Changed Information # **New and Changed Information** Table 1 New and Changed Features | Feature | Description | Changed in Release | Where Documented | |---------------------------------|-------------|--------------------|------------------| | No new features in this release | NA | Release 6.1.1 | NA | New and Changed Information # **Preconfiguring Physical Interfaces** This module describes the preconfiguration of physical interfaces. Preconfiguration is supported for these types of interfaces and controllers: - 10-Gigabit Ethernet - Management Ethernet - Serial - SONET controllers and channelized SONET controllers Preconfiguration allows you to configure modular services cards before they are inserted into the router. When the cards are inserted, they are instantly configured. The preconfiguration information is created in a different system database tree (known as the *preconfiguration directory* on the route processor [RP]), rather than with the regularly configured interfaces. There may be some preconfiguration data that cannot be verified unless the modular services card is present, because the verifiers themselves run only on the modular services card. Such preconfiguration data is verified when the modular services card is inserted and the verifiers are initiated. A configuration is rejected if errors are found when the configuration is copied from the preconfiguration area to the active area. Only physical interfaces can be preconfigured. ### **Feature History for Preconfiguring Physical Interfaces** | Release | Modification | |---------------|---| | Release 5.0.0 | Ethernet interface preconfiguration was introduced. | ### **Contents** - Prerequisites for Preconfiguring Physical Interfaces, page 2 - Information About Preconfiguring Physical Interfaces, page 2 - How to Preconfigure Physical Interfaces, page 4 - Configuration Examples for Preconfiguring Physical Interfaces, page 5 - Additional References, page 6 # **Prerequisites for Preconfiguring Physical Interfaces** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. Before preconfiguring physical interfaces, be sure that the following conditions are met: • Preconfiguration drivers and files are installed. Although it may be possible to preconfigure physical interfaces without a preconfiguration driver installed, the preconfiguration files are required to set the interface definition file on the router that supplies the strings for valid interface names. # **Information About Preconfiguring Physical Interfaces** To preconfigure interfaces, you must understand the following concepts: - Physical Interface Preconfiguration Overview, page 2 - Benefits of Interface Preconfiguration, page 3 - Use of the Interface Preconfigure Command, page 3 - Active and Standby RPs and Virtual Interface Configuration, page 3 ## **Physical Interface Preconfiguration Overview** Preconfiguration is the process of configuring interfaces before they are present in the system. Preconfigured interfaces are not verified or applied until the actual interface with the matching location (rack/slot/module) is inserted into the router. When the anticipated modular services card is inserted and the interfaces are created, the precreated configuration information is verified and, if successful, immediately applied to the router's running configuration. When you plug the anticipated modular services card in, make sure to verify any preconfiguration with the appropriate **show** commands. Use the **show run** command to see interfaces that are in the preconfigured state. We recommend filling out preconfiguration information in your site planning guide, so that you can compare that anticipated configuration with the actual preconfigured interfaces when that card is installed and the interfaces are up. Tip Use the **commit best-effort** command to save the preconfiguration to the running configuration file. The **commit best-effort** command merges the target configuration with the running configuration and commits only valid configuration (best effort). Some configuration might fail due to semantic errors, but the valid configuration still comes up. ### **Benefits of Interface Preconfiguration** Preconfigurations reduce downtime when you add new cards to the system. With preconfiguration, the new modular services card can be instantly configured and actively running during modular services card bootup. Another advantage of performing a preconfiguration is that during a card replacement, when the modular services card is removed, you can still see the previous configuration and make modifications. ### **Use of the Interface Preconfigure Command** Interfaces that are not yet present in the system can be preconfigured with the **interface preconfigure** command in XR configuration mode. The **interface preconfigure** command places the router in interface configuration mode. Users should be able to add any possible interface commands. The verifiers registered for the preconfigured interfaces verify the configuration. The preconfiguration is complete when the user enters the **end** command, or any matching **exit** or XR configuration mode command. It is possible that some configurations cannot be verified until the modular services card is inserted. Do not enter the **no shutdown** command for new preconfigured interfaces, because the **no** form of this command removes the existing configuration, and there is no existing configuration. Users are expected to provide names during preconfiguration that will match the name of the interface that will be created. If the interface names do not match, the preconfiguration cannot be applied when the interface is created. The interface names must begin with the interface type that is supported by the router and for which drivers have been installed. However, the slot, port, subinterface number, and channel interface number information cannot be validated. Specifying an interface name that already exists and is configured (or an abbreviated name like e0/3/0/0) is not permitted. ### **Active and Standby RPs and Virtual Interface Configuration** The standby RP is available and in a state in which it can take over the work from the active RP should that prove necessary. Conditions that necessitate the standby RP to become the active RP and assume the active RP's duties include: - Failure detection by a watchdog - Standby RP is administratively commanded to take over - Removal of the active RP from the chassis If a second RP is not present in the chassis while the first is in operation, a second RP may be inserted
and will automatically become the standby RP. The standby RP may also be removed from the chassis with no effect on the system other than loss of RP redundancy. After switchover, the virtual interfaces will all be present on the standby (now active). Their state and configuration will be unchanged, and there will have been no loss of forwarding (in the case of tunnels) over the interfaces during the switchover. The Cisco NCS 6000 Series Router uses nonstop forwarding (NSF) over tunnels through the switchover of the host RP. The user does not need to configure anything to guarantee that the standby interface configurations are maintained. # **How to Preconfigure Physical Interfaces** This task describes only the most basic preconfiguration of an interface. ### **SUMMARY STEPS** - 1. configure - 2. interface preconfigure type interface-path-id - 3. ipv4 address ip-address subnet-mask - 4. Configure additional interface parameters. - 5. end or commit - 6. exit - 7. exit - 8. show running-config ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | <pre>interface preconfigure type interface-path-id Example: RP/0/RP0/CPU0:router(config)# interface preconfigure GigabitEthernet 0/1/0/0</pre> | Enters interface preconfiguration mode for an interface, where <i>type</i> specifies the supported interface type that you want to configure and <i>interface-path-id</i> specifies the location where the interface will be located in <i>rack/slot/module/port</i> notation. | | Step 3 | <pre>ipv4 address ip-address subnet-mask or ipv4 address ip-address/prefix Example: RP/0/RP0/CPU0:router(config-if-pre)# ipv4 address 192.168.1.2/32</pre> | Assigns an IP address and mask to the interface. | | | Command or Action | Purpose | |--------|---|---| | Step 4 | Configure additional interface parameters, as described in this manual in the configuration chapter that applies to the type of interface that you are configuring. | | | Step 5 | end
Or | Saves configuration changes. | | | commit best-effort | When you issue the end command, the system prompts
you to commit changes: Uncommitted changes found, commit them before
exiting (yes/no/cancel)? | | | <pre>Example: RP/0/RP0/CPU0:router(config-if-pre)# end or RP/0/RP0/CPU0:router(config-if-pre)# commit</pre> | Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit best-effort command to save the configuration changes to the running configuration file and remain within the configuration session. The commit best-effort command merges the target configuration with the running configuration and commits only valid changes (best effort). Some configuration changes might fail due to semantic errors. | | Step 6 | show running-config | (Optional) Displays the configuration information currently running on the router. | | | Example: RP/0/RP0/CPU0:router# show running-config | | # **Configuration Examples for Preconfiguring Physical Interfaces** This section contains the following example: Preconfiguring an Interface: Example, page 5 ## **Preconfiguring an Interface: Example** The following example shows how to preconfigure a basic Ethernet interface: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface preconfigure tenGigE 0/1/0/0 RP/0/RP0/CPU0:router(config-if)# ipv4 address 192.168.1.2/32 RP/0/RP0/CPU0:router(config-if)# commit ``` # **Additional References** The sections that follow provide references related to the preconfiguration of physical interfaces. ## **Related Documents** | Related Topic | Document Title | |---|---| | Master command reference | Cisco NCS 6000 Series Router Master Command Listing | | Interface configuration commands | Interface and Hardware Component Command Reference for Cisco
NCS 6000 Series Routers | | Initial system bootup and configuration information | | | Information about user groups and task IDs | Cisco IOS XR Task ID Reference Guide | ## **Standards** | Standards | Title | |---|-------| | No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. | | ### **MIBs** | MIBs | MIBs Link | |---|---| | There are no applicable MIBs for this module. | To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: | | | http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | ## **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | ## **Technical Assistance** | Description | Link | |--|----------------------------------| | The Cisco Technical Support website contains | http://www.cisco.com/techsupport | | thousands of pages of searchable technical content, | | | including links to products, technologies, solutions, | | | technical tips, and tools. Registered Cisco.com users | | | can log in from this page to access even more content. | | Additional References # Advanced Configuration and Modification of the Management Ethernet Interface This module describes the configuration of Management Ethernet interfaces. Before you can use Telnet to access the router through the LAN IP address, you must set up a Management Ethernet interface and enable Telnet servers, as described in the *Configuring General Router Features* module of the *System Setup and Software Installation Guide for Cisco NCS 6000 Series Routers*. This module describes how to modify the default configuration of the Management Ethernet interface after it has been configured, as described in *System Setup and Software Installation Guide for Cisco NCS 6000 Series Routers*. Forwarding between physical layer interface modules (PLIM) ports and Management Ethernet interface ports is disabled by default. To enable forwarding between PLIM ports and Management Ethernet interface ports, use the **rp mgmtethernet forwarding** command. Although the Management Ethernet interfaces on the system are present by default, the user must configure these interfaces to use them for accessing the router, using protocols and applications such as Simple Network Management Protocol (SNMP), Common Object Request Broker Architecture (CORBA), HTTP, extensible markup language (XML), TFTP, Telnet, and command-line interface (CLI). #### **Feature History for Configuring Management Ethernet Interfaces** | Release | Modification | |---------------|------------------------------| | Release 5.0.0 | This feature was introduced. | ### **Contents** - Prerequisites for Configuring Management Ethernet Interfaces, page 10 - Information About Configuring Management Ethernet Interfaces, page 10 - How to Perform Advanced Management Ethernet Interface Configuration, page 11 - Configuration Examples for Management Ethernet Interfaces, page 18 - Additional References, page 18 # **Prerequisites for Configuring Management Ethernet Interfaces** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. Before performing the Management Ethernet interface configuration procedures that are described in this module, ensure that these tasks and conditions are met: - You have performed the initial configuration of the Management Ethernet interface. - You know how to apply the generalized interface name specification rack/slot/module/port. Note that, for transparent switchover, both active and standby Management Ethernet interfaces are expected to be physically connected to the same LAN or switch. # **Information About Configuring Management Ethernet Interfaces** To
configure Management Ethernet interfaces, you must understand the following concept: Default Interface Settings, page 10 ## **Default Interface Settings** Table 1 describes the default Management Ethernet interface settings that can be changed by manual configuration. Default settings are not displayed in the **show running-config** command output. Table 1 Management Ethernet Interface Default Settings | Parameter | Default Value | Configuration File Entry | |-----------------|--|---| | Speed in Mbps | Speed is autonegotiated. | speed [10 100 1000] | | | | To return the system to autonegotiate speed, use the no speed [10 100 1000] command. | | Duplex mode | Duplex mode is | duplex {full half} | | autonegotiated. | To return the system to autonegotiated duplex operation, use the no duplex {full half} command, as appropriate. | | | MAC address | MAC address is read from the hardware burned-in address (BIA). | mac-address address To return the device to its default MAC address, use the no mac-address address command. | # **How to Perform Advanced Management Ethernet Interface Configuration** This section contains the following procedures: - Configuring a Management Ethernet Interface, page 11 (required) - Configuring the Duplex Mode for a Management Ethernet Interface, page 13 (optional) - Configuring the Speed for a Management Ethernet Interface, page 14 (optional) - Modifying the MAC Address for a Management Ethernet Interface, page 16 (optional) - Verifying Management Ethernet Interface Configuration, page 17 (optional) ### **Configuring a Management Ethernet Interface** Perform this task to configure a Management Ethernet interface. This procedure provides the minimal configuration required for the Management Ethernet interface. You do not need to perform this task if you have already set up the Management Ethernet interface to enable telnet servers. ### **SUMMARY STEPS** - 1. configure - 2. interface MgmtEth interface-path-id - 3. ipv4 address ip-address mask - 4. mtu bytes - 5. no shutdown - 6. end or commit - 7. show interfaces MgmtEth interface-path-id #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure terminal | | | Step 2 | interface MgmtEth interface-path-id | Enters interface configuration mode and specifies the Ethernet interface name and notation <i>rack/slot/module/port</i> . | | | <pre>Example: RP/0/RP0/CPU0:router(config)# interface MgmtEth 0/RP0/CPU0/0</pre> | The example indicates port 0 on the card that is installed in slot 0. | | | Command or Action | Purpose | |--------|---|--| | Step 3 | ipv4 address ip-address mask | Assigns an IP address and subnet mask to the interface. | | | Example: | • Replace <i>ip-address</i> with the primary IPv4 address for the interface. | | | RP/0/RP0/CPU0:router(config-if)# ipv4 address 172.18.189.38 255.255.255.224 | • Replace <i>mask</i> with the mask for the associated IP subnet. The network mask can be specified in either of two ways: | | | | The network mask can be a four-part dotted
decimal address. For example, 255.0.0.0 indicates
that each bit equal to 1 means that the
corresponding address bit belongs to the network
address. | | | | The network mask can be indicated as a slash (/) and number. For example, /8 indicates that the first 8 bits of the mask are ones, and the corresponding bits of the address are network address. | | Step 4 | mtu bytes | (Optional) Sets the maximum transmission unit (MTU) byte value for the interface. The default is 1514. | | | Example: | • The default is 1514 bytes. | | | RP/0//CPU0:router(config-if# mtu 1448 | • The range for the Management Ethernet interface Interface mtu values is 64 to 1514 bytes. | | Step 5 | no shutdown | Removes the shutdown configuration, which removes the forced administrative down on the interface, enabling it to | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# no shutdown</pre> | move to an up or down state. | | | Command or Action | Purpose | |--------|---|--| | Step 6 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # end Or RP/0/RP0/CPU0:router(config-if) # commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 7 | show interfaces MgmtEth interface-path-id | (Optional) Displays statistics for interfaces on the router. | | | Example: RP/0/RP0/CPU0:router# show interfaces MgmtEth 0/RP0/CPU0/0 | | # **Configuring the Duplex Mode for a Management Ethernet Interface** Perform this task to configure the duplex mode of the Management Ethernet interfaces for the RPs. ### **SUMMARY STEPS** - 1. configure - 2. interface MgmtEth interface-path-id - 3. duplex [full | half] - 4. end or commit ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface MgmtEth interface-path-id | Enters interface configuration mode and specifies the Management Ethernet interface name and instance. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# interface MgmtEth 0/RP0/CPU0/0</pre> | | | Step 3 | duplex [full half] | Configures the interface duplex mode. Valid options are full or half . | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # duplex full</pre> | Note To return the system to autonegotiated duplex operation, use the no duplex command. | | Step 4 | end | Saves configuration changes. | | | <pre>commit Example: RP/0/RP0/CPU0:router(config-if)# end or RP/0/RP0/CPU0:router(config-if)# commit</pre> | • When you issue the end command, the system prompts you to commit changes: | | | | <pre>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</pre> | | | | Entering yes saves configuration changes to the
running configuration file, exits the configuration
session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or committing
the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | ## **Configuring the Speed for a Management Ethernet Interface** Perform this task to configure the speed of the Management Ethernet interfaces for the RPs. ### **SUMMARY STEPS** - 1. configure - 2. interface MgmtEth interface-path-id - 3. speed {10 | 100 | 1000} 4. end or commit ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface MgmtEth interface-path-id | Enters interface configuration mode and specifies the Management Ethernet interface name and instance. | | | <pre>Example: RP/0/RP0/CPU0:router(config) # interface MgmtEth</pre> | | | Step 3 | speed {10 100 1000} | Configures the interface speed parameter. | | | | speed options are or Mbps. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# speed 100</pre> | Note The default Management Ethernet interface speed is autonegotiated. | | | | Note To return the system to the
default autonegotiated speed, use the no speed command. | | Step 4 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end</pre> | <pre>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</pre> | | | <pre>Or RP/0/RP0/CPU0:router(config-if)# commit</pre> | Entering yes saves configuration changes to the
running configuration file, exits the configuration
session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | ## **Modifying the MAC Address for a Management Ethernet Interface** Perform this task to configure the MAC layer address of the Management Ethernet interfaces for the RPs. ### **SUMMARY STEPS** - 1. configure - 2. interface MgmtEth interface-path-id - 3. mac-address address - 4. end or commit ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface MgmtEth interface-path-id | Enters interface configuration mode and specifies the Management Ethernet interface name and instance. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# interface MgmtEth 0/RP0/CPU0/0</pre> | | | | Command or Action | Purpose | |--------|--|--| | Step 3 | mac-address address | Configures the MAC layer address of the Management Ethernet interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # mac-address 0001.2468.ABCD</pre> | Note To return the device to its default MAC address, use the no mac-address address command. | | Step 4 | <pre>end Or commit Example: RP/0/RP0/CPU0:router(config-if)# end Or RP/0/RP0/CPU0:router(config-if)# commit</pre> | Saves configuration changes. • When you issue the end command, the system prompts you to commit changes: Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: - Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. - Entering no exits the configuration session and returns the router to XR EXEC mode without committing the configuration changes. | | | | Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes. Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | ## **Verifying Management Ethernet Interface Configuration** Perform this task to verify configuration modifications on the Management Ethernet interfaces for the RPs. ### **SUMMARY STEPS** - 1. show interfaces MgmtEth interface-path-id - 2. show running-config | Step 1 | show interfaces MgmtEth interface-path-id | Displays the Management Ethernet interface configuration. | |--------|--|---| | | <pre>Example: RP/0/RP0/CPU0:router# show interfaces MgmtEth 0/RP0/CPU0/0</pre> | | | Step 2 | show running-config interface MgmtEth | Displays the running configuration. | | | interface-path-id | | | | Example: | | | | • | | | | RP/0/RP0/CPU0:router# show running-config | | | | interface MgmtEth 0/RP0/CPU0/0 | | # **Configuration Examples for Management Ethernet Interfaces** This section provides the following configuration examples: • Configuring a Management Ethernet Interface: Example, page 18 ### **Configuring a Management Ethernet Interface: Example** This example displays advanced configuration and verification of the Management Ethernet interface on the RP: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface MgmtEth 0/RP0/CPU0/0 RP/0/RP0/CPU0:router(config)# ipv4 address 172.29.52.70 255.255.255.0 RP/0/RP0/CPU0:router(config-if)# speed 100 RP/0/RP0/CPU0:router(config-if)# duplex full RP/0/RP0/CPU0:router(config-if)# no shutdown RP/0/RP0/CPU0:router(config-if)# commit RP/0/RP0/CPU0:Mar 26 01:09:28.685 :ifmgr[190]:%LINK-3-UPDOWN :Interface MgmtEth0/RP0/CPU0/0, changed state to Up RP/0/RP0/CPU0:router(config-if)# end RP/0/RP0/CPU0:router# show interfaces MgmtEth 0/RP0/CPU0/0 MMgmtEth0/RP0/CPU0/0 is up, line protocol is up Hardware is Management Ethernet, address is 0011.93ef.e8ea (bia 0011.93ef.e8ea Description: Connected to Lab LAN Internet address is 172.29.52.70/24 MTU 1514 bytes, BW 100000 Kbit reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set, ARP type ARPA, ARP timeout 04:00:00 Last clearing of "show interface" counters never 5 minute input rate 3000 bits/sec, 7 packets/sec 5 minute output rate 0 bits/sec, 1 packets/sec 30445 packets input, 1839328 bytes, 64 total input drops O drops for unrecognized upper-level protocol Received 23564 broadcast packets, 0 multicast packets 0 runts, 0 giants, 0 throttles, 0 parity 57 input errors, 40 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 171672 packets output, 8029024 bytes, 0 total output drops Output 16 broadcast packets, 0 multicast packets 0 output errors, 0 underruns, 0 applique, 0 resets 0 output buffer failures, 0 output buffers swapped out 1 carrier transitions RP/0/RP0/CPU0:router# show running-config interface MgmtEth 0/RP0/CPU0/0 interface MgmtEth0/RP0/CPU0/0 description Connected to Lab LAN ipv4 address 172.29.52.70 255.255.255.0 ``` ## **Additional References** These sections provide references related to Management Ethernet interface configuration. ## **Related Documents** ## **Standards** | Standards | Title | |--|-------| | No new or modified standards are supported by this feature, and support for existing standards has not been modified by the feature. | | ## **MIBs** | IBs Link | |--| | o locate and download MIBs for selected platforms using isco IOS XR Software, use the Cisco MIB Locator found at the llowing URL: tp://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | | is | ## **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | ## **Technical Assistance** | Description | Link | |--|------------------------------| | The Cisco Technical Support website contains | http://www.cisco.com/support | | thousands of pages of searchable technical content, | | | including links to products, technologies, solutions, | | | technical tips, and tools. Registered Cisco.com users | | | can log in from this page to access even more content. | | Additional References # **Configuring Ethernet Interfaces** This module describes the configuration of Ethernet interfaces on the Cisco NCS 6000 Series Routers. The distributed Gigabit Ethernet, 10-Gigabit Ethernet, and Fast Ethernet architecture and features deliver network scalability and performance, while enabling service providers to offer high-density, high-bandwidth networking solutions designed to interconnect the router with other systems in POPs, including core and edge routers and Layer 2 switches. ### **Feature History for Configuring Ethernet Interfaces** | Release | Modification | |---------------|--| | Release 5.0.0 | This feature was introduced. | | Release 5.0.1 | Support for Source MAC accounting was included. | | Release 5.2.1 | Support for Link Layer Discovery Protocol (LLDP) was included. | ### **Contents** - Prerequisites for Configuring Ethernet Interfaces, page 22 - Information About Configuring Ethernet, page 23 - Configuring Ethernet Interfaces, page 33 - Configuring LLDP, page 40 - Additional References, page 52 # **Prerequisites for Configuring Ethernet Interfaces** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. Before configuring Ethernet interfaces, ensure that these tasks and conditions are met: - Know the interface IP address. - You know how to apply
the specify the generalized interface name with the generalized notation rack/slot/module/port. # **Information About Configuring Ethernet** Ethernet is defined by the IEEE 802.3 international standard. It enables the connection of up to 1024 nodes over coaxial, twisted-pair, or fiber-optic cable. The Cisco NCS 6000 Series Router supports 10-Gigabit Ethernet (10 Gbps), and 100-Gigabit Ethernet (100 Gbps) interfaces. This section provides the following information sections: - Link Layer Discovery Protocol (LLDP), page 30, page 23 - Gigabit Ethernet Protocol Standards Overview, page 25 - MAC Address, page 26 - MAC Accounting, page 26 - Ethernet MTU, page 27 - Flow Control on Ethernet Interfaces, page 27 - 802.1Q VLAN, page 27 - VRRP, page 28 - HSRP, page 28 - Duplex Mode on Fast Ethernet Interfaces, page 29 - Fast Ethernet Interface Speed, page 29 - Link Autonegotiation on Ethernet Interfaces, page 29 - Link Layer Discovery Protocol (LLDP), page 30 ### **Default Configuration Values for Gigabit Ethernet and 10-Gigabit Ethernet** Table 1 describes the default interface configuration parameters that are present when an interface is enabled on a 10-Gigabit Ethernet modular services card and its associated PLIM. You must use the **shutdown** command to bring an interface administratively down. The interface default is **no shutdown**. When a modular services card is first inserted into the router, if there is no established preconfiguration for it, the configuration manager adds a shutdown item to its configuration. This shutdown can be removed only be entering the **no shutdown** command. Table 1 Gigabit Ethernet and 10-Gigabit Ethernet Modular Services Card Default Configuration Values | Parameter | Configuration File Entry | Default Value | |----------------|--------------------------|---------------------------| | MAC accounting | mac-accounting | off | | Flow control | | egress off
