
OpenStack Havana ScalabilityTesting
March 25, 2014

CCDE, CCENT, CCSI, Cisco Eos, Cisco Explorer, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase,
Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco TrustSec, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip
Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work,
Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and
Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the
Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity,
Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the
IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, PCNow, PIX, PowerKEY,
PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are
registered trademarks of Cisco and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1002R)

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

OpenStack Havana Scalability Testing
© 2014 Cisco Systems, Inc. All rights reserved.

C O N T E N T S
C H A P T E R 1 Architecture 1-1

Hardware Architecture 1-1

Network Configuration 1-2

OpenStack Architecture 1-3

AIO (All-in-One) 1-4

C H A P T E R 2 Test Plan 2-1

Test Results 2-2

Test Case 1 2-2

Test Case 2 2-4

Test Case 3 2-5

Test Case 4 2-8

Test Case 5 2-10

Results Summary 2-14

Recommendations 2-15

A P P E N D I X A Terms and Configs A-1

Abbreviations A-1

Configurations A-2
i
OpenStack Havana Scalability Testing

Contents
ii
OpenStack Havana Scalability Testing

C H A P T E R 1

Architecture

OpenStack is one of the fastest growing open source projects today, with thousands of active developers
and hundreds of actively supporting companies and individuals. Cisco has developed and maintains the
Cisco OpenStack Installer to provide an automated installation of a packaged reference version of
OpenStack. Customers can use the Cisco OpenStack Installer to easily and quickly stand up a production
cloud.

This documents looks to answer the next set of questions that arise after a cloud is up and running. These
questions revolve around scalability. While both hardware and software scalability are of concern to a
production cloud deployment, this document focuses on the scalability of the OpenStack control plane.
This testing was conducted with the Cisco OpenStack Installer on a hardware architecture comprised of
Cisco Nexus switches and Cisco UCS servers.

Hardware Architecture
The Cisco UCS servers chosen for this testing closely match the Mixed Workload Configuration from
the Cisco UCS Solution Accelerator Paks for OpenStack Cloud Infrastructure Deployments. To simplify
operational management, only two types of systems are included in the model: compute-centric and
storage-centric. Keep in mind, software performance is the focus of this testing, but minor variation from
the hardware specification below should still result in similar data.

Mixed-Workload Server Configuration

• 6 Cisco UCS C220 M3 Rack Servers, each with:

– 2 Intel Xeon processors E5-2665

– 128 GB of memory

– LSI MegaRAID 9266-CV 8i card

– Cisco UCS VIC 1225

– Redundant power supplies

– 2 x 600-GB SAS hard disk drives

• 2 Cisco UCS C240 M3 Rack Servers, each with:

– 2 Intel Xeon processors E5-2665

– 256 GB of memory

– LSI MegaRAID 9271-CV 8i card

– Cisco UCS VIC 1225
1-1
OpenStack Havana Scalability Testing

http://www.cisco.com/web/solutions/openstack/le_sb_open.pdf

Chapter 1 Architecture
Network Configuration
– Redundant power supplies

– 12 x 900-GB SAS hard disk drives

• 2 Cisco UCS 6296UP 96-Port Fabric Interconnects

• 2 Cisco Nexus 2232PP 10GE Fabric Extenders

The compute system is based on the 1RU C220-M3 platform and leverages a low power 8 core CPU and
128GB of memory giving a memory-to-core ratio of 8:1. The storage subsystem is based on a high
performance RAID controller and SAS disks for a flexible model for ephemeral, distributed Cinder,
and/or Ceph storage. The network interface is based on the Cisco Virtual Interface Controller (VIC),
providing dual 10Gbps network channels and enabling Hypervisor Bypass with Virtual Machine Fabric
Extension (VM-FEX) functionality when combined with a Nexus 5500 series data center switch as the
Top of Rack (ToR) device, Fibre Channel over Ethernet (FCOE) storage, and Network Interface Card
(NIC) bonding for network path resiliency or increased network performance for video streaming, high
performance data moves, or storage applications.

