

Secure Overlay and Single IP Configuration

- Secure Overlay, on page 1
- Single Public IP Address and Secure Overlay, on page 11
- Single IP Address Without Secure Overlay, on page 16

Secure Overlay

An overlay is a virtualized network layer on top of the physical network with the support of its infrastructure to provide additional security to the network. IPSec is a framework with protocols and algorithms to provide secured data transmission over unprotected or untrusted networks. IPSec secure tunnel is created between two networks to ensure virtual private network communication.

Secure overlay in NFVIS allows IPSec tunnel establishment between NFVIS supporting the vBranch platform and a VPN server and allows the orchestrator to manage NFVIS over the IPSec tunnel.

Supported Features on Secure Overlay

The following features are supported on NFVIS 3.10.x and later releases:

- IPSec IKEv2
- IPv4
- Authentication:
 - · Pre-shared-key authentication
 - Introduced in NFVIS 3.12.3 release EAP authentication
- IKE cipher:
 - aes128-sha1-mopd1536
 - Introduced in NFVIS 3.12.3 release aes256-sha512-modp2048
 - Introduced in NFVIS 3.12.3 release aes256-sha512-modp4096
- ESP cipher:
 - · aes128-sha1
 - Introduced in NFVIS 3.12.3 release aes256-sha512

- Introduced in NFVIS 4.2.1 release aes256-sha512-modp2048
- Introduced in NFVIS 4.2.1 release aes256-sha512-modp4096
- Introduced in NFVIS 4.4.1 release aes128-sha1-modp1536, aes256-sha1-modp2048, and aes256-sha256-modp2048
- · Local system IP address:
 - Unique tunnel IP address for each NFVIS system.
 - Introduced in NFVIS 3.11.1 release Internal management network bridge (int-mgmt-net-br) gateway IP address is allowed to be used as local system IP address. In this case, the local system IP bridge much be set to internal management network (int-mgmt-net).
 - Introduced in NFVIS 4.4.1 release local system IP address can be learnt through IPSec negotiation when local system IP address is not configured.
- Local system IP subnet:
 - local system IP subnet prefix.
 - Introduced in NFVIS 4.4.1 release local system IP address and subnet can be learnt through IPSec negotiation. In this case local system IP subnet should not be configured.
- Local bridge for NFVIS reaching out to remote VPN server:
 - · wan-br by default
 - wan2-br
- Local bridge and Dual local bridge:

Introduced in NFVIS 3.12.1 release - Secure overlay is support on NFVIS Dual WAN feature. DHCP client toggles between wan and wan2 to request for an IP address. When IP address and default gateway are obtained from an interface with DHCP configuration, the toggling stops. If dual-local-bridge is configured, to start overlay, NFVIS selects the interface between local-bridge and dual-local-bridge, in the following order:

- Interface with DHCP configuration.
- · Interface having static IP address.
- If both interfaces have static IP address, local-bridge interface.
- · Local identity:
 - · IP address or FQDN
 - Introduced in NFVIS 3.12.3 release email domain
- Remote identity:
 - IP address or FQDN
 - Introduced in NFVIS 3.12.3 release Distinguish Name
 - Introduced in NFVIS 3.12.3 release email domain

- Introduced in NFVIS 4.4.1 release Active-Standby headend VPN responder scenario is supported. You can configure a list of Remote IDs, each of which is corresponding to one remote VPN responder.
- Introduced in NFVIS 4.5.1 release Remote ID configuration using EAP authentication is simplified. If the added security using a distinguished name is not required when using EAP authentication, then an FQDN can be configured on NFVIS to simplify the remote ID configuration and reduce authentication complexity.
- · Remote Interface IP address:
 - · IP address
 - Introduced in NFVIS 4.4.1 release FQDN
 - For the FQDN, DNS server has to be configured in system settings or learned through DHCP.
- Remote system IP address:
 - · IP address
 - Introduced in NFVIS 4.4.1 release Active-Standby headend VPN responder scenarios is supported. You can configure a list of Remote system IP addresses, each of which is corresponding to a tunnel IP address on a remote VPN responder.
 - Introduced in NFVIS 4.5.1 release Remote system IP address can be learned from the remote VPN responder. To do so, leave the **remote-system-ip-addr** field out the of secure overlay configuration entirely
- Remote system IP Subnet:
 - User can specify IP subnet prefix.
 - Introduced in NFVIS 4.1.1 release User can specify 0.0.0.0/0.
 - Default route is set to Secure Overlay tunnel
 - Following routes bypass the tunnel:
 - If PNP server IP address is discovered before Secure Overlay is configured
 - If DNS server IP address is set before Secure Overlay is configured.
 - · Any NFVIS local static route
 - Any route added by user using system routes route command
 - Introduced in NFVIS 4.4.1 release Active-Standby headend VPN responder scenario is supported.
 You can configure a list of Remote system IP subnets, each of which corresponds to a tunnel IP address on a remote VPN responder.
- BGP Neighbor Name:
 - Introduced in NFVIS 4.4.1 release, Secure Overlay feature can work together with BGP feature. BGP session can be established over IPSec tunnel. NFVIS can learn private remote subnets from BGP neighbor over the tunnel. These learnt private subnets are added to the routing table for IPsec tunnel. BGP Neighbor Name allows BGP neighbor session to be established with the active secure overlay remote system IP address if the neighbor name is also configured under **router bgp**