ingress off | Table 1 Gigabit Ethernet and 10-Gigabit Ethernet Modular Services Card Default Configuration Values | Parameter | Configuration File Entry | Default Value | |-------------|--------------------------|--| | MTU | mtu | • 1514 bytes for normal frames | | | | • 1518 bytes for 802.1Q tagged frames. | | | | • 1522 bytes for Q-in-Q frames. | | MAC address | mac address | Hardware burned-in address (BIA) | ## **Default Configuration Values for Fast Ethernet** Table 2 describes the default interface configuration parameters that are present when an interface is enabled on the Fast Ethernet SPA card and its associated PLIM. You must specifically configure the **shutdown** command to bring an interface administratively down. The interface default is **no shutdown**. When a modular services card is first inserted into the router, if there is no established preconfiguration for it, the configuration manager adds a shutdown item to its configuration. This shutdown can be removed only be entering the **no shutdown** command. Table 2 Fast Ethernet Default Configuration Values | Parameter | Configuration File Entry | Default Value | |------------------|--------------------------|------------------------| | MAC accounting | mac-accounting | off | | Duplex operation | duplex full | Auto-negotiates duplex | | | duplex half operation | | | MTU | mtu | 1500 bytes | | Interface speed | speed | 100 Mbps | | Auto-negotiation | negotiation auto | disable | ## **Layer 2 VPN on Ethernet Interfaces** Layer 2 Virtual Private Network (L2VPN) connections emulate the behavior of a LAN across an L2 switched, IP or MPLS-enabled IP network, allowing Ethernet devices to communicate with each other as if they were connected to a common LAN segment. Traffic from the customer travels over this link to the edge of the SP core network. The traffic then tunnels through an L2VPN over the SP core network to another edge router. The edge router sends the traffic down another attachment circuit (AC) to the customer's remote site. The L2VPN feature enables users to implement different types of end-to-end services. Cisco IOS XR software supports a point-to-point end-to-end service, where two Ethernet circuits are connected together. An L2VPN Ethernet port can operate in one of two modes: - Port Mode—In this mode, all packets reaching the port are sent over the PW (pseudowire), regardless of any VLAN tags that are present on the packets. In VLAN mode, the configuration is performed under the 12transport configuration mode. - VLAN Mode—Each VLAN on a CE (customer edge) or access network to PE (provider edge) link can be configured as a separate L2VPN connection (using either VC type 4 or VC type 5). In VLAN mode, the configuration is performed under the individual subinterface. Switching can take place in three ways: - AC-to-PW—Traffic reaching the PE is tunneled over a PW (and conversely, traffic arriving over the PW is sent out over the AC). This is the most common scenario. - Local switching—Traffic arriving on one AC is immediately sent out of another AC without passing through a pseudowire. - PW stitching—Traffic arriving on a PW is not sent to an AC, but is sent back into the core over another PW. Keep the following in mind when configuring L2VPN on an Ethernet interface: - L2VPN links support QoS (Quality of Service) and MTU (maximum transmission unit) configuration. - If your network requires that packets are transported transparently, you may need to modify the packet's destination MAC (Media Access Control) address at the edge of the Service Provider (SP) network. This prevents the packet from being consumed by the devices in the network. Use the **show interfaces** command to display AC and PW information. To attach Layer 2 service policies, such as QoS, to the Ethernet interface, refer to the appropriate Cisco IOS XR software configuration guide. ### **Gigabit Ethernet Protocol Standards Overview** The Gigabit Ethernet interfaces support the following protocol standards: - IEEE 802.3 Physical Ethernet Infrastructure, page 25 - IEEE 802.3ab 1000BASE-T Gigabit Ethernet, page 26 - IEEE 802.3z 1000 Mbps Gigabit Ethernet, page 26 - IEEE 802.3ae 10 Gbps Ethernet, page 26 - IEEE 802.3ba 100 Gbps Ethernet, page 26 These standards are further described in the sections that follow. ### **IEEE 802.3 Physical Ethernet Infrastructure** The IEEE 802.3 protocol standards define the physical layer and MAC sublayer of the data link layer of wired Ethernet. IEEE 802.3 uses Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access at a variety of speeds over a variety of physical media. The IEEE 802.3 standard covers 10 Mbps Ethernet. Extensions to the IEEE 802.3 standard specify implementations for 10-Gigabit Ethernet, and Fast Ethernet. #### IEEE 802.3ab 1000BASE-T Gigabit Ethernet The IEEE 802.3ab protocol standards, or Gigabit Ethernet over copper (also known as 1000BaseT) is an extension of the existing Fast Ethernet standard. It specifies Gigabit Ethernet operation over the Category 5e/6 cabling systems already installed, making it a highly cost-effective solution. As a result, most copper-based environments that run Fast Ethernet can also run Gigabit Ethernet over the existing network infrastructure to dramatically boost network performance for demanding applications. #### **IEEE 802.3z 1000 Mbps Gigabit Ethernet** Gigabit Ethernet builds on top of the Ethernet protocol, but increases speed tenfold over Fast Ethernet to 1000 Mbps, or 1 Gbps. Gigabit Ethernet allows Ethernet to scale from 10 or 100 Mbps at the desktop to 100 Mbps up to 1000 Mbps in the data center. Gigabit Ethernet conforms to the IEEE 802.3z protocol standard. By leveraging the current Ethernet standard and the installed base of Ethernet and Fast Ethernet switches and routers, network managers do not need to retrain and relearn a new technology in order to provide support for Gigabit Ethernet. #### IEEE 802.3ae 10 Gbps Ethernet Under the International Standards Organization's Open Systems Interconnection (OSI) model, Ethernet is fundamentally a Layer 2 protocol. 10-Gigabit Ethernet uses the IEEE 802.3 Ethernet MAC protocol, the IEEE 802.3 Ethernet frame format, and the minimum and maximum IEEE 802.3 frame size. 10 Gbps Ethernet conforms to the IEEE 802.3ae protocol standards. Just as 1000BASE-X and 1000BASE-T (Gigabit Ethernet) remained true to the Ethernet model, 10-Gigabit Ethernet continues the natural evolution of Ethernet in speed and distance. Because it is a full-duplex only and fiber-only technology, it does not need the carrier-sensing multiple-access with the CSMA/CD protocol that defines slower, half-duplex Ethernet technologies. In every other respect, 10-Gigabit Ethernet remains true to the original Ethernet model. ### IEEE 802.3ba 100 Gbps Ethernet IEEE 802.3ba is supported on the Cisco 1-Port 100-Gigabit Ethernet PLIM. ### **MAC Address** A MAC address is a unique 6-byte address that identifies the interface at Layer 2. ## **MAC** Accounting The MAC address accounting feature provides accounting information for IP traffic based on the source and destination MAC addresses on LAN interfaces. This feature calculates the total packet and byte counts for a LAN interface that receives or sends IP packets to or from a unique MAC address. It also records a time stamp for the last packet received or sent. These statistics are used for traffic monitoring, debugging and billing. For example, with this feature you can determine the volume of traffic that is being sent to and/or received from various peers at NAPS/peering points. This feature is currently supported on Ethernet, FastEthernet, and bundle interfaces and supports Cisco Express Forwarding (CEF), distributed CEF (dCEF), flow, and optimum switching. A maximum of 512 MAC addresses per trunk interface are supported for MAC address accounting. #### **Ethernet MTU** The Ethernet maximum transmission unit (MTU) is the size of the largest frame, minus the 4-byte frame check sequence (FCS),
that can be transmitted on the Ethernet network. Every physical network along the destination of a packet can have a different MTU. Cisco IOS XR software supports two types of frame forwarding processes: • Fragmentation for IPV4 packets—In this process, IPv4 packets are fragmented as necessary to fit within the MTU of the next-hop physical network. Note IPv6 does not support fragmentation. • MTU discovery process determines largest packet size—This process is available for all IPV6 devices, and for originating IPv4 devices. In this process, the originating IP device determines the size of the largest IPv6 or IPV4 packet that can be sent without being fragmented. The largest packet is equal to the smallest MTU of any network between the IP source and the IP destination devices. If a packet is larger than the smallest MTU of all the networks in its path, that packet will be fragmented as necessary. This process ensures that the originating device does not send an IP packet that is too large. Jumbo frame support is automatically enable for frames that exceed the standard frame size. The default value is 1514 for standard frames and 1518 for 802.1Q tagged frames. These numbers exclude the 4-byte frame check sequence (FCS). ### **Flow Control on Ethernet Interfaces** The flow control used on 10-Gigabit Ethernet interfaces consists of periodically sending flow control pause frames. It is fundamentally different from the usual full- and half-duplex flow control used on standard management interfaces. Flow control can be activated or deactivated for ingress traffic only. It is automatically implemented for egress traffic. ### 802.10 VLAN A VLAN is a group of devices on one or more LANs that are configured so that they can communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments. Because VLANs are based on logical instead of physical connections, it is very flexible for user and host management, bandwidth allocation, and resource optimization. The IEEE's 802.1Q protocol standard addresses the problem of breaking large networks into smaller parts so broadcast and multicast traffic does not consume more bandwidth than necessary. The standard also helps provide a higher level of security between segments of internal networks. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames. #### **VRRP** The Virtual Router Redundancy Protocol (VRRP) eliminates the single point of failure inherent in the static default routed environment. VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VPN concentrators on a LAN. The VRRP VPN concentrator controlling the IP addresses associated with a virtual router is called the master, and forwards packets sent to those IP addresses. When the master becomes unavailable, a backup VPN concentrator takes the place of the master. For more information on VRRP, see the *Implementing VRRP* module of *IP Addresses and Services Configuration Guide*. #### **HSRP** Hot Standby Routing Protocol (HSRP) is a proprietary protocol from Cisco. HSRP is a routing protocol that provides backup to a router in the event of failure. Several routers are connected to the same segment of an Ethernet, FDDI, or token-ring network and work together to present the appearance of a single virtual router on the LAN. The routers share the same IP and MAC addresses and therefore, in the event of failure of one router, the hosts on the LAN are able to continue forwarding packets to a consistent IP and MAC address. The transfer of routing responsibilities from one device to another is transparent to the user. HSRP is designed to support non disruptive switchover of IP traffic in certain circumstances and to allow hosts to appear to use a single router and to maintain connectivity even if the actual first hop router they are using fails. In other words, HSRP protects against the failure of the first hop router when the source host cannot learn the IP address of the first hop router dynamically. Multiple routers participate in HSRP and in concert create the illusion of a single virtual router. HSRP ensures that one and only one of the routers is forwarding packets on behalf of the virtual router. End hosts forward their packets to the virtual router. The router forwarding packets is known as the *active router*. A standby router is selected to replace the active router should it fail. HSRP provides a mechanism for determining active and standby routers, using the IP addresses on the participating routers. If an active router fails a standby router can take over without a major interruption in the host's connectivity. HSRP runs on top of User Datagram Protocol (UDP), and uses port number 1985. Routers use their actual IP address as the source address for protocol packets, not the virtual IP address, so that the HSRP routers can identify each other. For more information on HSRP, see the *Implementing HSRP* module of *IP Addresses and Services Configuration Guide*. ## **Duplex Mode on Fast Ethernet Interfaces** Fast Ethernet ports support the duplex transmission type. Full-duplex mode enables the simultaneous data transmission between a sending station and a receiving station, while half-duplex mode enables data transmission in only one direction at a time. When configuring duplex mode on a Fast Ethernet interface, keep the following in mind: - If auto-negotiation is enabled on the interface, the default is duplex negotiated. - If auto-negotiation is disabled on the interface, the default is full-duplex. You can configure duplex mode on Fast Ethernet interfaces only. Gigabit Ethernet and 10-Gigabit Ethernet interfaces always run in full-duplex mode. ## **Fast Ethernet Interface Speed** You can configure the interface speed on Fast Ethernet interfaces. Keep the following in mind when configuring the speed for a Fast Ethernet interface: - If auto-negotiation is enabled on an interface, the default is speed negotiated. - If auto-negotiation is disabled on an interface, the default speed is the maximum speed allowed on the interface. Both ends of a link must have the same interface speed. A manually configured interface speed overrides any auto-negotiated speed, which can prevent a link from coming up if the configured interface speed at one end of a link is different from the interface speed on the other end. ## **Link Autonegotiation on Ethernet Interfaces** Link autonegotiation ensures that devices that share a link segment are automatically configured with the highest performance mode of interoperation. Use the **negotiation auto** command in interface configuration mode to enable link autonegotiation on an Ethernet interface. On line card Ethernet interfaces, link autonegotiation is disabled by default. The **negotiation auto** command is available on Gigabit Ethernet and Fast Ethernet interfaces only. Table 3 describes the performance of the system for different combinations of the duplex and speed modes. The specified **duplex** command configured with the specified **speed** command produces the resulting system action, provided that you have configured autonegotiation on the interface. Table 3 Relationship Between duplex and speed Commands | duplex Command | speed Command | Resulting System Action | |----------------|---------------|---| | no duplex | no speed | Auto-negotiates both speed and duplex modes. | | no duplex | speed 1000 | Auto-negotiates for duplex mode and forces 1000 Mbps. | | duplex Command | speed Command | Resulting System Action | |----------------|---------------|--| | no duplex | speed 100 | Auto-negotiates for duplex mode and forces 100 Mbps. | | no duplex | speed 10 | Auto-negotiates for duplex mode and forces 10 Mbps. | | full-duplex | no speed | Forces full duplex and auto-negotiates for speed. | | full-duplex | speed 1000 | Forces full duplex and 1000 Mbps. | | full-duplex | speed 100 | Forces full duplex and 100 Mbps. | | full-duplex | speed 10 | Forces full duplex and 10 Mbps. | | half-duplex | no speed | Forces half duplex and auto-negotiates for speed. | | half-duplex | speed 1000 | Forces half duplex and 1000 Mbps. | | half-duplex | speed 100 | Forces half duplex and 100 Mbps. | | half-duplex | speed 10 | Forces half duplex and 10 Mbps. | Table 3 Relationship Between duplex and speed Commands (continued) ## **Link Layer Discovery Protocol (LLDP)** The Cisco Discovery Protocol (CDP) is a device discovery protocol that runs over Layer 2 (the Data Link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches). CDP allows network management applications to automatically discover, and acquire knowledge about, other Cisco devices connected to the network. To support non-Cisco devices, and to allow for interoperability between other devices, the Cisco NCS 6000 Series Router also supports the IEEE 802.1AB Link Layer Discovery Protocol (LLDP). LLDP is a neighbor discovery protocol that is used by network devices to advertise information about themselves, to other devices on the network. This protocol runs over the Data Link Layer, which permits two systems, running different network layer protocols, to learn about each other. LLDP supports a set of attributes that it uses to learn information about neighbor devices. These attributes have a defined format that is known as a Type-Length-Value (TLV). LLDP supported devices can use TLVs to receive and send information to their neighbors. Details such as configuration information, device capabilities, and device identities can be advertised using this protocol. In addition to mandatory TLVs (Chassis ID, Port ID, and Time-to-Live), the router also supports these basic management TLVs that are optional: - Port Description - System Name - System
Description - System Capabilities - Management Address These optional TLVs are automatically sent to the neighboring devices when LLDP is active, but you can choose to disable them, using the **lldp tlv-select disable** command. #### **LLDP Frame Format** LLDP frames use the IEEE 802.3 format, which consists of these fields: - Destination address (6 bytes)—Uses a multicast address of 01-80-C2-00-00-0E. - Source address (6 bytes)—MAC address of the sending device or port. - LLDP Ethertype (2 bytes)—Uses 88-CC. - LLDP PDU (1500 bytes)—LLDP payload consisting of TLVs. - FCS (4 bytes)—Cyclic Redundancy Check (CRC) for error checking. #### **LLDP TLV Format** LLDP TLVs carry the information about neighboring devices within the LLDP PDU using these basic formats: - TLV Header (16 bits), which includes these fields: - TLV Type (7 bits) - TLV Information String Length (9 bits) - TLV Information String (0 to 511 bytes) #### **LLDP Operation** LLDP is a one-way protocol. The basic operation of LLDP consists of a sending device, which is enabled for transmitting LLDP information, and which sends periodic advertisements of information in LLDP frames to a receiving device. Devices are identified using a combination of Chassis ID and Port ID TLVs to create an MSAP (MAC Service Access Point). The receiving device saves the information about a neighbor for a certain amount of time specified in the TTL TLV, before aging and removing the information. LLDP supports these additional operational characteristics: - LLDP operates independently in transmit or receive modes. - LLDP operates as a slow protocol using only untagged frames, with transmission speeds of less than 5 frames per second. - LLDP packets are sent when these events occur: - The packet update frequency, specified by the **lldp timer** command, is reached. The default is 30. - A change in the values of the managed objects occurs from the local system's LLDP MIB. - LLDP is activated on an interface (3 frames are sent upon activation similar to CDP). - When an LLDP frame is received, the LLDP remote services and PTOPO MIBs are updated with the information in the TLVs. LLDP supports these actions on these TLV characteristics: - Interprets a TTL value of 0 as a request to automatically purge the information about the transmitting device. These shutdown LLDPDUs are typically sent prior to a port becoming inoperable. - An LLDP frame with a malformed mandatory TLV is dropped. - A TLV with an invalid value is ignored. - If the TTL is non-zero, copy of an unknown organizationally-specific TLV is maintained, for later access through network management. #### **Supported LLDP Functions** The Cisco ASR 9000 Series RouterCisco CRS Router supports these LLDP functions: - IPv4 and IPv6 management addresses—In general, both IPv4 and IPv6 addresses are advertised if they are available, and preference is given to the address that is configured on the transmitting interface. - If the transmitting interface does not have a configured address, then the TLV is populated with an address from another interface. The advertised LLDP IP address is implemented according to this priority order of IP addresses for interfaces on the Cisco NCS 6000 Series RouterLocally configured address - MgmtEth0/RP0/CPU0/0 - MgmtEth0/RP0/CPU0/1 - MgmtEth0/RP1/CPU0/0 - MgmtEth0/RP1/CPU0/1 - Loopback address There are certain differences between IPv4 and IPv6 address management in LLDP: - For IPv4, as long as the IPv4 address is configured on an interface, it can be used as an LLDP management address. - For IPv6, after the IPv6 address is configured on an interface, the interface status must be Up and pass the Duplicate Address Detection(DAD) process before it is can be used as an LLDP management address. - LLDP is supported for the nearest physically attached, non-tunneled neighbors. - Port ID TLVs are supported for Ethernet interfaces, subinterfaces, bundle interfaces, and bundle subinterfaces. ### **Unsupported LLDP Functions** - These LLDP functions are not supported: LLDP-MED organizationally unique extension—Interoperability, however, still exists between other devices that do support this extension. - Tunneled neighbors, or neighbors more than one hop away. - LLDP TLVs cannot be disabled on a per-interface basis; Certain optional TLVs, however, can be disabled globally. ### **Carrier Delay on Ethernet Interfaces** When enabled on an Ethernet interface, the Carrier Delay feature slows the response of the system to line-up or line-down events. You can configure both Carrier Delay up and Carrier Delay down on an interface at the same time. Carrier Delay up suppresses short line flaps where the line is down, then comes up, then goes down again. A line that was previously down must be up longer than the duration specified for the **carrier-delay up** command before the system is informed that the interface has come up. All flaps that are shorter than the duration specified for the **carrier-delay up** command are suppressed. Configuring Carrier Delay up helps to ensure that a line is reasonably stable before the system is informed that the interface is up and ready to forward traffic. Carrier Delay down suppresses short line flaps where the line is up, then goes down, then comes up again. A line that was previously up must be down longer than the duration specified for the **carrier-delay down** command before the system is informed that the interface has gone down. All flaps that are shorter than the value specified for the **carrier-delay down** command are suppressed. Configuring Carrier Delay down can be beneficial in suppressing very short link flaps, thereby preventing interface flaps. Alternatively, configuring this feature can be beneficial in allowing other line protection equipment to have enough time to intervene. # **How to Configure Ethernet** This section provides the following configuration procedures: - Configuring Ethernet Interfaces, page 33 - Configuring LLDP, page 40 ## **Configuring Ethernet Interfaces** This section provides the following configuration procedures: - Configuring Gigabit Ethernet Interfaces, page 33 - Configuring a L2VPN Ethernet Port, page 38 - Configuring MAC Accounting on an Ethernet Interface, page 36 ### **Configuring Gigabit Ethernet Interfaces** Use the following procedure to create a basic Gigabit Ethernet, 10-Gigabit Ethernet, or 100-Gigabit Ethernet interface configuration. #### **SUMMARY STEPS** - 1. show version - 2. show interfaces [TenGigE | HundredGigE] interface-path-id - 3. configure - 4. interface [TenGigE | HundredGigE] interface-path-id - 5. ipv4 address ip-address mask - 6. flow-control {bidirectional | egress | ingress} - 7. mtu bytes - 8. mac-address value1.value2.value3 - **9. negotiation auto** (on Gigabit Ethernet and Fast Ethernet interfaces only) - 10. no shutdown - **11. end** or commit 12. show interfaces [TenGigE] interface-path-id #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--|--| | Step 1 | <pre>show version Example: RP/0/RP0/CPU0:router# show version</pre> | (Optional) Displays the current software version, and can also be used to confirm that the router recognizes the modular services card. | | Step 2 | show interfaces [TenGigE] interface-path-id | (Optional) Displays the configured interface and checks the status of each interface port. | | | Example: RP/0/RP0/CPU0:router# show TenGigE 0/1/0/0 | Possible interface types for this procedure are: • HundredGigE • TenGigE | | Step 3 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure terminal | | | Step 4 | <pre>interface [GigabitEthernet TenGigE] interface-path-id</pre> | Enters interface configuration mode and specifies the Ethernet interface name and notation <i>rack/slot/module/port</i> . Possible interface types for this procedure are: | | | <pre>Example: RP/0/RP0/CPU0:router(config) # interface TenGigE 0/1/0/0</pre> | HundredGigETenGigE | | | | Note The example indicates an 8-port 10-Gigabit Ethernet interface in modular services card slot 1. | | Step 5 | ipv4 address ip-address mask | Assigns an IP address and subnet mask to the interface. | | | Example: RP/0/RP0/CPU0:router(config-if)# ipv4 address 172.18.189.38 255.255.255.224 | Replace <i>ip-address</i> with the primary IPv4 address for the interface. Replace <i>mask</i> with the mask for the associated IP subnet. The network mask can be specified in either of two ways: The network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means that the corresponding address bit belongs to the network address. | | | | The network mask can be indicated as a slash (/) and number. For example, /8 indicates that the first 8 bits of the mask are ones, and the corresponding bits of the address are network address. | | | Command or Action | Purpose | |---------|--|--| | Step 6 | flow-control {bidirectional egress ingress} | (Optional) Enables the sending and processing of flow control pause frames. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# flow control</pre> | •
egress —Enables the sending of flow control pause frames in egress. | | | ingress | • ingress —Enables the processing of received pause frames on ingress. | | | | • bidirectional —Enables the sending of flow control pause frames in egress and the processing of received pause frames on ingress. | | Step 7 | mtu bytes | (Optional) Sets the MTU value for the interface. | | | Example: | • The default is 1514 bytes for normal frames and 1518 bytes for 802.1Q tagged frames. | | | RP/0/RP0/CPU0:router(config-if)# mtu 1448 | • The range for Gigabit Ethernet and 10-Gigabit Ethernet mtu values is 64 bytes to 65535 bytes. | | Step 8 | mac-address value1.value2.value3 | (Optional) Sets the MAC layer address of the Management Ethernet interface. | | | Example: RP/0/RP0/CPU0:router(config-if) # mac address 0001.2468.ABCD | • The values are the high, middle, and low 2 bytes, respectively, of the MAC address in hexadecimal. The range of each 2-byte value is 0 to ffff. | | Step 9 | negotiation auto | (Optional) Enables autonegotiation on a Gigabit Ethernet interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # negotiation auto</pre> | Autonegotiation must be explicitly enabled on both
ends of the connection, or speed and duplex settings
must be configured manually on both ends of the
connection. | | | | • If autonegotiation is enabled, any speed or duplex settings that you configure manually take precedence. | | | | Note The negotiation auto command is available on Gigabit Ethernet interfaces only. | | Step 10 | no shutdown | Removes the shutdown configuration, which forces an interface administratively down. | | | Example: RP/0/RP0/CPU0:router(config-if) # no shutdown | | | | Command or Action | Purpose | |---------|---|---| | Step 11 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end or RP/0/RP0/CPU0:router(config-if)# commit</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 12 | show interfaces [TenGigE] interface-path-id | (Optional) Displays statistics for interfaces on the router. | | | Example: RP/0/RP0/CPU0:router# show interfaces TenGigE 0/3/0/0 | | #### What to Do Next - To configure MAC Accounting on the Ethernet interface, see the "Configuring MAC Accounting on an Ethernet Interface" section later in this module. - To configure an AC on the Ethernet port for Layer 2 VPN implementation, see the "Configuring a L2VPN Ethernet Port" section later in this module. - To attach Layer 3 service policies, such as Multiprotocol Label Switching (MPLS) or Quality of Service (QoS), to the Ethernet interface, refer to the appropriate Cisco IOS XR software configuration guide. #### What to Do Next • To attach Layer 3 service policies, such as Multiprotocol Label Switching (MPLS) or Quality of Service (QoS), to the Ethernet interface, refer to the appropriate configuration guide. ### **Configuring MAC Accounting on an Ethernet Interface** This task explains how to configure MAC accounting on an Ethernet interface. MAC accounting has special **show** commands, which are illustrated in this procedure. Otherwise, the configuration is the same as configuring a basic Ethernet interface, and the steps can be combined in one configuration session. See "Configuring Gigabit Ethernet Interfaces" in this module for information about configuring the other common parameters for Ethernet interfaces. #### **SUMMARY STEPS** - 1. configure - 2. interface [TenGigE | fastethernet] interface-path-id - 3. ipv4 address ip-address mask - 4. mac-accounting {egress | ingress} - 5. end or commit - 6. show mac-accounting type location instance #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | <pre>interface [TenGigE fastethernet] interface-path-id Example: RP/0/RP0/CPU0:router(config) # interface TenGigE 0/1/0/0</pre> | Physical interface or virtual interface. Note Use the show interfaces command to see a list of all interfaces currently configured on the router. For more information about the syntax for the router, use the question mark (?) online help function. | | Step 3 | ipv4 address ip-address mask | Assigns an IP address and subnet mask to the interface. | | | Example: RP/0/RP0/CPU0:router(config-if)# ipv4 address 172.18.189.38 255.255.255.224 | Replace <i>ip-address</i> with the primary IPv4 address for the interface. Replace <i>mask</i> with the mask for the associated IP subnet. The network mask can be specified in either of two ways: | | | | The network mask can be a four-part dotted
decimal address. For example, 255.0.0.0 indicates
that each bit equal to 1 means that the
corresponding address bit belongs to the network
address. | | | | The network mask can be indicated as a slash (/) and number. For example, /8 indicates that the first 8 bits of the mask are ones, and the corresponding bits of the address are network address. | | Step 4 | mac-accounting {egress ingress} | Generates accounting information for IP traffic based on the source and destination MAC addresses on LAN interfaces. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # mac-accounting egress</pre> | • To disable MAC accounting, use the no form of this command. | | | Command or Action | Purpose | | |--------|---|--|--| | Step 5 | end
