cisco.

Cisco APIC Troubleshooting Guide, Release 3.x and Earlier

First Published: 2014-08-19 Last Modified: 2024-01-19

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2014-2024 Cisco Systems, Inc. All rights reserved.

CONTENTS

Preface xi	
Audience xi	
Document Conventions xi	
Related Documentation xiii	
Documentation Feedback xiii	
New and Changed 1	
New and Changed Information 1	
Troubleshooting Overview 3	
Troubleshooting Basics 4	
Troubleshooting the Cisco APIC Cluster 7	
Cluster Troubleshooting Scenarios 7	
Cluster Faults 10	
Recovering Cisco APIC Passwords and Accessing Special Logins 13	
Recovering the APIC Password 13	
Using the Rescue-user Account to Erase the Cisco APIC Configuration Using the NX-OS Style CLI	14
Using the Fallback Login Domain to Log in to the Local Database 14	
Cisco APIC Troubleshooting Operations 17	
Shutting Down the Cisco APIC System 17	
Shutting Down a Cisco APIC Using the GUI 17	
Using the APIC Reload Option Using the GUI 18	
Controlling the LED Locator Using the GUI 18	
	Audience xi Document Conventions xi Related Documentation xiii Documentation Feedback xiii New and Changed 1 New and Changed 1 New and Changed 1 New and Changed 1 1 Troubleshooting Overview 3 Troubleshooting Overview 3 Troubleshooting Basics 4 Troubleshooting the Cisco APIC Cluster 7 Cluster Troubleshooting Scenarios 7 Cluster Faults 10 Recovering Cisco APIC Passwords and Accessing Special Logins 13 Recovering the APIC Password 13 Using the Rescue-user Account to Erase the Cisco APIC Configuration Using the NX-OS Style CLI Using the Fallback Login Domain to Log in to the Local Database 14 Cisco APIC Troubleshooting Operations 17 Shutting Down the Cisco APIC System 17 Shutting Down the Cisco APIC Using the GUI 17 Using the APIC Reload Option Using the GUI 18

CHAPTER 6

R 6	Using the Cisco APIC Troubleshooting Tools 21
	Enabling and Viewing ACL Contract and Deny Logs 22
	About ACL Contract Permit and Deny Logs 22
	Enabling ACL Contract Permit and Deny Logging Using the GUI 22
	Enabling ACL Contract Permit Logging Using the NX-OS CLI 23
	Enabling ACL Contract Permit Logging Using the REST API 23
	Enabling Taboo Contract Deny Logging Using the GUI 24
	Enabling Taboo Contract Deny Logging Using the NX-OS CLI 25
	Enabling Taboo Contract Deny Logging Using the REST API 25
	Viewing ACL Permit and Deny Logs Using the GUI 26
	Viewing ACL Permit and Deny Logs Using the REST API 27
	Viewing ACL Permit and Deny Logs Using the NX-OS CLI 28
	Using Atomic Counter Policies for Gathering Statistics 29
	Atomic Counters 29
	Atomic Counters Guidelines and Restrictions 30
	Configuring Atomic Counters 31
	Enabling Atomic Counters 32
	Troubleshooting Using Atomic Counters with the REST API 33
	Enabling and Viewing Digital Optical Monitoring Statistics 33
	Enabling Digital Optical Monitoring Using the GUI 33
	Enabling Digital Optical Monitoring Using the REST API 34
	Viewing Digital Optical Monitoring Statistics With the GUI 35
	Troubleshooting Using Digital Optical Monitoring With the REST API 36
	Viewing and Understanding Health Scores 37
	Health Score Types 37
	Filtering by Health Score 37
	Viewing Tenant Health 37
	Viewing Fabric Health 37
	Viewing MO Health in Visore 38
	Debugging Health Scores Using Logs 38
	Viewing Faults 38
	Enabling Port Tracking for Uplink Failure Detection 39
	Port Tracking Policy for Fabric Port Failure Detection 40

Port Tracking Using the GUI 40 Port Tracking Using the NX-OS CLI 41 Port Tracking Using the REST API 41 Configuring SNMP for Monitoring and Managing Devices 42 About SNMP 42 SNMP Access Support in Cisco ACI 42 Configuring the SNMP Policy Using the GUI 43 Configuring an SNMP Trap Destination Using the GUI 44 Configuring an SNMP Trap Source Using the GUI 45 Monitoring the System Using SNMP 46 Configuring SPAN for Traffic Monitoring 46 About SPAN 46 SPAN Guidelines and Restrictions 46 Configuring a SPAN Session 48 Configuring an Layer 3 EPG SPAN Session for External Access Using the APIC GUI 49 Configuring SPAN Using the NX-OS Style CLI 50 Configuring Local SPAN in Access Mode 50 Configuring ERSPAN in Access Mode 51 Configuring ERSPAN in Fabric Mode 54 Configuring ERSPAN in Tenant Mode 57 Using Statistics 59 Viewing Statistics in the GUI 59 Switch Statistics Commands 60 Managing Statistics Thresholds Using the GUI 61 Statistics Troubleshooting Scenarios 62 Statistics Cleanup 63 Specifying Syslog Sources and Destinations 64 About Syslog 64 Creating a Syslog Destination and Destination Group 65 Creating a Syslog Source 66 Enabling Syslog to Display in NX-OS CLI Format, Using the REST API 67 Discovering Paths and Testing Connectivity with Traceroute 68 About Traceroute 68 Traceroute Guidelines and Restrictions 68

Performing a Traceroute Between Endpoints 69 Using the Troubleshooting Wizard 70 Getting Started with the Troubleshooting Wizard 70 Generating Troubleshooting Reports 72 Topology in the Troubleshooting Wizard 73 Using the Faults Troubleshooting Screen 74 Using the Drop/Statistics Troubleshooting Screen **75** Using the Contracts Troubleshooting Screen 76 Using the Events Troubleshooting Screen 77 Using the Traceroute Troubleshooting Screen 78 Using the Atomic Counter Troubleshooting Screen 79 Using the SPAN Troubleshooting Screen 79 L4 - L7 Services Validated Scenarios 80 List of APIs for Endpoint to Endpoint Connections 80 interactive API 81 createsession API 82 modifysession API 83 atomiccounter API 83 traceroute API 84 span API 84 generatereport API 85 schedulereport API 86 getreportstatus API 86 getreportslist API 87 getsessionslist API 87 getsessiondetail API 87 deletesession API 87 clearreports API 88 contracts API 89 List of APIs for Endpoint to Layer 3 External Connections 89 interactive API 89 createsession API 90 modifysession API 91 atomiccounter API 92

Cisco APIC Troubleshooting Guide, Release 3.x and Earlier

	traceroute API 93
	span API 93
	generatereport API 94
	schedulereport API 95
	getreportstatus API 96
	getreportslist API 96
	getsessionslist API 97
	getsessiondetail API 98
	deletesession API 99
	clearreports API 99
	contracts API 99
	ratelimit API 100
	13ext API 101
CHAPTER 7	Manually Removing Disabled Interfaces and Decommissioned Switches from the GUI 103
	Manually Removing Disabled Interfaces and Decommissioned Switches from the GUI 103
CHAPTER 8	Decommissioning and Recommissioning Switches 105
	Decommissioning and Recommissioning Switches 105
CHAPTER 9	Troubleshooting Steps for Endpoint Connectivity Problems 107
	Troubleshooting Endpoint Connectivity 107
	Inspecting Endpoint and Tunnel Interface Status 108
	Inspecting the Endpoint Status 108
	Inspecting the Tunnel Interface Status 109
	Connecting an SFP Module 109
CHAPTER 10	
	Troubleshooting EVPN Type-2 Route Distribution to a DCIG 111
CHAPTER 11	Performing a Rebuild of the Fabric 115
	Rebuilding the Fabric 115

CHAPTER 12	Verifying IP-Based EPG Configurations 117
	Verifying IP-Based EPG Configurations Using the GUI 117
	Verifying IP-EPG Configurations Using Switch Commands 118
CHAPTER 13	Recovering a Disconnected Leaf 121
	Recovering a Disconnected Leaf Using the NX-OS-Style CLI 121
	Recovering a Disconnected Leaf Using the REST API 122
CHAPTER 14	Troubleshooting a Loopback Failure 123
	Identifying a Failed Line Card 123
CHAPTER 15	Determining Why a PIM Interface Was Not Created 125
	A PIM Interface Was Not Created For an L3Out Interface 125
	A PIM Interface Was Not Created For a Multicast Tunnel Interface 126
	A PIM Interface Was Not Created For a Multicast-Enabled Bridge Domain 126
CHAPTER 16	Confirming the Port Security Installation 127
	Confirming Your Port Security Installation Using Visore 127
	Confirming Your Hardware Port Security Installation Using the Cisco NX-OS CLI 127
CHAPTER 17	Troubleshooting QoS Policies 131
	Troubleshooting Cisco APIC QoS Policies 131
CHAPTER 18	
	About SSL Ciphers 133
	Determining the Supported SSL Ciphers Using the CLI 134
CHAPTER 19	Removing Unwanted _ui_ Objects 135
	Removing Unwanted _ui_ Objects Using the REST API 136
CHAPTER 20	Troubleshooting Multipod and Multi-Site Issues 137
	Troubleshooting Multipod and Multi-Site 137

APPENDIX A	acidiag Command 139
APPENDIX B	Configuring Export Policies for Troubleshooting 147 About Exporting Files 147
	File Export Guidelines and Restrictions 147
	Configuring a Remote Location 148
	Configuring a Remote Location Using the GUI 148
	Configuring a Remote Location Using the REST API 148
	Configuring a Remote Location Using the NX-OS Style CLI 149
	Sending an On-Demand Tech Support File 150
	Sending an On-Demand Techsupport File Using the GUI 150
	Sending an On-Demand Tech Support File Using the REST API 150
APPENDIX C	— Finding the Switch Inventory 153
	Finding Your Switch Inventory Using the GUI 153
	Finding Your Switch Inventory Using the NX-OS CLI 153
	Finding Your Switch Inventory Using the REST API 156
APPENDIX D	Cisco APIC SSD Replacement 159
	Replacing the Solid-State Drive in Cisco APIC 159
APPENDIX E	
	Expected Output Errors 161

Contents

Preface

This preface includes the following sections:

- Audience, on page xi
- Document Conventions, on page xi
- Related Documentation, on page xiii
- Documentation Feedback, on page xiii

Audience

This guide is intended for system and network engineers with a background in troubleshooting data systems, networks, and storage systems.

Document Conventions

Command descriptions use the following conventions:

Convention	Description
bold	Bold text indicates the commands and keywords that you enter literally as shown.
Italic	Italic text indicates arguments for which the user supplies the values.
[x]	Square brackets enclose an optional element (keyword or argument).
[x y]	Square brackets enclosing keywords or arguments separated by a vertical bar indicate an optional choice.
$\{x \mid y\}$	Braces enclosing keywords or arguments separated by a vertical bar indicate a required choice.
[x {y z}]	Nested set of square brackets or braces indicate optional or required choices within optional or required elements. Braces and a vertical bar within square brackets indicate a required choice within an optional element.

Convention	Description
variable	Indicates a variable for which you supply values, in context where italics cannot be used.
string	A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.

Examples use the following conventions:

Convention	Description
screen font	Terminal sessions and information the switch displays are in screen font.
boldface screen font	Information you must enter is in boldface screen font.
italic screen font	Arguments for which you supply values are in italic screen font.
<>	Nonprinting characters, such as passwords, are in angle brackets.
[]	Default responses to system prompts are in square brackets.
!,#	An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.

This document uses the following conventions:

.

Note Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.

Â

Caution

Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Warning IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS

Related Documentation

Cisco Application Centric Infrastructure (ACI) Documentation

The ACI documentation is available at the following URL: http://www.cisco.com/c/en/us/support/ cloud-systems-management/application-policy-infrastructure-controller-apic/ tsd-products-support-series-home.html.

Cisco Application Centric Infrastructure (ACI) Simulator Documentation

The Cisco ACI Simulator documentation is available at http://www.cisco.com/c/en/us/support/ cloud-systems-management/application-centric-infrastructure-simulator/tsd-products-support-series-home.html.

Cisco Nexus 9000 Series Switches Documentation

The Cisco Nexus 9000 Series Switches documentation is available at http://www.cisco.com/c/en/us/support/ switches/nexus-9000-series-switches/tsd-products-support-series-home.html.