- configuration. NFVIS will automatically determine which remote system IP address belongs to the active remote IPSec VPN responder.
- Introduced in NFVIS 4.5.1 release Secure overlay feature works together with BGP feature to announce NFVIS subnet routes over an IPSec tunnel to a BGP neighbor.

Example for Secure Overlay with Zero Touch Deployment

- 1. NFVIS has WAN IP address, static IP address or DHCP IP address. NFVIS calls home PnP server.
- 2. The PnP server pushes NFVIS Day-0 configurations including the secure overlay configuration.
- **3.** NFVIS establishes IPSec connection between NFVIS and the headend management hub which has IPSec VPN configurations. On NFVIS side, the tunnel end point has NFVIS local system IP address.
- **4.** After the IPSec tunnel is up, the headend can connect to NFVIS through the system IP address and manage NFVIS over the IPSec tunnel.

To configure secure overlay:

```
configure terminal
secure-overlay myconn
  local-system-ip-addr 27.27.27.1
  local-system-ip-bridge int-mgmt-net
  local-id mail@gmail.com
  remote-interface-ip-addr nfvisoverlay.cisco.com
  remote-system-ip-addr [ 166.34.121.111 166.34.121.112 ]
  psk local-psk Cisco1234Admin
```

```
psk remote-psk Ciscol234Admin
confirgure terminal
secure-overlay myconn
local-system-ip-addr 28.28.28.1
{\tt local-system-ip-subnet}\ \ 28.28.28.28.0/24
local-system-ip-bridge int-mgmt-net
local-id AxxxY@cisco.com
remote-interface-ip-addr C****d.cisco.com
remote-system-ip-addr [ 166.35.121.112 166.34.121.112 ]
remote-system-ip-subnet [ 166.35.121.112/32 166.34.121.112/32 ]
remote-id [
{\it CN=vbranch, unstructuredAddress=10.30.1.114, unstructuredName=csr-vpn-srvr-02.cisco.com}
CN=vbranch,unstructuredAddress=10.30.1.153,unstructuredName=csr-vpn-srvr-03.cisco.com ]
ike-cipher [ aes256-sha512-modp2048 ]
esp-cipher [ aes256-sha512-modp2048 ]
eap username admin
eap password Cisco123#
eap cacert intdatastore:uploads/ca.pem
To get the secure overlay state:
nfvis# show secure-overlay
                                            ACTIVE
                                                        ACTIVE
                                 SELECTED LOCAL
                                                        REMOTE
               ACTIVE
                                                                      ACTIVE REMOTE
                                 LOCAL
                                            SYSTEM IP
                                                        INTERFACE
                                                                      SYSTEM IP
                                                                                       ACTIVE
               T<sub>1</sub>OCAT<sub>1</sub>
                        STATE
REMOTE
        STATE BRIDGE DETAILS BRIDGE
                                            ADDR
                                                        IP ADDR
                                                                      ADDR
                                                                                       SYSTEM
IP SUBNET ACTIVE REMOTE ID
               wan-br -
                                 wan-br
                                            28.28.28.1 10.30.1.153 166.34.121.112
mvconn up
166.34.121.112/32
"CN=vbranch, unstructuredAddress=10.30.1.153, unstructuredName=csr-vpn-srvr-03.cisco.com"
nfvis#
```

Examples for Configuring Secure Overlay

Note

Secure overlay configuration on NFVIS must match with VPN configuration on the VPN server. The secure overlay tunnel will not be established successfully if the configurations do not match.