Or
commit | Saves configuration changes. | | | | | • When you issue the end command, the system prompts you to commit changes: | | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end Or RP/0/RP0/CPU0:router(config-if)# commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | | Step 6 | show mac-accounting type location instance | Displays MAC accounting statistics for an interface. | | | | Example: RP/0/RP0/CPU0:router# show mac-accounting TenGigE location 0/2/0/4 | | | ### **Configuring a L2VPN Ethernet Port** Use the following procedure to configure an L2VPN Ethernet port. The steps in this procedure configure the L2VPN Ethernet port to operate in port mode. #### **SUMMARY STEPS** - 1. configure - 2. interface [TenGigE] interface-path-id - 3. l2transport - 4. 12protocol {cdp | pvst | stp | vtp} {[forward | tunnel] [experimental bits] | drop} - 5. end or - commit - 6. show interfaces [TenGigE] interface-path-id #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# | | | Step 2 | <pre>interface [TenGigE] interface-path-id Example: RP/0/RP0/CPU0:router(config) # interface</pre> | Enters interface configuration mode and specifies the Ethernet interface name and notation <i>rack/slot/module/port</i> . Possible interface types for this procedure are: • TenGigE | | Step 3 | TenGigE 0/1/0/0 12transport | Enables Layer 2 transport mode on a port and enter Layer 2 transport configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# 12transport</pre> | | |
Step 4 | <pre>12protocol {cdp pvst stp vtp}{[forward tunnel] [experimental bits] drop}</pre> | Configures Layer 2 protocol tunneling and protocol data unit (PDU) filtering on an interface. | | | | Possible protocols and options are: | | | <pre>Example: RP/0/RP0/CPU0:router(config-if-l2)# l2protocol stp tunnel</pre> | • cdp —Cisco Discovery Protocol (CDP) tunneling and data unit parameters. | | | | • pvst —Configures VLAN spanning tree protocol tunneling and data unit parameters. | | | | • stp —spanning tree protocol tunneling and data unit parameters. | | | | • vtp—VLAN trunk protocol tunneling and data unit parameters. | | | | • tunnel —(Optional) Tunnels the packets associated with the specified protocol. | | | | • experimental <i>bits</i> —(Optional) Modifies the MPLS experimental bits for the specified protocol. | | | | • drop —(Optional) Drop packets associated with the specified protocol. | | | Command or Action | Purpose | | |--------|---|---|--| | Step 5 | end
Or
commit | Saves configuration changes. | | | | | • When you issue the end command, the system prompts you to commit changes: | | | | <pre>Example: RP/0/RP0/CPU0:router(config-if-l2)# end or RP/0/RP0/CPU0:router(config-if-l2)# commit</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | | Step 6 | show interfaces [TenGigE] interface-path-id | (Optional) Displays statistics for interfaces on the router. | | | | <pre>Example: RP/0/RP0/CPU0:router# show interfaces TenGigE 0/3/0/0</pre> | | | #### What to Do Next To attach Layer 2 service policies, such as quality of service (QoS), to the Ethernet interface, refer to the appropriate Cisco IOS XR software configuration guide. ## **Configuring LLDP** This section includes these configuration topics for LLDP: - LLDP Default Configuration, page 41 - Enabling LLDP Globally, page 41 (required) - Configuring Global LLDP Operational Characteristics, page 42 (optional) - Disabling Transmission of Optional LLDP TLVs, page 44 (optional) - Disabling LLDP Receive and Transmit Operations for an Interface, page 46 (optional) - Verifying the LLDP Configuration, page 48 #### **LLDP Default Configuration** Table 4 shows values of the LLDP default configuration . To change the default settings, use the LLDP global configuration and LLDP interface configuration commands. Table 4 LLDP Default Configuration | LLDP Function | Default | |--|---| | LLDP global state | Disabled | | LLDP holdtime (before discarding), in seconds | 120 | | LLDP timer (packet update frequency), in seconds | 30 | | LLDP reinitialization delay, in seconds | 2 | | LLDP TLV selection | All TLVs are enabled for sending and receiving. | | LLDP interface state | Enabled for both transmit and receive operations when LLDP is globally enabled. | #### **Enabling LLDP Globally** To run LLDP on the router, you must enable it globally. When you enable LLDP globally, all interfaces that support LLDP are automatically enabled for both transmit and receive operations. You can override this default operation at the interface to disable receive or transmit operations. For more information about how to selectively disable LLDP receive or transmit operations for an interface, see the "Disabling LLDP Receive and Transmit Operations for an Interface" section on page 46. To enable LLDP globally, complete these steps: #### **SUMMARY STEPS** - 1. configure - 2. lldp - **3. end** or commit | | Command | Purpose | |--------|---|--| | Step 1 | configure | Enters global configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | 11dp | Enables LLDP globally for both transmit and receive operations on the system. | | | Example: RP/0/RP0/CPU0:router(config)# 11dp | | | Step 3 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config) # end or RP/0/RP0/CPU0:router(config) # commit</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: - Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode. | | | COMMIT | Entering no exits the configuration session and returns
the router to EXEC mode without committing the
configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or committing the
configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file, and remain within the configuration session. | ### **Configuring Global LLDP Operational Characteristics** The "LLDP Default Configuration" section on page 41 describes the default operational characteristics for LLDP. When you enable LLDP globally on the router using the **lldp** command, these defaults are used for the protocol. To modify the global LLDP operational characteristics such as the LLDP neighbor information holdtime, initialization delay, or packet rate, complete these steps: #### **SUMMARY STEPS** - 1. configure - 2. lldp holdtime seconds - 3. Ildp reinit seconds - 4. **Ildp timer** seconds 5. end or commit | | Command | Purpose | |--------|---|---| | Step 1 | configure | Enters global configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | <pre>Ildp holdtime seconds Example: RP/0/RP0/CPU0:router(config)# lldp holdtime 60</pre> | (Optional) Specifies the length of time that information from an LLDP packet should be held by the receiving device before aging and removing it. | | Step 3 | <pre>Ildp reinit seconds Example: RP/0/RP0/CPU0:router(config)#</pre> | (Optional) Specifies the length of time, the initialization of LLDP on an interface should be delayed. | | Step 4 | 11dp reinit 4 11dp timer seconds | (Optional) Specifies the LLDP packet rate. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# 11dp reinit 60</pre> | | | Step 5 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | Example: RP/O/RPO/CPU0:router(config)# | <pre>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</pre> | | | <pre>end or RP/0/RP0/CPU0:router(config)# commit</pre> | Entering yes saves configuration changes to the running
configuration file, exits the configuration session, and
returns the router to EXEC mode. | | | | Entering no exits the configuration session and return
the router to EXEC mode without committing the
configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or committing the
configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file, and remain within the configuration session. | ## **Disabling Transmission of Optional LLDP TLVs** Certain TLVs are classified as mandatory in LLDP packets, such as the Chassis ID, Port ID, and Time to Live (TTL) TLVs. These TLVs must be present in every LLDP packet. You can suppress transmission of certain other optional TLVs in LLDP packets. To disable transmission of optional LLDP TLVs, complete these steps: #### **SUMMARY STEPS** - 1. configure - 2. lldp tlv-select tlv-name disable - 3. end or commit | | Command | Purpose | |--------|--|---| | Step 1 | configure | Enters global configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | lldp tlv-select tlv-name disable | (Optional) Specifies that transmission of the selected TLV in LLDP packets is disabled. The <i>tlv-name</i> can be one of these LLDP TLV types: | | | Example: | • management-address | | | <pre>RP/0/RP0/CPU0:router(config)# 1ldp tlv-select</pre> | •
port-description | | | system-capabilities disable | • system-capabilities | | | | • system-description | | | | • system-name | | Step 3 | end | Saves configuration changes. | | | Of
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config)#</pre> | <pre>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</pre> | | | <pre>end or RP/0/RP0/CPU0:router(config)# commit</pre> | Entering yes saves configuration changes to the running
configuration file, exits the configuration session, and
returns the router to EXEC mode. | | Ü | COMMITE | Entering no exits the configuration session and returns
the router to EXEC mode without committing the
configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or committing the
configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file, and remain within the configuration session. | ## **Disabling LLDP Receive and Transmit Operations for an Interface** When you enable LLDP globally on the router, all supported interfaces are automatically enabled for LLDP receive and transmit operations. You can override this default by disabling these operations for a particular interface. To disable LLDP receive and transmit operations for an interface, complete these steps: #### **SUMMARY STEPS** 1. configure - $\textbf{2.} \quad \textbf{interface} \ [\textbf{GigabitEthernet} \ | \ \textbf{TenGigE}] \ \textit{interface-path-id}$ - 3. lldp - 4. receive disable - 5. transmit disable - 6. end or commit | Step 1 | configure | Enters global configuration mode. | |--------|--|--| | | | | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface GigabitEthernet | Enters interface configuration made and anacifies the Ethernat | | otep 2 | 0/2/0/0 | Enters interface configuration mode and specifies the Ethernet interface name and notation <i>rack/slot/module/port</i> . Possible interface types for this procedure are: | | | Example: | GigabitEthernet | | | <pre>RP/0/RP0/CPU0:router(config)# interface GigabitEthernet 0/2/0/0</pre> | • TenGigE | | Step 3 | 11dp | (Optional) Enters LLDP configuration mode for the specified interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-i f)# 1ldp</pre> | | | Step 4 | receive disable | (Optional) Disables LLDP receive operations on the interface. | | | Example: | | | | RP/0/RP0/CPU0:router(config-1 ldp)# receive disable | | | Step 5 | transmit disable | (Optional) Disables LLDP transmit operations on the interface. | |--------|---|---| | Step 6 | Example: RP/0/RP0/CPU0:router(config-1 ldp)# transmit disable end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config) # end Or RP/0/RP0/CPU0:router(config) # commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode. Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes. Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes. Use the commit command to save the configuration changes | | | | • Use the commit command to save the configuration changes to the running configuration file, and remain within the configuration session. | ## **Verifying the LLDP Configuration** This section describes how to verify the LLDP configuration both globally, and for a particular interface. #### **Verifying the LLDP Global Configuration** To verify the LLDP global configuration status and operational characteristics, use the **show lldp** command as shown in this example: ``` RP/0/RSP0/CPU0:router# show lldp Wed Apr 13 06:16:45.510 DST Global LLDP information: Status: ACTIVE LLDP advertisements are sent every 30 seconds LLDP hold time advertised is 120 seconds LLDP interface reinitialisation delay is 2 seconds ``` If LLDP is not enabled globally, this output appears when you run the show lldp command: ``` RP/0/RSP0/CPU0:router# show lldp Wed Apr 13 06:42:48.221 DST % LLDP is not enabled ``` #### **Verifying the LLDP Interface Configuration** To verify the LLDP interface status and configuration, use the **show lldp interface** command as shown in this example: ``` RP/0/RSP0/CPU0:router# show 11dp interface GigabitEthernet 0/1/0/7 Wed Apr 13 13:22:30.501 DST GigabitEthernet0/1/0/7: Tx: enabled Rx: enabled Tx state: IDLE Rx state: WAIT FOR FRAME ``` #### What To Do Next To monitor and maintain LLDP on the system or get information about LLDP neighbors, use one of these commands: | Command | Description | | |---------------------|---|--| | clear lldp | Resets LLDP traffic counters or LLDP neighbor information | | | show lldp entry | Displays detailed information about LLDP neighbors | | | show lldp errors | Displays LLDP error and overflow statistics | | | show lldp neighbors | Displays information about LLDP neighbors | | | show lldp traffic | Displays statistics for LLDP traffic | | ## **Configuration Examples for Ethernet** This section provides the following configuration examples: - Configuring an Ethernet Interface: Example, page 49 - Configuring MAC-Accounting: Example, page 50 - Configuring a Layer 2 VPN AC: Example, page 50 - Configuring LLDP: Examples, page 50 ## **Configuring an Ethernet Interface: Example** This example shows how to configure an interface for a 10-Gigabit Ethernet modular services card: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface TenGigE 0/0/0/1 RP/0/RP0/CPU0:router(config-if)# ipv4 address 172.18.189.38 255.255.254 RP/0/RP0/CPU0:router(config-if)# flow-control ingress RP/0/RP0/CPU0:router(config-if)# mtu 1448 RP/0/RP0/CPU0:router(config-if)# mac-address 0001.2468.ABCD RP/0/RP0/CPU0:router(config-if)# no shutdown RP/0/RP0/CPU0:router(config-if)# end Uncommitted changes found, commit them? [yes]: yes RP/0/RP0/CPU0:router# show interfaces TenGigE 0/0/0/1 ``` ``` TenGigE0/0/0/1 is down, line protocol is down Hardware is TenGigE, address is 0001.2468.abcd (bia 0001.81a1.6b23) Internet address is 172.18.189.38/27 MTU 1448 bytes, BW 10000000 Kbit reliability 0/255, txload Unknown, rxload Unknown Encapsulation ARPA, Full-duplex, 10000Mb/s, LR output flow control is on, input flow control is on loopback not set ARP type ARPA, ARP timeout 01:00:00 Last clearing of "show interface" counters never 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes, 0 total input drops O drops for unrecognized upper-level protocol Received 0 broadcast packets, 0 multicast packets 0 runts, 0 giants, 0 throttles, 0 parity 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort O packets output, O bytes, O total output drops Output 0 broadcast packets, 0 multicast packets 0 output errors, 0 underruns, 0 applique, 0 resets 0 output buffer failures, 0 output buffers swapped out 0 carrier transitions ``` ## **Configuring MAC-Accounting: Example** This example indicates how to configure MAC-accounting on an Ethernet interface: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface TenGigE 0/0/0/2 RP/0/RP0/CPU0:router(config-if)# ipv4 address 172.18.189.38 255.255.254 RP/0/RP0/CPU0:router(config-if)# mac-accounting egress RP/0/RP0/CPU0:router(config-if)# commit RP/0/RP0/CPU0:router(config-if)# exit RP/0/RP0/CPU0:router(config)# exit ``` ## **Configuring a Layer 2 VPN AC: Example** This example indicates how to configure a Layer 2 VPN AC on an Ethernet interface: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface TenGigE 0/0/0/2 RP/0/RP0/CPU0:router(config-if)# 12transport RP/0/RP0/CPU0:router(config-if-12)# 12protocol tunnel RP/0/RP0/CPU0:router(config-if-12)# commit ``` ### **Configuring LLDP: Examples** This example shows how to enable LLDP globally on the router, and modify the default LLDP operational characteristics: ``` RP/0/RSP0RP0/CPU0:router# configure RP/0/RSP0RP0/CPU0:router(config)# 11dp RP/0/RSP0RP0/CPU0:router(config)# 11dp holdtime 60 RP/0/RSP0RP0/CPU0:router(config)# 11dp reinit 4 ``` ``` RP/0/RSP0RP0/CPU0:router(config)# 11dp timer 60 RP/0/RSP0RP0/CPU0:router(config)# commit ``` This example shows how to disable a specific Gigabit Ethernet interface for LLDP transmission: ``` RP/0/RSP0RP0/CPU0:router# configure RP/0/RSP0RP0/CPU0:router(config)# interface GigabitEthernet 0/2/0/0 RP/0/RSP0RP0/CPU0:router(config-if)# lldp
RP/0/RSP0RP0/CPU0:router(config-lldp)# transmit disable ``` ## Where to Go Next When you have configured an Ethernet interface, you can configure individual VLAN subinterfaces on that Ethernet interface. For information about modifying Ethernet management interfaces for the shelf controller (SC), route processor (RP), and distributed RP, see the module in this document. For information about IPv6 see the *Implementing Access Lists and Prefix Lists* module in the *IP Addresses and Services Configuration Guide*. ## **Additional References** The following sections provide references related to implementing Gigabit, 10-Gigabit, and Fast Ethernet interfaces. ## **Related Documents** | Related Topic | Document Title | |---------------------------------------|-----------------------------------| | Cisco IOS XR master command reference | Cisco IOS XR Master Commands List | ## **Standards** | Standards | Title | |--------------|--| | IEEE 802.1ag | Ethernet OAM Connectivity Fault Management | | ITU-T Y.1731 | | ### **MIBs** | MIBs | MIBs Link | |--------------|---| | IEEE CFM MIB | To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: | | | http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | ## **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | ## **Technical Assistance** | Description | Link | |---|----------------------------------| | The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content. | http://www.cisco.com/techsupport | # **Configuring Ethernet OAM** This module describes the configuration of Ethernet Operations, Administration, and Maintenance (OAM) on the Cisco NCS 6000 Series Router. #### **Feature History for Configuring Ethernet OAM** | Release | Modification | |---------------|------------------------------| | Release 5.0.0 | This feature was introduced. | ## **Contents** - Prerequisites for Configuring Ethernet OAM, page 54 - Information About Configuring Ethernet OAM, page 55 - How to Configure Ethernet OAM, page 56 - Configuration Examples for Ethernet OAM, page 65 - Where to Go Next, page 67 - Additional References, page 67 # **Prerequisites for Configuring Ethernet OAM** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. Before configuring Ethernet OAM, confirm that at least one of the Gigabit Ethernet line cards supported on the router is installed. # Information About Configuring Ethernet OAM To configure Ethernet OAM, you should understand these concepts: • Ethernet Link OAM, page 55 #### **Ethernet Link OAM** Ethernet as a Metro Area Network (MAN) or a Wide Area Network (WAN) technology benefits greatly from the implementation of Operations, Administration and Maintenance (OAM) features. Ethernet link OAM features allow Service Providers to monitor the quality of the connections on a MAN or WAN. Service providers can monitor specific events, take actions on events, and if necessary, put specific interfaces into loopback mode for troubleshooting. Ethernet link OAM operates on a single, physical link and it can be configured to monitor either side or both sides of that link. Ethernet link OAM can be configured in the following ways: - A Link OAM profile can be configured, and this profile can be used to set the parameters for multiple interfaces. - Link OAM can be configured directly on an interface. When an interface is also using a link OAM profile, specific parameters that are set in the profile can be overridden by configuring a different value directly on the interface. An EOAM profile simplifies the process of configuring EOAM features on multiple interfaces. An Ethernet OAM profile, and all of its features, can be referenced by other interfaces, allowing other interfaces to inherit the features of that Ethernet OAM profile. Individual Ethernet link OAM features can be configured on individual interfaces without being part of a profile. In these cases, the individually configured features always override the features in the profile. The preferred method of configuring custom EOAM settings is to create an EOAM profile in Ethernet configuration mode and then attach it to an individual interface or to multiple interfaces. The following standard Ethernet Link OAM features are supported on the router: - Neighbor Discovery, page 55 - Link Monitoring, page 56 - MIB Retrieval, page 56 - Miswiring Detection (Cisco-Proprietary), page 56 - SNMP Traps, page 56 ### **Neighbor Discovery** Neighbor discovery enables each end of a link to learn the OAM capabilities of the other end and establish an OAM peer relationship. Each end also can require that the peer have certain capabilities before it will establish a session. You can configure certain actions to be taken if there is a capabilities conflict or if a discovery process times out, using the **action capabilities-conflict** or **action discovery-timeout** commands. #### **Link Monitoring** Link monitoring enables an OAM peer to monitor faults that cause the quality of a link to deteriorate over time. When link monitoring is enabled, an OAM peer can be configured to take action when the configured thresholds are exceeded. #### **MIB Retrieval** MIB retrieval enables an OAM peer on one side of an interface to get the MIB variables from the remote side of the link. The MIB variables that are retrieved from the remote OAM peer are READ ONLY. #### **Miswiring Detection (Cisco-Proprietary)** Miswiring Detection is a Cisco-proprietary feature that uses the 32-bit vendor field in every Information OAMPDU to identify potential miswiring cases. #### **SNMP Traps** SNMP traps can be enabled or disabled on an Ethernet OAM interface. # **How to Configure Ethernet OAM** This section provides the following configuration procedures: • Configuring Ethernet Link OAM, page 56 ## **Configuring Ethernet Link OAM** Custom EOAM settings can be configured and shared on multiple interfaces by creating an EOAM profile in Ethernet configuration mode and then attaching the profile to individual interfaces. The profile configuration does not take effect until the profile is attached to an interface. After an EOAM profile is attached to an interface, individual EOAM features can be configured separately on the interface to override the profile settings when desired. This section describes how to configure an EOAM profile and attach it to an interface in the following procedures: - Configuring an Ethernet OAM Profile, page 56 - Attaching an Ethernet OAM Profile to an Interface, page 62 - Configuring Ethernet OAM at an Interface and Overriding the Profile Configuration, page 63 - Verifying the Ethernet OAM Configuration, page 64 ### **Configuring an Ethernet OAM Profile** Perform the following steps to configure an Ethernet OAM profile. #### **SUMMARY STEPS** - 1. configure - **2. ethernet oam profile** *profile-name* - 3. link-monitor - 4. symbol-period window window - 5. symbol-period threshold low threshold - 6. frame window window - 7. frame threshold low threshold - 8. frame-period window window - 9. frame-period threshold low threshold - 10. frame-seconds window window - 11. frame-seconds threshold low threshold - 12. exit - 13. mib-retrieval - 14. connection timeout seconds - 15. mode {active | passive} - 16. require-remote mode {active | passive} - 17. require-remote link-monitoring - 18. require-remote mib-retrieval - 19. action capabilities-conflict {disable | efd | error-disable-interface} - 20. action critical-event {disable | error-disable-interface} - 21. action discovery-timeout {disable | efd | error-disable-interface } - 22. action dying-gasp {disable | error-disable-interface} - 23. action high-threshold {error-disable-interface | log} - 24. action remote-loopback disable - 25. action session-down {disable | efd | error-disable-interface} - 26. action session-up disable - 27. action uni-directional link-fault {disable | efd | error-disable-interface} - 28. action wiring-conflict {disable | efd | log} - 29. commit - **30**. end #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure terminal | | | Step 2 | <pre>ethernet oam profile profile-name Example: RP/0/RP0/CPU0:router(config)# ethernet oam profile Profile_1</pre> | Creates a new Ethernet Operations, Administration and Maintenance (OAM) profile and enters Ethernet OAM configuration mode. | | Step 3 | link-monitor | Enters the Ethernet OAM link monitor configuration mode. | | Stop 4 |
<pre>Example: RP/0/RP0/CPU0:router(config-eoam)# link-monitor symbol-period window window</pre> | (Ontional) Configures the window size (in milliogends) for | | Step 4 | symbol-period window window | (Optional) Configures the window size (in milliseconds) for an Ethernet OAM symbol-period error event. | | | Example: | The range is 1000 to 60000. | | | <pre>RP/0/RP0/CPU0:router(config-eoam-lm)# symbol-period window 60000</pre> | The default value is 1000. | | Step 5 | symbol-period threshold low threshold high threshold Example: | (Optional) Configures the thresholds (in symbols) that trigger an Ethernet OAM symbol-period error event. The high threshold is optional and is configurable only in conjunction with the low threshold. | | | RP/0/RP0/CPU0:router(config-eoam-lm)# | The range is 0 to 60000000. | | | symbol-period threshold low 10000000 high 60000000 | The default low threshold is 1. | | Step 6 | frame window window | (Optional) Configures the frame window size (in milliseconds) of an OAM frame error event. | | | Example: | The range is 1000 to 60000. | | | <pre>RP/0/RP0/CPU0:router(config-eoam-lm)# frame window 60</pre> | The default value is 1000. | | Step 7 | <pre>frame threshold low threshold high threshold Example: RP/0/RP0/CPU0:router(config-eoam-lm)# frame</pre> | (Optional) Configures the thresholds (in symbols) that triggers an Ethernet OAM frame error event. The high threshold is optional and is configurable only in conjunction with the low threshold. | | | threshold low 10000000 high 60000000 | The range is 0 to 60000000. | | | | The default low threshold is 1. | | Step 8 | frame-period window window | (Optional) Configures the window size (in milliseconds) for an Ethernet OAM frame-period error event. | | | Example: | The range is 100 to 60000. | | | <pre>RP/0/RP0/CPU0:router(config-eoam-lm)# frame-period window 60000</pre> | The default value is 1000. | | | Command or Action | Purpose | |---------|--|---| | Step 9 | <pre>frame-period threshold low threshold high threshold RP/0/RP0/CPU0:router(config-eoam-lm) # frame-period threshold low 100 high 1000000</pre> | (Optional) Configures the thresholds (in frames) that trigger an Ethernet OAM frame-period error event. The high threshold is optional and is configurable only in conjunction with the low threshold. | | | | The range is 0 to 1000000. | | | | The default low threshold is 60000. | | | | The IEEE 802.3 standard defines threshold crossing events as number of error frames in a window. To comply with the standards, the low and high threshold for frame-period events is measured in errors per million frames. | | | | Hence, the calculation to determine the remote low and high threshold is (configured threshold * frame window in received Bridge Protocol Data Unit (BPDU))/1000000. For example, if the received frame window=300, then high threshold is 20000 * 300 / 1000000 = 6. | | Step 10 | frame-seconds window window | (Optional) Configures the window size (in milliseconds) for the OAM frame-seconds error event. | | | Example: | The range is 10000 to 900000. | | | <pre>RP/0/RP0/CPU0:router(config-eoam-lm)# frame-seconds window 900000</pre> | The default value is 6000. | | Step 11 | <pre>frame-seconds threshold low threshold high threshold</pre> Example: | (Optional) Configures the thresholds (in seconds) that trigger a frame-seconds error event. The high threshold value can be configured only in conjunction with the low threshold value. | | | RP/0/RP0/CPU0:router(config-eoam-lm)# | The range is 1 to 900 | | | frame-seconds threshold 3 threshold 900 | The default value is 1. | | Step 12 | exit | Exits back to Ethernet OAM mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam-lm)# exit</pre> | | | Step 13 | mib-retrieval | Enables MIB retrieval in an Ethernet OAM profile or on an Ethernet OAM interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam) # mib-retrieval</pre> | | | Step 14 | connection timeout seconds | Configures the timeout value (in seconds) for an Ethernet OAM session. | | | Example: | The range is 2 to 30. | | | RP/0/RP0/CPU0:router(config-eoam)# connection timeout 30 | The default value is 5. | | | Command or Action | Purpose | |---------|--|--| | Step 15 | mode {active passive} | Configures the Ethernet OAM mode. The default is active. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# mode passive</pre> | | | Step 16 | require-remote mode {active passive} | Requires that active mode or passive mode is configured on the remote end before the OAM session becomes active. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# require-remote mode active</pre> | | | Step 17 | require-remote link-monitoring | Requires that link-monitoring is configured on the remote end before the OAM session becomes active. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# require-remote link-monitoring</pre> | | | Step 18 | require-remote mib-retrieval | Requires that MIB-retrieval is configured on the remote end before the OAM session becomes active. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# require-remote mib-retrieval</pre> | | | Step 19 | action capabilities-conflict {disable efd error-disable-interface} | Specifies the action that is taken on an interface when a capabilities-conflict event occurs. The default action is to create a syslog entry. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# action capabilities-conflict efd</pre> | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | Step 20 | action critical-event {disable error-disable-interface} | Specifies the action that is taken on an interface when a critical-event notification is received from the remote Ethernet OAM peer. The default action is to create a syslog entry. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# action critical-event error-disable-interface</pre> | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | Step 21 | action discovery-timeout {disable efd error-disable-interface} | Specifies the action that is taken on an interface when a connection timeout occurs. The default action is to create a syslog entry. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# action discovery-timeout efd</pre> | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | | Command or Action | Purpose | |---------|---|--| | Step 22 | action dying-gasp {disable error-disable-interface} | Specifies the action that is taken on an interface when a dying-gasp notification is received from the remote Ethernet OAM peer. The default action is to create a syslog entry. | | | RP/0/RP0/CPU0:router(config-eoam)# action dying-gasp error-disable-interface | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | Step 23 | action high-threshold {error-disable-interface log} | Specifies the action that is taken on an interface when a high threshold is exceeded. The default is to take no action when a high threshold is exceeded. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam) # action high-threshold error-disable-interface</pre> | Note If you change the default, the disable keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and take no action at the interface when the event occurs. | | Step 24 | action remote-loopback disable Example: | Specifies that no action is taken on an interface when a remote-loopback event occurs. The default action is to create a syslog entry. | | | RP/0/RP0/CPU0:router(config-eoam)# action remote-loopback disable | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | Step 25 | action session-down {disable efd error-disable-interface} | Specifies the action that is taken on an interface when an Ethernet OAM session goes down. | | | Example: RP/0/RP0/CPU0:router(config-eoam)# action session-down efd | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | Step 26 | action session-up disable Example: | Specifies that no action is taken on an interface when an Ethernet OAM session is established. The default action is to create a syslog entry. | | |