The storage system is based on the 2RU C240-M3 platform, which is similar at the baseboard level to
the C220-M3, but provides up to 24 2.5” drive slots. With 24 spindles, this platform is geared more
toward storage. The reference configuration makes use of low power 8 core CPUs, and a larger memory
space at 256GB total. This specific configuration of these nodes is designed for Swift, Cinder, or
Ceph-focused usage. This platform also includes the Cisco VIC for up to 20Gbps of storage forwarding
with link resiliency when combined with the dual ToR model.

Network Configuration
The OpenStack control-plane traffic is carried on the server LOM management port connected to an
out-of-band management switch. Server installation and management is also performed via this network.
The OpenStack data-plane (VM) traffic is carried on the 10Gb Cisco VIC connected to an upstream
network based on Nexus series switches, enabling the use of a number of advanced scale-out network
services in the Layer 2 (Link Local) and Layer 3 (Routed Network) services. The TOR switches are
configured as a virtual Port Channel (vPC) pair, with a set of 10Gb connections between them as the
VPC peer link, and a vPC connecting to each FEX. Enhanced vPC is then used to bond the links to the
servers into a port-channel as well.
1-2
OpenStack Havana Scalability Testing

Chapter 1 Architecture
OpenStack Architecture
Figure 1-1 OpenStack Data-Plane Network

Logically, the network is segregated via VLANs. VLANs are used for tenant segmentation as well as
storage networks. To provide resiliency and high performance, provider networks are used. DHCP is
provided by Neutron, but the physical network provides all other L3 services. Security will be provided
by the IPtables security functionality driven by Neutron.

OpenStack Architecture
The Havana version of Cisco OpenStack installer provides four architectural scenarios: 2 Node, Full HA,
Compressed HA, and All in One (AIO). While AIO provides the simplest setup, it is not intended for
large-scale production deployment. However, it does provide a simplified model to evaluate scale points
of single controller architecture, and a basis for comparison to other architectures.
1-3
OpenStack Havana Scalability Testing

Chapter 1 Architecture
OpenStack Architecture
AIO (All-in-One)
The AIO system is ideal for a first foray into OpenStack. Previous versions of Cisco OpenStack Installer
required a separate build node to configure a server to be an AIO node. However, with the COI Havana
release, the install script will turn a single node on which it is run into an AIO, so no separate build node
is required. An AIO node puts all the OpenStack services (Control, Compute, Storage, Network, etc)
onto a single node. RabbitMQ is used for message passing between services. MySQL database on the
local drive is used to backend services.

Figure 1-2 All-in-One Services Layout

29
55

14

AIO Node

MySQL

 C
in

de
r

 N
ov

a

 N
eu

tr
on

 S
w

ift

 G
la

nc
e

 K
ey

st
on

e

 C
ei

lo
m

et
er

 H
ea

t

 H
or

iz
on
1-4
OpenStack Havana Scalability Testing

http://docwiki.cisco.com/wiki/Openstack:Havana-Openstack-Installer

C H A P T E R 2

Test Plan

The testing focused on stressing out various aspects of the OpenStack control plane. Each test case was
built to focus stress into one aspect of control plane. Some tests cases are meant to stress the system to
points of noticeable system degradation and even break points. Other tests are meant to reveal trends at
lower scales that can be extrapolated to theoretical system maximums and break points. Table 2-1 gives
details of each test case.

Table 2-1 Test Case Overview

ID Test Case
Modules
Stressed Parameters Assumptions / Remarks

1 How many computes nodes can a single control
node handle?
1. Create control node on physical server
2. Add more compute nodes on physical servers
3. Profile RabbitMQ periodically (with
incremental addition of computes)

RabbitMQ RabbitMQ
performance numbers
as given by RabbitMQ
management plugin

RabbitMQ gets stressed
before the virtual n/w gets
stressed

2 How many computes (with fixed no. of vms per
compute) can a single control node handle?
1. Create control node on physical server
2. Add more compute nodes on physical servers.
3. Provision a fixed set of VMs on the virtual
computes.
4. Profile RabbitMQ periodically (with
incremental addition of computes)

RabbitMQ RabbitMQ
performance numbers
as given by RabbitMQ
management plugin

RabbitMQ gets stressed
before the virtual n/w gets
stressed

3 How many VMs can a single compute node
handle?

1. Create control node on physical server
2. Create compute node on physical server
3. Provision VMs on the compute node
4. Profile compute node utilization (RAM, CPU
and Disk) with incremental VM provision

Compute
server's
Memory, CPU
and Disk

Statistics collected by
vmstat tool

Default settings of
hypervisor is not changed

VMs provisioned are
identical and hence use
same amount of RAM
2-1
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Test Results
The following use cases were tested.