Cisco Application Virtual Switch Documentation

The Cisco Application Virtual Switch (AVS) documentation is available at http://www.cisco.com/c/en/us/support/switches/application-virtual-switch/tsd-products-support-series-home.html.

Cisco Application Centric Infrastructure (ACI) Integration with OpenStack Documentation

Cisco ACI integration with OpenStack documentation is available at http://www.cisco.com/c/en/us/support/ cloud-systems-management/application-policy-infrastructure-controller-apic/ tsd-products-support-series-home.html.

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to apic-docfeedback@cisco.com. We appreciate your feedback.

New and Changed

• New and Changed Information, on page 1

New and Changed Information

The following table provides an overview of the significant changes to this guide up to this current release. The table does not provide an exhaustive list of all changes made to the guide or of the new features up to this release.

Cisco APIC Release Version	Feature	Description
N/A	Instructions added for decommissioning and recommissioning nodes.	Decommissioning and Recommissioning Switches, on page 105
N/A	Instructions for identifying a line card that may have caused a loopback failure.	Troubleshooting a Loopback Failure, on page 123
2.3(1e)	Audit Log for troubleshooting faults	Viewing Faults, on page 38
-	Cisco APIC SSD Replacement	Replacing the Solid-State Drive in Cisco APIC, on page 159
Release 2.1(1h)	Troubleshooting EVPN Type-2 Route Advertisement	Troubleshooting EVPN Type-2 Route Distribution to a DCIG
	Troubleshooting QoS policies	Troubleshooting QoS Policies, on page 131
	Troubleshooting Unwanted UI Objects	Removing Unwanted _ui_ Objects

I

Cisco APIC Release Version	Feature	Description
Release 2.0(1f)	Enabling and Viewing Digital Optical Monitoring Statistics	Enabling and Viewing Digital Optical Monitoring Statistics, on page 33
	Enabling and Viewing ACL Contract Permit and Deny Logs	About ACL Contract Permit and Deny Logs, on page 22
	Syslog in NX-OS-Style CLI Format	Enabling Syslog to Display in NX-OS CLI Format, Using the REST API, on page 67
	Port Security	Confirming the Port Security Installation, on page 127
	Layer 3 multicast with multicast routing enabled using the Protocol Independent Multicast (PIM) protocol	Determining Why a PIM Interface Was Not Created, on page 125
Release 1.2(2)	Port Tracking Policy for Uplink Failure Detection	Enabling Port Tracking for Uplink Failure Detection, on page 39

Troubleshooting Overview

The chapters in this guide describe common troubleshooting tips for specific Cisco APIC features and provide information about monitoring tools you can use for troubleshooting problems.

The features, issues, and tasks covered in this guide are listed below.

- _ui_ Objects—Explains how to remove unwanted _ui_ objects caused by making changes with the Basic Mode or the NX-OS CLI before using the Advanced Mode.
- acidiag—Explains how to use the acidiag command for troubleshooting operations on the Cisco APIC.
- **Cisco APIC Cluster**—Explains how to diagnose cluster faults and troubleshoot common cluster issues. For basic cluster management information, see the appendix of this guide.
- Cisco APIC Password Recovery and Emergency/Hidden Login Access—Explains how to recover a password, how to access the rescue-user login to run troubleshooting commands, including erasing the configuration, and how to access a hidden login domain in case of a lockout.
- Cisco APIC Troubleshooting Operations—Explains how to gather information about your switches and how perform troubleshooting operations such as shutting down the system, shutting down the Cisco APIC controller, reloading the APIC controller, and turning on the LED locator.
- Cisco APIC Troubleshooting Tools—Explains how to use the Cisco APIC troubleshooting tools for monitoring traffic, debugging, and detecting issues such as traffic drops, misrouting, blocked paths, and uplink failures.
- Endpoint Connectivity—Explains how to troubleshoot endpoint connectivity using the Cisco APIC troubleshooting tools, such as traceroute, atomic counters, and SPAN, and how to connect an SFP module to a new card.

Note

Information about the Cisco APIC troubleshooting tools is located in the Using the Cisco APIC Troubleshooting Tools, on page 21 chapter.

- EVPN Type-2 Host Routes—Provides verification steps for this feature.
- **Export Policies**—Enables you to export statistics, tech support collections, faults and events, and to process core files and debug data from the fabric to any external hosts in a variety of formats.
- Fabric Rebuild—Explains how to rebuild your fabric.

- Identifying a Failed Line Card—Explains the procedure for identifying a line card that may have caused a loopback failure.
- **IP-Based EPG**—Explains how to verify that you have correctly configured an IP-based EPG using the Cisco APIC GUI and using switch commands.
- Leaf Connectivity-Explains how to recover a disconnected leaf using the REST API.
- **PIM Interfaces**—Explains what to check when a PIM interface is not created for an L3Out, a multicast tunnel interface, or for a multicast-enabled bridge domain.
- Port Security—Explains how to confirm your port security hardware and software installations.
- Removing Disabled Interfaces and Decommissioned Switches—Explains how remove a disabled port entry in the GUI.
- **Decommissioning and Recommissioning Switches**—Explains how to decommission and recommission nodes in a pod. A use case for this task would be to renumber the nodes in the pod in a more logical, scalable numbering convention.
- Replacing the Solid State Drive-Explains how remove an SSD in the GUI.
- QoS—Provides specific troubleshooting scenarios for this feature.
- SSL Ciphers—Explains how to determine if an SSL cipher is supported.
- Switch Inventory—Explains how to find the switch serial and model numbers. This helps TAC troubleshoot issues that you may experience.
- Troubleshooting Basics, on page 4

Troubleshooting Basics

The following are basic steps for troubleshooting:

Before you begin

- Familiarize yourself with the tools listed in Using the Cisco APIC Troubleshooting Tools, on page 21.
- Familiarize yourself with the Cisco APIC Troubleshooting Operations, on page 17.
- For issues with a specific feature, check the main contents of this guide for your feature. Troubleshooting tips are listed per-feature.

Procedure

Step 1	Gather i	Gather information that defines the specific symptoms.		
	Note	In many cases, you can use the tools listed and described in the Using the Cisco APIC Troubleshooting Tools, on page 21 chapter to gather useful troubleshooting information.		
Step 2	Identify	all potential problems that could be causing the symptoms.		
Step 3	Systema	tically eliminate each potential problem (from most likely to least likely) until the symptoms disappea		

Note This guide provides step-by-step instructions for confirming the installation and configuration of specific features such as port security, endpoint connectivity, PIM, and IP-based EPGs. Following the instructions can help you to narrow down and resolve problems you are experiencing.

Troubleshooting the Cisco APIC Cluster

This chapter contains information about cluster faults and possible solutions for common scenarios. For information about managing Cisco APIC clusters, see the appendix in this document.

This chapter contains the following sections:

- Cluster Troubleshooting Scenarios, on page 7
- Cluster Faults, on page 10

Cluster Troubleshooting Scenarios

The following table summarizes common cluster troubleshooting scenarios for the Cisco APIC.

Problem	Solution
An APIC node fails within the cluster. For example, node 2 of a cluster of 5 APICs fails.	 There are two available solutions: Leave the target size and replace the APIC. Reduce the cluster size to 4, decommission controller 5, and recommission it as APIC 2. The target size remains 4, and the operational size is 4 when the reconfigured APIC becomes active. Note You can add a replacement APIC to the cluster and expand the target and operational size. For instructions on how to add a new APIC, refer to the <i>Cisco APIC Management, Installation, Upgrade, and Downgrade Guide</i>

Problem	Solution
A new APIC connects to the fabric and loses	Use the following commands to check for an infra (infrastructure) VLAN mismatch:
connection to a leaf switch.	 cat /mit/sys/lldp/inst/if-\[eth11\]/ctrlradj/summary—Displays the VLAN configured on the leaf switch.
	 cat /mit/sys/lldp/inst/if-\[eth11\]/ctrlradj/summary—Displays the infra (infrastructure) VLANs advertised by connected APICs.
	If the output of these commands shows different VLANs, the new APIC is not configured with the correct infra (infrastructure) VLAN. To correct this issue, follow these steps:
	• Log in to the APIC using rescue-user.
	Note Admin credentials do not work because the APIC is not part of the fabric.
	• Erase the configuration and reboot the APIC using the acidiag touch setup command.
	• Reconfigure the APIC. Verify that the fabric name, TEP addresses, and infra (infrastructure) VLAN match the APICs in the cluster.
	• Reload the leaf node.
Two APICs cannot	The issue can occur after the following sequence of events:
communicate after a reboot.	APIC1 and APIC2 discover each other.
	• APIC1 reboots and becomes active with a new ChassisID (APIC1a)
	• The two APICs no longer communicate.
	In this scenario, APIC1a discovers APIC2, but APIC2 is unavailable because it is in a cluster with APIC1, which appears to be offline. As a result, APIC1a does not accept messages from APIC2.
	To resolve the issue, decommission APIC1 on APIC2, and commission APIC1 again.
A decommissioned APIC	The issue can occur after the following sequence of events:
joins a cluster.	• A member of the cluster becomes unavailable or the cluster splits.
	• An APIC is decommissioned.
	• After the cluster recovers, the decommissioned APIC is automatically commissioned.
	To resolve the issue, decommission the APIC after the cluster recovers.

Problem	Solution
Mismatched ChassisID following reboot.	The issue occurs when an APIC boots with a ChassisID different from the ChassisID registered in the cluster. As a result, messages from this APIC are discarded.
	To resolve the issue, ensure that you decommission the APIC before rebooting.
The APIC displays faults during changes to cluster size.	A variety of conditions can prevent a cluster from extending the OperationalClusterSize to meet the AdminstrativeClusterSize. For more information, inspect the fault and review the "Cluster Faults" section in the <i>Cisco</i> <i>APIC Basic Configuration Guide</i> .
An APIC is unable to join a cluster.	The issue occurs when two APICs are configured with the same ClusterID when a cluster expands. As a result, one of the two APICs cannot join the cluster and displays an expansion-contender-chassis-id-mismatch fault.
	To resolve the issue, configure the APIC outside the cluster with a new cluster ID.
APIC unreachable in	Check the following settings to diagnose the issue:
cluster.	• Verify that fabric discovery is complete.
	• Identify the switch that is missing from the fabric.
	• Check whether the switch has requested and received an IP address from an APIC.
	• Verify that the switch has loaded a software image.
	• Verify how long the switch has been active.
	• Verify that all processes are running on the switch. For more information, see the "acidiag Command" section in the <i>Cisco APIC Basic Configuration Guide</i> .
	• Confirm that the missing switch has the correct date and time.
	• Confirm that the switch can communicate with other APICs.

Problem	Solution
Cluster does not expand.	The issue occurs under the following circumstances:
	• The OperationalClusterSize is smaller than the number of APICs.
	• No expansion contender (for example, the admin size is 5 and there is not an APIC with a clusterID of 4.
	• There is no connectivity between the cluster and a new APIC
	• Heartbeat messages are rejected by the new APIC
	• System is not healthy.
	• An unavailable appliance is carrying a data subset that is related to relocation.
	• Service is down on an appliance with a data subset that is related to relocation.
	• Unhealthy data subset related to relocation.
An APIC is down.	Check the following:
	• Connectivity issue—Verify connectivity using ping.
	• Interface type mismatch—Confirm that all APICs are set to in-band communication.
	• Fabric connectivity—Confirm that fabric connectivity is normal and that fabric discovery is complete.
	• Heartbeat rejected—Check the fltInfraIICIMsgSrcOutsider fault. Common errors include operational cluster size, mismatched ChassisID, source ID outside of the operational cluster size, source not commissioned, and fabric domain mismatch.

Cluster Faults

The APIC supports a variety of faults to help diagnose cluster problems. The following sections describe the two major cluster fault types.

Discard Faults

The APIC discards cluster messages that are not from a current cluster peer or cluster expansion candidate. If the APIC discards a message, it raises a fault that contains the originating APIC's serial number, cluster ID, and a timestamp. The following table summarizes the faults for discarded messages:

Fault	Meaning
expansion-contender-chassis-id-mismatch	The ChassisID of the transmitting APIC does not match the ChassisID learned by the cluster for expansion.
expansion-contender-fabric-domain-mismatch	The FabricID of the transmitting APIC does not match the FabricID learned by the cluster for expansion.