RP/0/RP0/CPU0:router(config-eoam)# action session-up disable | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | Step 27 | action uni-directional link-fault {disable efd error-disable-interface} | Specifies the action that is taken on an interface when a link-fault notification is received from the remote Ethernet OAM peer. The default action is to create a syslog entry. | | | | Note If you change the default, the log keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and log the event for the interface when it occurs. | | | | Note | | | Command or Action | Purpose | |---------|--|--| | Step 28 | action wiring-conflict {disable efd log} | Specifies the action that is taken on an interface when a wiring-conflict event occurs. The default is to put the interface into error-disable state. | | | <pre>Example: RP/0/RP0/CPU0:router(config-eoam)# action session-down efd</pre> | Note If you change the default, the error-disable-interface keyword option is available in Interface Ethernet OAM configuration mode to override the profile setting and put the interface into error-disable state when the event occurs. | | Step 29 | <pre>Example: RP/0/RP0/CPU0:router(config-if)# commit</pre> | Saves the configuration changes to the running configuration file and remains within the configuration session. | | Step 30 | end | Ends the configuration session and exits to the XR EXEC mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end</pre> | | ### **Attaching an Ethernet OAM Profile to an Interface** Perform the following steps to attach an Ethernet OAM profile to an interface: #### **SUMMARY STEPS** - 1. configure - $\textbf{2.} \quad \textbf{interface} \ [\textbf{GigabitEthernet} \ | \ \textbf{TenGigE}] \ \textit{interface-path-id}$ - 3. ethernet oam - **4**. **profile** *profile-name* - 5. commit - 6. end | | Command or Action | Purpose | |--------|---|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure terminal | | | Step 2 | <pre>interface [GigabitEthernet TenGigE] inter- face-path-id</pre> | Enters interface configuration mode and specifies the Ethernet interface name and notation <i>rack/slot/module/port</i> . | | | <pre>Example: RP/0/RP0/CPU0:router(config)# interface TenGigE 0/1/0/0</pre> | Note The example indicates an 8-port 10-Gigabit Ethernet interface in modular services card slot 1. | | | Command or Action | Purpose | |--------|---|---| | Step 3 | ethernet oam | Enables Ethernet OAM and enters interface Ethernet OAM configuration mode. | | | Example: | | | | RP/0/RP0/CPU0:router(config-if)# ethernet oam | | | Step 4 | <pre>profile profile-name</pre> | Attaches the specified Ethernet OAM profile (profile-name), and all of its configuration, to the interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if-eoam)# profile Profile_1</pre> | | | Step 5 | commit | Saves the configuration changes to the running configuration file and remains within the configuration | | | Example: | session. | | | RP/0/RP0/CPU0:router(config-if)# commit | | | Step 6 | end | Ends the configuration session and exits to the XR EXEC mode. | | | Example: | | | | RP/0/RP0/CPU0:router(config-if)# end | | ### Configuring Ethernet OAM at an Interface and Overriding the Profile Configuration Using an EOAM profile is an efficient way of configuring multiple interfaces with a common EOAM configuration. However, if you want to use a profile but also change the behavior of certain functions for a particular interface, then you can override the profile configuration. To override certain profile settings that are applied to an interface, you can configure that command in interface Ethernet OAM configuration mode to change the behavior for that interface. In some cases, only certain keyword options are available in interface Ethernet OAM configuration due to the default settings for the command. For example, without any configuration of the **action** commands, several forms of the command have a default behavior of creating a syslog entry when a profile is created and applied to an interface. Therefore, the **log** keyword is not available in Ethernet OAM configuration for these commands in the profile because it is the default behavior. However, the **log** keyword is available in Interface Ethernet OAM configuration if the default is changed in the profile configuration so you can retain the action of creating a syslog entry for a particular interface. To see all of the default Ethernet OAM configuration settings, see the "Verifying the Ethernet OAM Configuration" section on page 64. To configure Ethernet OAM settings at an interface and override the profile configuration, perform the following steps: #### **SUMMARY STEPS** - 1. configure - 2. interface [GigabitEthernet | TenGigE] interface-path-id - 3. ethernet oam - 4. interface-Ethernet-OAM-command - 5. commit - 6. end #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure terminal | | | Step 2 | <pre>interface [GigabitEthernet TenGigE] inter-
face-path-id</pre> | Enters interface configuration mode and specifies the Ethernet interface name and notation <i>rack/slot/module/port</i> . | | | <pre>Example: RP/0/RP0/CPU0:router(config) # interface TenGigE 0/1/0/0</pre> | Note The example indicates an 8-port 10-Gigabit Ethernet interface in modular services card slot 1. | | Step 3 | ethernet oam | Enables Ethernet OAM and enters interface Ethernet OAM configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# ethernet oam</pre> | | | Step 4 | <pre>interface-Ethernet-OAM-command Example: RP/0/RP0/CPU0:router(config-if-eoam) # action capabilities-conflict error-disable-interface</pre> | Configures a setting for an Ethernet OAM configuration command and overrides the setting for the profile configuration, where <i>interface-Ethernet-OAM-command</i> is one of the supported commands on the platform in interface Ethernet OAM configuration mode. | | Step 5 | <pre>commit Example: RP/0/RP0/CPU0:router(config-if)# commit</pre> | Saves the configuration changes to the running configuration file and remains within the configuration session. | | Step 6 | end | Ends the configuration session and exits to the XR EXEC mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end</pre> | | ### **Verifying the Ethernet OAM Configuration** Use the **show ethernet oam configuration** command to display the values for the Ethernet OAM configuration for a particular interface, or for all interfaces. The following example shows the default values for Ethernet OAM settings: | RP/0/RP0/CPU0:router# show ethernet oam configuration Thu Aug 5 22:07:06.870 DST | | |---|--------| | 5 | | | GigabitEthernet0/4/0/0: | | | Hello interval: | 1s | | Link monitoring enabled: | Y | | Remote loopback enabled: | N | | Mib retrieval enabled: | N | | Uni-directional link-fault detection enabled: | N | | Configured mode: | Active | | Connection timeout: | 5 | | Symbol period window: | 0 | | Symbol period low threshold: | 1 | | Symbol period high threshold: | None | | Frame window: | 1000 | | Frame low threshold: | 1 | |----------------------------------|---------------| | Frame high threshold: | None | | Frame period window: | 1000 | | Frame period low threshold: | 1 | | Frame period high threshold: | None | | Frame seconds window: | 60000 | | Frame seconds low threshold: | 1 | | Frame seconds high threshold: | None | | High threshold action: | None | | Link fault action: | Log | | Dying gasp action: | Log | | Critical event action: | Log | | Discovery timeout action: | Log | | Capabilities conflict action: | Log | | Wiring conflict action: | Error-Disable | | Session up action: | Log | | Session down action: | Log | | Remote loopback action: | Log | | Require remote mode: | Ignore | | Require remote MIB retrieval: | N | | Require remote loopback support: | N | | Require remote link monitoring: | N | | | | # Configuration Examples for Ethernet OAM This section provides the following configuration examples: • Configuration Examples for EOAM Interfaces, page 65 # **Configuration Examples for EOAM Interfaces** This section provides the following configuration examples: - Configuring an Ethernet OAM Profile Globally: Example, page 65 - Configuring Ethernet OAM Features on an Individual Interface: Example, page 66 - Configuring Ethernet OAM Features to Override the Profile on an Individual Interface: Example, page 66 - Clearing Ethernet OAM Statistics on an Interface: Example, page 67
- Enabling SNMP Server Traps on a Router: Example, page 67 ### **Configuring an Ethernet OAM Profile Globally: Example** The following example shows how to configure an Ethernet OAM profile globally: ``` configure terminal ethernet oam profile Profile_1 link-monitor symbol-period window 60000 symbol-period threshold low 10000000 high 60000000 frame window 60 frame threshold low 10000000 high 60000000 frame-period window 60000 ``` ``` frame-period threshold low 100 high 12000000 frame-seconds window 900000 frame-seconds threshold 3 threshold 900 exit mib-retrieval connection timeout 30 require-remote mode active require-remote link-monitoring require-remote mib-retrieval action dying-gasp error-disable-interface action critical-event error-disable-interface action discovery-timeout error-disable-interface action session-down error-disable-interface action capabilities-conflict error-disable-interface action wiring-conflict error-disable-interface action remote-loopback error-disable-interface ``` ### Configuring Ethernet OAM Features on an Individual Interface: Example The following example shows how to configure Ethernet OAM features on an individual interface: ``` configure terminal interface TenGigE 0/1/0/0 ethernet cam link-monitor symbol-period window 60000 symbol-period threshold low 10000000 high 60000000 frame window 60 frame threshold low 10000000 high 60000000 frame-period window 60000 frame-period threshold low 100 high 12000000 frame-seconds window 900000 frame-seconds threshold 3 threshold 900 exit mib-retrieval connection timeout 30 require-remote mode active require-remote link-monitoring require-remote mib-retrieval action link-fault error-disable-interface action dying-gasp error-disable-interface action critical-event error-disable-interface action discovery-timeout error-disable-interface action session-down error-disable-interface action capabilities-conflict error-disable-interface action wiring-conflict error-disable-interface action remote-loopback error-disable-interface commit ``` ### Configuring Ethernet OAM Features to Override the Profile on an Individual Interface: Example The following example shows the configuration of Ethernet OAM features in a profile followed by an override of that configuration on an interface: ``` configure terminal ethernet oam profile Profile_1 mode passive action dying-gasp disable action critical-event disable action discovery-timeout disable action session-up disable ``` ``` action session-down disable action capabilities-conflict disable action wiring-conflict disable action remote-loopback disable action uni-directional link-fault error-disable-interface commit configure terminal interface TenGigE 0/1/0/0 ethernet oam profile Profile_1 mode active action dying-gasp log action critical-event log action discovery-timeout log action session-up log action session-down log action capabilities-conflict log action wiring-conflict log action remote-loopback log action uni-directional link-fault log uni-directional link-fault detection commit ``` ### **Clearing Ethernet OAM Statistics on an Interface: Example** The following example shows how to clear Ethernet OAM statistics on an interface: RP/0/RP0/CPU0:router# clear ethernet oam statistics interface gigabitethernet 0/1/5/1 ### **Enabling SNMP Server Traps on a Router: Example** The following example shows how to enable SNMP server traps on a router: ``` configure terminal ethernet oam profile Profile_1 snmp-server traps ethernet oam events ``` # Where to Go Next When you have configured an Ethernet interface, you can configure individual VLAN subinterfaces on that Ethernet interface. For information about IPv6 see the *Implementing Access Lists and Prefix Lists* module in the *IP Addresses and Services Configuration Guide*. ## **Additional References** The following sections provide references related to implementing Gigabit, 10-Gigabit, and Fast Ethernet interfaces. # **Related Documents** | Related Topic | Document Title | |---|--| | Cisco IOS XR master command reference | Cisco IOS XR Master Commands List | | Cisco IOS XR interface configuration commands | Cisco IOS XR Interface and Hardware Component Command
Reference | | Information about user groups and task IDs | Cisco IOS XR Interface and Hardware Component Command
Reference | # **Standards** | Standards | Title | |--------------|--| | IEEE 802.1ag | Connectivity Fault Management | | ITU-T Y.1731 | OAM Functions and Mechansims for Ethernet Based Networks | | | Metro Ethernet Forum, Technical Specification MEF 16, Ethernet
Local Management Interface (E-LMI), January 2006 | ### **MIBs** | MIBs | MIBs Link | |------|---| | | To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: | | | http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | # **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | # **Technical Assistance** | Description | Link | |---|----------------------------------| | The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content. | http://www.cisco.com/techsupport | # **Configuring Link Bundling** This module describes the configuration of link bundle interfaces on the Cisco NCS 6000 Series Router. A link bundle is a group of one or more ports that are aggregated together and treated as a single link. The Link Bundling feature allows you to group multiple point-to-point links together into one logical link and provide higher bidirectional bandwidth, redundancy, and load balancing between two routers. A virtual interface is assigned to the bundled link. The component links can be dynamically added and deleted from the virtual interface. The virtual interface is treated as a single interface on which you can configure an IP address and other software features used by the link bundle. Packets sent to the link bundle are forwarded to one of the links in the bundle. Each bundle has a single MAC and shares a single Layer 3 configuration set, such as IP address, ACL, Quality of Service (QoS), and so on. Link bundles do not have a one-to-one modular services card association. Member links can terminate on different cards. #### **Feature History for Configuring Link Bundling** | Release | Modification | |---------------|--| | Release 5.2.5 | Bundle Fast Convergence feature was added. | | Release 5.0.0 | This feature was introduced. | ### **Contents** This module includes the following sections: - Prerequisites for Configuring Link Bundling, page 70 - Information About Configuring Link Bundling, page 70 - How to Configure Link Bundling, page 77 - Configuration Examples for Link Bundling, page 99 - Additional References, page 102 # **Prerequisites for Configuring Link Bundling** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. The prerequisites for link bundling depend on the platform on which you are configuring this feature. This section includes the following information: • Prerequisites for Configuring Link Bundling, page 70 # **Prerequisites for Configuring Link Bundling** Before configuring link bundling, be sure that these tasks and conditions are met: - You know which links should be included in the bundle you are configuring. - If you are configuring an Ethernet link bundle, you have at least one of the following Ethernet cards installed in the router: - 4-Port 10-Gigabit Ethernet PLIM - 8-Port 10-Gigabit Ethernet PLIM - 10-Port Gigabit Ethernet SPA - 42-Port Gigabit Ethernet PLIM - 1-Port 100-Gigabit Ethernet PLIM # Information About Configuring Link Bundling To configure link bundling, you must understand the following concepts: - Link Bundling Overview, page 70 - Features and Compatible Characteristics of Link Bundles, page 71 - Link Aggregation Through LACP, page 72 - Load Balancing, page 74 - VLANs on an Ethernet Link Bundle, page 75 - Link Bundle Configuration Overview, page 75 - Nonstop Forwarding During RP Switchover, page 75 - Link Switchover, page 76 ### **Link Bundling Overview** The Link Bundling feature allows you to group multiple point-to-point links together into one logical link and provide higher bidirectional bandwidth, redundancy, and load balancing between two routers. A virtual interface is assigned to the bundled link. The component links can be dynamically added and deleted from the virtual interface. The virtual interface is treated as a single interface on which one can configure an IP address and other software features used by the link bundle. Packets sent to the link bundle are forwarded to one of the links in the bundle. The advantages of link bundles are as follows: - Multiple links can span several line
cards to form a single interface. Thus, the failure of a single link does not cause a loss of connectivity. - Bundled interfaces increase bandwidth availability, because traffic is forwarded over all available members of the bundle. Therefore, traffic can if one of the links within a bundle fails. can without interrupting packet flow. For example, a bundle can contain all Ethernet interfaces, or it can contain all POS interfaces, but it cannot contain Ethernet and POS interfaces at the same time. Cisco IOS XR software supports the following methods of forming bundles of Ethernet interfaces: - IEEE 802.3ad—Standard technology that employs a Link Aggregation Control Protocol (LACP) to ensure that all the member links in a bundle are compatible. Links that are incompatible or have failed are automatically removed from a bundle. - EtherChannel or POS Channel—Cisco proprietary technology that allows the user to configure links to join a bundle, but has no mechanisms to check whether the links in a bundle are compatible. (EtherChannel applies to Ethernet interfaces, and POS Channel applies to POS interfaces.) ## **Features and Compatible Characteristics of Link Bundles** Link bundles support these features: - ACL - Basic IP - Basic MPLS - MPLS VPN - Sampled Netflow - BGP Policy Accounting - HSRP/VRRP - VLAN Bundling (Ethernet only) - · Basic IP - Basic MPLS - MPLS VPN - Inter-AS - WRED/MDRR per member interface. The following list describes the properties and limitations of link bundles: - A bundle contains links, each of which has LACP enabled or disabled. If a bundle contains links, some that have LACP enabled and some that have LACP disabled, the links with LACP disabled are not aggregated in the bundle. - Bundle membership can span across several modular services cards that are installed in a single router and across SPAS in the same service card. - Physical layer and link layer configuration are performed on individual member links of a bundle. - Configuration of network layer protocols and higher layer applications is performed on the bundle itself. - IPv4 and IPv6 addressing is supported on Ethernet link bundles. - For Ethernet link bundling, links within a single bundle should have the same speed. - For POS link bundling, the links within a single bundle can have varying speeds. The fastest link can be set to a maximum speed that is four times greater than the slowest link. - Mixed bandwidth bundle member configuration is only supported when 1:1 redundancy is configured (this means that a 1 GigabitEthernet member can only be configured as the backup of the 10 GigabitEthernet interface). - Mixed link bundle mode is supported only when active standby operation is configured (usually with the lower speed link in standby mode). - A bundle can be administratively enabled or disabled. - Each individual link within a bundle can be administratively enabled or disabled. - If a MAC address is not set on the bundle, the bundle MAC address is obtained from a pool of pre-assigned MAC addresses stored in EEPROM of the chassis midplane. - Each link within a bundle can be configured to allow different keepalive periods on different members. - Load balancing (the distribution of data between member links) is done by flow instead of by packet. - Upper layer protocols, such as routing updates and hellos, are sent over any member link of an interface bundle. - All links within a single bundle must terminate on the same two systems. Both systems must be directly connected. - Bundled interfaces are point-to-point. - A bundle can contain physical links only. Tunnels and VLAN sub-interfaces cannot be bundle members. However, you can create VLANs as sub-interfaces of bundles. - An IPv4 address configuration on link bundles is identical to an IPv4 address configuration on regular interfaces. - Multicast traffic is load balanced over the members of a bundle. For a given flow, internal processes select the member link, and all traffic for that flow is sent over that member. # **Link Aggregation Through LACP** Aggregating interfaces on different modular services cards and on SPAs within the same services cards provides redundancy, allowing traffic to be quickly redirected to other member links when an interface or modular services card failure occurs. The optional Link Aggregation Control Protocol (LACP) is defined in the IEEE 802 standard. LACP communicates between two directly connected systems (or peers) to verify the compatibility of bundle members. The peer can be either another router or a switch. LACP monitors the operational state of link bundles to ensure the following: - All links terminate on the same two systems. - Both systems consider the links to be part of the same bundle. • All links have the appropriate settings on the peer. LACP transmits frames containing the local port state and the local view of the partner system's state. These frames are analyzed to ensure both systems are in agreement. #### **IEEE 802.3ad Standard** The IEEE 802.3ad standard typically defines a method of forming Ethernet link bundles. For each link configured as bundle member, the following information is exchanged between the systems that host each end of the link bundle: - A globally unique local system identifier - An identifier (operational key) for the bundle of which the link is a member - An identifier (port ID) for the link - The current aggregation status of the link This information is used to form the link aggregation group identifier (LAG ID). Links that share a common LAG ID can be aggregated. Individual links have unique LAG IDs. The system identifier distinguishes one router from another, and its uniqueness is guaranteed through the use of a MAC address from the system. The bundle and link identifiers have significance only to the router assigning them, which must guarantee that no two links have the same identifier, and that no two bundles have the same identifier. The information from the peer system is combined with the information from the local system to determine the compatibility of the links configured to be members of a bundle. The MAC address of the first link attached to a bundle becomes the MAC address of the bundle itself. The bundle uses this MAC address until that link (the first link attached to the bundle) is detached from the bundle, or until the user configures a different MAC address. The bundle MAC address is used by all member links when passing bundle traffic. Any unicast or multicast addresses set on the bundle are also set on all the member links. We recommend that you avoid modifying the MAC address, because changes in the MAC address can affect packet forwarding. ### **LACP Short Period Time Intervals** As packets are exchanged across member links of a bundled interface, some member links may slow down or time-out and fail. LACP packets are exchanged periodically across these links to verify the stability and reliability of the links over which they pass. The configuration of short period time intervals, in which LACP packets are sent, enables faster detection and recovery from link failures. Short period time intervals are configured as follows: - In milliseconds - In increments of 100 milliseconds - In the range 100 to 1000 milliseconds - The default is 1000 milliseconds (1 second) - Up to 64 member links - Up to 1280 packets per second (pps) After 6 missed packets, the link is detached from the bundle. When the short period time interval is *not* configured, LACP packets are transmitted over a member link every 30 seconds by default. When the short period time interval is configured, LACP packets are transmitted over a member link once every 1000 milliseconds (1 second) by default. Optionally, both the transmit and receive intervals can be configured to less than 1000 milliseconds, independently or together, in increments of 100 milliseconds (100, 200, 300, and so on). When you configure a custom LACP short period *transmit* interval at one end of a link, you must configure the same time period for the *receive* interval at the other end of the link. You must always configure the *transmit* interval at both ends of the connection before you configure the *receive* interval at either end of the connection. Failure to configure the *transmit* interval at both ends first results in route flapping (a route going up and down continuously). When you remove a custom LACP short period, you must do it in reverse order. You must remove the *receive* intervals first and then the *transmit* intervals. ### **Load Balancing** Load balancing is a forwarding mechanism which distributes traffic over multiple links, based on Layer 3 routing information in the router. Per-flow load balancing is supported on all links in the bundle. This scheme achieves load sharing by allowing the router to distribute packets over one of the links in the bundle, that is determined through a hash calculation. The hash calculation is an algorithm for link selection based on certain parameters. The standard hash calculation is a 3-tuple hashing, using the following parameters: - IP source address - IP destination address - Router ID 7-tuple hashing can also be configured. based on Layer 3 and Layer 4 parameters: - IP source address - · IP destination address - Router ID - Input interface - IP protocol - Layer 4 source port - Layer 4 destination port When per-flow load balancing and 3-tuple hashing is enabled, all packets for a certain source-destination pair will go through the same link, though there are multiple links available. Per-flow load balancing ensures that packets for a certain source-destination pair arrive in order. For multicast traffic, ingress forwarding is based on the Fabric Multicast Group Identifier (FGID). Egress forwarding over the bundle is based on the bundle load balancing. ### **VLANs on an Ethernet Link Bundle** 802.1Q VLAN subinterfaces can be configured on 802.3ad Ethernet link bundles. Keep the following