• Test Case 1, page 2-2

• Test Case 2, page 2-4

• Test Case 3, page 2-5

• Test Case 4, page 2-8

• Test Case 5, page 2-10

Test Case 1

Intent

To determine the number of idle computes a single controller can handle.

Methodology

RabbitMQ is a central component in OpenStack that enables interoperability between all the other
components. Considering this, RabbitMQ was identified as a possible bottleneck. It was monitored using
the RabbitMQ management plugin. Additional compute nodes were added simultaneously to the
controller. During this process, RabbitMQ parameters such as number of Socket Descriptors (SD), File
Descriptors (FD), Number of Erlang Processes running (ER) and the amount of memory being used were
measured. By default, RabbitMQ sets an upper limit on these parameters. The tests were conducted on
a specific set of hardware and the trend was observed. These observations were extrapolated further to
identify the bottleneck when the system scales.

4 How many parallel API requests can the API
server handle?

1. Create control and compute nodes on physical
server
2. Perform control operations such as createVm,
startVm, stopVm and deleteVM 4. Measure the
time taken for VMs to become active.

API server
Keystone

No. of concurrent
tenants are varied
using rally
configurations

Stats returned by rally
and vmstat tool

This would simulate the
behavior of OpenStack
when multiple API
requests are being
processed, and the impact
of that on VM creation
time.

5 How does the system behave if multiple tenants
fire parallel API requests?
1. Create control and compute nodes on physical
server

2. Create multiple tenants and users using Rally.

3. Fire parallel API requests while varying the
number of users per tenant

API server
Keystone

No. of concurrent
tenants and users per
tenant varied using
rally

Stats returned by rally
and vmstat

This would simulate a
real-world scenario where
multiple users with
different privileges can
fire API requests
randomly.

Table 2-1 Test Case Overview (continued)

ID Test Case
Modules
Stressed Parameters Assumptions / Remarks
2-2
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Observations

• The number of SD and FD increased steadily with the addition of each compute.

• The number of SD created for 9 computes was 80. The default maximum number of SDs was 862.

• The number of FD created for 9 computes was 101. The default maximum number of FDs was 1024.

Figure 2-1, Figure 2-2, and Figure 2-3show actual variance of SD, FD and ER for addition of 9 compute
nodes.

Figure 2-1 shows the effect of increasing number of computes vs. number of RabbitMQ Socket
Descriptors. [X-axis = No of computes; Y-axis = No of Socket Descriptors].

Figure 2-1 Actual Variance of SD

29
55

15
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

SD

8 9

S
D

Number of Computes

SD

Figure 2-2 shows the effect of increasing number of computes vs. number of RabbitMQ File [X-axis =
No of computes; Y-axis = No of File Descriptors].

Figure 2-2 Actual Variance of FD

29
55

16

FD

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

F
D

Number of Computes

FD

Figure 2-3 shows the numbers obtained from the result was extrapolated to determine the point at which
RabbitMQ would fail to add any more nodes.
2-3
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Projected Values at Scale

Figure 2-3 Actual Variance of ER

29
55

17

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
3

13
6

13
9

14
2

14
5

14
8

15
1

15
4

15
7

16
0

16
3

16
6

16
9

17
2

17
5

17
8

18
1

18
4

18
7

S
D

/F
D

/E
R

Number of Computes

SD

FD

ER PROC

Inferences

• Upon extrapolating these numbers the number of socket descriptors seemed to be the limiting factor
since the upper limit of 862 (theoretical projection) was reached.

• Assuming that the system behaves similarly under higher loads the number of computes that can be
managed is 148 (theoretical projection).

• However in this case, the compute nodes were idle. In a scenario where VMs are running on
computes, this number may vary (as covered in test case2).

• The upper limit on these parameters can be configured by editing the file
“/etc/security/limits.conf” .