Fault	Meaning
expansion-contender-id-is-not-next-to-oper-cluster-size	The transmitting APIC has an inappropriate cluster ID for expansion. The value should be one greater than the current OperationalClusterSize.
expansion-contender-message-is-not-heartbeat	The transmitting APIC does not transmit continuous heartbeat messages.
fabric-domain-mismatch	The FabricID of the transmitting APIC does not match the FabricID of the cluster.
operational-cluster-size-distance-cannot-be-bridged	The transmitting APIC has an OperationalClusterSize that is different from that of the receiving APIC by more than 1. The receiving APIC rejects the request.
source-chassis-id-mismatch	The ChassisID of the transmitting APIC does not match the ChassisID registered with the cluster.
source-cluster-id-illegal	The transmitting APIC has a clusterID value that is not permitted.
source-has-mismatched-target-chassis-id	The target ChassisID of the transmitting APIC does not match the Chassis ID of the receiving APIC.
source-id-is-outside-operational-cluster-size	The transmitting APIC has a cluster ID that is outside of the OperationalClusterSize for the cluster.
source-is-not-commissioned	The transmitting APIC has a cluster ID that is currently decommissioned in the cluster.

Cluster Change Faults

The following faults apply when there is an error during a change to the APIC cluster size.

Fault	Meaning
cluster-is-stuck-at-size-2	This fault is issued if the OperationalClusterSize remains at 2 for an extended period. To resolve the issue, restore the cluster target size.
most-right-appliance-remains-commissioned	The last APIC within a cluster is still in service, which prevents the cluster from shrinking.
no-expansion-contender	The cluster cannot detect an APIC with a higher cluster ID, preventing the cluster from expanding.
service-down-on-appliance-carrying-replica-related-to-relocation	The data subset to be relocated has a copy on a service that is experiencing a failure. Indicates that there are multiple such failures on the APIC.
unavailable-appliance-carrying-replica-related-to-relocation	The data subset to be relocated has a copy on an unavailable APIC. To resolve the fault, restore the unavailable APIC.
unhealthy-replica-related-to-relocation	The data subset to be relocated has a copy on an APIC that is not healthy. To resolve the fault, determine the root cause of the failure.

APIC Unavailable

The following cluster faults can apply when an APIC is unavailable:

Fault	Meaning
fltInfraReplicaReplicaState	The cluster is unable to bring up a data subset.
fltInfraReplicaDatabaseState	Indicates a corruption in the data store service.
fltInfraServiceHealth	Indicates that a data subset is not fully functional.
fltInfraWiNodeHealth	Indicates that an APIC is not fully functional.

CHAPTER

Recovering Cisco APIC Passwords and Accessing Special Logins

This chapter explains how to recover your Cisco APIC password, how to access the rescue-user login to run troubleshooting commands, including the command for erasing the configuration, and how to access a hidden login domain that allows you to log in using the local user database in case of a lockout.

This chapter contains the following sections:

- Recovering the APIC Password, on page 13
- Using the Rescue-user Account to Erase the Cisco APIC Configuration Using the NX-OS Style CLI, on page 14
- Using the Fallback Login Domain to Log in to the Local Database, on page 14

Recovering the APIC Password

Follow these steps to recover the APIC password.

Procedure

Step 1	Create and save an empty file named "aci-admin-passwd-reset.txt".
Step 2	Add the file to a USB drive. You can format the USB drive to FAT or FAT32.
Step 3	Connect the USB drive to one of the rear USB ports on the Cisco APIC.
Step 4	Reboot the Cisco APIC using Cisco Integrated Management Controller (CIMC) or by hard power cycling the device.
Step 5	Press the Esc key during the 10-second countdown timer that appears at the top left to bring up the list of boot targets.
Step 6	Press the e key to edit the default grub line.
Step 7	Go to the line that begins with "linux." Using the End key or Right Arrow key, move the cursor to the end of that line and append "aci-admin-passwd-reset".
Step 8	Press Ctrl+X to boot the entry.
	It may take a few minutes for the new password to take effect.

Using the Rescue-user Account to Erase the Cisco APIC Configuration Using the NX-OS Style CLI

The rescue-user is an emergency login that provides access to the Cisco APIC even when it is not in a cluster. You can use this login to run troubleshooting commands including erasing the configuration.

	Note	For a standby Cisco APIC, you can log in using SSH with the username "rescue-user" and no password. If the standby Cisco APIC was previously part of a fabric, the "rescue-user" account will retain the old administrator password, unless the operating system is re-installed using the keyboard, video, mouse (KVM) console.			
Procedure		cedure			
Step 1 Step 2		Access the APIC using the Cisco Integrated Management Controller (CIMC) console. Login as rescue-user.			
	Note	If an admin password is in place and the Cisco APIC is logged onto the fabric, the rescue-user password is the same as the admin password. Otherwise there is no rescue-user password.			
Step 3	Use	the acidiag touch command to clear the configuration.			
	Example:				
	api	cl# acidiag touch setup			

Using the Fallback Login Domain to Log in to the Local Database

There is a hidden login domain named "fallback" that allows you to log in using the local user database in case of lockout. The format of the username used for the authentication method is apic#fallback\\<username>.

Procedure

Step 1 Use the fallback login domain to log in to the local database in the GUI or log in to the fallback login domain using the NX-OS-style CLI, shown as follows:

apic1(config)# aaa authentication login domain fallback apic1(config-domain)# ? group Set provider group for login domain realm Specify server realm

- **Step 2** Optionally, you can instead use the REST API to log in to the fallback login domain, shown as follows:
 - URL: https://ip address/api/aaaLogin.xml

• DATA:

<aaaUser name="apic#fallback\\admin" pwd="passwordhere"/>

Cisco APIC Troubleshooting Guide, Release 3.x and Earlier

Cisco APIC Troubleshooting Operations

This chapter explains how to perform the basic troubleshooting operations and contains the following sections:

- Shutting Down the Cisco APIC System, on page 17
- Shutting Down a Cisco APIC Using the GUI, on page 17
- Using the APIC Reload Option Using the GUI, on page 18
- Controlling the LED Locator Using the GUI, on page 18

Shutting Down the Cisco APIC System

This procedure shuts down the Cisco Application Policy Infrastructure Controller (APIC) system. After you shut down the system, you will relocate the entire fabric and power it up, then update the time zone and/or NTP servers accordingly.

Before you begin

Ensure cluster health is fully fit.

Procedure

Step 1On the menu bar, choose System > Controllers.Step 2In the Navigation pane, choose Controllers > apic_name.Step 3Right-click the Cisco APIC and choose Shutdown.Step 4Relocate the Cisco APIC, then power it up.Step 5Confirm that the cluster has fully converged.Step 6Repeat this procedure for the next Cisco APIC.

Shutting Down a Cisco APIC Using the GUI

This procedure shuts down a Cisco Application Policy Infrastructure Controller (APIC). This procedure shuts down only one Cisco APIC, not the entire Cisco APIC system itself. Following this procedure causes the controller to shut down immediately. Use caution in performing a shutdown because the only way to bring

the controller back up is to do so from the actual machine. If you need to access the machine, see Controlling the LED Locator Using the GUI, on page 18.

Note If possible, move Cisco APICs one at a time. As long as there are at least two Cisco APICs in the cluster online, there is read/write access. If you need to relocate more than one Cisco APIC at a time, this results in one or no remaining controllers online, and the fabric will go into a read-only mode when they are shut down. During this time, there can be no policy changes including endpoint moves (which includes virtual machine movement).

Procedure

Step 1	On the menu bar, choose System > Controllers .
Step 2	In the Navigation pane, choose Controllers > <i>apic_name</i> .
Step 3	Right-click the Cisco APIC and choose Shutdown.
Step 4	Relocate the Cisco APIC, then power it up.
Step 5	Confirm that the cluster has fully converged.

Using the APIC Reload Option Using the GUI

This procedure reloads the Cisco Application Policy Infrastructure Controller (APIC), not the entire Cisco APIC system, using the GUI.

Procedure

Step 1	On the menu bar, choose System > Controllers .
Step 2	In the Navigation pane, choose Controllers > <i>apic_name</i> .
Step 3	Right-click the Cisco APIC and choose Reload.

Controlling the LED Locator Using the GUI

This procedure turns on or off the LED locator for the Cisco Application Policy Infrastructure Controller (APIC) using the GUI.

Procedure

Step 1	On the menu bar, choose System > Controllers .
Step 2	In the Navigation pane, choose Controllers > <i>apic_name</i> .

Step 3 Right-click the Cisco APIC and choose Turn On Locator LED or Turn On Locator LED as appropriate.

Using the Cisco APIC Troubleshooting Tools

This chapter introduces the tools and methodology commonly used to troubleshoot problems you may experience. These tools can assist you with monitoring traffic, debugging, and detecting issues such as traffic drops, misrouting, blocked paths, and uplink failures. See the tools listed below for a summary overview of the tools described in this chapter:

- ACL Contract Permit and Deny Logs—Enables the logging of packets or flows that were allowed to be sent because of contract permit rules and the logging of packets or flows dropped because of taboo contract deny rules.
- Atomic Counters—Enables you to gather statistics about traffic between flows for detecting drops and misrouting in the fabric and for enabling quick debugging and isolation of application connectivity issues.
- **Digital Optical Monitoring**—Enables you to view digital optical monitoring (DOM) statistics about a physical interface.
- **Health Scores**—Enables you to isolate performance issues by drilling down through the network hierarchy to isolate faults to specific managed objects (MOs).
- **Port Tracking**—Enables you to monitor the status of links between leaf switches and spine switches for detecting uplink failure.
- **SNMP**—Simple Network Management Protocol (SNMP) enables you to remotely monitor individual hosts (APIC or another host) and find out the state of any particular node.
- **SPAN**—Switchport Analizer (SPAN) enables you to perform detailed troubleshooting or to take a sample of traffic from a particular application host for proactive monitoring and analysis.
- **Statistics**—Provides real-time measures of observed objects. Viewing statistics enable you to perform trend analysis and troubleshooting.
- **Syslog**—Enables you to specify the minimum severity level of messages to be sent, the items to be included in the syslog messages, and the syslog destination. The format can also be displayed in NX-OS CLI format.
- Traceroute—Enables you to find the routes that packets actually take when traveling to their destination.
- **Troubleshooting Wizard**—Enables administrators to troubleshoot issues that occur during specific time frames, which can be designated by selecting two endpoints.

This chapter contains the following sections:

- Enabling and Viewing ACL Contract and Deny Logs, on page 22
- Using Atomic Counter Policies for Gathering Statistics, on page 29
- Enabling and Viewing Digital Optical Monitoring Statistics, on page 33
- Viewing and Understanding Health Scores, on page 37
- Enabling Port Tracking for Uplink Failure Detection, on page 39
- Configuring SNMP for Monitoring and Managing Devices, on page 42

- Configuring SPAN for Traffic Monitoring, on page 46
- Using Statistics, on page 59
- Specifying Syslog Sources and Destinations, on page 64
- Discovering Paths and Testing Connectivity with Traceroute, on page 68
- Using the Troubleshooting Wizard, on page 70

Enabling and Viewing ACL Contract and Deny Logs

About ACL Contract Permit and Deny Logs

To log and/or monitor the traffic flow for a contract rule, you can enable and view the logging of packets or flows that were allowed to be sent because of contract permit rules or the logging of packets or flows that were dropped because of:

- · Taboo contract deny rules
- ACL contract permit and deny logging in the ACI fabric is only supported on Nexus 9000 Series switches with names that end in EX or FX, and all later models. For example, N9K-C93180LC-EX or N9K-C9336C-FX.
- Using log directive on filters in management contracts is not supported. Setting the log directive will cause zoning-rule deployment failure.

For information on standard and taboo contracts and subjects, see *Cisco Application Centric Infrastructure Fundamentals* and *Cisco APIC Basic Configuration Guide*.

Enabling ACL Contract Permit and Deny Logging Using the GUI

The following steps show how to enable contract permit and deny logging using the GUI:

Note

The tenant that contains the permit logging is the tenant that contains the VRF that the EPG is associated to. This will not necessarily be the same tenant as the EPG or its associated contracts.