information in mind when adding VLANs on an Ethernet link bundle: - The maximum number of VLANs allowed per bundle is 128. - The maximum number of bundled VLANs allowed per router is 4000. The memory requirement for bundle VLANs is slightly higher than standard physical interfaces. To create a VLAN subinterface on a bundle, include the VLAN subinterface instance with the **interface Bundle-Ether** command, as follows: interface Bundle-Ether interface-bundle-id.subinterface After you create a VLAN on an Ethernet link bundle, all VLAN subinterface configuration is supported on that link bundle. VLAN sub-interfaces can support multiple Layer 2 frame types and services, such as Ethernet Flow Points - EFPs) and Layer 3 services. ### **Link Bundle Configuration Overview** The following steps provide a general overview of the link bundle configuration. Keep in mind that a link must be cleared of all previous network layer configuration before it can be added to a bundle: - In XR configuration mode, create a link bundle. To create an Ethernet link bundle, enter the interface Bundle-Ether command. To create a POS link bundle, enter the interface Bundle-POS command. - 2. Assign an IP address and subnet mask to the virtual interface using the ipv4 address command. - **3.** Add interfaces to the bundle you created in Step 1 with the **bundle id** command in the interface configuration submode. You can add up to 64 links to a single bundle. - 4. You can optionally implement 1:1 link protection for the bundle by setting the **bundle maximum-active links** command to 1. Performing this configuration causes the highest-priority link in the bundle to become active and the second-highest-priority link to become the standby. (The link priority is based on the value of the **bundle port-priority** command.) If the active link fails, the standby link immediately becomes the active link. A link is configured as a member of a bundle from the interface configuration submode for that link. ### **Nonstop Forwarding During RP Switchover** Cisco IOS XR software supports nonstop forwarding during switchover between active and standby paired RP cards. Nonstop forwarding ensures that there is no change in the state of the link bundles when a switchover occurs. For example, if an active RP fails, the standby RP becomes operational. The configuration, node state, and checkpoint data of the failed RP are replicated to the standby RP. The bundled interfaces will all be present when the standby RP becomes the active RP. You do not need to configure anything to guarantee that the standby interface configurations are maintained. ### **Link Switchover** By default, a maximum of 64 links in a bundle can actively carry traffic on a Cisco NCS 6000 Series Router. If one member link in a bundle fails, traffic is redirected to the remaining operational member links. ### **Bundle Fast Convergence** The Bundle Fast Convergence (BFC) feature provides the ability to converge bundle members within sub seconds instead of multiple seconds. This feature provides faster bundle member convergence with deterministic traffic outage bounded within 50 milliseconds. On bundle member shut, the packet drop is reduced to less than 50 milliseconds. On multiple members shut, the loss is less than (n*50ms), where 'n' is the number of members being shut. ### **BFC Functionality** The BFC feature decouples the tasks FIB is performing for bundle membership updates. This splits the FIB's bundle membership tasks into two separate threads: - FAST Update (FRR thread): This option does In-Place-Modify (IPM) only, which guarantees deterministic outage time. FIB gets the bundle member down directly from Bundle Interface Manager (BIM) using Fast Protect Infra (similar to TE FRR update model). - SLOW Update (Adjacency thread): Adjacency update from AIB, which is the current processing logic; does the following tasks: - IPM on the current hardware entries - Create a new set of hardware entries with new membership information BFC tracks the bundle members that are down from FAST channel by setting a pending flag, then when SLOW update AIB is received it looks for FAST down member. If the BFC finds the FAST down member, it clears the pending flag, if it does not, it processes the SLOW update and considers the FAST down member as down and programs to the hardware. #### Condition for BFC The bundle must contain N members (they may be of different bandwidth, belong to different slices or Line Cards) and at the most N-1 members could be shut down in a single or multiple commits. Shutting down bundle member link/s in single or serial commits is the only valid trigger for BFC. Bundle fast convergence time is calculated based on Frame delta and number of links affected. Convergence time < Number of links affected * 50ms --> 0 (50ms). Convergence time must be < 50ms per flow in the traffic. ### **Sample BFC Data** The following example shows convergence time data for sixteen individual flows that traffic was sent onto on dual router topology. This data is taken for a bundle which has ten members including one 100Gig and nine 10Gig members where nine members (including 100Gig) are shut down with individual commits in order to trigger the BFC feature. | Frame Delta | Packet Loss Duration | Direction | |-------------|----------------------|-----------| | | (ms) | | | 337 | 6.667 | Egress | | 61 | 1.187 | Egress | | 254 | 4.942 | Egress | | 0 | 0 | Egress | | 255 | 4.961 | Egress | | 255 | 4.961 | Egress | | 47 | 0.914 | Egress | | 0 | 0 | Egress | | 1226 | 23.853 | Ingress | | 866 | 16.849 | Ingress | | 240 | 4.669 | Ingress | | 1131 | 22.005 | Ingress | | 0 | 0 | Ingress | | 526 | 10.234 | Ingress | | 1243 | 24.187 | Ingress | | 264 | 5.136 | Ingress | # **How to Configure Link Bundling** This section contains the following procedures: - Configuring Ethernet Link Bundles, page 78 - Configuring EFP Load Balancing on an Ethernet Link Bundle, page 82 - Configuring VLAN Bundles, page 84 - Configuring the Default LACP Short Period Time Interval, page 91 - Configuring Custom LACP Short Period Time Intervals, page 92 ## **Configuring Ethernet Link Bundles** This section describes how to configure an Ethernet link bundle. MAC accounting is not supported on Ethernet link bundles. In order for an Ethernet bundle to be active, you must perform the same configuration on both connection endpoints of the bundle. #### **SUMMARY STEPS** The creation of an Ethernet link bundle involves creating a bundle and adding member interfaces to that bundle, as shown in the steps that follow. - 1. configure - 2. interface Bundle-Ether bundle-id - 3. ipv4 address ipv4-address mask - 4. **bundle minimum-active bandwidth** *kbps* (Optional) - 5. bundle minimum-active links links - 6. bundle maximum-active links links [hot-standby] - 7. lacp fast-switchover - 8. exit - 9. interface {TenGigE} interface-path-id - **10.** bundle id bundle-id [mode {active | on | passive}] - 11. bundle port-priority priority - 12. no shutdown - 13. exit - 14. Repeat Step 8 through Step 11 to add more links to the bundle you created in Step 2. - 15. end or commit - 16. exit - **17.** exit - **18.** Perform Step 1 through Step 15 on the remote end of the connection. - 19. show bundle Bundle-Ether bundle-id - 20. show lacp Bundle-Ether bundle-id | | Command or Action | Purpose | |--------|--|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface Bundle-Ether bundle-id | Creates a new Ethernet link bundle with the specified bundle-id. The range is 1 to 65535. | | | Example: RP/0/RP0/CPU0:router#(config)# interface Bundle-Ether 3 | This interface Bundle-Ether command enters you into the interface configuration submode, where you can enter interface specific configuration commands are entered. Use the exit command to exit from the interface configuration submode back to the normal XR configuration mode. | | Step 3 | <pre>ipv4 address ipv4-address mask</pre> Example: | Assigns an IP address and subnet mask to the virtual interface using the ipv4 address configuration subcommand. | | | RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.1.2.3 255.0.0.0 | Note | | Step 4 | bundle minimum-active bandwidth kbps | (Optional) Sets the minimum amount of bandwidth required before a user can bring up a bundle. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # bundle minimum-active bandwidth 580000</pre> | | | Step 5 | bundle minimum-active links links | (Optional) Sets the number of active links required before you can bring up a specific bundle. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # bundle minimum-active links 2</pre> | | | Step 6 | <pre>bundle maximum-active links links [hot-standby] Example: RP/0/RP0/CPU0:router(config-if) # bundle maximum-active links 1 hot-standby</pre> | (Optional) Implements 1:1 link protection for the bundle, which causes the highest-priority link in the bundle to become active and the second-highest-priority link to become the standby. Also, specifies that a switchover between active and standby LACP-enabled links is implemented per a proprietary optimization. | | | | Note The priority of the active and standby links is based on the value of the bundle port-priority command. | | | Command or Action | Purpose | |---------|--
---| | Step 7 | <pre>lacp fast-switchover Example: RP/0/RP0/CPU0:router(config-if)# lacp fast-switchover</pre> | (Optional) If you enabled 1:1 link protection (you set the value of the bundle maximum-active links command to 1) on a bundle with member links running LACP, you can optionally disable the wait-while timer in the LACP state machine. Disabling this timer causes a bundle member link in standby mode to expedite its normal state negotiations, thereby enabling a faster switchover from a failed active link to the standby link. | | Step 8 | exit | Note Exits interface configuration submode for the Ethernet | | · | <pre>Example: RP/0/RP0/CPU0:router(config-if)# exit</pre> | link bundle. | | Step 9 | <pre>interface {TenGigE} interface-path-id</pre> | Enters interface configuration mode for the specified interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# interface GigabitEthernet 1/0/0/0</pre> | Enter the TenGigE keyword to specify the interface type. Replace the <i>interface-path-id</i> argument with the node-id in the <i>rack/slot/module</i> format. | | Step 10 | bundle id bundle-id [mode {active on passive}] | Adds the link to the specified bundle. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# bundle-id 3</pre> | To enable active or passive LACP on the bundle, include the optional mode active or mode passive keywords in the command string. | | | | To add the link to the bundle without LACP support, include the optional mode on keywords with the command string. | | | | Note If you do not specify the mode keyword, the default mode is on (LACP is not run over the port). | | Step 11 | <pre>bundle port-priority priority Example: RP/0/RP0/CPU0:router(config-if)# bundle port-priority 1</pre> | (Optional) If you set the bundle maximum-active links command to 1, you must also set the priority of the active link to the highest priority (lowest value) and the standby link to the second-highest priority (next lowest value). For example, you can set the priority of the active link to 1 and the standby link to 2. | | Step 12 | <pre>no shutdown Example: RP/0/RP0/CPU0:router(config-if)# no shutdown</pre> | (Optional) If a link is in the down state, bring it up. The no shutdown command returns the link to an up or down state depending on the configuration and state of the link. | | Step 13 | exit | Exits interface configuration submode for the Ethernet interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# exit</pre> | | | | Command or Action | Purpose | |---------|--|---| | Step 14 | <pre>interface {TenGigE} number bundle id bundle-id [mode {active passive on}] no shutdown exit</pre> | (Optional) Repeat Step 8 through Step 11 to add more links to the bundle. | | | Example: RP/0/RP0/CPU0:router(config) # interface TenGigE 1/0/2/1 RP/0/RP0/CPU0:router(config-if) # bundle id 3 RP/0/RP0/CPU0:router(config-if) # bundle port-priority 2 RP/0/RP0/CPU0:router(config-if) # no shutdown RP/0/RP0/CPU0:router(config-if) # exit RP/0/RP0/CPU0:router(config) # interface TenGigE 1/0/2/3 RP/0/RP0/CPU0:router(config-if) # bundle id 3 RP/0/RP0/CPU0:router(config-if) # no shutdown | | | | | | | Step 15 | <pre>RP/0/RP0/CPU0:router(config-if)# exit end</pre> | Saves configuration changes. | | | or | • When you issue the end command, the system | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end or RP/0/RP0/CPU0:router(config-if)# commit</pre> | prompts you to commit changes: Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. Entering no exits the configuration session | | | | and returns the router to XR EXEC mode without committing the configuration changes. | | | | Entering cancel leaves the router in the
current configuration session without exiting
or committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 16 | exit | Exits interface configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# exit</pre> | | | | Command or Action | Purpose | |---------|---|---| | Step 17 | exit | Exits XR configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# exit</pre> | | | Step 18 | Perform Step 1 through Step 15 on the remote end of the connection. | Brings up the other end of the link bundle. | | Step 19 | show bundle Bundle-Ether bundle-id | (Optional) Shows information about the specified Ethernet link bundle. | | | Example: RP/0/RP0/CPU0:router# show bundle Bundle-Ether 3 | | | Step 20 | show lacp bundle Bundle-Ether bundle-id | (Optional) Shows detailed information about LACP ports and their peers. | | | Example: RP/0/RP0/CPU0:router# show lacp bundle Bundle-Ether 3 | | # **Configuring EFP Load Balancing on an Ethernet Link Bundle** This section describes how to configure Ethernet flow point (EFP) Load Balancing on an Ethernet link bundle. By default, Ethernet flow point (EFP) load balancing is enabled. However, the user can choose to configure all egressing traffic on the fixed members of a bundle to flow through the same physical member link. This configuration is available only on an Ethernet Bundle subinterface with Layer 2 transport (**12transport**) enabled. If the active members of the bundle change, the traffic for the bundle may get mapped to a different physical link that has a hash value that matches the configured value. #### **SUMMARY STEPS** Perform the following steps to configure EFP Load Balancing on an Ethernet link bundle: - 1. configure - 2. interface Bundle-Ether bundle-id 12transport - 3. bundle load-balance hash hash-value [auto] - 4. end or commit | | Command or Action | Purpose | |--------|--|--| | Step 1 | configure | Enters XR configuration mode. | | Step 2 | Example: RP/0/RP0/CPU0:router# configure interface Bundle-Ether bundle-id 12transport | Creates a new Ethernet link hundle with the enesified | | Step 2 | interface bundle-scher bundle-1a iztransport | Creates a new Ethernet link bundle with the specified bundle-id and with Layer 2 transport enabled. | | | Example: RP/0/RP0/CPU0:router#(config)# interface Bundle-Ether 3 12transport | The range is 1 to 65535. | | Step 3 | <pre>bundle load-balance hash hash-value [auto] Example: RP/0/RP0/CPU0:router(config-subif)# bundle</pre> | Configures all egressing traffic on the fixed members of a bundle to flow through the same physical member link. | | | <pre>load-balancing hash 1 or RP/0/RP0/CPU0:router(config-subif)# bundle</pre> | hash-value—Numeric value that specifies the
physical member link through which all egressing
traffic in this bundle will flow. The values are 1
through 8. | | | load-balancing hash auto | • auto —The physical member link through which all egressing traffic on this bundle will flow is automatically chosen. | | Step 4 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: | | | Or RP/0/RP0/CPU0:router(config-if)# commit | Entering yes saves configuration changes to
the running configuration file, exits the
configuration session, and returns the router
to XR EXEC mode. | | | | Entering no exits the configuration session
and returns the router to XR EXEC mode
without committing the configuration
changes. | | | | Entering cancel leaves the router in the
current configuration session without exiting
or committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | ### **Configuring VLAN Bundles** This section describes how to configure a VLAN bundle. The creation of a VLAN bundle involves three main tasks: - 1. Create an Ethernet bundle - 2. Create VLAN subinterfaces
and assign them to the Ethernet bundle. - 3. Assign Ethernet links to the Ethernet bundle. These tasks are describe in detail in the procedure that follows. In order for a VLAN bundle to be active, you must perform the same configuration on both ends of the bundle connection. #### **SUMMARY STEPS** The creation of a VLAN link bundle is described in the steps that follow. - 1. configure - 2. interface Bundle-Ether bundle-id - 3. ipv4 address ipv4-address mask - 4. bundle minimum-active bandwidth kbps (Optional) - 5. bundle minimum-active links links - 6. bundle maximum-active links links [hot-standby] - 7. lacp fast-switchover - 8. exit - 9. interface Bundle-Ether bundle-id.vlan-id - 10. dot1q vlan vlan-id - 11. ipv4 address ipv4-address mask - 12. no shutdown - 13. exit - 14. Repeat Step 9through Step 12 to add more VLANs to the bundle you created in Step 2. - 15. end or commit - 16. exit - 17. exit - 18. configure - **19. interface** {**TenGigE**} *interface-path-id* - **20.** bundle id bundle-id [mode {active | on | passive}] - 21. bundle port-priority priority - 22. no shutdown - 23. Repeat Step19 through Step 21 to add more Ethernet Interfaces to the bundle you created in Step 2. 24. end or commit - **25.** Perform Step 1 through Step 23 on the remote end of the connection. - 26. show bundle Bundle-Ether bundle-id - 27. show vlan interface - **28.** show vlan trunks [{TenGigE | Bundle-Ether} interface-path-id] [brief | summary] [location node-id] | | Command or Action | Purpose | |--------|---|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface Bundle-Ether bundle-id | Creates and names a new Ethernet link bundle. | | | <pre>Example: RP/0/RP0/CPU0:router#(config)# interface Bundle-Ether 3</pre> | This interface Bundle-Ether command enters you into the interface configuration submode, where you can enter interface-specific configuration commands. Use the exit command to exit from the interface configuration submode back to the normal XR configuration mode. | | Step 3 | <pre>ipv4 address ipv4-address mask Example: RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.1.2.3 255.0.0.0</pre> | Assigns an IP address and subnet mask to the virtual interface using the ipv4 address configuration subcommand. | | Step 4 | <pre>bundle minimum-active bandwidth kbps Example: RP/0/RP0/CPU0:router(config-if)# bundle minimum-active bandwidth 580000</pre> | (Optional) Sets the minimum amount of bandwidth required before a user can bring up a bundle. | | Step 5 | <pre>Example: RP/0/RP0/CPU0:router(config-if) # bundle minimum-active links 2</pre> | (Optional) Sets the number of active links required before you can bring up a specific bundle. | | | Command or Action | Purpose | |---------|---|---| | Step 6 | <pre>bundle maximum-active links links [hot-standby] Example: RP/0/RP0/CPU0:router(config-if)# bundle maximum-active links 1 hot-standby</pre> | (Optional) Implements 1:1 link protection for the bundle, which causes the highest-priority link in the bundle to become active and the second-highest-priority link to become the standby. Also, specifies that a switchover between active and standby LACP-enabled links is implemented per a proprietary optimization. | | | | Note The priority of the active and standby links is based on the value of the bundle port-priority command. | | Step 7 | <pre>Example: RP/0/RP0/CPU0:router(config-if)# lacp fast-switchover</pre> | (Optional) If you enabled 1:1 link protection (you set the value of the bundle maximum-active links command to 1) on a bundle with member links running LACP, you can optionally disable the wait-while timer in the LACP state machine. Disabling this timer causes a bundle member link in standby mode to expedite its normal state negotiations, thereby enabling a faster switchover from a failed active link to the standby link. | | Step 8 | exit | Exits the interface configuration submode. | | Step 9 | Example: RP/0/RP0/CPU0:router(config-if)# exit interface Bundle-Ether bundle-id.vlan-id | Creates a new VLAN, and assigns the VLAN to | | этер э | Intellace Bundle-Ethel Bundle-1d. Vian-1d | the Ethernet bundle you created in Step 2. | | | Example: RP/0/RP0/CPU0:router#(config)# interface | Replace the <i>bundle-id</i> argument with the <i>bundle-id</i> you created in Step 2. | | | Bundle-Ether 3.1 | Replace the <i>vlan-id</i> with a subinterface identifier.
Range is from 1 to 4094 inclusive (0 and 4095 are reserved). | | | | Note When you include the .vlan-id argument with the interface Bundle-Ether bundle-id command, you enter subinterface configuration mode. | | Step 10 | ipv4 address ipv4-address mask | Assigns an IP address and subnet mask to the subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router#(config-subif)# ipv4 address 10.1.2.3/24</pre> | | | Step 11 | no shutdown | (Optional) If a link is in the down state, bring it up. The no shutdown command returns the link to an up or down state depending on the | | | Example: RP/0/RP0/CPU0:router#(config-subif)# no shutdown | configuration and state of the link. | | | Command or Action | Purpose | |---------|--|--| | Step 12 | exit | Exits subinterface configuration mode for the VLAN subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# exit</pre> | | | Step 13 | Repeat Step 9 through Step 12 to add more VLANS to the bundle you created in Step 2. | (Optional) Adds more sub-interfaces to the bundle. | | | <pre>interface Bundle-Ether bundle-id.vlan-id dot1q vlan vlan-id ipv4 address ipv4-address mask no shutdown exit</pre> | | | | Example: RP/0/RP0/CPU0:router(config-subif) # interface Bundle-Ether 3.1 RP0RP/0/RP0/CPU0:router(config-subif) # ipv4 address 20.2.3.4/24 RP/0/RP0/CPU0:router(config-subif) # no shutdown exit | | | Step 14 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# end Or RP/0/RP0/CPU0:router(config-subif)# commit</pre> | system prompts you to commit changes: Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. Entering no exits the configuration session and returns the router to XR EXEC mode without committing the configuration changes. Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes. Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 15 | exit | Exits interface configuration mode. | | | | | | | Example: | | | | RP/0/RP0/CPU0:router(config-subif)# end | <u> </u> | | | Command or Action | Purpose | |--------|---|---| | tep 16 | exit | Exits XR configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# exit</pre> | | | tep 17 | configure | Enters XR configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router # configure</pre> | | | ep 18 | <pre>interface {TenGigE} interface-path-id</pre> | Enters interface configuration mode for the Ethernet interface you want to add to the Bundle. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# interface GigabitEthernet 1/0/0/0</pre> | Enter the TenGigE keyword to specify the interface type. Replace the <i>interface-path-id</i> argument with the node-id in the rack/slot/module format. | | | | Note A VLAN bundle is not active until you add an Ethernet
interface on both ends of the link bundle. | | ep 19 | bundle id bundle-id [mode {active on passive}] | Adds an Ethernet interface to the bundle you configured in Step 2 through Step 13. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# bundle-id 3</pre> | To enable active or passive LACP on the bundle, include the optional mode active or mode passive keywords in the command string. | | | | To add the interface to the bundle without LACP support, include the optional mode on keywords with the command string. | | | | Note If you do not specify the mode keyword, the default mode is on (LACP is not run over the port). | | ep 20 | <pre>Example: RP/0/RP0/CPU0:router(config-if)# bundle port-priority 1</pre> | (Optional) If you set the bundle maximum-active links command to 1, you must also set the priority of the active link to the highest priority (lowest value) and the standby link to the second-highest priority (next lowest value). For example, you can set the priority of the active link to 1 and the standby link to 2. | | ep 21 | no shutdown | (Optional) If a link is in the down state, bring it up. The no shutdown command returns the link to an up or down state depending on the | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# no shutdown</pre> | configuration and state of the link. | | ep 22 | _ | Repeat Step 19 through Step 21 to add more Ethernet interfaces to the VLAN bundle. | | | Command or Action | Purpose | |---------|---|--| | Step 23 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# end or RP/0/RP0/CPU0:router(config-subif)# commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. Entering no exits the configuration session and returns the router to XR | | | | EXEC mode without committing the configuration changes. | | | | Entering cancel leaves the router in the
current configuration session without
exiting or committing the configuration
changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 24 | Perform Step 1 through Step 23 on the remote end of the VLAN bundle connection. | Brings up the other end of the link bundle. | | Step 25 | show bundle Bundle-Ether bundle-id | (Optional) Shows information about the specified Ethernet link bundle. | | | Example: RP/0/RP0/CPU0:router# show bundle Bundle-Ether 3 | The show bundle Bundle-Ether command displays information about the specified bundle. If your bundle has been configured properly and is carrying traffic, the State field in the show bundle Bundle-Ether command output shows the number "4," which means the specified VLAN bundle port is "distributing." | | Step 26 | show vlan interface | Displays the current VLAN interface and status configuration. | | | Example: RP/0/RP0/CPU0:router # show vlan interface | | | | Command or Action | Purpose | |---------|---|---| | Step 27 | <pre>show vlan trunks [{TenGigE Bundle-Ether} interface-path-id] [brief summary] [location node-id]</pre> | (Optional) Displays summary information about each of the VLAN trunk interfaces. | | | 1940 14) | • The keywords have the following meanings: | | | Example: | brief—Displays a brief summary. | | | RP/0/RP0/CPU0:router# show vlan trunk summary | summary—Displays a full summary. | | | | location—Displays information about
the VLAN trunk interface on the given
slot. | | | | interface—Displays information about
the specified interface or subinterface. | | | | Use the show vlan trunks command to verify that all configured VLAN subinterfaces on an Ethernet bundle are "up." | | Step 28 | <pre>Lxample: RP/0/RP0/CPU0:router(config-if)# lacp fast-switchover</pre> | (Optional) If you enabled 1:1 link protection (you set the value of the bundle maximum-active links command to 1) on a bundle with member links running LACP, you can optionally disable the wait-while timer in the LACP state machine. Disabling this timer causes a bundle member link in standby mode to expedite its normal state negotiations, thereby enabling a faster switchover from a failed active link to the standby link. | 29. **30**. 15 # **Configuring the Default LACP Short Period Time Interval** This section describes how to configure the default short period time interval for sending and receiving LACP packets on a Gigabit Ethernet interface. This procedure also enables the LACP short period. #### **SUMMARY STEPS** To enable an LACP short period time interval, using the default time of 1 second, perform the following steps. - 1. configure - 2. interface GigabitEthernet interface-path - 3. bundle id number mode active - 4. lacp period short - 5. commit | | Command or Action | Purpose | |--------|--|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface GigabitEthernet interface-path | Creates a Ten Gigabit Ethernet interface and enters interface configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config) # interface TenGigE 0/0/0/1</pre> | | | Step 3 | bundle id number mode active | Specifies the bundle interface and puts the member interface in active mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# bundle id 1 mode active</pre> | | | | Command or Action | Purpose | |--------|--|--| | Step 4 | <pre>lacp period short Example: RP/0/RP0/CPU0:router(config-if)# lacp period short</pre> | Configures a short period time interval for the sending and receiving of LACP packets, using the default time period of 1000 milliseconds or 1 second. | | Step 5 | <pre>end or commit Example: RP/0/RP0/CPU0:router(config-if)# end or RP/0/RP0/CPU0:router(config-if)# end or RP/0/RP0/CPU0:router(config-if)# commit</pre> | Saves configuration changes. When you issue the end command, the system prompts you to commit changes: Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. Entering no exits the configuration session and returns the router to XR EXEC mode without committing the configuration changes. Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes. | | | | Use the commit command to save the
configuration changes to the running
configuration file and remain within the
configuration session. | # **Configuring Custom LACP Short Period Time Intervals** This section describes how to configure custom short period time intervals (less than 1000 milliseconds) for sending and receiving LACP packets on a Gigabit Ethernet interface. You must always configure the *transmit* interval at both ends of the connection before you configure the *receive* interval at either end of the connection. Failure to configure the *transmit* interval at both ends first results in route flapping (a route going up and down continuously). When you remove a custom LACP short period, you must do it in reverse order. You must remove the *receive* intervals first and then the *transmit* intervals. #### **SUMMARY STEPS** To configure custom receive and transmit intervals for LACP packets, perform the following steps. #### **Router A** - 1. configure - 2. interface GigabitEthernet interface-path -