Test Case 2

Intent

To determine the number of computes a single controller can handle, if the computes are loaded with a
constant number of VMs.

Methodology

The execution method and the parameters measured remain the same as in test case 1. However, each
compute is loaded with 20 Ubuntu VMs.

Observations

• With the additional load on each compute, the total number of socket descriptors and file descriptors
increased linearly.
2-4
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
• The number of SD created for 9 computes was 406.

• The number of FD created for 9 computes was 448.

• However, it can be observed that the number of socket descriptors used per compute went up
quite sharply.

Figure 2-4 shows the number of socket and file descriptors vs. number of compute nodes [X-axis: No of
compute nodes; Y–axis: No of socket/file descriptors.

Figure 2-4 Number of Socket and File descriptors vs. Number of Computers

29
55

18

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050

0 3 6 9 12 15 18 21

S
D

/F
D

Number of Computes

Socket Descriptors

File Descriptor

Inferences

• With increase in load on each compute the total number of computes that can be managed by a single
controller comes down significantly.

• Based on the observed results, socket descriptor count seemed to be the limiting factor.

• Upon extrapolating the results, the number of computes (with 20 VMs) that can be managed by a
controller was around 18. (theoretical projection).

• However, these scaled numbers are purely theoretical projections, and the exact number might vary
due to resource optimizations built into RabbitMQ that can get triggered under stressed conditions.

Test Case 3

Intent

To stress a single compute and identify the maximum number of VMs that could be provisioned on it.
Also, by doing this exercise, create a baseline for evaluating other related test cases.

Methodology

Rally and a script using the ‘vmstat’ tool were used to complete this experiment.

Rally was used to provision VMs on an AIO. The following parameters were measured while running
the test cases.

1. The number of VMs provisioned successfully / with error.

2. The time taken by VMs to power up.
2-5
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
3. The system’s vital stats at regular intervals, as reported by the command ‘vmstat'.

Graphs were plotted based on these measurements and further inferences were deduced.

Rally Configuration

• No of tenants: 1

• No of users per tenant: 1

• No of active users: 1

Observations

• Maximum number of VMs of flavor 1(512MB) provisioned using Cirros image: 376.

• Maximum number of VMs of flavor 2(1GB) provisioned using Ubuntu image: 94.

• Provisioning time required for each VM increases nominally as the number of VMs on compute
increases.

• However, an actual utilization of only about 58GB was observed while running 94 Ubuntu VMs.

• A maximum of 482 VMs could be provisioned with an over-commit of 2.0 using flavor 1 Cirros
image. The same experiment when repeated using flavor 2 Ubuntu image, yielded a number of
202.

Figure 2-5 shows available RAM in the host vs. Number of VMs on the node. [X-axis: no of VMs;
Y-axis: Available RAM].

Figure 2-5 Available RAM vs Number of VMs

140000

120000

100000

80000

60000

40000

20000

0
0 10 20 30 40 50 60 70 80 90 100

A
va

ila
b

le
 R

A
M

 in
 M

B

Number of VMs

Available RAM vs Number of VMs

Available RAM

29
55

19

Figure 2-6 shows time taken to provision each VM vs. Number of VMs. [X-axis: No of VMs; Y-axis:
Time taken to provision each VM].
2-6
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Figure 2-6 TimeTaken to Provision each VM vs Number of VMs

50

45

40

35

30

25

20

15

10

5

0
0 10 20 30 40 50 60 70 80 90 100

T
im

e
in

 S
ec

Number of VMs

VMs Time Taken to get Active

VMs Time to Active

29
55

20

Figure 2-7 shows the amount of memory used by idle Ubuntu VMs [Triangle AOC] and the amount of
memory remaining on the host that can be used by the applications running on these VMs [Triangle
AOB]. It also shows the maximum number of idle Ubuntu VMs the host can support [point A: 202] given
there is no upper limit on the RAM over-commit.

Figure 2-7 Memory Used by VMs

29
55

21

Number of VMs

250

200

150

100

50

0
0 50 100 150 200 250

U
se

d
 M

em
o

ry
 in

 G
b

C
O

Theoritical Maximum Limited by OpenStack’s Overcommit Ratio

Actual Utilization

Projected Number of VMS

B
A

Inferences—What it would mean to user.