Procedure

Step 1	On the menu bar, choose Tenants > < tenant name >.
Step 2	In the Navigation pane, expand Contracts, right-click Standard, and choose Create Contract.
Step 3	In the Create Contract dialog box, perform the following actions:
	a) In the Name field, type the name for the contract.
	b) In the Scope field, choose the scope for it (VRF, Tenant, or Global).
	c) Optional. Set the target DSCP or QoS class to be applied to the contract.
	d) Click the + icon to expand Subjects .
Step 4	In the Create Contract Subject dialog box, perform the following actions:

L

Step 5	Enter the name of the subject and an optional description.			
Step 6	Optional. From the drop-down list for the target DSCP, select the DSCP to be applied to the subject.			
Step 7	Leave Apply Both Directions checked, unless you want the contract to only be applied from the consumer to the provider, instead of in both directions.			
Step 8	Leave Reverse Filter Ports checked if you unchecked Apply Both Directions to swap the Layer 4 source and destination ports so that the rule is applied from the provider to the consumer.			
Step 9	Click the + icon to expand Filters .			
Step 10	In the Name drop-down list, choose an option; for example, click arp , default , est , or icmp , or choose a previously configured filter.			
Step 11	In the Directives drop-down list, click log .			
Step 12	Click Update.			
Step 13	Click OK .			
Step 14	Click Submit . Logging is enabled for this contract.			

Enabling ACL Contract Permit Logging Using the NX-OS CLI

The following example shows how to enable Contract permit logging using the NX-OS CLI.

Procedure

```
Step 1 To enable logging of packets or flows that were allowed to be sent because of Contract permit rules, use the following commands:
```

```
configure
tenant <tenantName>
contract <contractName> type <permit>
subject <subject Name>
access-group <access-list> <in/out/both> log
```

Example:

For example:

apic1# configure apic1(config)# tenant BDMode1 apic1(config-tenant)# contract Logicmp type permit apic1(config-tenant-contract)# subject icmp apic1(config-tenant-contract-subj)# access-group arp both log

Step 2 To disable the permit logging use the **no** form of the access-group command; for example, use the no access-group arp both log command.

Enabling ACL Contract Permit Logging Using the REST API

The following example shows you how to enable permit and deny logging using the REST API. This example configures ACL permit and deny logging for a contract with subjects that have Permit and Deny actions configured.

Procedure

For this configuration, send a post with XML similar to the following example:

Example:

<vzbrcp dn="uni/tn-Tenant64/brc-C64" name="C64" scope="context"></vzbrcp>
<vzsubj <="" consmatcht="AtleastOne" name="HTTPSsbj" provmatcht="AtleastOne" revfltports="yes" th=""></vzsubj>
rn="subj-HTTPSsbj">
<vzrssubjfiltatt <="" action="permit" directives="log" forceresolve="yes" th=""></vzrssubjfiltatt>
priorityOverride="default"
rn="rssubjFiltAtt-PerHTTPS" tDn="uni/tn-Tenant64/flt-PerHTTPS" tRn="flt-PerHTTPS"
tnVzFilterName="PerHTTPS"/>
<vzsubj <="" consmatcht="AtleastOne" name="httpSbj" provmatcht="AtleastOne" revfltports="yes" th=""></vzsubj>
rn="subj-httpSbj">
<vzrssubjfiltatt <="" action="deny" directives="log" forceresolve="yes" th=""></vzrssubjfiltatt>
priorityOverride="default"
rn="rssubjFiltAtt-httpFilter" tDn="uni/tn-Tenant64/flt-httpFilter" tRn="flt-httpFilter"
tnVzFilterName="httpFilter"/>
<vzsubj <="" consmatcht="AtleastOne" name="subj64" provmatcht="AtleastOne" revfltports="yes" th=""></vzsubj>
rn="subj-subj64">
<vzrssubjfiltatt <="" action="permit" directives="log" forceresolve="yes" th=""></vzrssubjfiltatt>
priorityOverride="default"
<pre>rn="rssubjFiltAtt-icmp" tDn="uni/tn-common/flt-icmp" tRn="flt-icmp" tnVzFilterName="icmp"/></pre>

Enabling Taboo Contract Deny Logging Using the GUI

The following steps show how to enable Taboo Contract deny logging using the GUI.

Step 1	On the menu bar, choose Tenants > <tenant name="">.</tenant>						
Step 2	In the Navigation pane, expand Contracts.						
Step 3	Right-click Taboos and choose Create Taboo Contract.						
Step 4	In the Create Taboo Contract dialog box, perform the following actions to specify the Taboo contract:						
	a) In the Name field, type the name for the contract.						
	b) Optional. In the Description field, type a description of the Taboo contract.						
	c) Click the + icon to expand Subjects .						
Step 5	In the Create Taboo Contract Subject dialog box, perform the following actions:						
	a) In the Specify Identity of Subject area, type a name and optional description.						
	b) Click the + icon to expand Filters .						
	c) From the Name drop-down list, choose one of the default values, such as <tenant_name>/arp,<tenant_name>/default, <tenant_name>/est, <tenant_name>/icmp, choose a previously created filter, orCreate Filter.</tenant_name></tenant_name></tenant_name></tenant_name>						

Note If you chose **Create Filter**, in the Specify Filter Identity Area, perform the following actions to specify criteria for the ACL Deny rule:

- **a.** Type a name and optional description.
- **b.** Expand **Entries**, type a name for the rule, and choose the criteria to define the traffic you want to deny.
- c. In theDirectives drop-down list, choose log.
- d. Click Update.
- e. Click OK.

Step 6Click Submit.Logging is enabled for this Taboo contract.

Enabling Taboo Contract Deny Logging Using the NX-OS CLI

The following example shows how to enable Taboo Contract deny logging using the NX-OS CLI.

```
Procedure
```

Step 1 To enable logging of packets or flows dropped because of Taboo Contract deny rules, use the following commands:

```
configure
tenant <tenantName>
contract <contractName> type <deny>
subject <subject Name>
access-group <access-list> <both> log
```

Example:

For example:

```
apic1# configure
apic1(config)# tenant BDMode1
apic1(config-tenant)# contract dropFTP type deny
apic1(config-tenant-contract)# subject dropftp
apic1(config-tenant-contract-subj)# access-group ftp both log
```

Step 2 To disable the deny logging use the **no** form of the access-group command; for example, use the no access-group https both log command.

Enabling Taboo Contract Deny Logging Using the REST API

The following example shows you how to enable Taboo Contract deny logging using the REST API.

Procedure

To configure taboo contract deny logging, send a post with XML similar to the following example.

Example:

Viewing ACL Permit and Deny Logs Using the GUI

The following steps show how to view ACL permit and deny logs (if they are enabled) for traffic flows, using the GUI:

Procedure

Step	1	On the menu	bar, c	hoose	Tenants	>	<tenant< th=""><th>name></th></tenant<>	name>
------	---	-------------	--------	-------	---------	---	--	-------

- **Step 2** In the **Navigation** pane, click on **Tenant <tenant name>**.
- **Step 3** In the **Tenants <tenant name> Work** pane, click the **Operational** tab.
- **Step 4** Under the **Operational** tab, click the **Flows** tab.

Under the **Flows** tab, click one of the tabs to view log data for Layer 2 permit logs (**L2 Permit**) Layer 3 permit logs (**L3 Permit**, Layer 2 deny logs (**L2 Drop**), or Layer 3 deny logs (**L3 Drop**). On each tab, you can view ACL logging data, if traffic is flowing. The data points differ according to the log type and ACL rule; for example, the following data points are included for **L3 Permit** and **L3 Deny** logs:

- VRF
- Alias
- · Source IP address
- Destination IP address
- Protocol
- Source port
- · Destination port
- Source MAC address
- · Destination MAC address
- Node
- Source interface
- VRF Encap

Note You can also use the **Packets** tab (next to the **Flows** tab) to access ACL logs for groups of packets (up to 10) with the same signature, source and destination. You can see what type of packets are being sent and which are being dropped.

Viewing ACL Permit and Deny Logs Using the REST API

The following example shows how to view Layer 2 deny log data for traffic flows, using the REST API. You can send queries using the following MOs:

- acllogDropL2Flow
- acllogPermitL2Flow
- acllogDropL3Flow
- acllogPermitL3Flow
- acllogDropL2Pkt
- acllogPermitL2Pkt
- acllogDropL3Pkt
- acllogPermitL3Pkt

Before you begin

You must enable permit or deny logging, before you can view ACL contract permit and deny log data.

Procedure

To view Layer 3 drop log data, send the following query using the REST API:

GET https://apic-ip-address/api/class/acllogDropL3Flow

Example:

The following example shows sample output:

/permitl3flow-spctag-333-dpctag-444-sepgname-unknown-depgname-unknown-sip-[100:c000:a00:700:b00:0]

-dip-[19.0.2.10]-proto-udp-sport-17459-dport-8721-smac-00:00:15:00:00:28-dmac-00:00:12:00:00:25-sintf-

```
[port-channel5]-vrfencap-VXLAN: 2097153" dstEpgName="unknown" dstIp="19.0.2.10"
dstMacAddr="00:00:12:00:00:25"
    dstPcTag="444" dstPort="8721" lcOwn="local" modTs="never" monPolDn="" protocol="udp"
srcEpgName="unknown"
    srcIntf="port-channel5" srcIp="100:c000:a00:700:b00:0:f00:0"
srcMacAddr="00:00:15:00:00:28" srcPcTag="333"
    srcPort="17459" status="" vrfEncap="VXLAN: 2097153"/>
```

```
<acllogPermitL3Flow childAction=""
dn="topology/pod-1/node-102/ndbgs/acllog/tn-common/ctx-inb
/permitl3flow-spctag-333-dpctag-444-sepgname-unknown-depgname-unknown-sip-[100:c000:a00:700:b00:0:f00:0]-dip-
[19.0.2.10]-proto-udp-sport-17459-dport-8721-smac-00:00:15:00:00:28-dmac-00:00:12:00:00:25-sintf-
        [port-channel5]-vrfencap-VXLAN: 2097153" dstEpgName="unknown" dstIp="19.0.2.10"
dstMacAddr="00:00:12:00:00:25"
        dstPcTag="444" dstPort="8721" lcOwn="local" modTs="never" monPolDn="" protocol="udp"
        srcEpgName="unknown"
            srcIntf="port-channel5" srcIp="100:c000:a00:700:b00:0:f00:0"
        srcMacAddr="00:00:15:00:00:28" srcPcTag="333"
            srcPort="17459" status="" vrfEncap="VXLAN: 2097153"/>
        </imdata>
```

Viewing ACL Permit and Deny Logs Using the NX-OS CLI

The following steps show how to view ACL log details using the NX-OS CLI show acllog command.

The syntax for the Layer 3 command is **show acllog {permit | deny} l3 {pkt | flow} tenant <tenant_name> vrf <vrf_name> srcip <source_ip> dstip <destination_ip> srcport <source_port> dstport** <destination_port> protocol <protocol> srcintf <source_interface> start-time <startTime> end-time <endTime> detail

The syntax for the Layer 2 command is **show acllog {permit | deny} l2 {flow | pkt} tenant <tenant_name> vrf <VRF_name> srcintf <source_interface> vlan <VLAN_number> detail**

Procedure

Step 1 The following example shows how to use the **show acllog permit 13 pkt tenant <tenant name> vrf <vrf name> [detail]** command to display detailed information about the common VRF ACL Layer 3 permit packets that were sent:

```
apicl# show acllog permit 13 pkt tenant common vrf default detail acllog permit 13 packets
detail:
          : 10.2.0.19
srcIp
dstIp
          : 10.2.0.16
protocol : udp
srcPort : 13124
dstPort
         : 4386
srcIntf
          : port-channel5
         : VXLAN: 2097153
vrfEncap
          : 112
pktLen
srcMacAddr : 00:00:15:00:00:28
dstMacAddr : 00:00:12:00:00:25
timeStamp : 2015-03-17T21:31:14.383+00:00
```

Step 2 The following example shows how to use the **show acllog permit l2 pkt tenant <tenant name> vrf <vrf name> srcintf <s interface> command to view information about default VRF Layer 2 packets sent from interface port-channel15:**

apic1# show acll	og permit 12 pkt	tenant co	mmon vrf default	srcintf port-channel5
acllog permit L2	Packets			
Node	srcIntf	pktLen	timeStamp	
	port-channel5	1	2015-03-17T21:	
	-		31:14.383+00:00	

Using Atomic Counter Policies for Gathering Statistics

Atomic counter policies enable you to gather statistics about your traffic between a combination of endpoints, endpoint groups, external interfaces, and IP addresses. The information gathered enables you to detect drops and misrouting in the fabric, which enables you to perform quick debugging and to isolate application connectivity issues.

Atomic Counters

Atomic Counters are useful for troubleshooting connectivity between endpoints, EPGs, or an application within the fabric. A user reporting application may be experiencing slowness, or atomic counters may be needed for monitoring any traffic loss between two endpoints. One capability provided by atomic counters is the ability to place a trouble ticket into a proactive monitoring mode, for example when the problem is intermittent, and not necessarily happening at the time the operator is actively working the ticket.