Secure Overlay over WAN with pre-shared-key and FQDN remote-id

```
<remote-interface-ip-addr>csrhead.cisco.com/remote-interface-ip-addr>
<remote-system-ip-addr>166.35.121.112/remote-system-ip-addr>
<remote-system-ip-addr>166.34.121.112/remote-system-ip-addr>
<remote-system-ip-subnet>166.35.121.112/32/remote-system-ip-subnet>
/remote-system-ip-subnet>166.34.121.112/32/remote-system-ip-subnet>
```

<remote-id>CN=vbranch,unstructuredAddress=10.30.1.114,unstructuredName=csr-vpn-srvr-02.cisco.com/remote-id>

<remote-id>CN=vbranch,unstructuredAddress=10.30.1.153,unstructuredName=csr-vpn-srvr-03.cisco.com/remote-id>

VPN configuration on VPN server:

```
aaa new-model
aaa group server radius radius-group
 server-private 10.30.1.234 auth-port 1812 acct-port 1813 key Cisco123#
ip vrf forwarding public-vrf
ip radius source-interface GigabitEthernet2
aaa authentication login default group radius-group local
aaa authentication login ucpe-authen group radius-group
aaa authorization console
aaa authorization exec default local
aaa authorization network default local
aaa session-id common
crypto pki trustpoint TP-self-signed-2641177237
enrollment selfsigned
subject-name cn=IOS-Self-Signed-Certificate-2641177237
revocation-check none
 rsakeypair TP-self-signed-2641177237
crypto pki trustpoint SLA-TrustPoint
revocation-check crl
crypto pki trustpoint router
enrollment url http://10.30.1.153:80
```

```
ip-address 10.30.1.114
 subject-name CN=vbranch
vrf public-vrf
 revocation-check crl
 rsakeypair router
 auto-enroll regenerate
hash sha512
crypto ikev2 authorization policy uCPE-author-pol
pool uCPE-pool1
dns 166.37.162.103 166.37.218.90
pfs
route set interface Loopback1001
no crypto ikev2 authorization policy default
crypto ikev2 proposal uCPE-proposal
 encryption aes-cbc-256
integrity sha512
group 16 14
no crypto ikev2 policy default
crypto ikev2 policy uCPE-policy
match fvrf public-vrf
proposal uCPE-proposal
crypto ikev2 profile uCPE-profile
description uCPE profile
match fvrf public-vrf
match identity remote email domain vpntest.com
identity local dn
 authentication local rsa-sig
authentication remote eap query-identity
pki trustpoint router
dpd 60 2 on-demand
 aaa authentication eap ucpe-authen
 aaa authorization group eap list default uCPE-author-pol
virtual-template 1 mode auto
crypto ipsec transform-set tset aes 256 sha512 esp-aes 256 esp-sha512-hmac
mode tunnel
crypto ipsec df-bit clear
no crypto ipsec profile default
crypto ipsec profile uCPE-ips-prof
set security-association lifetime seconds 28800
set security-association idle-time 1800
set transform-set tset aes 256 sha512
set pfs group14
set ikev2-profile uCPE-profile
crypto call admission limit ike in-negotiation-sa 30
ip radius source-interface GigabitEthernet2
 route set interface Loopback1001
interface Loopback1
ip vrf forwarding private-vrf
```

```
ip address 90.90.90.1 255.255.255.255
interface Loopback2
ip vrf forwarding private-vrf
ip address 91.91.91.1 255.255.255.0
interface Loopback3
ip vrf forwarding private-vrf
ip address 90.90.90.201 255.255.255.128
interface Loopback1001
description MNSO Interface and Tunnel Loopback
ip vrf forwarding private-vrf
ip address 166.35.121.112 255.255.255.255
interface GigabitEthernet1
ip vrf forwarding private-vrf
ip address 92.92.92.1 255.255.255.0
negotiation auto
no mop enabled
no mop sysid
interface GigabitEthernet2
 ip vrf forwarding public-vrf
ip address 10.30.1.114 255.255.255.0
negotiation auto
no mop enabled
no mop sysid
interface GigabitEthernet3
ip vrf forwarding private-vrf
 ip address 91.91.91.1 255.255.255.0
 shutdown
negotiation auto
no mop enabled
no mop sysid
interface Virtual-Template1 type tunnel
ip vrf forwarding private-vrf
```

```
ip unnumbered Loopback1001
ip mtu 1400
ip tcp adjust-mss 1380
tunnel vrf public-vrf
tunnel protection ipsec profile uCPE-ips-prof
ip radius source-interface GigabitEthernet2
```