• Number of VMs that can be provisioned by OpenStack can be calculated mathematically.

• In this case, the system had a RAM capacity of 125 GB and a default over commit ratio of 1.5. Hence
a total memory of 125x1.5=188 GB was available for OpenStack to utilize.

• OpenStack could provision 94 VMs of 2GB each or 47 VMs of 4GB each.

• Beyond 94 VMs, even if the hardware is capable, OpenStack does not allow anymore VM
provisioning and the requests return an error ‘Failed to get the resource due to invalid status’, unless
the ram_overcommit_ratio is increased.

• Minor performance tweaks can be employed and the use of various filters in the default filter
scheduler. However, a custom scheduler driver can be implemented if further intelligence needs to
be built-in to restrict utilization based on other parameters such as storage, vcpus etc.

• The difference between the RAM allocated by OpenStack and the actual RAM usage would give us
the amount of RAM available for the user applications running over the cloud. i.e., in this case,
125-58=67GB of RAM.

• Time taken by VM to become active increases as the number of VMs increases.
2-7
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Test Case 4

Intent

To analyze the time taken by the API, Scheduler and for a VM to power up, when Nova-API is under
stress.

Methodology

The test environment remains the same as in test case 3. However, a series of API operations such as
create, start, stop and delete were performed during provisioning of VMs in order to increase the
utilization of Nova API server. The VMs are deleted after the cycle of API operations in order to
maximize the number of API requests per VM.

A similar test was executed while provisioning Ubuntu VMs and the memory utilization was compared
with Test case 3 results (Figure 2-9).

Rally Configuration

• No of tenants: 20

• No of users per tenant:1

• No of active users: 20

• No of API operations: 12 per VM (10 stop/start + create + delete)

Observations

• Maximum number of VMs of flavor 1(512MB) provisioned using Cirros image: 376

• Initially, time taken by first 20 VMs to power up was more since VM creation waits for actual image
transfer before it is cached.

• Since at any given time the number of active VMs does not exceed 50, the VM power up time (after
first 20) remained fairly constant.

• Similar trend was observed in the time taken by API server and Scheduler (Figure 2-9).

• However, Nova-API could not be maxed out during the test; no VMs went into error state and no
provisioning requests were lost.

Figure 2-8 shows the time taken (for VM power-up) vs. number of Cirros VMs. [X-axis: Number of
VMs; Y-axis: Time in Seconds].
2-8
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Figure 2-8 VM ActiveTime

29
55

22

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

0 50 100 150 200 250 300 350

T
im

e
in

 S
ec

Number of VMs

VM Active Time

VM Active Time

Figure 2-9 shows the time taken by API & Scheduler vs. number of Cirros VMs. [X-axis: Number of
VMs; Y-axis: Time in Seconds].

Figure 2-9 API+SchedulerTime

29
55

23

Number of VMs

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350

T
in

e
in

 S
ec

API+Scheduler Time

API+Scheduler Time

Figure 2-10 shows the changes in available RAM vs. number of Ubuntu VMs. This depicts the effect of
increased API and VM control operations on the available RAM of the host. [X-axis: Number of VMs;
Y-axis: Available RAM on the host].
2-9
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Figure 2-10 Change in Available RAM vs Number of VMs

29
55

24

0

20000

40000

60000

80000

100000

120000

140000

0 50 100

A
va

ila
b

le
 R

A
M

 in
 M

B

Number of VMs

Available RAM without API Load
Available RAM With API Load

Inference

• High number of API operations would affect the response time for various operations such as create,
start, stop of a VM.

• This can serve as a guideline for deciding the total number of VMs to be hosted, in case of strict
SLA on VM power up time.

• Frequent multiple control operations on VMs will increase the host memory utilization. Hence
system administrator can plan accordingly with additional buffer host memory.

• No requests were lost when 368 VMs with 12 API operations (10 stop/start + creation and
deletion) were provisioned. Hence, Nova API can comfortably handle a load of 4536 control
requests in 66 minutes, at an average of 68.72 API requests per minute.

Test Case 5

Intent

To determine the effect of increasing the number of tenants, users and active parallel users on a system
and study its impact on Nova API server, Keystone and the database.