Atomic counters can help detect packet loss in the fabric and allow the quick isolation of the source of connectivity issues. Atomic counters require NTP to be enabled on the fabric.

Leaf-to-leaf (TEP to TEP) atomic counters can provide the following:

- · Counts of drops, admits, and excess packets
- Short-term data collection such as the last 30 seconds, and long-term data collection such as 5 minutes, 15 minutes, or more
- A breakdown of per-spine traffic (available when the number of TEPs, leaf or VPC, is less than 64)
- Ongoing monitoring

Leaf-to-leaf (TEP to TEP) atomic counters are cumulative and cannot be cleared. However, because 30 second atomic counters reset at 30 second intervals, they can be used to isolate intermittent or recurring problems.

Tenant atomic counters can provide the following:

- Application-specific counters for traffic across the fabric, including drops, admits, and excess packets
- Modes include the following:
- Endpoint to endpoint MAC address, or endpoint to endpoint IP address. Note that a single target endpoint could have multiple IP addresses associated with it.
- EPG to EPG with optional drill down
- EPG to endpoint
- EPG to * (any)
- Endpoint to external IP address

Note Atomic counters track the amount packets of between the two endpoints and use this as a measurement. They do not take into account drops or error counters in a hardware level.

Dropped packets are calculated when there are less packets received by the destination than transmitted by the source.

Excess packets are calculated when there are more packets received by the destination than transmitted by the source.

Atomic Counters Guidelines and Restrictions

- Use of atomic counters is not supported when the endpoints are in different tenants or in different contexts (VRFs) within the same tenant.
- In Cisco APIC release 3.1(2m) and later, if no statistics have been generated on a path in the lifetime of the fabric, no atomic counters are generated for the path. Also, the Traffic Map in the Visualization tab (Operations > Visualization in the Cisco APIC GUI) does not show all paths, only the active paths (paths that had traffic at some point in the fabric lifetime).
- In pure Layer 2 configurations where the IP address is not learned (the IP address is 0.0.0.0), endpoint-to-EPG and EPG-to-endpoint atomic counter policies are not supported. In these cases, endpoint-to-endpoint and EPG-to-EPG policies are supported. External policies are virtual routing and forwarding (VRF)-based, requiring learned IP addresses, and are supported.
- When the atomic counter source or destination is an endpoint, the endpoint must be dynamic and not static. Unlike a dynamic endpoint (fv:CEp), a static endpoint (fv:StCEp) does not have a child object (fv:RsCEpToPathEp) that is required by the atomic counter.
- In a transit topology, where leaf switches are not in full mesh with all spine switches, then leaf-to-leaf (TEP to TEP) counters do not work as expected.
- For leaf-to-leaf (TEP to TEP) atomic counters, once the number of tunnels increases the hardware limit, the system changes the mode from trail mode to path mode and the user is no longer presented with per-spine traffic.
- The atomic counter does not count spine proxy traffic.
- Packets dropped before entering the fabric or before being forwarded to a leaf port are ignored by atomic counters.
- Packets that are switched in the hypervisor (same Port Group and Host) are not counted.
- Atomic counters require an active fabric Network Time Protocol (NTP) policy.
- Atomic counters work for IPv6 sources and destinations, but configuring source and destination IP addresses across IPv4 and IPv6 addresses is not allowed.
- An atomic counter policy configured with fvCEp as the source or destination counts only the traffic that is from/to the MAC and IP addresses that are present in the fvCEp managed objects. If the fvCEp managed object has an empty IP address field, then all traffic to/from that MAC address would be counted regardless of the IP address. If the Cisco APIC has learned multiple IP addresses for an fvCEp, then traffic from only the one IP address in the fvCEp managed object itself is counted as previously stated. To configure

an atomic counter policy to or from a specific IP address, use the fvIp managed object as the source or destination.

- If there is an fvIp behind an fvCEp, you must add fvIP-based policies and not fvCEp-based policies.
- Endpoint-to-endpoint atomic counter statistics are not reported for Layer 2 bridged traffic with IPv6 headers when the endpoints belong to the same EPG.
- For atomic counters to work for traffic flowing from an EPG or ESG to an L3Out EPG, configure the L3Out EPG with 0/1 and 128/1 to match all prefixes instead of 0/0.
- If your Cisco APIC has the traffic map mode set to "trial" and the Cisco APIC generated the F1545 fault, the only way that you can clear this fault is by setting the traffic map mode to "path." To change the traffic map mode, go to **Operations** > **Visualization**, click **Settings**, choose **path** for Mode, then click **Submit**. This will give you tunnel stats per port in both ingress and egress.

The trial mode has a greater chance of reaching the maximum scale index of tunnel logical interfaces. This mode consumes more software and hardware resources. A logical interface is the ID that is associated with the tunnel in the hardware.

If you have a single tunnel between a tunnel endpoint (TEP) you specified the trail mode, it will consume more hardware resources as well. For example, if you have 6 fabric ports and a single tunnel, then hardware consumes a number of entries equal to the number of tunnels multiplied by the number of fabric ports.

For software, if the number of logical interfaces allocated is greater than 2048, you will fail to have an entry in the hardware. As a result, you cannot get the stats. In the case of the atomic counter, this issue may show as drops or excesses.

The path mode has only entries for the TEP. For a vPC, two entries will be installed. Therefore, you have a lower chance of reaching to the maximum limit.

Configuring Atomic Counters

Step 1	In the menu bar, click Tenants .					
Step 2	In the submenu bar, click the desired tenant.					
Step 3	In the Navigation pane, expand the tenant and expand Policies and then expand Troubleshoot.					
Step 4	Under Troubleshoot, expand Atomic Counter Policy and choose a traffic topology.					
	You can measure traffic between a combination of endpoints, endpoint groups, external interfaces, and IP addresses.					
Step 5	Right-click the desired topology and choose Add topology Policy to open an Add Policy dialog box.					
Step 6	In the Add Policy dialog box, perform the following actions:					
	a) In the Name field, enter a name for the policy.					
	b) choose or enter the identifying information for the traffic source.					
	The required identifying information differs depending on the type of source (endpoint, endpoint group, external interface, or IP address).					
	c) choose or enter the identifying information for the traffic destination.					

d) (Optional) (Optional) In the Filters table, click the + icon to specify filtering of the traffic to be counted. In the resulting Create Atomic Counter Filter dialog box, you can specify filtering by the IP protocol number (TCP=6, for example) and by source and destination IP port numbers.
e) Click Submit to save the atomic counter policy.
Step 7 In the Navigation pane, under the selected topology, choose the new atomic counter policy. The policy configuration is displayed in the Work pane.
Step 8 In the Work pane, click the Operational tab and click the Traffic subtab to view the atomic counter statistics.

Enabling Atomic Counters

To enable using atomic counters to detect drops and misrouting in the fabric and enable quick debugging and isolation of application connectivity issues, create one or more tenant atomic counter policies, which can be one of the following types:

- EP_to_EP—Endpoint to endpoint (dbgacEpToEp)
- EP_to_EPG—Endpoint to endpoint group (dbgacEpToEpg)
- EP_to_Ext—Endpoint to external IP address (dbgacEpToExt)
- EPG_to_EP—Endpoint group to endpoint(dbgacEpgToEp)
- EPG_to_EPG—Endpoint group to endpoing group (dbgacEpgToEpg)
- EPG to IP—Endpoint group to IP address (dbgacEpgToIp)
- Ext_to_EP—External IP address to endpoint (dbgacExtToEp)
- IP_to_EPG—IP address to endpoint group (**dbgacIpToEpg**)
- Any_to_EP—Any to endpoint (dbgacAnyToEp)
- EP to Any—Endpoint to any (dbgacEpToAny)

Procedure

Step 1 To create an EP_to_EP policy using the REST API, use XML such as the following example:

Example:

```
<dbgacEpToEp name="EP_to_EP_Policy" ownerTag="" ownerKey=""
dn="uni/tn-Tenant64/acEpToEp-EP_to_EP_Policy" descr="" adminSt="enabled">
<dbgacFilter name="EP_to_EP_Filter" ownerTag="" ownerKey="" descr=""
srcPort="https" prot="tcp" dstPort="https"/>
</dbgacEpToEp>
```

Step 2 To create an EP_to_EPG policy using the REST API, use XML such as the following example:

Example:

```
<dbgacEpToEpg name="EP_to_EPG_Pol" ownerTag="" ownerKey=""
dn="uni/tn-Tenant64/epToEpg-EP_to_EPG_Pol" descr="" adminSt="enabled">
<dbgacFilter name="EP_to_EPG_Filter" ownerTag="" ownerKey="" descr=""
srcPort="http" prot="tcp" dstPort="http"/>
```

<dbgacRsToAbsEpg tDn="uni/tn-Tenant64/ap-VRF64_app_prof/epg-EPG64"/></dbgacEpToEpg>

Troubleshooting Using Atomic Counters with the REST API

Procedure

Step 1 To get a list of the endpoint-to-endpoint atomic counters deployed within the fabric and the associated details such as dropped packet statistics and packet counts, use the **dbgEpToEpTsIt** class in XML such as the following example:

Example:

https://apic-ip-address/api/node/class/dbgEpToEpRslt.xml

Step 2 To get a list of external IP-to-endpoint atomic counters and the associated details, use the **dbgacExtToEp** class in XML such as the following example:

Example:

https://apic-ip-address/api/node/class/dbgExtToEpRslt.xml

Enabling and Viewing Digital Optical Monitoring Statistics

Real-time digital optical monitoring (DOM) data is collected from SFPs, SFP+, and XFPs periodically and compared with warning and alarm threshold table values. The DOM data collected are transceiver transmit bias current, transceiver transmit power, transceiver receive power, and transceiver power supply voltage.

Enabling Digital Optical Monitoring Using the GUI

Before you can view digital optical monitoring (DOM) statistics about a physical interface, enable DOM on the leaf or spine interface, using a switch policy, associated to a policy group.

To enable DOM using the GUI:

Step 1	On the menu bar, choose Fabric > Fabric Policies.		
Step 2	In the Navigation pane, expand Policies > Monitoring > Fabric Node Controls.		
Step 3	Expand Fabric Node Controls to see a list of existing policies.		
Step 4	In the Work pane, click the ACTIONS drop-down menu and select Create Fabric Node Control. The Create Fabric Node Control dialog box appears.		
Step 5	In the Create Fabric Node Control dialog box, perform the following actions:		
	a) In the Name field, enter a name for the policy.		

 \circ

	c) Put a check in the box next to Enable DOM.				
Step 6	Click Submit to create the policy. Now you can associate this policy to a policy group and a profile, as described in the following steps.				
Step 7	In the Navigation pane, expand Switch Policies > Policy Groups .				
Step 8	In the Work pane, click the ACTIONS drop-down menu and select Create Leaf Switch Policy Group (for a spine, Create Spine Switch Policy Group. The Create Leaf Switch Policy Group or Create Spine Switch Policy Group dialog box appears.				
Step 9	In the dialog box, perform the following actions:				
	a) In the Name field, enter a name for the policy group.				
	b) From the Node Control Policy drop-down menu, choose either an existing policy (such as the one you just created) or a new one by selecting Create Fabric Node Control .				
	c) Click Submit .				
Step 10	Attach the policy group you created to a switch as follows:				
	a) In the Navigation pane, expand Switch Policies > Profiles .				
	b) In the Work pane, click the ACTIONS drop-down menu and select Create Leaf Switch Profile or Create Spine Switch Profile, as appropriate.				
	c) In the dialog box, enter a name for the profile in the Name field.				
	d) Add the name of the switch you want associated with the profile under Switch Associations.				
	e) From the Blocks pull-down menu, check the boxes next to the applicable switches.				
	f) From the Policy Group pull-down menu, select the policy group you created earlier.				

g) Click UPDATE, then click Submit.

Enabling Digital Optical Monitoring Using the REST API

Before you can view digital optical monitoring (DOM) statistics about a physical interface, enable DOM on the interface.