Internal management network bridge IP address as local system IP address

Note

NFVIS internal management network has gateway IP address 12.12.12.1.

dual-local-bridge and int-mgmt-net-br IP as local system IP

EAP authentication

```
<ike-cipher>aes256-sha512-modp2048</ike-cipher>
   <esp-cipher>aes256-sha51
   <eap>
      <username>admin</username>
      <password>Cisco123#</password>
      <cacert>https://cert/csr.pem</cacert>
   </eap>
</secure-overlay>
The following is an example of the VPN configuration on VPN server:
aaa group server radius radius-group
server-private 172.19.160.190 auth-port 1812 acct-port 1813 key Cisco123#
ip radius source-interface GigabitEthernet
aaa authentication login default group radius-group
aaa authentication login ucpe-authen group radius-group
ip domain name headendvpn
crypto pki server ca-server
database level names
no database archive
hash sha512
lifetime certificate 3650
lifetime ca-certificate 7305 23 59
auto-rollover 365
eku server-auth client-auth
database url flash:ca
crypto pki trustpoint ca-server
revocation-check crl
rsakeypair ca-server
crypto pki trustpoint router
 enrollment url http://172.19.160.75:80
ip-address 172.19.160.75
subject-name CN=vbranch
revocation-check crl
rsakeypair router
 auto-enroll regenerate
hash sha512
crypto ikev2 authorization policy uCPE-athor-pol
pfs
route set interface
no crypto ikev2 authorization policy default
crypto ikev2 proposal uCPE-proposal
encryption aes-cbc-256
integrity sha512
group 16 14
no crypto ikev2 policy default
crypto ikev2 policy uCPE-policy
match address local 172.19.160.75
proposal uCPE-proposal
crypto ikev2 profile uCPE-profile
description uCPE profile
match identity remote email domain cisco.com
```

```
identity local dn
 authentication local rsa-sig
authentication remote eap query-identity
pki trustpoint router
dpd 60 2 on-demand
aaa authentication eap ucpe-authen
 aaa authorization group eap list default uCPE-athor-pol
virtual-template 1 mode auto
crypto ipsec transform-set tset_aes_256_sha512 esp-aes 256 esp-sha512-hmac
mode tunnel
crypto ipsec profile uCPE-ips-prof
set security-association lifetime seconds 28800
set security-association idle-time 1800
set transform-set tset aes 256 sha512
set pfs group16
set ikev2-profile uCPE-profile
interface Loopback1
ip address 192.168.254.1 255.255.255.0
interface GigabitEthernet1
ip address 172.19.160.75 255.255.255.0
negotiation auto
no mop enabled
no mop sysid
interface GigabitEthernet2
ip address 192.168.1.90 255.255.255.0
negotiation auto
no mop enabled
no mop sysid
interface Virtual-Template1 type tunnel
description uCPE virt template
ip unnumbered Loopback1
ip mtu 1400
ip tcp adjust-mss 1360
tunnel source GigabitEthernet1
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile uCPE-ips-prof
```

Single Public IP Address and Secure Overlay

Single Public IP Address

In a virtual branch deployment, two public IP addresses are needed for each branch site, one for the NFVIS hypervisor and the other one for the WAN router. In Single Public IP Address feature on NFVIS, one public IP address assigned to a branch site, is seamlessly shared between the NFVIS hypervisor and the guest VM deployed on NFVIS. This feature ensures that the branch site is reachable even if the guest router is in failure state

NFVIS reclaims the WAN IP address if the guest router has:

- Deployment failure.
- Error state.
- Stopped.

• Undeployed.

NFVIS releases the WAN IP address if the guest router has:

- Deployed.
- · Started.

To create a single-ip-mode:

```
configure terminal
single-ip-mode vm-name <vm_deploy_name>.<vm_group_name>
commit
```

Use the **show vm_lifecycle deployments all** | **include Name** command to find out the Deployment Name and VM Group Name.

To get the state of single-ip-mode use the **show single-ip-mode** command.

Single Public IP Address with Secure Overlay

Secure overlay tunnel is established automatically when IP address is moves back and forth between NFVIS and the guest VM. The orchestrator can always reach NFVIS through the system IP address which does not change during the transitioning of the single public IP address.