3. bundle id number mode active - 4. lacp period short - 5. commit #### **Router B** - 6. configure - 7. interface GigabitEthernet interface-path - 8. bundle id number mode active - 9. lacp period short - 10. commit #### **Router A** - 11. configure - 12. interface GigabitEthernet interface-path - 13. lacp period short transmit interval - 14. commit #### **Router B** - 15. configure - 16. interface GigabitEthernet interface-path - 17. lacp period short transmit interval - 18. commit #### **Router A** - 19. configure - 20. interface GigabitEthernet interface-path - 21. lacp period short receive interval - 22. commit #### **Router B** - 23. configure - 24. interface GigabitEthernet interface-path - 25. lacp period short receive interval - 26. commit or end | | Command or Action | Purpose | |--------|---|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface Bundle-Ether bundle-id | Creates and names a new Ethernet link bundle. | | | <pre>Example: RP/0/RP0/CPU0:router#(config)# interface Bundle-Ether 3</pre> | This interface Bundle-Ether command enters you into the interface configuration submode, where you can enter interface-specific configuration commands. Use the exit command to exit from the interface configuration submode back to the normal XR configuration mode. | | Step 3 | <pre>ipv4 address ipv4-address mask Example: RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.1.2.3 255.0.0.0</pre> | Assigns an IP address and subnet mask to the virtual interface using the ipv4 address configuration subcommand. | | Step 4 | <pre>bundle minimum-active bandwidth kbps Example: RP/0/RP0/CPU0:router(config-if)# bundle minimum-active bandwidth 580000</pre> | (Optional) Sets the minimum amount of bandwidth required before a user can bring up a bundle. | | Step 5 | bundle minimum-active links links Example: RP/0/RP0/CPU0:router(config-if) # bundle minimum-active links 2 | (Optional) Sets the number of active links required before you can bring up a specific bundle. | | Step 6 | <pre>Example: RP/0/RP0/CPU0:router(config-if) # bundle maximum-active links 1</pre> | (Optional) Designates one active link and one link in standby mode that can take over immediately for a bundle if the active link fails (1:1 protection). Note The default number of active links allowed in a single bundle is 8. | | | | Note If the bundle maximum-active command is issued, then only the highest-priority link within the bundle is active. The priority is based on the value from the bundle port-priority command, where a lower value is a higher priority. Therefore, we recommend that you configure a higher priority on the link that you want to be the active link. | | Step 7 | exit | Exits the interface configuration submode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# exit</pre> | | | | Command or Action | Purpose | |---------|---|---| | Step 8 | interface Bundle-Ether bundle-id.vlan-id | Creates a new VLAN, and assigns the VLAN to the Ethernet bundle you created in Step 2. | | | Example: RP/0/RP0/CPU0:router#(config)# interface | Replace the <i>bundle-id</i> argument with the <i>bundle-id</i> you created in Step 2. | | | Bundle-Ether 3.1 | Replace the <i>vlan-id</i> with a subinterface identifier. Range is from 1 to 4094 inclusive (0 and 4095 are reserved). | | | | Note When you include the .vlan-id argument with the interface Bundle-Ether bundle-id command, you enter subinterface configuration mode. | | Step 9 | dot1q vlan vlan-id | Assigns a VLAN to the subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router#(config-subif)# dot1q vlan 10</pre> | Replace the <i>vlan-id</i> argument with a subinterface identifier. Range is from 1 to 4094 inclusive (0 and 4095 are reserved). | | Step 10 | ipv4 address ipv4-address mask | Assigns an IP address and subnet mask to the subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router#(config-subif)# ipv4 address 10.1.2.3/24</pre> | | | Step 11 | no shutdown | (Optional) If a link is in the down state, bring it up. The no shutdown command returns the link to | | | <pre>Example: RP/0/RP0/CPU0:router#(config-subif)# no shutdown</pre> | an up or down state depending on the configuration and state of the link. | | Step 12 | exit | Exits subinterface configuration mode for the VLAN subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# exit</pre> | | | Step 13 | Repeat Step 7 through Step 12 to add more VLANs to the bundle you created in Step 2. | (Optional) Adds more subinterfaces to the bundle. | | | Command or Action | Purpose | |---------|--|--| | Step 14 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# end</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: | | | <pre>or RP/0/RP0/CPU0:router(config-subif)# commit</pre> | Entering yes saves configuration changes
to the running configuration file, exits the
configuration session, and returns the
router to XR EXEC mode. | | | | Entering no exits the configuration
session and returns the router to XR
EXEC mode without committing the
configuration changes. | | | | Entering cancel leaves the router in the
current configuration session without
exiting or committing the configuration
changes. | | | | Use the commit command to save the
configuration changes to the running
configuration file and remain within the
configuration session. | | Step 15 | exit | Exits interface configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# exit</pre> | | | Step 16 | exit | Exits XR configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# exit</pre> | | | Step 17 | show ethernet trunk bundle-ether instance | (Optional) Displays the interface configuration. | | | Example: RP/0/RP0/CPU0:router# show ethernet trunk bundle-ether 5 | The Ethernet bundle instance range is from 1 through 65535. | | Step 18 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router # configure | | | | Command or Action | Purpose | |----|--|---| | ı | <pre>interface {GigabitEthernet TenGigE} interface-path-id</pre> | Enters the interface configuration mode for the Ethernet interface you want to add to the Bundle. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# interface TenGigE 1/0/0/0</pre> | Enter the TenGigE keyword to specify the interface type. Replace the <i>interface-path-id</i> argument with the node-id in the <i>rack/slot/module</i> format. | | | | Note A VLAN bundle is not active until you add an Ethernet interface on both ends of the link bundle. | | 20 | bundle id bundle-id [mode {active on passive}] | Adds an Ethernet interface to the bundle you configured in Step 2 through Step 13. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# bundle-id 3</pre> | To enable active or passive LACP on the bundle, include the optional mode active or mode passive keywords in the command string. | | | | To add the interface to the bundle without LACP support, include the optional mode on keywords with the command string. | | | | Note If you do not specify the mode keyword, the default mode is on (LACP is not run over the port). | | | no shutdown | (Optional) If a link is in the down state, bring it up. The no shutdown command returns the link to | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# no shutdown</pre> | an up or down state depending on the configuration and state of the link. | | | Repeat Step 19 through Step 21 to add more Ethernet interfaces to the VLAN bundle. | _ | | | Command or Action | Purpose | |---------|---|---| | Step 23 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# end</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: | | | <pre>Or RP/0/RP0/CPU0:router(config-subif)# commit</pre> | Entering yes saves configuration changes
to the running configuration file, exits the
configuration session, and returns
the
router to XR EXEC mode. | | | | Entering no exits the configuration
session and returns the router to XR
EXEC mode without committing the
configuration changes. | | | | Entering cancel leaves the router in the
current configuration session without
exiting or committing the configuration
changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 24 | Perform Step 1 through Step 23 on the remote end of the VLAN bundle connection. | Brings up the other end of the link bundle. | | Step 25 | show bundle Bundle-Ether bundle-id [reasons] | (Optional) Shows information about the specified Ethernet link bundle. | | | Example: RP/0/RP0/CPU0:router# show bundle Bundle-Ether 3 reasons | The show bundle Bundle-Ether command displays information about the specified bundle. If your bundle has been configured properly and is carrying traffic, the State field in the show bundle Bundle-Ether command output will show the number "4," which means the specified VLAN bundle port is "distributing." | | Step 26 | show ethernet trunk bundle-ether instance | (Optional) Displays the interface configuration. | | | Example: RP/0/RP0/CPU0:router# show ethernet trunk bundle-ether 5 | The Ethernet bundle instance range is from 1 through 65535. | # **Configuration Examples for Link Bundling** This section contains the following examples: - Example: Configuring an Ethernet Link Bundle, page 99 - Example: Configuring a VLAN Link Bundle, page 99 - Example: Configuring EFP Load Balancing on an Ethernet Link Bundle, page 100 - Examples: Configuring LACP Short Periods, page 101 ## **Example: Configuring an Ethernet Link Bundle** This example shows how to join two ports to form an EtherChannel bundle running LACP: ``` RP/0/RP0/CPU0:Router# config RP/0/RP0/CPU0:Router(config)# interface Bundle-Ether 3 RP/0/RP0/CPU0:Router(config-if)# ipv4 address 1.2.3.4/24 RP/0/RP0/CPU0:Router(config-if)# bundle minimum-active bandwidth 620000 RP/0/RP0/CPU0:Router(config-if)# bundle minimum-active links 1 RP/0/RP0/CPU0:Router(config-if)# bundle maximum-active links 1 hot-standby RP/0/RP0/CPU0:Router(config-if)# lacp fast-switchover RP/0/RP0/CPU0:Router(config-if)# exit RP/0/RP0/CPU0:Router(config) # interface TenGigE 0/3/0/0 RP/0/RP0/CPU0:Router(config-if)# bundle id 3 mode active RP/0/RP0/CPU0:Router(config-if)# bundle port-priority 1 RP/0/RP0/CPU0:Router(config-if)# no shutdown RP/0/RP0/CPU0:Router(config)# exit RP/0/RP0/CPU0:Router(config)# interface TenGigE 0/3/0/1 RP/0/RP0/CPU0:Router(config-if)# bundle id 3 mode active RP/0/RP0/CPU0:Router(config-if)# bundle port-priority 2 RP/0/RP0/CPU0:Router(config-if)# no shutdown RP/0/RP0/CPU0:Router(config-if)# exit ``` ## **Example: Configuring a VLAN Link Bundle** The following example shows how to create and bring up two VLANs on an Ethernet bundle: ``` RP/0/RP0/CPU0:Router# config RP/0/RP0/CPU0:Router(config)# interface Bundle-Ether 1 RP/0/RP0/CPU0:Router(config-if)# ipv4 address 1.2.3.4/24 RP/0/RP0/CPU0:Router(config-if)# bundle minimum-active bandwidth 620000 RP/0/RP0/CPU0:Router(config-if)# bundle minimum-active links 1 RP/0/RP0/CPU0:Router(config-if)# exit RP/0/RP0/CPU0:Router(config)# interface Bundle-Ether 1.1 RP/0/RP0/CPU0:Router(config-subif) # dot1q vlan 10 RP/0/RP0/CPU0:Router(config-subif)# ip addr 10.2.3.4/24 RP/0/RP0/CPU0:Router(config-subif)# no shutdown RP/0/RP0/CPU0:Router(config-subif)# exit RP/0/RP0/CPU0:Router(config)# interface Bundle-Ether 1.2 RP/0/RP0/CPU0:Router(config-subif)# dot1q vlan 20 RP/0/RP0/CPU0:Router(config-subif)# ip addr 20.2.3.4/24 RP/0/RP0/CPU0:Router(config-subif)# no shutdown RP/0/RP0/CPU0:Router(config-subif)# exit RP/0/RP0/CPU0:Router(config)#interface gig 0/1/5/7 RP/0/RP0/CPU0:Router(config-if) # bundle-id 1 mode act RP/0/RP0/CPU0:Router(config-if)# commit RP/0/RP0/CPU0:Router(config-if)# exit RP/0/RP0/CPU0:Router(config)# exit ``` RP/0/RP0/CPU0:Router # show vlan trunks # **Example: Configuring EFP Load Balancing on an Ethernet Link Bundle** The following example shows how to configure all egressing traffic on the fixed members of a bundle to flow through the same physical member link automatically. ``` RP/0/RP0/CPU0:router# configuration terminal RP/0/RP0/CPU0:router(config)# interface bundle-ether 1.1 12transport RP/0/RP0/CPU0:router(config-subif)# bundle load-balancing hash auto RP/0/RP0/CPU0:router(config-subif)# ``` The following example shows how to configure all egressing traffic on the fixed members of a bundle to flow through a specified physical member link. ``` RP/0/RP0/CPU0:router# configuration terminal RP/0/RP0/CPU0:router(config)# interface bundle-ether 1.1 l2transport RP/0/RP0/CPU0:router(config-subif)# bundle load-balancing hash 1 RP/0/RP0/CPU0:router(config-subif)# ``` # **Examples: Configuring LACP Short Periods** The following example shows how to configure the LACP short period time interval to the default time of 1000 milliseconds (1 second): ``` config interface TenGigE 0/1/0/1 bundle id 1 mode active lacp period short commit ``` The following example shows how to configure custom LACP short period transmit and receive intervals to *less than* the default of 1000 milliseconds (1 second): #### **Router A** ``` config interface TenGigE 0/1/0/1 bundle id 1 mode active lacp period short commit ``` #### Router B ``` config interface TenGigE 0/1/0/1 bundle id 1 mode active lacp period short commit ``` #### **Router A** ``` config interface TenGigE 0/1/0/1 lacp period short transmit 100 commit ``` #### **Router B** ``` config interface TenGigE 0/1/0/1 lacp period short transmit 100 commit ``` #### Router A ``` config interface TenGigE 0/1/0/1 lacp period short receive 100 commit ``` #### **Router B** ``` config interface TenGigE 0/1/0/1 lacp period short receive 100 commit ``` # **Additional References** These sections provide references related to link bundle configuration. # **Related Documents** ## **Standards** | Standards | Title | |---|-------| | IEEE 802.3ad (incorporated as Annex 43 into 802.3-2002) | | ### **MIBs** | MIBs | MIBs Link | |--------|---| | EE E . | To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: | | | http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | ### **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | # **Technical Assistance** | Description | Link | |---|----------------------------------| | The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content. | http://www.cisco.com/techsupport | # **Configuring Virtual Loopback and Null Interfaces** This module describes the configuration of loopback and null interfaces on the Cisco NCS 6000 Series Router. Loopback and null interfaces are considered virtual interfaces. A virtual interface represents a logical packet switching entity within the router. Virtual interfaces have a global scope and do not have an associated location. Virtual interfaces have instead a globally unique numerical ID after their names. Examples are Loopback 0, Loopback 1, and Loopback 99999. The ID is unique per virtual interface type to make the entire name string unique such that you can have both Loopback 0 and Null 0. Loopback and null interfaces have their control plane presence on the active route processor (RP). The configuration and control plane are mirrored onto the standby RP and, in the event of a switchover, the virtual interfaces move to the ex-standby, which then becomes the newly active RP. #### Feature History for Configuring Loopback and Null Interfaces | Release | Modification | |---------------|--| | Release 5.0.0 | This feature was introduced on the Cisco NCS 6000 Series Router. | ## **Contents** - Prerequisites for Configuring Virtual Interfaces, page 103 - Information About Configuring Virtual Interfaces, page 104 - How to Configure Virtual Interfaces, page 106 - Configuration Examples for Virtual Interfaces, page 109 - Additional References, page 111 # **Prerequisites for Configuring Virtual Interfaces** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. # **Information About Configuring Virtual Interfaces** To configure virtual interfaces, you must understand the following concepts: - Virtual Loopback Interface Overview, page 104 - Null Interface Overview, page 104 - Virtual Management Interface Overview, page 105 - Active and Standby RPs and Virtual Interface Configuration, page 105 ## **Virtual Loopback Interface Overview** A virtual loopback interface is a virtual interface with a single endpoint that is always up. Any packet transmitted over a virtual loopback interface is immediately received by the selfsame interface.
Loopback interfaces emulate a physical interface. In Cisco IOS XR software, virtual loopback interfaces perform the following functions: - Loopback interfaces can act as a termination address for routing protocol sessions. This allows routing protocol sessions to stay up even if the outbound interface is down. - You can ping the loopback interface to verify that the router IP stack is working properly. In applications where other routers or access servers attempt to reach a virtual loopback interface, you must configure a routing protocol to distribute the subnet assigned to the loopback address. Packets routed to the loopback interface are rerouted back to the router or access server and processed locally. IP packets routed out the loopback interface but not destined to the loopback interface are dropped. Under these two conditions, the loopback interface can behave like a null interface. ### **Null Interface Overview** A null interface functions similarly to the null devices available on most operating systems. This interface is always up and can never forward or receive traffic; encapsulation always fails. The null interface provides an alternative method of filtering traffic. You can avoid the overhead involved with using access lists by directing undesired network traffic to the null interface. The Null 0 interface can be displayed with the **show interfaces null0** command. ## **Virtual Management Interface Overview** Configuring an IPv4 virtual address enables you to access the router from a single virtual address with a management network without prior knowledge of which RP is active. An IPv4 virtual address persists across route processor (RP) switchover situations. For this to happen, the virtual IPv4 address must share a common IPv4 subnet with a management Ethernet interface on both RPs. On a Cisco NCS 6000 Series Router where each RP has multiple management Ethernet interfaces, the virtual IPv4 address maps to the management Ethernet interface on the active RP that shares the same IP subnet. ## **Active and Standby RPs and Virtual Interface Configuration** The standby RP is available and in a state in which it can take over the work from the active RP should that prove necessary. Conditions that necessitate the standby RP to become the active RP and assume the active RP's duties include: - Failure detection by a watchdog - Administrative command to take over - Removal of the active RP from the chassis If a second RP is not present in the chassis while the first is in operation, a second RP may be inserted and automatically becomes the standby RP. The standby RP may also be removed from the chassis with no effect on the system other than loss of RP redundancy. After switchover, the virtual interfaces all are present on the standby (now active) RP. Their state and configuration are unchanged and there has been no loss of forwarding (in the case of tunnels) over the interfaces during the switchover. The routers use nonstop forwarding (NSF) over bundles and tunnels through the switchover of the host RP. The user need not configure anything to guarantee that the standby interface configurations are maintained. Protocol configuration such as tacacs source-interface, snmp-server trap-source, ntp source, logging source-interface do not use the virtual management IP address as their source by default. Use the **ipv4 virtual address use-as-src-addr** command to ensure that the protocol uses the virtual IPv4 address as its source address. Alternatively, you can also configure a loopback address with the designated or desired IPv4 address and set that as the source for protocols such as TACACS+ using the **tacacs source-interface** command. # **How to Configure Virtual Interfaces** This section contains the following procedures: - Configuring Virtual Loopback Interfaces, page 106 (Required) - Configuring Null Interfaces, page 107 (Required) - Configuring Virtual IPv4 Interfaces, page 108 (Required) # **Configuring Virtual Loopback Interfaces** This task explains how to configure a basic loopback interface. ### **Restrictions** The IP address of a loopback interface must be unique across all routers on the network. It must not be used by another interface on the router, and it must not be used by an interface on any other router on the network. #### **SUMMARY STEPS** - 1. configure - 2. interface loopback interface-path-id - 3. ipv4 address ip-address - 4. end or commit - 5. show interfaces type interface-path-id #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|---| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface loopback interface-path-id | Enters interface configuration mode and names the new loopback interface. | | | <pre>Example: RP/0/RP0/CPU0:router#(config)# interface Loopback 3</pre> | | | tep 3 | ipv4 address ip-address | Assigns an IP address and subnet mask to the virtual loopback interface using the ipv4 address configuration | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # ipv4 address 172.18.189.38/32</pre> | command. | | | Command or Action | Purpose | | |--------|---|--|--| | Step 4 | end | Saves configuration changes. | | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end or RP/0/RP0/CPU0:router(config-if)# commit</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: - Entering yes saves configuration changes to the running configuration file, exits the configuration | | | | | session, and returns the router to XR EXEC mode. Entering no exits the configuration session and returns the router to XR EXEC mode without committing the configuration changes. | | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | | Step 5 | Example: show interfaces type interface-path-id RP/0/RP0/CPU0:router# show interfaces Loopback 3 | (Optional) Displays the configuration of the loopback interface. | | # **Configuring Null Interfaces** This task explains how to configure a basic null interface. #### **SUMMARY STEPS** - 1. configure - 2. interface null 0 - 3. end or commit - **4. show interfaces** *type interface-path-id* #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface null 0 | Enters null0 interface configuration mode. | | | Example: RP/0/RP0/CPU0:router#(config)# interface null 0 | | | Step 3 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-null0)# end or RP/0/RP0/CPU0:router(config-null0)# commit</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 4 | show interfaces null 0 | Verifies the configuration of the null interface. | | | Example: RP/0/RP0/CPU0:router# show interfaces null0 | | # **Configuring Virtual IPv4 Interfaces** This task explains how to configure an IPv4 virtual interface. #### **SUMMARY STEPS** - 1. configure - 2. ipv4 address virtual address ip-address subnet mask - 3. end or commit #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | Step 2 | Example: RP/0/RP0/CPU0:router# configure ipv4 address virtual address ipv4-address/mask Example: | Defines an IPv4 virtual address for the management Ethernet interface. | | | RP/0/RP0/CPU0:router(config)# ipv4 virtual address 10.3.32.154/8 | | | Step 3 | end
Or
commit | Saves configuration changes. • When you issue the end command, the system prompts you to commit changes: | | |
<pre>Example: RP/0/RP0/CPU0:router(config-null0)# end</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: | | | <pre>or RP/0/RP0/CPU0:router(config-null0)# commit</pre> | Entering yes saves configuration changes to the
running configuration file, exits the configuration
session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | # **Configuration Examples for Virtual Interfaces** This section provides the following configuration examples: - Configuring a Loopback Interface: Example, page 109 - Configuring a Null Interface: Example, page 110 # **Configuring a Loopback Interface: Example** The following example indicates how to configure a loopback interface: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface Loopback 3 RP/0/RP0/CPU0:router(config-if)# ipv4 address 172.18.189.38/32 RP/0/RP0/CPU0:router(config-if)# end Uncommitted changes found, commit them? [yes]: yes RP/0/RP0/CPU0:router# show interfaces Loopback 3 ``` ``` Loopback3 is up, line protocol is up Hardware is Loopback interface(s) Internet address is 172.18.189.38/32 MTU 1514 bytes, BW Unknown reliability 0/255, txload Unknown, rxload Unknown Encapsulation Loopback, loopback not set Last clearing of "show interface" counters never 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes, 0 total input drops 0 drops for unrecognized upper-level protocol Received 0 broadcast packets, 0 multicast packets 0 packets output, 0 bytes, 0 total output drops Output 0 broadcast packets, 0 multicast packets ``` ## **Configuring a Null Interface: Example** The following example indicates how to configure a null interface: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface Null 0 RP/0/RP0/CPU0:router(config-null0)# end Uncommitted changes found, commit them? [yes]: yes RP/0/RP0/CPU0:router# show interfaces Null 0 NullO is up, line protocol is up Hardware is Null interface Internet address is Unknown MTU 1500 bytes, BW Unknown reliability 0/255, txload Unknown, rxload Unknown Encapsulation Null, loopback not set Last clearing of "show interface" counters never 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes, 0 total input drops O drops for unrecognized upper-level protocol Received 0 broadcast packets, 0 multicast packets O packets output, O bytes, O total output drops Output 0 broadcast packets, 0 multicast packets ``` ## **Configuring a Virtual IPv4 Interface: Example** ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# ipv4 virtual address 10.3.32.154/8 RP/0/RP0/CPU0:router(config-null0)# commit ``` # **Additional References** The following sections provide references related to loopback and null interface configuration. # **Related Documents** | Related Topic | Document Title | |---|--| | Cisco IOS XR master command reference | Cisco IOS XR Master Commands List | | Cisco IOS XR interface configuration commands | Cisco IOS XR Interface and Hardware Component Command
Reference | | Initial system bootup and configuration information for a router using the Cisco IOS XR Software. | Cisco IOS XR Getting Started Guide | | Information about user groups and task IDs | Cisco IOS XR Interface and Hardware Component Command
Reference | # **Standards** | Standards | Title | |---|-------| | No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. | _ | ## **MIBs** | MIBs | MIBs Link | |---|---| | There are no applicable MIBs for this module. | To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: | | | http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | # **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | # **Technical Assistance** | Description | Link | |--|----------------------------------| | The Cisco Technical Support website contains | http://www.cisco.com/techsupport | | thousands of pages of searchable technical content, | | | including links to products, technologies, solutions, | | | technical tips, and tools. Registered Cisco.com users | | | can log in from this page to access even more content. | | # **Configuring 802.10 VLAN Interfaces** This module describes the configuration and management of 802.1Q VLAN interfaces on the Cisco NCS 6000 Series Router. The IEEE 802.1Q specification establishes a standard method for tagging Ethernet frames with VLAN membership information, and defines the operation of VLAN bridges that permit the definition, operation, and administration of VLAN topologies within a bridged LAN infrastructure. The 802.1Q standard is intended to address the problem of how to divide large networks into smaller parts so broadcast and multicast traffic does not use more bandwidth than necessary. The standard also helps provide a higher level of security between segments of internal networks. #### Feature History for Configuring 802.10 VLAN Interfaces | Release | Modification | |---------------|------------------------------| | Release 5.0.0 | This feature was introduced. | ## **Contents** - Prerequisites for Configuring 802.1Q VLAN Interfaces, page 113 - Information About Configuring 802.1Q VLAN Interfaces, page 114 - How to Configure 802.1Q VLAN Interfaces, page 115 - Configuration Examples for VLAN Interfaces, page 123 - Additional References, page 125 # **Prerequisites for Configuring 802.10 VLAN Interfaces** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. Before configuring 802.1Q VLAN interfaces, be sure that the following conditions are met: • You must have configured a a 10-Gigabit Ethernet interface, a Fast Ethernet interface, or an Ethernet Bundle. # **Information About Configuring 802.10 VLAN Interfaces** To configure 802.1Q VLAN interfaces, you must understand the following concepts: - 802.1Q VLAN Overview, page 114 - 802.1Q Tagged Frames, page 114 - Subinterfaces, page 114 - Subinterface MTU, page 115 - Native VLAN, page 115 - VLAN Sub-interfaces on Ethernet Bundles, page 115 • ### 802.10 VLAN Overview A VLAN is a group of devices on one or more LANs that are configured so that they can communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments. Because VLANs are based on logical instead of physical connections, they are very flexible for user and host management, bandwidth allocation, and resource optimization. The IEEE 802.1Q protocol standard addresses the problem of dividing large networks into smaller parts so broadcast and multicast traffic does not consume more bandwidth than necessary. The standard also helps provide a higher level of security between segments of internal networks. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames. Cisco IOS XR software supports VLAN subinterface configuration on 10-Gigabit Ethernet, and Fast Ethernet interfaces. ## **802.10 Tagged Frames** The IEEE 802.1Q tag-based VLAN uses an extra tag in the MAC header to identify the VLAN membership of a frame across bridges. This tag is used for VLAN and quality of service (QoS) priority identification. The VLANs can be created statically by manual entry or dynamically through Generic Attribute Registration Protocol (GARP) VLAN Registration Protocol (GVRP). The VLAN ID associates a frame with a specific VLAN and provides the information that switches must process the frame across the network. A tagged frame is four bytes longer than an untagged frame and contains two bytes of Tag Protocol Identifier (TPID) residing within the type and length field of the Ethernet frame and two bytes of Tag Control Information (TCI) which starts after the source address field of the Ethernet frame. ## **Subinterfaces** Subinterfaces are logical interfaces created on a hardware interface. These software-defined interfaces allow for segregation of traffic into separate logical channels on a single hardware interface as well as allowing for better utilization of the available bandwidth on the physical interface. Subinterfaces are distinguished from one another by adding an extension on the end of the interface name and designation. For instance, the Ethernet subinterface 23 on the physical interface designated TenGigE 0/1/0/0 would be indicated by TenGigE 0/1/0/0.23.