To enable DOM using the REST API:

Procedure

```
Step 1 Create a fabric node control policy (fabricNodeControlPolicy) as in the following example:
```

```
<fabricNodeControl dn="uni/fabric/nodecontrol-testdom" name="testdom" control="1" rn="nodecontrol-testdom" status="created" />
```

Step 2 Associate a fabric node control policy to a policy group as follows:

```
</fabricLeNodePGrp>
```

L

Step 3 Associate a policy group to a switch (in the following example, the switch is 103) as follows:

```
<?xml version="1.0" encoding="UTF-8" ?>
<fabricLeafP>
 <attributes>
  <dn>uni/fabric/leprof-leafSwitchProfile</dn>
  <name>leafSwitchProfile</name>
  <rn>leprof-leafSwitchProfile</rn>
  <status>created,modified</status>
 </attributes>
 <children>
   <fabricLeafS>
    <attributes>
    <dn>uni/fabric/leprof-leafSwitchProfile/leaves-test-typ-range</dn>
     <type>range</type>
    <name>test</name>
    <rn>leaves-test-typ-range</rn>
    <status>created,modified</status>
    </attributes>
    <children>
    <fabricNodeBlk>
      <attributes>
```

<dn>uni/fabric/leprof-leafSwitchProfile/leaves-test-typ-range/nodeblk-09533c1d228097da</dn>

```
<from >103</from >
      <to_>103</to_>
      <name>09533c1d228097da</name>
      <rn>nodeblk-09533c1d228097da</rn>
      <status>created, modified</status>
     </attributes>
    </fabricNodeBlk>
   </children>
   <children>
    <fabricRsLeNodePGrp>
     <attributes>
      <tDn>uni/fabric/funcprof/lenodepgrp-nodegrp2</tDn>
      <status>created</status>
    </attributes>
    </fabricRsLeNodePGrp>
  </children>
  </fabricLeafS>
</children>
</fabricLeafP>
```

Viewing Digital Optical Monitoring Statistics With the GUI

To view DOM statistics using the GUI:

Before you begin

You must have previously enabled digital optical monitoring (DOM) statistics for an interface, before you can view the DOM statistics for it.

Procedure

Step 1	In the Menu bar, choose Fabric and Inventory.
Step 2	In the Navigation pane, expand the Pod and Leaf node where the physical interface you are investigating is located.
Step 3	Expand Interfaces.
Step 4	Expand Physical Interfaces .
Step 5	Expand the physical interface you are investigating.
Step 6	Choose DOM Stats . DOM statitistics are displayed for the interface.

Troubleshooting Using Digital Optical Monitoring With the REST API

To view DOM statistics using an XML REST API query:

Before you begin

You must have previously enabled digital optical monitoring (DOM) on an interface, before you can view the DOM statistics for it.

Procedure

The following example shows how to view DOM statistics on a physical interface, eth1/25 on node-104, using a REST API query:

GET

```
https://apic-ip-address/api/node/mo/topology/pod-1/node-104/sys/phys-[eth1/25]/phys/domstats.xml?
query-target=children&target-subtree-class=ethpmDOMRxPwrStats&subscription=yes
```

The following response is returned:

```
response : {
   "totalCount":"1",
      "subscriptionId":"72057611234705430",
         "imdata":[
{ "ethpmDOMRxPwrStats": {
   "attributes":{
      "alert":"none",
      "childAction":"",
      "dn":"topology/pod-1/node-104/sys/phys[eth1/25]/phys/domstats/rxpower",
      "hiAlarm":"0.158490",
      "hiWarn":"0.079430"
      "loAlarm":"0.001050",
      "loWarn":"0.002630",
      "modTs":"never",
      "status":"",
       "value":"0.139170"}}]
```

Viewing and Understanding Health Scores

The APIC uses a policy model to combine data into a health score. Health scores can be aggregated for a variety of areas such as for infrastructure, applications, or services. The health scores enable you to isolate performance issues by drilling down through the network hierarchy to isolate faults to specific managed objects (MOs). You can view network health by viewing the health of an application (by tenant) or by the health of a leaf switch (by pod).

For more information about health scores, faults, and health score calculation see the *Cisco APIC Fundamentals Guide*.

Health Score Types

The APIC supports the following health score types:

- System—Summarizes the health of the entire network.
- Leaf—Summarizes the health of leaf switches in the network. Leaf health includes hardware health of the switch including fan tray, power supply, and CPU.
- Tenant—Summarizes the health of a tenant and the tenant's applications.

Filtering by Health Score

You can filter health scores using the following tools:

- Health Scroll Bar—You can use the health scroll bar to dictate which objects are visible; lowering the score allows you to see only objects with a degraded health score.
- Displaying Degraded Health Scores—To display only the degraded health scores, click the Gear icon and choose Show only degraded health score.

Viewing Tenant Health

To view application health, click **Tenants** > *tenant-name* in the menu bar, then click the tenant name in the **Navigation** pane. The GUI displays a summary of the tenant's health including applications and EPGs. To drill down on the tenant configuration, double-click the health score.

For a health summary, click the **Health** tab in the **Work** pane. This view of the network displays health scores and relationships between MOs in the network so that you can isolate and resolve performance issues. For example, a common sequence of managed objects in the tenant context is **Tenant> Application profile > Application EPG > EPP > Fabric location > EPG to Path Attachment > Network Path Endpoint > Aggregation Interface > Aggregated Interface > Aggregated Member Interface**.

Viewing Fabric Health

To view fabric health, click **Fabric** in the menu bar. In the **navigation** pane, choose a pod. The GUI displays a summary of the pod health including nodes. To drill down on part of the fabric configuration, double-click the health score.

For a health summary, click the **Health** tab in the **work** pane. This view of the network displays health scores and relationships between MOs in the network so that you can isolate and resolve performance issues. For example, a common sequence of managed objects in the fabric context is **Pod** > **Leaf**> **Chassis**> **Fan tray slot**> **Line module slot** > **Line module** > **Fabric Port** > **Layer 1 Physical Interface Configuration** > **Physical Interface Runtime State.**

Note Fabric issues, such as physical network problems, can impact tenant performance when MOs are directly related.

Viewing MO Health in Visore

To view the health of an MO in Visore, click the H icon.

Use the following MOs to display health information:

- health:Inst
- health:NodeInst
- observer:Node
- observer:Pod

For more information about Visore, see the Cisco Application Centric Infrastructure Fundamentals guide.

Debugging Health Scores Using Logs

You can use the following log files to debug health scores on the APIC:

- svc_ifc_eventmgr.log
- svc_ifc_observer.log

Check the following items when debugging health scores using logs:

- Verify the source of the syslog (fault or event).
- Check whether a syslog policy is configured on the APIC.
- Check whether the syslog policy type and severity is set correctly.
- You can specify a syslog destination of console, file, RemoteDest, or Prof. ForRemoteDest, ensure that the syslog server is running and reachable.

Viewing Faults

The steps below explain where to view fault information.

Procedure

Step 1 Go to a faults window:

• System Faults—From the menu bar, click System > Faults.

- Tenant Faults—From the menu bar:
- **a.** Click **Tenants** > *tenant-name*.
- **b.** From the **Navigation** pane, click the **Tenants** *tenant name*.
- c. From the Work pane, click the Faults tab.
- Fabric Faults—From the menu bar:
- a. Click Fabric > Inventory.
- **b.** From the **Navigation** pane, click on a **Pod**
- c. From the Work pane, click the Faults tab.

A list of faults appears in a summary table.

Step 2 Double-click on a fault.

The fabric and system tables change to display faults that match the fault code of the fault you clicked on.

a) From the fabric or system faults, double-click on a fault in the summary table to view more information.

The Fault Properties dialog appears displaying the following tabs:

- General—Displays the following:
 - Properties—Contains information found in the summary table
 - **Details**—Contains fault information found in the summary table, the number of occurences, the change set, and the original, previous, and highest severity level for the chosen fault.
- Troubleshooting—Displays the following:
 - **Troubleshooting**—Contains troubleshooting information that includes an explanation of the fault and the recommended action.
 - Audit log—A tool that enables you to view the history of user-initiated events before the fault occurred. The history is displayed in a list by a specified number of minutes. You can adjust the number of minutes by clicking the drop-down arrow.
- History—Displays history information of the affected object

Enabling Port Tracking for Uplink Failure Detection

This section explains how to enable port tracking using the GUI, NX-OS CLI, and the REST API.

Port Tracking Policy for Fabric Port Failure Detection

Fabric port failure detection can be enabled in the fabric access global port tracking policy. The port tracking policy monitors the status of fabric ports between leaf switches and spine switches, and ports between tier-1 leaf switches and tier-2 leaf. When an enabled port tracking policy is triggered, the leaf switches take down all access interfaces on the switch that have EPGs deployed on them.

Note Port tracking is located under Fabric > External Access Policies > Policies > Global > Port Tracking.

The port tracking policy specifies the number of fabric port connections that trigger the policy, and a delay timer for bringing the leaf switch access ports back up after the number of specified fabric ports is exceeded.

The following example illustrates how a port tracking policy behaves:

- The port tracking policy specifies that the threshold of active fabric port connections each leaf switch that triggers the policy is 2.
- The port tracking policy triggers when the number of active fabric port connections from the leaf switch to the spine switches drops to 2.
- Each leaf switch monitors its fabric port connections and triggers the port tracking policy according to the threshold specified in the policy.
- When the fabric port connections come back up, the leaf switch waits for the delay timer to expire before bringing its access ports back up. This gives the fabric time to reconverge before allowing traffic to resume on leaf switch access ports. Large fabrics may need the delay timer to be set for a longer time.

Use caution when configuring this policy. If the port tracking setting for the number of active spine ports that triggers port tracking is too high, all leaf switch access ports will be brought down.

Port Tracking Using the GUI

This procedure explains how to use the Port Tracking feature using the GUI.

- **Step 1** From the **Fabric** menu, select **External Access Policies**.
- **Step 2** In the navigation pane, expand **Policies** > **Global Polices**.
- Step 3 Click Port Tracking.
- **Step 4** Turn on the Port Tracking feature by selecting on next to **Port tracking state**.
- **Step 5** Turn off the Port Tracking feature by selecting **off** next to Port tracking state under Properties.
- **Step 6** (Optional) Reset the **Delay restore timer** from the default (120 seconds).
- **Step 7** Enter the maximum number of active spine links (any configuration value from 0 12) that are up before port tracking is triggered.

Note

Step 8 Click **Submit** to push your desired Port Tracking configuration to all switches on the fabric.

Port Tracking Using the NX-OS CLI

This procedure explains how to use the Port Tracking feature using the NX-OS CLI.

Procedure

Step 1 Turn on the Port Tracking feature as follows:

Example:

```
apicl# show porttrack
Configuration
Admin State : on
Bringup Delay(s) : 120
Bringdown # Fabric Links up : 0
```

Step 2 Turn off the Port Tracking feature as follows:

Example:

```
apicl# show porttrack
Configuration
Admin State : off
Bringup Delay(s) : 120
Bringdown # Fabric Links up : 0
```

Port Tracking Using the REST API

Before you begin

This procedure explains how to use the Port Tracking feature using the REST API.

Procedure

Step 1 Turn on the Port Tracking feature using the REST API as follows (admin state: on):

```
<polUni>
<infraInfra dn="uni/infra">
<infraPortTrackPol name="default" delay="5" minlinks="4" adminSt="on">
</infraPortTrackPol>
</infraInfra>
</polUni>
```

Step 2 Turn off the Port Tracking feature using the REST API as follows (admin state: off):

```
<polUni>
<infraInfra dn="uni/infra">
<infraPortTrackPol name="default" delay="5" minlinks="4" adminSt="off">
```

```
</infraPortTrackPol>
</infraInfra>
</polUni>
```

Configuring SNMP for Monitoring and Managing Devices

This section explains how to configure SNMP using the GUI.

About SNMP

The Cisco Application Centric Infrastructure (ACI) provides extensive SNMPv1, v2, and v3 support, including Management Information Bases (MIBs) and notifications (traps). The SNMP standard allows any third-party applications that support the different MIBs to manage and monitor the ACI fabric.

SNMPv3 provides extended security. Each SNMPv3 device can be selectively enabled or disabled for SNMP service. In addition, each device can be configured with a method of handling SNMPv1 and v2 requests.

For more information about using SNMP, see the Cisco ACI MIB Quick Reference.

SNMP Access Support in Cisco ACI

Ø

Note For the complete list of MIBs supported in Cisco Application Centric Infrastructure (ACI), see http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/mib/list/mib-support.html.

SNMP support in Cisco ACI is as follows:

- SNMP read queries (Get, Next, Bulk, Walk) are supported by leaf and spine switches and by the Cisco Application Policy Infrastructure Controller (APIC).
- SNMP write commands (Set) are not supported by leaf and spine switches or by the Cisco APIC.
- SNMP traps (v1, v2c, and v3) are supported by leaf and spine switches and by the Cisco APIC.