Methodology

Rally was used to provision VMs. Multiple test runs were performed by changing the rally
configurations to increase the number of tenants and number of active users. The attributes measured
were:

1. Number of successful provisions, number in error & build state.

2. Number of VM requests that were missed by the API server (Failed to service).

3. Minimum, Average and Maximum time taken by VMs to power up.

Rally Configuration 1

• No of tenants: 20,35,40,45,75,100

• No of users per tenant:1

• No of active users: 20,35,40,45,75,100

• Total number of Users:20,35,40,45,75,100
2-10
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
The total number of users ranged from 20 (20 tenants x 1 user) to 100.

Rally Configuration 2

• No of tenants: 20,50,75,100

• No of users per tenant:10

• No of active users: 20,50,75,100

• Total no of Users: 200,500,750,1000

The total number of users ranged from 200 (20 tenants x 10 users) to 1000.

Observations

One user per tenant:

• Number of VMs going to Error state increased as the number of active parallel users increased.

• As number of VMs increases, VM provision time becomes erratic and inconsistent.

• Number of provisioning requests that were lost (failed to service) started to increase as number of
parallel requests went up. This number increased steeply at a load of 75 to 100 parallel users.

• When 100 parallel tenants were used to fire provision requests, some VMs were held up in ‘build’
state and never reached an active state. (Figure 2-11).

Figure 2-11 comparatively shows the effect of multiple parallel requests on the success rate of the
number of VM provisioned. [x-axis: Number of Tenants/No of parallel requests ; y-axis: Number of
VMs].

Figure 2-11 Success Rate of VMs Provisioned by Requests

 Number of VMs in Error

29
55

25

 Number of VMs Lost

 Number of Active VMs

0

47

94

141

188

235

282

329

376

20 35 40 45 75 100

N
u

m
b

er
 o

f
V

M
s

Number of Tenants

One user per Tenant

Table 2-2 shows the effect of multiple parallel requests on time taken to provision each VM. [The
minimum, average and maximum time taken (in seconds) as reported by rally. Values are rounded to
nearest integer for convenience].

Table 2-2 VM ProvisionTime by Requests

Time in seconds 20 Tenants 35 Tenants 40 Tenants 100 Tenants

Minimum 11 21 22 27

Average 45 74 115 226

Maximum 89 166 371 508
2-11
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Figure 2-12 shows the effect of multiple parallel requests on time taken to provision each VM. [x-axis:
Number of VMs; y-axis: Time taken in seconds].

Figure 2-12 VM ProvisionTime by Requests

29
55

26

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350

T
im

e
in

 S
ec

Number of VMs

20 Tenants
35 Tenants
40 Tenants
100 Tenants

Ten Users per Tenant

• Number of VMs going to Error state increased as the number of active parallel users increased. This
number was significantly higher when compared with configuration 1.

• The number of VMs held up in ‘build’ state also increased at higher numbers.

• The time taken to power up a VM increased as number of users increased in the system.

• Increased number of failed VM provision requests were spotted beyond 500 users (50 active users).

• With 1000 users in the system (100 tenants x 10 Users) and 100 parallel users firing requests, more
than half of the provision calls were lost as the keystone stopped responding.

• The calls failed to get the Auth-token from keystone and the requests were getting timed out.

Figure 2-13 comparatively shows the effect of multiple parallel requests on the success rate of number
of VM provisioned. [X-axis: Number of Tenants/No of parallel requests; Y-axis: Number of VMs].

Figure 2-13 Effect of Parallel Requests on Success Rate of VMs Provisioned

29
55

27

0

50

100

150

200

250

300

350

400

450

20 50 75 100

N
u

m
b

er
 o

f
V

M
s

Number of Tenants

Ten user per Tenant

 Number of VMs Lost

 Number of VMs in Build

 Number of VMs in Error

 Number of Active VMs
2-12
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Test Results
Table 2-3 shows the effect of multiple parallel requests on time taken to provision each VM. [Minimum,
average and maximum time taken (in seconds) as reported by Rally. Values are rounded to nearest integer
for convenience].