Figure 1: Example of Setting IPSec Tunnel in Single IP mode

After secure overlay over WAN is established, the orchestrator sends requests to configure single IP mode and deploy the guest router that takes the public IP address.

- 1. NFVIS deploys the VM with specified bootstrap and Day-0 configuration. NFVIS takes down the current IPSec tunnel and releases the public IP address.
- **2.** The VM takes the public IP address when it is in active state. NFVIS sets up the IPSec tunnel again with the remote management hub.
- **3.** After the IPSec tunnel is up, the orchestrator can connect to NFVIS through its system IP address and manage NFVIS over the IPSec tunnel.

In single IP mode, NFVIS monitors the guest VM taking the public IP address. NFVIS takes WAN IP address back when the guest VM is:

• In error state.

- Stopped through vmAction.
- Undeployed.

Figure 2: Example of NFVIS Handling Failure

- 1. NFVIS takes WAN IP address.
- **2.** NFVIS sets up IPSec tunnel to the management hub.
- 3. When IPSec tunnel is up, the VPN server can connect to NFVIS through its system IP address and manage NFVIS over the IPSec tunnel.

Each NFVIS has its int-mgmt-net and subnet associated to the IP address pool. The following is an exmaple to setup the IP address pool before deploying VM:

```
no vm_lifecycle networks network int-mgmt-net commit
vm_lifecycle networks network int-mgmt-net
subnet int-mgmt-net-subnet address 12.12.12.0
netmask 255.255.255.0
gateway 12.12.12.1
dhcp false
ipversion ipv4
commit
```

Single IP Monitoring External Gateway

Before NFVIS 4.8, single IP monitors the external gateway using a ping, every 2 minutes, by default. Starting from NFVIS 4.8, single IP monitors the external gateway only if you configure the **wan-monitor-interval** command. The monitor interval can range from 2 minutes to 60 minutes. If the **wan-monitor-interval** command is deleted, single IP stops monitoring the external gateway.

To configure the external gateway monitor interval:

Guest VM Taking Public IP Address

Guest VM must be deployed as a monitored VM which has two interfaces:

- Interface facing public with the public IP address.
- Interface on int-mgmt-net-br for traffic flow with NFVIS.

The guest VM has routing function to route traffic between the two interfaces and Network address translation (NAT) enabled. NFVIS reaches remote through int-mgmt-net-br to the guest VM.

The int-mgmt-net-br address pool and gateway IP address must be unique on each NFVIS. If secure overlay is configured, single IP mode is setup when VM is active and int-mgmt-net-br is used as a local-bridge.

Single IP Address and DHCP

NFVIS single-ip-mode supports the public IP address acquired through DHCP by leveraging on the lease timer configuration on DHCP server. The guest VM with Day-0 configuration gets the IP address through DHCP when NFVIS client sends release message to DHCP server.

To handle failure, NFVIS:

- stops the VM, to ensure the VM dhclient does not send DHCP renew to DHCP server
- switches back to WAN and its dhclient sends DHCP renew message to DHCP server
- gets the same IP address from DHCP server when VM's lease time expires.

ISRv Bootstrap and Day-0 Configuration

In single-ip-mode, NFVIS reaches to the guest router and takes its IP address. Traffic must be allowed between ISRv gigabit ethernet interface 1 connected to NFVIS int-mgmt-net-br and gigabit ethernet interface 2 connected to public side having the public IP address.