Note Cisco ACI supports a maximum of 10 trap receivers.

- SNMPv3 is supported by leaf and spine switches and by the Cisco APIC.
- SNMP using a Cisco APIC IPv6 address is not supported.

Table 1: SNMP Support Changes by Cisco APIC Release

Release	Description
1.2(2)	IPv6 support is added for SNMP trap destinations.

Release	Description	
1.2(1)	SNMP support for the Cisco APIC controller is added. Previous releases support SNMP only for leaf and spine switches.	

Configuring the SNMP Policy Using the GUI

This procedure configures and enables the SNMP policy on ACI switches.

Before you begin

To allow SNMP communications, you must configure the following:

- Configure an out-of-band contract allowing SNMP traffic. SNMP traffic typically uses UDP port 161 for SNMP requests.
- Configure the APIC out-of-band IP addresses in the 'mgmt' tenant. Although the out-of-band addresses are configured during APIC setup, the addresses must be explicitly configured in the 'mgmt' tenant before the out-of-band contract will take effect.

Procedure

Step 1	In the menu	bar, click Fabric .
--------	-------------	----------------------------

- **Step 2** In the submenu bar, click **Fabric Policies**.
- **Step 3** In the Navigation pane, expand Pod Policies.
- Step 4 Under Pod Policies, expand Policies.
- Step 5 Right-click SNMP and choose Create SNMP Policy.

As an alternative to creating a new SNMP policy, you can edit the **default** policy fields in the same manner as described in the following steps.

- **Step 6** In the SNMP policy dialog box, perform the following actions:
 - a) In the Name field, enter an SNMP policy name.
 - b) In the Admin State field, select Enabled.
 - c) (Optional) In the SNMP v3 Users table, click the + icon, enter a Name, enter the user's authentication data, and click Update.

This step is needed only if SNMPv3 access is required.

d) In the **Community Policies** table, click the + icon, enter a **Name**, and click **Update**.

The community policy name can be a maximum of 32 characters in length. The name can contain only letters, numbers and the special characters of underscore (_), hyphen (-), or period (.). The name cannot contain the @ symbol.

- e) In the **Trap Forward Servers** table, click the + icon, enter the **IP Address** of the external server and click **Update**.
- **Step 7** Required: To configure allowed SNMP management stations, perform the following actions in the SNMP policy dialog box:

- a) In the **Client Group Policies** table, click the + icon to open the **Create SNMP Client Group Profile** dialog box.
- b) In the Name field, enter an SNMP client group profile name.
- c) From the Associated Management EPG drop-down list, choose the management EPG.
- d) In the Client Entries table, click the + icon.
- e) Enter a client's name in the Name field, enter the client's IP address in the Address field, and click Update.
 - **Note** When an SNMP management station connects with APIC using SNMPv3, APIC does not enforce the client IP address specified in the SNMP client group profile. For SNMPv3, the management station must exist in the **Client Entries** list, but the IP address need not match, as the SNMPv3 credentials alone are sufficient for access.
- Step 8 Click OK.
- Step 9 Click Submit.
- **Step 10** Under **Pod Policies**, expand **Policy Groups** and choose a policy group or right-click **Policy Groups** and choose **Create POD Policy Group**.

You can create a new pod policy group or you can use an existing group. The pod policy group can contain other pod policies in addition to the SNMP policy.

- **Step 11** In the pod policy group dialog box, perform the following actions:
 - a) In the **Name** field, enter a pod policy group name.
 - b) From the SNMP Policy drop-down list, choose the SNMP policy that you configured and click Submit.
- Step 12 Under Pod Policies, expand Profiles and click default.
- **Step 13** In the **Work pane**, from the **Fabric Policy Group** drop-down list, choose the pod policy group that you created.
- Step 14 Click Submit.
- Step 15 Click OK.

Configuring an SNMP Trap Destination Using the GUI

This procedure configures the host information for an SNMP manager that will receive SNMP trap notifications.

Note ACI supports a maximum of 10 trap receivers. If you configure more than 10, some will not receive notifications.

- **Step 1** In the menu bar, click **Admin**.
- **Step 2** In the submenu bar, click **External Data Collectors**.
- **Step 3** In the Navigation pane, expand Monitoring Destinations.
- Step 4 Right-click SNMP and choose Create SNMP Monitoring Destination Group.
- **Step 5** In the **Create SNMP Monitoring Destination Group** dialog box, perform the following actions:

- a) In the Name field, enter an SNMP destination name and click Next.
- b) In the **Create Destinations** table, click the + icon to open the **Create SNMP Trap Destination** dialog box.
- c) In the Host Name/IP field, enter an IPv4 or IPv6 address or a fully qualified domain name for the destination host.
- d) Choose the Port number and SNMP Version for the destination.
- e) For SNMP v1 or v2c destinations, enter one of the configured community names as the Security Name and choose noauth as v3 Security Level.

An SNMP v1 or v2c security name can be a maximum of 32 characters in length. The name can contain only letters, numbers and the special characters of underscore (_), hyphen (-), or period (.). The name cannot contain the @ symbol.

 f) For SNMP v3 destinations, enter one of the configured SNMP v3 user names as Security Name and choose the desired v3 Security Level.

An SNMP v3 security name can be a maximum of 32 characters in length. The name must begin with an uppercase or lowercase letter, and can contain only letters, numbers, and the special characters of underscore (_), hyphen (-), period (.), or the @ symbol.

- g) From the Management EPG drop-down list, choose the management EPG.
- h) Click OK.
- i) Click Finish.

Configuring an SNMP Trap Source Using the GUI

This procedure selects and enables a source object within the fabric to generate SNMP trap notifications.

Step 1	In the menu bar, click Fabric .
Step 2	In the submenu bar, click Fabric Policies.
Step 3	In the Navigation pane, expand Monitoring Policies.
	You can create an SNMP source in the Common Policy , the default policy, or you can create a new monitoring policy.
Step 4	Expand the desired monitoring policy and choose Callhome/SNMP/Syslog.
	If you chose the Common Policy , right-click Common Policy , choose Create SNMP Source , and follow the instructions below for that dialog box.
Step 5	In the Work pane, from the Monitoring Object drop-down list, choose ALL.
Step 6	From the Source Type drop-down list, choose SNMP .
Step 7	In the table, click the + icon to open the Create SNMP Source dialog box.
Step 8	In the Create SNMP Source dialog box, perform the following actions:
	a) In the Name field, enter an SNMP policy name.
	b) From the Dest Group drop-down list, choose an existing destination for sending notifications or choose Create SNMP Monitoring Destination Group to create a new destination.

The steps for creating an SNMP destination group are described in a separate procedure.

c) Click Submit.

Monitoring the System Using SNMP

You can remotely monitor individual hosts (APIC or another host) and find out the state of any particular node.

You can check the system's CPU and memory usage using SNMP to find out if the CPU is spiking or not. The SNMP, a network management system, uses an SNMP client and accesses information over the APIC and retrieves information back from it.

You can remotely access the system to figure out if the information is in the context of the network management system and you can learn whether or not it is taking too much CPU or memory, or if there are any system or performance issues. Once you learn the source of the issue, you can check the system health and verify whether or not it is using too much memory or CPU.

Refer to the Cisco ACI MIB Quick Reference Manual for additional information.

Configuring SPAN for Traffic Monitoring

This section lists the SPAN guidelines and restrictions and explains how to configure SPAN sessions.

About SPAN

You can use the Switched Port Analyzer (SPAN) utility to perform detailed troubleshooting or to take a sample of traffic from a particular application host for proactive monitoring and analysis.

SPAN copies traffic from one or more ports, VLANs, or endpoint groups (EPGs) and sends the copied traffic to one or more destinations for analysis by a network analyzer. The process is nondisruptive to any connected devices and is facilitated in the hardware, which prevents any unnecessary CPU load.

You can configure SPAN sessions to monitor traffic received by the source (ingress traffic), traffic transmitted from the source (egress traffic), or both. By default, SPAN monitors all traffic, but you can configure filters to monitor only selected traffic.

Multinode SPAN

APIC traffic monitoring policies can SPAN policies at the appropriate places to track members of each application group and where they are connected. If any member moves, APIC automatically pushes the policy to the new leaf switch. For example, when an endpoint VMotions to a new leaf switch, the SPAN configuration automatically adjusts.

SPAN Guidelines and Restrictions

• A uSeg EPG cannot be used as a SPAN source EPG because the SPAN source filter is based on the VLAN ID. Thus, even if an endpoint is classified to a uSeg EPG, traffic from the endpoint is mirrored if its VLAN is the VLAN of the SPAN source EPG.

- You cannot specify an l3extLIfP Layer 3 subinterface as a SPAN source. You must use the entire port for monitoring traffic from external sources.
- In local SPAN for FEX interfaces, the FEX interfaces can only be used as SPAN sources, not SPAN destinations.
 - On Generation 1 switches (Cisco Nexus 9000 Series switches without EX or FX on the switch name), Tx SPAN does not work for any Layer 3 switched traffic.
 - On Generation 2 switches (with EX or FX on the switch name), Tx SPAN does not work whether traffic is Layer 2 or Layer 3 switched.

There are no limitations for Rx SPAN.

• For SPAN of FEX fabric port channel (NIF), the member interfaces are supported as SPAN source interfaces on Generation 1 leaf switches (Cisco Nexus 9000 Series switches without EX or FX on the switch name).

N

```
Note
```

While it is also possible to configure FEX fabric port channel (NIF) member interfaces as SPAN source interfaces on Generation 2 switches (Cisco Nexus 9000 Series switches with EX or FX on the switch name) for releases prior to Cisco Application Policy Infrastructure Controller (APIC) release 4.1, this is not supported.

- The type of SPAN supported varies:
 - For Generation 1 switches, tenant and access SPAN use the encapsulated remote extension of SPAN (ERSPAN) type I (Version 1 option in the Cisco APIC GUI). Generation 1 switches can be identified by the lack of "EX", "FX", or "FX2" at the end of the switch name (for example, N9K-9312TX).
 - For Generation 2 switches, tenant and access SPAN use the encapsulated remote extension of SPAN (ERSPAN) type II (Version 2 option in the Cisco APIC GUI). Generation 2 switches can be identified with "EX", "FX", or "FX2" at the end of the switch name.
 - Fabric SPAN uses ERSPAN type II.

For information regarding ERSPAN headers, refer to the IETF Internet Draft at this URL: https://tools.ietf.org/html/draft-foschiano-erspan-00.

- ERSPAN destination IPs must be learned in the fabric as an endpoint.
- SPAN supports IPv6 traffic but the destination IP for the ERSPAN cannot be an IPv6 address.
- When configuring ERSPAN session, if the SPAN source contains a destination and interfaces from a spine switch within a GOLF VRF instance, an L3Out prefix is sent to the GOLF router with the wrong BGP next-hop, breaking connectivity from GOLF to that L3Out.
- See the Verified Scalability Guide for Cisco ACI document for SPAN-related limits, such as the maximum number of active SPAN sessions.
- With MAC pinning configured in the LACP policy for a PC or vPC, the PC member ports will be placed in the individual port mode and the PC is operationally non-existent. Hence, a SPAN source configuration with such a PC will fail, resulting in the generation of the "No operational src/dst" fault. With the MAC pinning mode configured, SPAN can be configured only on individual ports.

- A packet that is received on a Cisco Application Centric Infrastructure (ACI) leaf switch will be spanned only once, even if span sessions are configured on both the ingress and egress interfaces.
- When you use a routed outside SPAN source filter, you see only unicast in the Tx direction. In the Rx direction, you can see unicast, broadcast, and multicast.
- An L3Out filter is not supported for transmit multicast SPAN. An L3Out is represented as a combination of sclass/dclass in the ingress ACL filters and can therefore match unicast traffic only. Transmit multicast traffic can be spanned only on ports and port channels.
- You can use a port channel interface as a SPAN destination only on -EX and later switches.
- The local SPAN destination port of a leaf switch does not expect incoming traffic. You can ensure that
 the switch drops incoming SPAN destination port traffic by configuring a Layer 2 interface policy and
 setting the VLAN Scope property to Port Local scope instead of Global scope. Apply this policy to the
 SPAN destination ports. You can configure an Layer 2 interface policy by going to the following location
 in the GUI: Fabric > Access Policies > Policies > Interface > L2 Interface.
- When you configure SPAN for a given packet, SPAN is supported for the packet only once. If traffic is selected by SPAN in Rx for the first SSN, the traffic will not selected by SPAN again in Tx for a second SSN. Thus, when the SPAN session ingress and egress port sits on a single switch, the SPAN session capture will be one-way only. The SPAN session cannot display two-way traffic.
- A SPAN ACL filter configured in the filter group does not filter the broadcast, unknown-unicast and multicast (BUM) traffic that egresses the access interface. A SPAN ACL in the egress direction works only for unicast IPv4 or IPv6 traffic.
- When configuring a SPAN destination as a local port, EPGs cannot be deployed to that interface.
- In a leaf switch, a SPAN source with a VRF filter will match all regular bridge domains and all Layer 3 SVIs under the VRF instance.
- In a spine switch, a SPAN source with a VRF matches only the configured VRF VNID traffic and a bridge domain filter will match only the bridge domain VNID traffic.