Table 2-3 Effect of Parallel Requests on Success Rate of VMs Provisioned

Time in seconds 20 Tenants 50 Tenants 75 Tenants 100 Tenants

Minimum 15 95 94 No result from rally due to keystone error

Average 50 187 195

Maximum 109 390 272

Inferences

• Time to power up VM increases by 2x for each VM as the total number of users in the system
increase.

• This gives an input to the administrator to define the maximum number of tenants and users
according to the SLA committed.

• While using 50 or more parallel users, nova-API starts missing requests and hence multiple Nova
API servers are required with a load-balancer running behind it.

• As number of tenants and number of active users per tenant increases, request for Auth -token from
keystone starts timing out. This is because keystone database table has grown in size and time taken
to fetch records from the table increases accordingly.

• If time taken to fetch data from DB is greater than the API time-out, the requests for Auth-token
fails and subsequently the VM creation fails.

• While the requests lost can be attributed to the Nova API server being overloaded, VMs going to
error state or held up in build state can be attributed to an overloaded Keystone which is unable to
authenticate other OpenStack components such as glance, neutron etc.,

• Since Keystone is the central authentication service for all components in OpenStack, each
provision request would involve multiple OpenStack components to interact and authenticate with
each other.

• This would have a multifold increase in the load on the Keystone server. Hence Keystone-API as
well as Keystone database would be under stress.

• The same experiment was also repeated after enabling memcache for keystone to improve the
performance. It was observed that at lesser number of tenants there was not much of a difference in
the time taken by VMs to power up. However, memcache could not refresh the tokens over a period
of time, due to which stale tokens were returned from cache and requests were failing with
authentication errors (401—Unauthorized).
2-13
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Results Summary
Results Summary
Table 2-4 summarizes test case results.

Table 2-4 Results Summary

Controller
Count

Compute
Count

Tenant
Count

User /
Tenant

Parallel
Users

VM per
compute

VM:
Success

VM:
Fail

VM:
Build

VM:
Lost Findings

TC1 9 1 1 1 0 N/A N/A N/A N/A N/A Socket
descriptors
would be a
limiting
factor at 147
computes
per
controller

TC2 1 9 1 1 1 20 20 0 0 0 With
addition of
VMs,
number of
computes
per
controller
goes down.

TC3 1 1 1 1 1 376 376 0 0 0 OpenStack
limits the
maximum
number of
VMs based
on
overcommit
ratio.1

TC4 1 1 20 1 20 376 376 0 0 0 With
increase in
load on
Nova-API,
time taken
to power up
VMs goes
up.
2-14
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Recommendations
Recommendations
The behavior of the system was analyzed during this benchmarking exercise and the results are
documented under each test case. Based on these results, the following recommendations can be
suggested.

However, the numbers suggested in these recommendations may vary depending on the configuration of
the hardware used to deploy OpenStack using Cisco OpenStack Installer. Kindly refer to the section
Mixed-Workload server configuration—Cisco UCS C220 M3 specifications under ‘Hardware
Architecture’ for details regarding the setup used.

1. While running memory intensive applications, using VMs with flavor greater than “small” would
give better performance.

2. For memory intensive and critical VMs, it is advised to set RAM over commit ratio to 1.0 (default
value is 1.5) which would give a more realistic estimate and one can avoid memory crunch.

3. Limiting the number of provisioned VMs to 40% of the MAXIMUM number of VMs that can be
provisioned (for a given flavor) would be ideal.

4. The total number of computes (Physical machines) required can be approximated based on the total
number of VMs the users would provision.

TC5 1 1 20 1 20 376 376 0 0 0 With
increase in
number of
tenants and
users,
keystone
stops
responding
at higher
number and
request for
Auth token
times out.
As we
increase the
number of
parallel
requests,
Nova-API
also starts
missing
request
resulting n
lost VMs.