Before a subinterface is allowed to pass traffic it must have a valid tagging protocol encapsulation and VLAN identifier assigned. All Ethernet subinterfaces always default to the 802.1Q VLAN encapsulation. However, the VLAN identifier must be explicitly defined. ### **Subinterface MTU** The subinterface maximum transmission unit (MTU) is inherited from the physical interface with an additional four bytes allowed for the 802.1Q VLAN tag. ### **Native VLAN** Each physical port may have a native VLAN assigned. All untagged frames are assigned to the LAN specified in the PVID parameter. When received packet is tagged with the PVID, that packet is treated as if it was untagged. Therefore, the configuration associated with the native VLAN must be placed on the main interface. The native VLAN allows the coexistence of VLAN-aware bridge or stations with VLAN-unaware bridges or stations. ### **VLAN Sub-interfaces on Ethernet Bundles** An Ethernet bundle is a group of one or more Ethernet ports that are aggregated together and treated as a single link. Multiple VLAN sub-interfaces can be added to a single Ethernet bundle. The procedure for creating VLAN sub-interfaces on an Ethernet bundle is exactly the same as the procedure for creating VLAN sub-interfaces on a physical Ethernet interface. To create a VLAN sub-interface on an Ethernet bundle, see the "How to Configure 802.1Q VLAN Interfaces" section later in this module. # **How to Configure 802.10 VLAN Interfaces** This section contains the following procedures: - Configuring 802.1Q VLAN Subinterfaces, page 115 - , page 117 - Removing an 802.1Q VLAN Subinterface, page 121 ## **Configuring 802.10 VLAN Subinterfaces** This task explains how to configure 802.1Q VLAN sub-interfaces. To remove these sub-interfaces, see the "Removing an 802.1Q VLAN Subinterface" section of this module. #### **SUMMARY STEPS** - 1. configure - 2. interface {HundredGigE | TenGigE | Bundle-Ether } interface-path-id.subinterface - 3. dot1q vlan vlan-id - 4. ipv4 address ip-address mask - 5 exit - **6.** Repeat Step 2 through Step 5 to define the rest of the VLAN subinterfaces. - 7. end commit - 8. show vlan interface [{HundredGigE | TenGigE | Bundle-Ether | } interface-path-id] [location instance] - 9. show vlan trunks [brief] [location instance] [{HundredGigE | TenGigE | Bundle-Ether | } interface-path-id] [summary] #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | <pre>interface {TenGigE Bundle-Ether} interface-path-id.subinterface</pre> | Enters subinterface configuration mode and specifies the interface type, location, and subinterface number. | | | Example: | • Replace the <i>interface-path-id</i> argument with one of the following instances: | | | <pre>RP/0/RP0/CPU0:router(config)# interface TenGigE 0/2/0/4.10</pre> | Physical Ethernet interface instance, or with an Ethernet bundle instance. Naming notation is rack/slot/module/port, and a slash between values is required as part of the notation. | | | | Ethernet bundle instance. Range is from 1 through
65535. | | | | • Replace the <i>subinterface</i> argument with the subinterface value. Range is from 0 through 4095. | | | | • Naming notation is <i>interface-path-id.subinterface</i> , and a period between arguments is required as part of the notation. | | Step 3 | encapsulation dot1q | Sets the Layer 2 encapsulation of an interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# encapsulation dot1q 100</pre> | Note | | Step 4 | ipv4 address ip-address mask | Assigns an IP address and subnet mask to the subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# ipv4 address 178.18.169.23/24</pre> | • Replace <i>ip-address</i> with the primary IPv4 address for an interface. | | | | • Replace <i>mask</i> with the mask for the associated IP subnet. The network mask can be specified in either of two ways: | | | | The network mask can be a four-part dotted
decimal address. For example, 255.0.0.0 indicates
that each bit equal to 1 means that the
corresponding address bit belongs to the network
address. | | | | The network mask can be indicated as a slash (/) and number. For example, /8 indicates that the first 8 bits of the mask are ones, and the corresponding bits of the address are network address. | | | Command or Action | Purpose | |--------|---|--| | Step 5 | exit | (Optional) Exits the subinterface configuration mode. | | | | • The exit command is not explicitly required. | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# exit</pre> | | | Step 6 | Repeat Step 2 through Step 5 to define the rest of the VLAN subinterfaces. | | | Step 7 | end
Or
commit | Saves configuration changes. • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config)# end or RP/0/RP0/CPU0:router(config)# commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 8 | show ethernet trunk bundle-ether instance | (Optional) Displays the interface configuration. | | | Example: RP/0/RP0/CPU0:router# show ethernet trunk bundle-ether 5 | The Ethernet bundle instance range is from 1 through 65535. | # **Configuring an Attachment Circuit on a VLAN** Use the following procedure to configure an attachment circuit on a VLAN. #### **SUMMARY STEPS** - 1. configure - 2. interface {GigabitEthernet | TenGigE | Bundle-Ether] interface-path-id.subinterface | 12transport - 3. dot1q vlan vlan-id - 4. | 12protocol {cdp | pvst | stp | vtp} {[forward | tunnel] [experimental bits] | drop} - 5. end or commit ### $\textbf{6.} \quad \textbf{show interfaces} \ [\textbf{GigabitEthernet} \mid \textbf{TenGigE}] \ \textit{interface-path-id}$ #### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure terminal | | | Step 2 | <pre>interface [GigabitEthernet TenGigE Bundle-Ether TenGigE] interface-path] id.subinterface 12transport</pre> | Enters subinterface configuration and specifies the interface type, location, and subinterface number. | | | | • Replace the <i>interface-path-id</i> argument with one of the following instances: | | | Example: RP/0/RP0/CPU0:router(config)# interface TenGigE 0/1/0/0.1 12transport | Physical Ethernet interface instance, or Ethernet
bundle instance. Naming notation is
rack/slot/module/port, and a slash between values
is required as part of the notation. | | | | - Ethernet bundle instance. Range is from 1 through 65535. | | | | • Replace the <i>subinterface</i> argument with the subinterface value. Range is from 0 through 4095. | | | | • Naming notation is <i>instance.subinterface</i> , and a period between arguments is required as part of the notation. | | | | Note You must include the 12transport keyword in the command string; otherwise, the configuration creates a Layer 3 subinterface rather that an AC. | | Step 3 | dot1q vlan vlan-id | Assigns a VLAN AC to the subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-subif)# dot1q vlan 10 vlan any</pre> | • Replace the vlan-id argument with a subinterface identifier. Range is from 1 to 4094 inclusive (0 and 4095 are reserved). To configure a basic Dot1Q AC, use the following syntax: | | | | dot1q vlan vlan-id | | | | • To configure a Q-in-Q AC, use the following syntax: dotlg vlan vlan-id vlan vlan-id | | | | | | | | • To configure a Q-in-Any AC, use the following syntax: dotlq vlan vlan-id vlan any Note | | | Command or Action | Purpose | |--------|---|--| | Step 4 | 12protocol {cdp pvst stp vtp}{[forward tunnel][experimental bits] drop} | Configures Layer 2 protocol tunneling and protocol data unit (PDU) filtering on an interface. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if-12)# 12protocol stp tunnel</pre>
| Possible protocols and options are: | | | | • cdp —Cisco Discovery Protocol (CDP) tunneling and data unit parameters. | | | | • pvst —Configures VLAN spanning tree protocol tunneling and data unit parameters. | | | | • stp —spanning tree protocol tunneling and data unit parameters. | | | | • vtp —VLAN trunk protocol tunneling and data unit parameters. | | | | • tunnel —(Optional) Tunnels the packets associated with the specified protocol. | | | | • experimental <i>bits</i> —(Optional) Modifies the MPLS experimental bits for the specified protocol. | | | | • drop —(Optional) Drop packets associated with the specified protocol. | | Step 5 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-if-12)# end</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: | | | <pre>Or RP/0/RP0/CPU0:router(config-if-12)# commit</pre> | Entering yes saves configuration changes to the
running configuration file, exits the configuration
session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 6 | <pre>show interfaces [GigabitEthernet TenGigE] interface-path-id.subinterface</pre> | (Optional) Displays statistics for interfaces on the router. | | | Example: RP/0/RP0/CPU0:router# show interfaces TenGigE 0/3/0/0.1 | | #### What to Do Next - To configure a Point-to Point pseudo-wire cross connect on the AC, see the "Implementing MPLS Layer 2 VPNs" module of the Multiprotocol Label Switching Configuration Guide. - To attach Layer 3 service policies, such as Multiprotocol Label Switching (MPLS) or Quality of Service (QoS), to the VLAN, refer to the appropriate configuration guide. # Removing an 802.10 VLAN Subinterface This task explains how to remove 802.1Q VLAN subinterfaces that have been previously configured using the "Configuring 802.1Q VLAN Subinterfaces" section in this module. #### **SUMMARY STEPS** - 1. configure - 2. no interface {TenGigE | Bundle-Ether] interface-path-id.subinterface - 3. Repeat Step 2 to remove other VLAN subinterfaces. - 4. end or commit - **5. show vlan interface** [type interface-path-id] [**location** instance] - 6. **show vlan trunks** [brief] [location instance] [{TenGigE | Bundle-Ether | } interface-path-id] [summary] ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | no interface {TenGigE Bundle-Ether} interface-path-id.subinterface | Removes the subinterface, which also automatically deletes all the configuration applied to the subinterface. | | | <pre>Example: RP/0/RP0/CPU0:router(config)# no interface TenGigE 0/2/0/4.10</pre> | • Replace the <i>instance</i> argument with one of the following instances: | | | | Physical Ethernet interface instance, or with an
Ethernet bundle instance. Naming notation is
rack/slot/module/port, and a slash between values
is required as part of the notation. | | | | Ethernet bundle instance. Range is from 1 through
65535. | | | | • Replace the <i>subinterface</i> argument with the subinterface value. Range is from 0 through 4095. | | | | Naming notation is <i>instance.subinterface</i> , and a period between arguments is required as part of the notation. | | | Command or Action | Purpose | | | |--------|---|--|--|--| | Step 3 | Repeat Step 2 to remove other VLAN subinterfaces. | _ | | | | Step 4 | end Or commit Example: RP/0/RP0/CPU0:router(config) # end Or RP/0/RP0/CPU0:router(config) # commit | Saves configuration changes. • When you issue the end command, the system prompts you to commit changes: Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: - Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. - Entering no exits the configuration session and returns the router to XR EXEC mode without | | | | | | Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes. Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | | | Step 5 | show ethernet trunk bundle-ether instance | (Optional) Displays the interface configuration. The Ethernet bundle instance range is from 1 through | | | | | Example: RP/0/RP0/CPU0:router# show ethernet trunk bundle-ether 5 | 65535. | | | # **Configuration Examples for VLAN Interfaces** This section contains the following example: VLAN Subinterfaces: Example, page 123 ## **VLAN Subinterfaces: Example** The following example shows how to create three VLAN subinterfaces at one time: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface TenGigE 0/2/0/4.1 RP/0/RP0/CPU0:router(config-subif)# dot1q vlan 10 RP/0/RP0/CPU0:router(config-subif)# ipv4 address 10.0.10.1/24 RP/0/RP0/CPU0:router(config-subif)# interface TenGigE0/2/0/4.2 RP/0/RP0/CPU0:router(config-subif)# dot1q vlan 20 RP/0/RP0/CPU0:router(config-subif)# ipv4 address 10.0.20.1/24 RP/0/RP0/CPU0:router(config-subif)# interface TenGigE0/2/0/4.3 RP/0/CPU0:router(config-subif)# dot1q vlan 30 RP/0/RP0/CPU0:router(config-subif)# ipv4 address 10.0.30.1/24 RP/0/RP0/CPU0:router(config-subif)# ipv4 address 10.0.30.1/24 RP/0/RP0/CPU0:router(config-subif)# exit RP/0/RP0/CPU0:router(config-subif)# exit ``` ``` RP/0/RP0/CPU0:router# show vlan trunks summary VLAN trunks: 1, 1 are 802.10 (Ether). Sub-interfaces: 3, 3 are up. 802.1Q VLANs: 3, 3 have VLAN Ids. RP/0/RP0/CPU0:router# show vlan interface Interface Outer 2nd Service MTU Encapsulation LineP VLAN VLAN State Te0/6/0/0.1 802.1Q 9604 up 1 L3 Te0/6/0/4.1 802.10 1 L3 9604 up ``` The following example shows how to create two VLAN subinterfaces on an Ethernet bundle: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface bundle-ether 2 RP/0/RP0/CPU0:router(config-if)# ipv4 address 192.168.2.1/24 RP/0/RP0/CPU0:router(config-if)# exit RP/0/RP0/CPU0:router(config)# interface bundle-ether 2.1 RP/0/RP0/CPU0:router(config-subif)# dot1q vlan 10RP/0/RP0/CPU0:router(config-subif)# ipv4 address 192.168.100.1/24 RP/0/RP0/CPU0:router(config-subif)# exit RP/0/RP0/CPU0:router(config)# interface bundle-ether 2.2 RP/0/RP0/CPU0:router(config-subif)# dot1q vlan 20RP/0/RP0/CPU0:router(config-subif)# ipv4 address 192.168.200.1/24 RP/0/RP0/CPU0:router(config-subif)# exit RP/0/RP0/CPU0:router(config-subif)# exit RP/0/RP0/CPU0:router(config-subif)# exit RP/0/RP0/CPU0:router(config-subif)# commit ``` #### The following example shows how to create a basic dot1Q AC: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface GigabitEthernet 0/0/0/0.1 RP/0/RP0/CPU0:router(config-subif)# 12transport RP/0/RP0/CPU0:router(config-subif)# dot1q vlan 20 RP/0/RP0/CPU0:router(config-subif)# commit RP/0/RP0/CPU0:router(config-subif)# exit RP/0/RP0/CPU0:router(config-subif)# exit ``` # **Additional References** The following sections provide references related to VLAN interface configuration. # **Related Documents** ## **Standards** | Standards | Title | |--|-------| | No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature | | # **MIBs** | MIBs | MIBs Link | |---|--| | There are no applicable MIBs for this module. | To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | ## **Technical Assistance** | Description | Link | |--|----------------------------------| | The Cisco Technical Support website
contains | http://www.cisco.com/techsupport | | thousands of pages of searchable technical content, | | | including links to products, technologies, solutions, | | | technical tips, and tools. Registered Cisco.com users | | | can log in from this page to access even more content. | | Additional References # **Configuring Tunnel Interfaces** This module describes the configuration of Tunnel-IPSec interfaces on the Cisco NCS 6000 Series Router. Tunnel interfaces are virtual interfaces that provide encapsulation of arbitrary packets within another transport protocol. The Tunnel-IPSec interface provides secure communications over otherwise unprotected public routes. A virtual interface represents a logical packet switching entity within the router. Virtual interfaces have a global scope and do not have an associated location. The Cisco IOS XR Software uses the *rack/slot/module/port* notation for identifying physical interfaces, but uses a globally unique numerical ID after the interface name to identify virtual interfaces. Examples of this numerical ID are Loopback 0, Loopback 1, and Null99999. The ID is unique for each virtual interface type so you may simultaneously have a Loopback 0 and a Null 0. Virtual interfaces have their control plane presence on the active route processor (RP). The configuration and control plane are mirrored onto the standby RP and, in the event of a switchover, the virtual interfaces will move to the standby, which then becomes the newly active RP. Subinterfaces can be physical or virtual, depending on their parent interface. Virtual tunnels are *configured* on any RP or distributed RP (DRP), but they are created and operate only from the RP. Tunnels do not have a one-to-one modular services card association. #### **Feature History for Configuring Tunnel Interfaces** | Release | Modification | |---------------|------------------------------| | Release 5.0.0 | This feature was introduced. | ### **Contents** - Prerequisites for Configuring Tunnel Interfaces, page 128 - Information About Configuring Tunnel Interfaces, page 128 - How to Configure Tunnel Interfaces, page 130 - Configuration Examples for Tunnel Interfaces, page 132 - Where to Go Next, page 133 - Additional References, page 133 # **Prerequisites for Configuring Tunnel Interfaces** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. # **Information About Configuring Tunnel Interfaces** To implement tunnel interfaces, you must understand the following concepts: - Tunnel Interfaces Overview, page 128 - Virtual Interface Naming Convention, page 128 - Tunnel-IPSec Overview, page 129 - Tunnel-IPSec Naming Convention, page 129 - Crypto Profile Sets, page 129 - How to Configure Tunnel Interfaces, page 130 ### **Tunnel Interfaces Overview** Tunneling provides a way to encapsulate arbitrary packets inside of a transport protocol. This feature is implemented as a virtual interface to provide a simple interface for configuration. The tunnel interfaces are not tied to specific "passenger" or "transport" protocols, but, rather, they represent an architecture that is designed to provide the services necessary to implement any standard point-to-point encapsulation scheme. Because supported tunnels are point-to-point links, you must configure a separate tunnel for each link. There are three necessary steps in configuring a tunnel interface: - 1. Specify the tunnel interface—interface tunnel-ipsec identifier - **2.** Configure the tunnel source—**tunnel source** {*ip-address* | *interface-id*} - **3.** Configure the tunnel destination—tunnel destination {ip-address | tunnel-id} ## **Virtual Interface Naming Convention** Virtual interface names never use the physical interface naming notation *rack/slot/module/port* for identifying an interface's rack, slot, module, and port, because they are not tied to any physical interface or subinterface. Virtual interfaces use a globally unique numerical identifier (per virtual interface type). Examples of naming notation for virtual interfaces: | Interface | IP-Address | Status | Protocol | |------------|------------|--------|----------| | Loopback0 | 10.9.0.0 | Up | Up | | Loopback10 | 10.7.0.0 | Up | Up | | Tunnel-TE5000 | 172.18.189.38 | Down | Down | |---------------|---------------|------|------| | Null10 | 10.8.0.0 | Up | Up | ### **Tunnel-IPSec Overview** IPSec (IP security) is a framework of open standards for ensuring secure private communications over the Internet. It can be used to support Virtual Private Network (VPN), firewalls, and other applications that must transfer data across a public or insecure network. The router IPSec protocol suite provides a set of standards that are used to provide privacy, integrity, and authentication service at the IP layer. The IPSec protocol suite also includes cryptographic techniques to support the key management requirements of the network-layer security. When IPSec is used, there is no need to use Secure Shell (SSH) or Secure Socket Layer (SSL). Their use causes the same data to be encrypted or decrypted twice, which creates unnecessary overhead. The IPSec daemon is running on both the RPs and the DRPs. IPSec is an optional feature on the router. IPSec is a good choice for a user who has multiple applications that require secure transport. On the client side, customers can use "Cisco VPN 3000 Client" or any other third-party IPSec client software to build IPSec VPN. IPSec tunnel exists in the control plane, so you do not have to bring up or bring down the tunnel. Entry into the IPSec tunnel is only for locally sourced traffic from the RP or DRP, and is dictated by the access control lists (ACL) configured as a part of the profile that is applied to the Tunnel-IPSec. ## **Tunnel-IPSec Naming Convention** A profile is entered from interface configuration submode for interface tunnel-ipsec. For example: ``` interface tunnel-ipsec 30 profile profile name> ``` ## **Crypto Profile Sets** Crypto profile sets must be configured and applied to tunnel interfaces (or to the crypto IPSec transport). For details on using the crypto IPSec transport, refer to the link provided in the "Additional References" section on page 133. For IPSec to succeed between two IPSec peers, the crypto profile entries of both peers must contain compatible configuration statements. Two peers that try to establish a security association must each have at least one crypto profile entry that is compatible with one of the other peer's crypto profile entries. For two crypto profile entries to be compatible, they must at least meet the following criteria: - They must contain compatible crypto access lists. In the case where the responding peer is using dynamic crypto profiles, the entries in the local crypto access list must be "permitted" by the peer's crypto access list. - They must each identify the other peer (unless the responding peer is using dynamic crypto profiles). - They must have at least one transform set in common. Crypto profiles cannot be shared; that is, the same profile cannot be attached to multiple interfaces. # **How to Configure Tunnel Interfaces** This section contains the following procedures: • Configuring Tunnel-IPSec Interfaces, page 130 (Required) ## **Configuring Tunnel-IPSec Interfaces** This task explains how to configure Tunnel-IPSec interfaces. ### **Prerequisites** To use the **profile** command, you must be in a user group associated with a task group that includes the proper task IDs for crypto commands. To use the **tunnel destination** command, you must be in a user group associated with a task group that includes the proper task IDs for interface commands. For detailed information about user groups and task IDs, see the *Configuring AAA Services* module of *System Security Configuration Guide for the Cisco NCS 6000 Series Routers*. The following tasks are required for creating Tunnel-IPSec interfaces: - Setting Global Lifetimes for IPSec Security Associations - Configuring Checkpointing - Configuring Crypto Profiles For detailed information on configuring the prerequisite checkpointing and crypto profiles, and setting the global lifetimes for IPSec security associations, refer to the *Implementing IPSec Network Security* module in *System Security Configuration Guide for Cisco NCS 6000 Series Routers*. After configuring crypto profiles, you must apply a crypto profile to each tunnel interface through which IPSec traffic will flow. Applying the crypto profile set to a tunnel interface instructs the router to evaluate all the interface's traffic against the crypto profile set and to use the specified policy during connection or security association negotiation on behalf of traffic to be protected by crypto. #### **SUMMARY STEPS** - 1. configure - 2. interface tunnel-ipsec identifier - 3. **profile** profile-name - **4. tunnel source** {*ip-address* | *interface-id*} - **5. tunnel destination** {*ip-address* | *tunnel-id*} - 6. end or commit - Commit - 7. show ip route | | Command or Action | Purpose | |--------|--|--| | Step 1 | configure | Enters XR configuration mode. | | | Example: RP/0/RP0/CPU0:router# configure | | | Step 2 | interface tunnel-ipsec identifier | Identifies the IPSec interface to which the crypto profile will be attached and enters interface configuration mode. | | | <pre>Example: RP/0/RP0/CPU0:router(config) # interface tunnel-ipsec 30</pre> | | | Step 3 | <pre>profile profile-name</pre> | Assigns the crypto profile name to be applied to the tunnel for IPSec processing. | | | <pre>Example:
RP/0/RP0/CPU0:router(config-if)# profile user1</pre> | • The same crypto profile cannot be shared in different IPSec modes. | | Step 4 | tunnel source {ip-address interface-id} | Specifies the tunnel source IP address or interface ID. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if) # tunnel source Ethernet0/1/1/2</pre> | This command is required for both static and dynamic profiles. | | Step 5 | tunnel destination {ip-address tunnel-id} | (Optional) Specifies the tunnel destination IP address. | | | | • This command is not required if the profile is dynamic. | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# tunnel destination 192.168.164.19</pre> | | | | Command or Action | Purpose | |--------|---|---| | Step 6 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:router(config-if)# end or RP/0/RP0/CPU0:router(config-if)# commit</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to XR EXEC mode. | | | | Entering no exits the configuration session and