The following is an example based on ISRv 16.09.01a that shows how to configure the guest router to route the traffic:

```
<?xml version="1.0" encoding="UTF-8"?>
<Environment
xmlns:oe="http://schemas.dmtf.org/ovf/environment/1">
  <PropertySection>
    <Property oe:key="com.cisco.csr1000v.config-version.1" oe:value="1.0"/>
    <Property oe:key="com.cisco.csr1000v.enable-ssh-server.1" oe:value="True"/>
    <Property oe:key="com.cisco.csr1000v.login-username.1" oe:value="${SSH USERNAME}"/>
    <Property oe:key="com.cisco.csr1000v.login-password.1" oe:value="${SSH PASSWORD}"/>
    <Property oe:key="com.cisco.csr1000v.mgmt-interface.1" oe:value="GigabitEthernet1"/>
!!!GigabitEthernet1-nicid(0)-int-mgmt-interface-don't change ip address or don't shutdown
    <Property oe:key="com.cisco.csr1000v.mgmt-ipv4-addr.1"</pre>
oe:value="${NICID 0 IP ADDRESS}/24"/>
    <Property oe:key="com.cisco.csr1000v.mgmt-ipv4-network.1" oe:value=""/>
    <Property oe:key="com.cisco.csr1000v.license.1" oe:value="${TECH PACKAGE}"/>
    <Property oe:key="com.cisco.csr1000v.ios-config-0001" oe:value="vrf definition</pre>
Mgmt-intf"/>
    <Property oe:key="com.cisco.csr1000v.ios-config-0002" oe:value="address-family ipv4"/>
    <Property oe:key="com.cisco.csr1000v.ios-config-0003" oe:value="exit-address-family"/>
    <Property oe:key="com.cisco.csr1000v.ios-config-0004" oe:value="address-family ipv6"/>
    <Property oe:key="com.cisco.csr1000v.ios-config-0005" oe:value="exit-address-family"/>
    <Property oe:key="com.cisco.csr1000v.ios-confiq-0006" oe:value="exit"/>
    <Property oe:key="com.cisco.csr1000v.ios-config-0007" oe:value="interface</pre>
GigabitEthernet1"/>
```

The following is an example of ISRv day-0 configuration with a static public IP address:

```
interface GigabitEthernet1
ip nat inside
negotiation auto
!
interface GigabitEthernet2
ip address 172.25.221.17 255.255.255.0
ip nat outside
negotiation auto
!
ip nat inside source list NAT interface GigabitEthernet2 overload
ip route 0.0.0.0.0.0.0 172.25.221.1
ip route 10.19.18.0 255.255.255.0 12.12.12.1
!
ip access-list standard NAT
permit 12.12.12.0.0.0.0.25
```

The following is an example of ISRv day-0 configuration with DHCP IP address:

```
interface GigabitEthernet1
ip nat inside
negotiation auto
!
interface GigabitEthernet2
ip address dhcp
ip nat outside
negotiation auto
!
ip nat inside source list NAT interface GigabitEthernet2 overload
ip route 10.19.18.0 255.255.255.0 12.12.12.1
!
ip access-list standard NAT
permit 12.12.12.0.0.0.0.25
```

To verify single IP address mode status us the **show single-ip-mode** and **show secure-overlay** command:

Single IP and Secure Overlay APIs

Secure Overlay APIs	Secure Overlay Commands
/api/config/single-ip-mode	single-ip-mode
/api/operational/single-ip-mode	

Single IP Address Without Secure Overlay

Note

This feature is only supported for WAN bridge in NFVIS 3.10.1 release, and Single-IP works only on the GE0-0 port.

To reach NFVIS when secure overlay is not configured, you must first configure the guest device and manage IP addressing. The rest of the functionality, switching IP address between NFVIS and the guest device is the same as IP address with secure overlay.

Typically you need two IP addresses in each site, one for NFVIS and one for the VM. You can enable the single IP feature to reduce one public IP address. The single public IP address is used by NFVIS after deploying the VM with the single IP feature. After the VM comes up, NFVIS releases the public IP address for the VM to use. NFVIS and the VM have an internal network to communicate with each other. The traffic between NFVIS and an external network will need to go through the new VM and NAT by the new VM.

For single IP without secure overlay feature to work:

- From the **Deploy** page on NFVIS portal select single IP or configure the single IP mode by using the **single-ip-mode router.router** command.
- Provide a bootstrap file for the VM.
- Enable **Monitor** for the VM and the internal network int-mgmt-net between NFVIS and VM is created automatically.

The following example is a sample bootstrapping configuration:

172.25.221.7/24 is the single public IP address that is originally used by NFVIS and later by the VM. 172.25.221.1 is the gateway to the external network and 10.20.0.x is the internal network between NFVIS and the VM. IP address in 10.20.0.x network is used to NAT by the VM: -

```
interface GigabitEthernet1
ip nat inside
negotiation auto
!
interface GigabitEthernet2
ip address 172.25.221.17 255.255.255.0
ip nat outside
negotiation auto
!
ip nat inside source list NAT interface GigabitEthernet2 overload
ip route 0.0.0.0 0.0.0.0 172.25.221.1
!
ip access-list standard NAT
```

permit 10.20.0.0 0.0.0.25

When the VM is down, NFVIS takes back the single IP address and the external server can communicate with NFVIS directly.

Single IP Address Without Secure Overlay