1 1 35 1 35 376 366 10 0 0

1 1 40 1 40 376 365 11 0 0

1 1 45 1 45 376 363 13 0 0

1 1 75 1 75 376 340 12 0 24

1 1 100 1 100 376 326 14 0 36

1 1 20 10 20 376 376 14 0 0

1 1 50 10 50 376 309 59 0 22

1 1 75 10 75 376 270 74 2 44

1 1 100 10 100 376 37 177 11 165

1. RAM Overcommit Ratio Formula: Total VMs = (Available RAM * over commit ratio) / RAM Configured per VM.

Table 2-4 Results Summary (continued)

Controller
Count

Compute
Count

Tenant
Count

User /
Tenant

Parallel
Users

VM per
compute

VM:
Success

VM:
Fail

VM:
Build

VM:
Lost Findings
2-15
OpenStack Havana Scalability Testing

Chapter 2 Test Plan
Recommendations
5. Based on results of test case 2, it can be concluded that the message queue (RabbitMQ) would act
as a limiting factor on the number of computes that can be managed by a single controller. To avoid
this limitation, a greater number of controllers can be used with a load balancer

6. Based on the results of test case 5, to ensure each request is processed successfully, it is
recommended to limit the total number of tenants to 10 per controller (assuming 5 users per tenant
are active at peak load).
2-16
OpenStack Havana Scalability Testing

A
 P P E N D I X A

Terms and Configs

The following terms and configurations are provided:

Abbreviations
The following abbreviations and acronyms are defined:

• VMs—Virtual machines

• ER—Erlang Running processes

• SD—Socket Descriptors

• AIO—All in One Node OpenStack Setup

• FD—File Descriptors

• SLA—Service Level Agreement

• Vmstat—A tool to get snapshot of system resources in Linux

• HA—High availability

• UCS—Unified Computing System

• vPC—virtual Port-Channel

• RAID—Redundant Array of Individual Disks

• VIC—Virtual Interface Controller

• VM-FEX—Virtual Machine Fabric Extender

• ToR—Top of Rack

• FCOE—Fiber Channel over Ethernet

• NIC—Network Interface Card

• AIO—All-in-One

• VRRP—Virtual Router Redundancy Protocol
A-1
OpenStack Havana Scalability Testing

Appendix A Terms and Configs
Configurations
Configurations
The following configurations were used in use case testing:

nova.config addition
Add the below contents under the default section of nova.conf
quota_cores=-1
quota_floating_ips=-1
quota_security_groups=-1
quota_security_group_rules=-1
quota_ram=-1

test_case2
{

"NovaServers.boot_server": [
{

"args": {"flavor_id": 2,
"image_id": "<< IMAGE ID >>"},

"execution": "continuous",
"config": {"times": 20, "active_users": 5, "tenants": 5,

"users_per_tenant": 1}
}

]
}

test_case3
{

"NovaServers.boot_server": [
{

"args": {"flavor_id": 2,
"image_id": "<< IMAGE ID >>"},

"execution": "continuous",
"config": {"times": 100, "active_users": 1, "tenants": 1,

"users_per_tenant": 1}
}

]
}

test_case4
so i{

"NovaServers.boot_and_bounce_server": [
{

"args": {"flavor_id": 2,
"image_id": â œ<< IMAGE ID >>",
"actions": [{â œstop_and_start": 5}]},

"execution": "continuous",
"config": {"times": 100, "active_users": 20, "tenants": 20,

"users_per_tenant": 1}
}

]
}

test_case5-NxX
{

"_comment_1" : "The number of active_users and tenants were modified as N =
20,35,40,50,45,75,100",

"_comment_2" : "For each of the above active_users/tenants, the users_per_tenant
was modified as X = 1 and 10",

"NovaServers.boot_server": [
A-2
OpenStack Havana Scalability Testing

Appendix A Terms and Configs
Configurations
{
"args": {"flavor_id": 2,

"image_id": "<< IMAGE ID >>"},
"execution": "continuous",
"config": {"times": 100, "active_users": N, "tenants": N,

"users_per_tenant": X}
}

]
}

#NO
A-3
OpenStack Havana Scalability Testing

Appendix A Terms and Configs
Configurations
A-4
OpenStack Havana Scalability Testing

	Contents
	Architecture
	Hardware Architecture
	Network Configuration
	OpenStack Architecture
	AIO (All-in-One)

	Test Plan
	Test Results
	Test Case 1
	Test Case 2
	Test Case 3
	Test Case 4
	Test Case 5

	Results Summary
	Recommendations

	Terms and Configs
	Abbreviations
	Configurations