returns the router to XR EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 7 | show ip route | Displays forwarding information for the tunnel. | | | <pre>Example: RP/0/RP0/CPU0:router# show ip route</pre> | • The command show ip route displays what was advertised and shows the routes for static and autoroute. | # **Configuration Examples for Tunnel Interfaces** This section contains the following example: Tunnel-IPSec: Example, page 132 ### **Tunnel-IPSec: Example** This example shows the process of creating and applying a profile to an IPSec tunnel. The necessary preliminary steps are also shown. You must first define a transform set and then create a profile before configuring the IPSec tunnel. ``` RP/0/RP0/CPU0:router# configureRP/0/RP0/CPU0:router(config)# crypto ipsec transform-set tset1 RP/0/RP0/CPU0:router(configtransform-set tset1)# transform esp-sha-hmac RP/0/RP0/CPU0:router(config-transform-set tset1)# end Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: yes RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# crypto ipsec profile user1 RP/0/RP0/CPU0:router(config-user1)# match sampleac1 transform-set tset1 RP/0/RP0/CPU0:router(config-user1)# set pfs group5 RP/0/RP0/CPU0:router(config-user1)# set type dynamic RP/0/RP0/CPU0:router(config-user1)# exit ``` ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:router(config)# interface tunnel-ipsec 30 RP/0/RP0/CPU0:router(config-if)# profile user1 RP/0/RP0/CPU0:router(config-if)# tunnel source MgmtEth 0/RP0/CPU0/0 RP/0/RP0/CPU0:router(config-if)# tunnel destination 192.168.164.19 RP/0/RP0/CPU0:router(config-if)# end Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: yes ``` # Where to Go Next You now must apply a crypto profile to each transport. Applying the crypto profile set to a transport instructs the router to evaluate all the interface's traffic against the crypto profile set and to use the specified policy during connection or security association negotiation on behalf of traffic to be protected by crypto. For information on applying a crypto profile to each transport, see the *Implementing IPSec Network Security on* module of *System Security Configuration Guide*. # **Additional References** The following sections provide references related to tunnel interface configuration. ### **Related Documents** | Related Topic | Document Title | |--|--| | Cisco IOS XR master command reference | Cisco IOS XR Master Commands List | | Cisco IOS XR interface configuration commands | Interface and Hardware Component Command Reference for the Cisco NCS 6000 Series Routers | | Information about IPSec and crypto profiles | System Security Configuration Guide for the Cisco NCS 6000 Series Routers | | Information about MPLS Traffic Engineering, including configuring a tunnel interface for MPLS-TE | MPLS Configuration Guide for the Cisco NCS 6000 Series Routers | | Information about user groups and task IDs | Interface and Hardware Component Command Reference for the Cisco NCS 6000 Series Routers | ### **Standards** | Standards | Title | |---|-------| | No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. | | # **MIBs** | MIBs | MIBs Link | |---|---| | There are no applicable MIBs for this module. | To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: | | | http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml | # **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | # **Technical Assistance** | Description | Link | |---|----------------------------------| | The Cisco Technical Support website contains thousands of pages of searchable technical content, | http://www.cisco.com/techsupport | | including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users | | | can log in from this page to access even more content. | | # Configuring Dense Wavelength Division Multiplexing Controllers This module describes the configuration of dense wavelength division multiplexing (DWDM) controllers. DWDM is an optical technology that is used to increase bandwidth over existing fiber-optic backbones. DWDM can be configured on supported 10-Gigabit Ethernet (GE) or Packet-over-SONET/SDH physical layer interface modules (PLIMs). After you configure the DWDM controller, you can configure an associated 10-Gigabit Ethernet interface. #### **Feature History for Configuring DWDM Controller Interfaces** | Release | Modification | |---------------|---| | Release 5.2.3 | Support for OTN Termination was included. | ### **Contents** - Prerequisites for Configuring DWDM Controller Interfaces, page 135 - Information About the DWDM Controllers, page 136 - Information about IPoDWDM, page 136 - How to Configure DWDM Controllers, page 137 - Configuring IPoDWDM, page 141 - Configuration Examples, page 145 - Additional References, page 146 # **Prerequisites for Configuring DWDM Controller Interfaces** You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance. ### Information About the DWDM Controllers DWDM support in Cisco IOS XR software is based on the Optical Transport Network (OTN) protocol that is specified in ITU-T G.709. This standard combines the benefits of SONET/SDH technology with the multiwavelength networks of DWDM. To enable multiservice transport, OTN uses the concept of a wrapped overhead (OH). To illustrate this structure: - Optical channel payload unit (OPU) OH information is added to the information payload to form the OPU. The OPU OH includes information to support the adaptation of client signals. - Optical channel (OCh) OH is added to form the OCh. The OCh provides the OTN management functionality and contains four subparts: the OPU, and frame alignment signal (FAS). See Figure 1. Figure 1 OTN Optical Channel Structure These are the conditions for OTU Port configuration: - OTU4 can be configured at slice level only. - Slice reset occurs immediately after commit. - Interface is removed from the slice. - Slice is powered back up in OTU4 mode. - Two 100 GigE interfaces are created. # **Information about IPoDWDM** Cisco IOS XR software includes the IP over Dense Wavelength Division Multiplexing (IPoDWDM) feature. IPoDWDM currently provides the following software features: • Shared Risk Link Group (SRLG) #### Shared Risk Link Group (SRLG) The Shared Risk Link Group (SRLG) provides shared risk information between the DWDM optical layer (L0) and the router layer (L3), and the applications that use the shared risk information. An SRLG is a set of links that share a resource whose failure may affect all links in the set. System administrators can configure the following IPoDWDM features: - Shared Risk Link Group (SRLG) and Optical Layer DWDM port,
see Configuring the Optical Layer DWDM Ports, page 141. - Administrative state of DWDM optical ports, see Configuring the Administrative State of DWDM Optical Ports, page 143. #### Signal Logging DWDM statistic data, such as EC, UC and alarms, are collected and stored in the log file on the DWDM line card. # **How to Configure DWDM Controllers** The DWDM controllers are configured in the physical layer control element of the Cisco IOS XR software configuration space. This configuration is done using the **controller dwdm** command, and is described in the following task: - Configuring the Optical Parameters, page 137 - Configuring G.709 Parameters, page 139 All interface configuration tasks for Gigabit Ethernet interfaces still must be performed in interface configuration mode. # **Configuring the Optical Parameters** This task describes how to configure the wavelength parameters for the DWDM controller to set the operational wavelength of a tunable SFP+ module. The DWDM controllers are configured in the physical layer control element of the Cisco IOS XR software configuration space. #### **SUMMARY STEPS** - 1. configure - 2. controller dwdm interface-path-id - 3. admin-state out-of-service - 4. commit - 5. wavelength channel-number - 6. end or commit - 7. admin-state in-service - 8. show controllers dwdm interface-path-id optics | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enter the XR Config mode. | | | Example: RP/0/RP0/CPU0:Router# configure | | | Step 2 | <pre>controller dwdm interface-path-id Example: RP/0/RP0/CPU0:Router(config) # controller dwdm 0/1/0/0 RP/0/RP0/CPU0:router(config-dwdm) #</pre> | Specifies the DWDM controller name in the notation rack/slot/module/port and enters DWDM configuration mode. | | Step 3 | <pre>admin-state out-of-service Example: RP/0/RP0/CPU0:Router(config-dwdm) # admin-state out-of-service</pre> | Specifies the DWDM interface administrative state. You must put the controller in out-of-service state before you can use the DWDM configuration commands. | | Step 4 | <pre>Example: RP/0/RP0/CPU0:Router(config-dwdm)# commit</pre> | Saves configuration changes. This performs the shutdown from the previous step. After the controller has been shut down, you can proceed with the wavelength configuration. | | Step 5 | <pre>wavelength channel-number Example: RP/0/RP0/CPU0:Router(config-dwdm)# wavelength 1</pre> | Configures the channel number corresponding to the first wavelength. Values can range from 1 to 96. Use the show controller dwdm command with the wavelength-map keyword to determine which channels and wavelengths are supported on a specific controller. | | | | Note | | Step 6 | commit | Saves configuration changes. | | | Example: RP/0/RP0/CPU0:Router(config-dwdm)# commit | | | Step 7 | admin-state in-service | Places the DWDM port in In-Service (IS) state, to support all normal operation. | | | <pre>Example: RP/0/RP0/CPU0:Router(config-dwdm)# admin-state in-service</pre> | | | | Command or Action | Purpose | |--------|---|--| | Step 8 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0/RP0/CPU0:Router(config-dwdm)# end or RP/0/RP0/CPU0:Router(config-dwdm)# commit</pre> | Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: - Entering yes saves configuration changes to the running configuration file, exits the configuration | | | | session, and returns the router to EXEC mode. Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | | Step 9 | show controllers dwdm interface-path-id optics | Displays the output power level, input power level, and wavelength information. | | | Example: RP/0/RP0/CPU0:Router# show controller dwdm 0/1/0/0 optics | | # **Configuring G.709 Parameters** This task describes how to customize the alarm display and the thresholds for alerts and forward error correction (FEC). You need to use this task only if the default values are not correct for your installation. ### **Prerequisites** The g709 disable, loopback, and g709 fec commands can be used only when the controller is in the shutdown state. Use the admin-state command. #### **SUMMARY STEPS** - 1. configure - 2. controller dwdm interface-path-id - 3. admin-state maintenance or admin-state out-of-service - 4. commit - 5. g709 disable - 6. g709 fec {disable | enhanced | standard} - 7. g709 report alarm disable 8. end or commit - 9. admin-state in-service - 10. show controllers dwdm interface-path-id g709 | | Command or Action | Purpose | |--------|--|---| | Step 1 | configure | Enters global configuration mode. | | | Example: RP/0//CPU0:Router# configure | | | Step 2 | controller dwdm interface-path-id | Specifies the DWDM controller name in the notation rack/slot/module/port and enters DWDM configuration | | | <pre>Example: RP/0//CPU0:Router(config)# controller dwdm 0/1/0/0</pre> | mode. | | Step 3 | admin-state maintenance Or | Disables the DWDM controller. You must disable the controller before you can use the DWDM configuration | | | admin-state out-of-service | commands. | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# admin-state out-of-service</pre> | | | Step 4 | commit Example: | Saves configuration changes. This performs the shutdown from the previous step. When the controller has been shut down, you can proceed with the configuration. | | | RP/0//CPU0:Router(config-dwdm)# commit | | | Step 5 | g709 disable | (Optional) Disables the G.709 wrapper. The wrapper is enabled by default. | | | <pre>Example: RP/0/RP0/CPU0:Router(config-dwdm)# g709 disable</pre> | Note The g709 disable command is available on the Cisco 4-Port 10-Gigabit Ethernet DWDM PLIM only. | | Step 6 | g709 fec {disable standard} | (Optional) Configures the forward error correction mode (FEC) for the DWDM controller. By default, enhanced FEC | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# g709 fec disable</pre> | is enabled. | | Step 7 | g709 report alarm disable | (Optional) Disables the logging of selected optical channel alarms to the console for a DWDM controller. By default, | | | Example: RP/0//CPU0:Router(config-dwdm)# g709 odu bdi disable | all alarms are logged to the console. | | | Command or Action | Purpose | |---------|---|--| | Step 8 | end | Saves configuration changes. | | | or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# end or RP/0//CPU0:Router(config-dwdm)# commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode. Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes. Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes. Use the commit command to save the configuration changes to the running configuration file and remain | | Step 9 | admin-state in-service | within the configuration session. Places the DWDM port in In Service (IS) state, to support | | | | all normal operation. | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# admin-state in-service</pre> | | | Step 10 | show controllers dwdm interface-path-id g709 | Displays the G.709 Optical Transport Network (OTN) protocol alarms and counters for Bit Errors, along with the FEC statistics and threshold-based alerts. | | | Example: RP/0//CPU0:Router# show controller dwdm 0/1/0/0 optics | | #### What to Do Next All interface configuration tasks for the Gigabit Ethernet interfaces still must be
performed in interface configuration mode. Refer to the corresponding modules in this book for more information. # **Configuring IPoDWDM** This section provides the following configuration procedures: - Configuring the Optical Layer DWDM Ports, page 141 - Configuring the Administrative State of DWDM Optical Ports, page 143 # **Configuring the Optical Layer DWDM Ports** Use the following procedure to configure the Optical Layer DWDM ports. #### **SUMMARY STEPS** - 1. configure - 2. controller dwdm interface-path-id - 3. network port id id-number - 4. **network connection id** *id-number* - 5. end or commit | | Command or Action | Purpose | |--------|--|---| | Step 1 | configure | Enters global configuration mode. | | | Example: RP/0//CPU0:Router# config | | | Step 2 | controller dwdm interface-path-id | Specifies the DWDM controller and enters DWDM controller mode. | | | <pre>Example: RP/0//CPU0:Router(config)# controller dwdm 0/1/0/1</pre> | | | Step 3 | network port id id-number | Assigns an identifier number to a port for the Multi Service Transport Protocol (MSTP). | | | <pre>Example: RP/0//CPU0:Router(config-dwdm) # network port id 1/0/1/1</pre> | | | | Command or Action | Purpose | |--------|---|---| | Step 4 | network connection id id-number | Configures a connection identifier for the Multi Service Transport Protocol (MSTP). | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# network connection id 1/1/1/1</pre> | | | Step 5 | end | Saves configuration changes. | | | Or
commit | • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# end or RP/0//CPU0:Router(config-dwdm)# commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode. | | | | Entering no exits the configuration session and
returns the router to EXEC mode without
committing the configuration changes. | | | | Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes. | | | | • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | # **Configuring the Administrative State of DWDM Optical Ports** Use the following procedure to configure the administrative state and optionally set the maintenance embargo flag. #### **SUMMARY STEPS** - 1. configure - 2. controller dwdm interface-path-id - 3. admin-state {in-service | maintenance | out-of-service} - 4. exit - 5. interface tengige interface-path-id - 6. maintenance disable - 7. end or commit | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure | Enters global configuration mode. | | | Example: RP/0//CPU0:Router# config | | | Step 2 | controller dwdm interface-path-id | Specifies the DWDM controller and enters DWDM controller mode. | | | <pre>Example: RP/0//CPU0:Routerconfig) # controller dwdm 0/1/0/1</pre> | | | Step 3 | <pre>admin-state {in-service maintenance out-of-service}</pre> | Specifies the transport administration state. | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# admin-state maintenance</pre> | | | Step 4 | exit | Exits to the previous mode. | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# exit</pre> | | | Step 5 | <pre>interface pos interface-path-id or interface tengige interface-path-id</pre> | Specifies the interface and enters interface configuration mode. | | | Example: RP/0//CPU0:Router(config)# interface pos 1/0/1/1 or RP/0//CPU0:Router(config)# interface tengige 1/0/1/1 | | | | Command or Action | Purpose | |--------|---|--| | Step 6 | <pre>maintenance disable Example: RP/0//CPU0:Router(config-if)# maintenance</pre> | Provisions the maintenance embargo flag, which prevents maintenance activities from being performed on an interface. | | Step 7 | end or commit | Saves configuration changes. • When you issue the end command, the system prompts you to commit changes: | | | <pre>Example: RP/0//CPU0:Router(config-dwdm)# end or RP/0//CPU0:Router(config-dwdm)# commit</pre> | Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]: Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode. Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes. Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes. Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session. | # **Configuration Examples** This section includes the following examples: - Turning On the Laser: Example, page 145 - Turning Off the Laser: Example, page 146 - IPoDWDM Configuration: Examples, page 146 # **Turning On the Laser: Example** This is a required configuration. The DWDM cards will not operate without this configuration. The following example shows how to turn on the laser and place a DWDM port in In Service (IS) state: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:Router(config)# controller dwdm 0/1/0/1 RP/0/RP0/CPU0:Router(config-dwdm)# admin-state in-service RP/0/RP0/CPU0:Router(config-dwdm)# commit ``` ### **Turning Off the Laser: Example** The following example shows how to turn off the laser, stop all traffic and place a DWDM port in Out of Service (OOS) state: ``` RP/0/RP0/CPU0:router# configure RP/0/RP0/CPU0:Router(config)# controller dwdm 0/1/0/1 RP/0/RP0/CPU0:Router(config-dwdm)# admin-state out-of-service RP/0/RP0/CPU0:Router(config-dwdm)# commit ``` # **IPoDWDM Configuration: Examples** This section includes the following examples: - Optical Layer DWDM Port Configuration: Examples, page 146 - Administrative State of DWDM Optical Ports Configuration: Examples, page 146 #### **Optical Layer DWDM Port Configuration: Examples** The following example shows how to configure Optical Layer DWDM ports. ``` RP/0//CPU0:Router# configure RP/0//CPU0:Router(config)# controller dwdm 0/1/0/1 RP/0//CPU0:Router(config-dwdm)# network port id 1/0/1/1 RP/0//CPU0:Router(config-dwdm)# network connection id 1/1/1/1 ``` #### Administrative State of DWDM Optical Ports Configuration: Examples The following examples show how to configure the administrative state and optionally set the maintenance embargo flag: ``` RP/0//CPU0:Router# configure RP/0//CPU0:Router(config)# controller dwdm 0/1/0/1 RP/0//CPU0:Router(config-dwdm)# admin-state in-service RP/0//CPU0:Router(config-dwdm)# exit RP/0//CPU0:Router(config)# interface tengige 1/0/1/1 RP/0//CPU0:Router(config-if)# maintenance disable RP/0//CPU0:Router(config-if)# commit ``` # **Additional References** These sections provide references related to DWDM controller configuration. # **Related Documents** | Related Topic | Document Title | |---------------------------------------|--| | Cisco IOS XR master command reference | Cisco IOS XR Master Commands List | | e | Cisco IOS XR Interface and Hardware Component Command
Reference | | Related Topic | Document Title | |--|--| | Initial system bootup and configuration information for a router using Cisco IOS XR software | Cisco IOS XR Getting Started Guide | | Cisco IOS XR AAA services configuration information | Cisco IOS XR System Security Configuration Guide and
Cisco IOS XR System Security Command Reference | # **Standards** | Standards | Title | |--------------------|--| | ITU-T G.709/Y.1331 | Interfaces for the optical transport network (OTN) | # **MIBs** | MIBs | MIBs Link | |---------|---| | | To locate and download MIBs for selected platforms using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL: | | |
http://www.cisco.com/go/mibs | | OTN-MIB | IPoDWDM MIB | # **RFCs** | RFCs | Title | |---|-------| | No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. | | # **Technical Assistance** | Description | Link | |---|------------------------------| | The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content. | http://www.cisco.com/support | Additional References #### INDEX | НС | Cisco IOS XR Interface and Hardware Component
Configuration Guide | D | |-----------------------|--|---| | IC | Cisco IOS XR IP Addresses and Services Configuration Guide | | | MCC | Cisco IOS XR Multicast Configuration Guide | default settings | | MNC | Cisco IOS XR System Monitoring Configuration Guide | mac-address (Management Ethernet) HC-10 | | MPC | Cisco IOS XR MPLS Configuration Guide | speed (Management Ethernet) HC-10 | | QC | Cisco IOS XR Modular Quality of Service Configuration Guide | duplex command HC-14 | | RC | Cisco IOS XR Routing Configuration Guide | | | SBC | Cisco IOS XR Session Border Controller Configuration Guide | E | | SC | Cisco IOS XR System Security Configuration Guide | _ | | SMC | Cisco IOS XR System Management Configuration Guide | encapsulation command HC-106, HC-123 | | VFC | Cisco IOS XR Virtual Firewall Configuration Guide | Ethernet interface | | Α | | configuring | | action | capabilities-conflict command HC-45 | MAC accounting HC-23, HC-35 | | | discovery-timeout command HC-45 | MAC address HC-24 | | action | discovery-timeout command no-45 | configuring MAC accounting HC-23 | | | | configuring the MAC address HC-24 | | В | | default settings | | | | • | | bundle command HC-167 | | flow control HC-23 | | Bundl | e-Ether command HC-65 | MAC accounting HC-23 | | bundle | e id command HC-65, HC-69 | MAC address HC-24 | | bı | undle-POS HC-89 | mtu HC-24 | | | | displaying | | | | Ethernet interfaces HC-33 | | С | | MAC accounting statistics HC-36 | | chann | el-group command HC-166 | displaying Ethernet interfaces HC-33 | | СНАН |) | Gigabit Ethernet standards HC-25 | | | efined HC-107 | IEEE 802.3ab 1000BASE-T Gigabit Ethernet HC-26 | | | nabling HC-151 | IEEE 802.3ae 10 Gbps Ethernet HC-26 | | | assword, configuring HC-156 | IEEE 802.3 Physical Ethernet | | p | pp HC-120, HC-145 | Infrastructure HC-25 | | re | fusing HC-161 | IEEE 802.3z 1000 Mbps Gigabit Ethernet HC-26 | | contro | oller mgmtmultilink command HC-167 | Layer 2 VPN | | | | | crc command HC-106, HC-123 | configuring Layer 2 protocol tunneling and data units HC-37, HC-191 | I | |---|---| | Layer 2 protocol tunneling and data units, configuring HC-37 , HC-191 | IEEE 802.3ad standard HC-63 | | overview HC-24 | if preconfiguration submode, ipv4 address command HC-5 | | VLAN support HC-185 | if submode | | using the l2protocol command HC-37, HC-191 | bundle id command HC-69, HC-70, HC-77, HC-81, HC-89 | | using the mac-accounting command HC-23 | duplex command HC-14 | | using the mac address command HC-24 | ip address command HC-86, HC-87 | | VLANs | ipv4 address command HC-12 | | displaying VLAN interfaces HC-88, HC-90, HC-189, HC-194 | keepalive command HC-169 | | MTU inheritance HC-185 | no shutdown command HC-12, HC-69, HC-87, HC-89 | | native VLAN description HC-185 | See interface preconfigure command | | overview HC-184 | interface Bundle-Ether command HC-68, HC-74, HC-86 | | subinterface overview HC-184 | interface Bundle-POS command HC-65 | | using the show vlan interfaces command HC-88, | interface command | | HC-90, HC-189, HC-194 | for Ethernet interfaces HC-190 | | | for VLAN subinterfaces HC-188 | | | forVLAN subinterfaces HC-190 | | • | Link Bundling HC-89 | | Fast Ethernet interface | interface POS command HC-81 | | auto-negotiation HC-24 | interface preconfigure command HC-4 | | configuring | interfaces | | duplex operation HC-24 | Link Bundling HC-59 | | MAC accounting HC-24 | configuring HC-66 | | MTU HC-24 | prerequisites HC-60 | | default settings | tunnel RC-198 | | auto-negotiation HC-24 | invert command HC-129 | | duplex operation HC-24 | ip address command | | interface speed HC-24 | bundle-POS HC-86, HC-87 | | MAC accounting HC-24 | ipv4 address command HC-5, HC-86, HC-188 | | mtu HC-24 | Fast Ethernet HC-12 | | Frame Relay | | | serial interfaces HC-122 | K | | | keepalive command HC-106, HC-115 | | Н | keepalive timer | | HDLC HC-106 | description HC-108 | | | monitoring | POS link state HC-107, HC-108 | L 12protocol command HC-37, HC-191 L2VPN See Layer 2 VPN HC-24 See Layer 2 VPN HC-24 Layer 2 VPN configuring Layer 2 protocol tunneling and data units HC-37, HC-191 | naming conventions preconfigure HC-3 negotiation auto command HC-24 Network Control Protocols (NCPs) HC-107, HC-120 no interface command HC-193 no shutdown command (warning) HC-3 bundle-POS HC-87, HC-89 Fast Ethernet HC-12 null interface | |---|---| | configuring Layer 2 protocol tunneling and data units HC-37, HC-191 overview HC-24 LCP (Link Control Protocol) HC-107, HC-120 | configuring HC-96 displaying HC-96 | | link bundling configuring VLAN bundles HC-185 link bundling, configuring VLAN bundles HC-185 Local Management Interface (LMI) HC-123 | PAP authentication defined HC-145 disabling HC-159 enabling HC-151, HC-152, HC-154, HC-155 | | mac accounting command HC-35 mac-accounting command HC-23, HC-24 mac address command HC-24 management ethernet interface, configuring HC-10 MS-CHAP authentication disabling HC-162 enabling HC-151, HC-152 password, configuring HC-158 ppp HC-107, HC-145, HC-158, HC-163 viewing HC-153 mut command HC-24, HC-106, HC-123 multilink command HC-171, HC-173 multilink fragment-size command HC-169 multilink interleave command HC-171 Multiprotocol Label Switching control processor (MPL SCP) HC-107, HC-120 | ppp HC-107, HC-154 refusing HC-160 viewing HC-153 Point-to-Point protocol See PPP POS (Packet-over-SONET) See POS interface POS interface bringing up HC-109 configuring CRC value HC-106, HC-112 encapsulation type HC-106 interface encapsulation HC-112, HC-170 keepalive timer HC-106, HC-113, HC-115, HC-169 MTU HC-106, HC-112 optional parameters HC-111 PPP authentication HC-107 | | (MPLSCP) HC-107, HC-120 | default settings | N | CRC HC-106 | prerequisites HC-143 | |--|--| | encapsulation HC-106 | serial configuration example HC-175 | | keepalive HC-106 | serial interface HC-120 | | mtu HC-106 | ppp authentication command HC-107, HC-121, HC-144, | | HDLC encapsulation | HC-152 | | description | ppp chap password command HC-157 | | overview HC-106 | ppp chap refuse command HC-161 | | interface configuration mode | ppp max-bad-auth command HC-149 | | interface command HC-169 | ppp max-configure command HC-149 | | interface multilink command HC-169, HC-171 | ppp max-failure command HC-149 | | interface pos command HC-110, HC-112 | ppp max-terminate command HC-149 | | PPP encapsulation | ppp ms-chap password command HC-158 | | description HC-105 | ppp ms-chap refuse command HC-163 | | overview HC-107 | ppp multilink minimum-active links command HC-171 | | PPP | ppp pap refuse command HC-160 | | СНАР | ppp pap sent-username command HC-154, HC-155 | | authentication HC-145 | ppp timeout authentication command HC-150 | | enabling HC-151, HC-152 | ppp timeout retry command HC-150 | | password, configuring HC-156, HC-157 | preconfiguration | | refusing HC-161 | advantages HC-3 | | viewing HC-153 | directory HC-1 | | default configuration, modfying HC-147, HC-149 | naming conventions HC-3 | | interfaces, displaying HC-150 | restriction to physical interface HC-1 | | MS-CHAP | | | disabling HC-162, HC-163 | R | | enabling HC-152 | •• | | authenticaion HC-151 | RP, preconfiguration directory HC-1 | | password, configuring HC-158 | | | ppp HC-121, HC-145 | <u> </u> | | viewing HC-153 | 3 | | overview HC-144 | scramble command HC-129 | | PAP | serial interface | | authentication HC-121, HC-154 | configuring | | disabling HC-159 | CRC HC-128 | | enabling HC-151, HC-152, HC-154, HC-155
| interface encapsulation HC-128 | | refusing HC-160 | IP address and subnet mask HC-126 | | viewing HC-153 | keepalive timer HC-136 | | POS configuration example HC-174 | transmit delay HC-129 | | POS interface HC-105, HC-107 | data stream, inverting HC-129 | | | | ``` default settings CRC HC-123 encapsulation HC-123 keepalive HC-123 mtu HC-123 link state HC-120, HC-121 payload scrambling, enabling HC-129 PPP encapsulation HC-120 show bundle Bundle-Ether command HC-71, HC-78, HC-90 show bundle Bundle-POS command HC-82 show interfaces command HC-31, HC-137 for Ethernet interfaces HC-33, HC-38 show lacp bundle Bundle-Ether command HC-71 show mac accounting command HC-36 show ppp interfaces command HC-150, HC-153 show version command HC-31 show vlan command HC-88, HC-90, HC-189, HC-194 show vlan trunks command HC-79 SLARP (Serial Line Address Resolution Protocol) HC-108, HC-120, HC-122 sonet submode See controller sonet command speed command HC-24 SSH (Secure Shell) RC-199 SSH (Secure Shell), not needed with IPSec RC-199 SSL (Secure Socket Layer) RC-199 SSL (Secure Socket Layer), not needed with IPSec RC-199 switchover HC-66 T T1 controller DS0 timeslots, associating HC-166 T1 channel group, creating HC-166 T1 configuration mode HC-166 T3 controller clock source configuring HC-166 timeslots command HC-166 ``` traffic filtering HC-96 transmit-delay command HC-129 transparent switchover HC-10 virtual interface naming convention RC-198 null interface definition HC-96 **VLANs** configuring bundles HC-185 configuring an IP address and subnet mask HC-188 configuring bundles HC-185 displaying VLAN interfaces HC-88, HC-90, HC-189, **HC-194** Layer 2 VPN support HC-185 MTU inheritance HC-185 native VLAN description HC-185 overview HC-184 subinterface overview HC-184 using the ipv4 address command HC-188 using the no interfawn command HC-193 using the show vlan interfaces command HC-88, HC-90, HC-189, HC-194 Index