Configuring a SPAN Session

This procedure shows how to configure a SPAN policy to forward replicated source packets to a remote traffic analyzer.

Step 1	In the m	In the menu bar, click Tenants .		
Step 2	In the submenu bar, click the tenant that contains the source endpoint.			
Step 3	In the Navigation pane, expand the tenant, expand Policies > Troubleshoot , and expand SPAN .			
Step 4	Under SPAN, right-click SPAN Destination Groups and choose Create SPAN Destination Group. The Create SPAN Destination Group dialog appears.			
Step 5		e appropriate values in the required fields of the Create SPAN Destination Group dialog box then K and Submit .		
	Note	For a description of a field, click the information icon (i) at the top-right corner of the dialog box to display the help file.		

- Step 6Under SPAN, right-click SPAN Source Groups and choose Create SPAN Source Group.
The Create SPAN Source Group dialog appears.
- **Step 7** Enter the appropriate values in the required fields of the **Create SPAN Source Group** dialog box then click **OK** and **Submit**.
 - **Note** For a description of a field, click the information icon (i) at the top-right corner of the dialog box to display the help file.

What to do next

Using a traffic analyzer at the SPAN destination, you can observe the data packets from the SPAN source EPG to verify the packet format, addresses, protocols, and other information.

Configuring an Layer 3 EPG SPAN Session for External Access Using the APIC GUI

This procedure shows how to configure a SPAN policy for external access.

Procedure

Step 1	In the menu bar, click on Fabric and in the submenu bar click on External Access Policies.			
Step 2	In the Navigation pane, expand Policies > Troubleshooting , and expand SPAN .			
Step 3	Under SPAN, right-click SPAN Source Groups and choose Create SPAN Source Group. The Create SPAN Source Group dialog appears.			
Step 4	Enter the appropriate values in the required fields of the Create SPAN Source Group dialog box.			
Step 5	Expand the actions:	Create Sources table to open the Create SPAN Source dialog box and perform the following		
	a) Enter a	Name for the source policy and Direction for the traffic flow.		
	b) For external access, select the Routed Outside in the Type field and click OK and Submit .			
	Note	If Routed Outside is selected for external access, then the Name , Address , and Encap fields appear to configure the L3 Outside .		

What to do next

Configure a SPAN Destination Group.

Configuring SPAN Using the NX-OS Style CLI

Configuring Local SPAN in Access Mode

This is the traditional SPAN configuration local to an Access leaf node. Traffic originating from one or more access ports or port-channels can be monitored and sent to a destination port local to the same leaf node.

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example:		
	apic1# configure		
Step 2	[no] monitor access session session-name	Creates an access monitoring session	
	Example:	configuration.	
	<pre>apic1(config) # monitor access session mySession</pre>		
Step 3	[no] description <i>text</i>	Adds a description for this access monitoring	
	Example:	session. If the text includes spaces, it must be enclosed in single quotes.	
apicl(config-monitor-access)# description "This is my SPAN session"	enclosed in single quotes.		
Step 4	[no] destination interface ethernet <i>slot/port</i> leaf <i>node-id</i>	Specifies the destination interface. The	
		destination interface cannot be a FEX port or port-channel.	
	Example: apic1(config-monitor-access)# destination interface eth 1/2 leaf 101		
Step 5	[no] source interface ethernet {[fex/] slot/port port-range} leaf node-id	Specifies the source interface port or port range.	
	Example:		
	<pre>apic1(config-monitor-access)# source interface eth 1/2 leaf 101</pre>		
Step 6	[no] direction {rx tx both}	Specifies direction of traffic to be monitored	
	Example:	The direction can be configured independently for each source port range.	
	<pre>apic1(config-monitor-access-source)# direction tx</pre>	for each source port lange.	
Step 7	[no] filter tenant tenant-name application	Filters traffic to be monitored. The filter car	
	application-name epg epg-name	be configured independently for each source port range.	
	Example:	r	
	<pre>apic1(config-monitor-access-source)# filter tenant t1 application app1 epg epg1</pre>		

L

	Command or Action	Purpose
Step 8	exit	Returns to access monitor session
	Example:	configuration mode.
	<pre>apic1(config-monitor-access-source)# exit</pre>	
Step 9	[no] source interface port-channel	Specifies the source interface port channel.
	port-channel-name-list leaf node-id [fex fex-id]	(Enters the traffic direction and filter
	Example:	configuration, not shown here.)
	<pre>apic1(config-monitor-access)# source interface port-channel pc5 leaf 101</pre>	
Step 10	[no] shutdown	Disables (or enables) the monitoring session.
	Example:	
	<pre>apic1(config-monitor-access)# no shut</pre>	

Examples

This example shows how to configure a local access monitoring session.

```
apic1# configure terminal
apic1(config) # monitor access session mySession
apic1(config-monitor-access)# description "This is my SPAN session"
apic1(config-monitor-access)# destination interface eth 1/2 leaf 101
apic1(config-monitor-access)# source interface eth 1/1 leaf 101
apic1(config-monitor-access-source) # direction tx
apic1 (config-monitor-access-source) # filter tenant t1 application app1 epg epg1
apic1(config-monitor-access-source)# exit
apic1(config-monitor-access) # no shut
apic1(config-monitor-access) # show run
# Command: show running-config monitor access session mySession
# Time: Fri Nov 6 23:55:35 2015
  monitor access session mySession
   description "This is my SPAN session"
    destination interface eth 1/2 leaf 101
    source interface eth 1/1 leaf 101
      direction tx
      filter tenant t1 application app1 epg epg
      exit
    exit
```

Configuring ERSPAN in Access Mode

In the ACI fabric, an access mode ERSPAN configuration can be used for monitoring traffic originating from access ports, port-channels, and vPCs in one or more leaf nodes.

For an ERSPAN session, the destination is always an endpoint group (EPG) which can be deployed anywhere in the fabric. The monitored traffic is forwarded to the destination wherever the EPG is moved.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	apic1# configure	
Step 2	[no] monitor access session session-name	Creates an access monitoring session
	Example:	configuration.
	<pre>apic1(config) # monitor access session mySession</pre>	
Step 3	[no] description <i>text</i>	Adds a description for this monitoring session.
	Example:	If the text includes spaces, it must be enclosed in single quotes.
	apic1(config-monitor-access)# description "This is my access ERSPAN session"	in single quotes.
Step 4	[no] destination tenant tenant-name application application-name epg epg-name destination-ip dest-ip-address source-ip-prefix src-ip-address	Specifies the destination interface as a tenant and enters destination configuration mode.
	Example:	
	<pre>apic1(config-monitor-access)# destination tenant t1 application app1 epg epg1 destination-ip 192.0.20.123 source-ip-prefix 10.0.20.1</pre>	
Step 5	[no] erspan-id flow-id	Configures the ERSPAN ID for the ERSPAN
	Example:	session. The ERSPAN range is from 1 to 1023.
	<pre>apic1(config-monitor-access-dest)# erspan-id 100</pre>	
Step 6	[no] ip dscp dscp-code	Configures the differentiated services code
	Example:	point (DSCP) value of the packets in the ERSPAN traffic. The range is from 0 to 64.
	<pre>apic1(config-monitor-access-dest)# ip dscp 42</pre>	
Step 7	[no] ip ttl <i>ttl-value</i>	Configures the IP time-to-live (TTL) value for
	Example:	the ERSPAN traffic. The range is from 1 to 255.
	<pre>apicl(config-monitor-access-dest)# ip ttl 16</pre>	
Step 8	[no] mtu mtu-value	Configures the maximum transmit unit (MTU)
	Example:	size for the ERSPAN session. The range is to 9216 bytes.
	<pre>apic1(config-monitor-access-dest) # mtu 9216</pre>	

Procedure

	Command or Action	Purpose
Step 9	exit	Returns to monitor access configuration mode
	Example:	
	apic1(config-monitor-access-dest)#	
Step 10	[no] source interface ethernet {[fex/] slot/port port-range} leaf node-id	Specifies the source interface port or port range.
	Example:	
	<pre>apic1(config-monitor-access)# source interface eth 1/2 leaf 101</pre>	
Step 11	[no] source interface port-channel port-channel-name-list leaf node-id [fex fex-id]	Specifies the source interface port-channel.
	Example:	
	<pre>apic1(config-monitor-access)# source interface port-channel pc1 leaf 101</pre>	
Step 12	[no] source interface vpc vpc-name-list leaf node-id1 node-id2 [fex fex-id1 fex-id2]	Specifies the source interface vPC.
	Example:	
	<pre>apic1(config-monitor-access)# source interface vpc pcl leaf 101 102</pre>	
Step 13	[no] direction {rx tx both}	Specifies direction of traffic to be monitored The direction can be configured independent for each source port range.
	Example:	
	<pre>apic1(config-monitor-access-source)# direction tx</pre>	
Step 14	[no] filter tenant <i>tenant-name</i> application <i>application-name</i> epg <i>epg-name</i>	Filters traffic to be monitored. The filter can be configured independently for each source
	Example:	port range.
	apic1(config-monitor-access-source)#	
	filter tenant t1 application app1 epg epg1	
Step 15	exit	Returns to access monitor session
	Example:	configuration mode.
	<pre>apic1(config-monitor-access-source)# exit</pre>	
Step 16	[no] shutdown	Disables (or enables) the monitoring session.
	Example:	
	apicl(config-monitor-access)# no shut	

Examples

This example shows how to configure an ERSPAN access monitoring session.

```
apic1# configure terminal
apic1(config) # monitor access session mySession
apic1 (config-monitor-access) # description "This is my access ERSPAN session"
apic1 (config-monitor-access) # destination tenant t1 application app1 epg epg1 destination-ip
192.0.20.123 source-ip-prefix 10.0.20.1
apic1(config-monitor-access-dest)# erspan-id 100
apic1(config-monitor-access-dest) # ip dscp 42
apic1(config-monitor-access-dest)# ip ttl 16
apic1(config-monitor-access-dest)# mtu 9216
apic1(config-monitor-access-dest) # exit
apic1 (config-monitor-access) # source interface eth 1/1 leaf 101
apic1(config-monitor-access-source) # direction tx
apic1 (config-monitor-access-source) # filter tenant t1 application app1 epg epg1
apic1(config-monitor-access-source)# exit
apic1(config-monitor-access) # no shut
apic1(config-monitor-access) # show run
# Command: show running-config monitor access session mySession
# Time: Fri Nov 6 23:55:35 2015
 monitor access session mySession
    description "This is my ERSPAN session"
    source interface eth 1/1 leaf 101
      direction tx
      filter tenant t1 application app1 epg epg1
      exit
    destination tenant t1 application app1 epg epg1 destination-ip 192.0.20.123
source-ip-prefix 10.0.20.1
      ip dscp 42
      ip ttl 16
      erspan-id 9216
      mtu 9216
      exit
    exit
```

This example shows how to configure a port-channel as a monitoring source.

apic1(config-monitor-access) # source interface port-channel pc3 leaf 105

This example shows how to configure a one leg of a vPC as a monitoring source.

apic1(config-monitor-access) # source interface port-channel vpc3 leaf 105

This example shows how to configure a range of ports from FEX 101 as a monitoring source.

apic1(config-monitor-access)# source interface eth 101/1/1-2 leaf 105

Configuring ERSPAN in Fabric Mode

In the ACI fabric, a fabric mode ERSPAN configuration can be used for monitoring traffic originating from one or more fabric ports in leaf or spine nodes. Local SPAN is not supported in fabric mode.

For an ERSPAN session, the destination is always an endpoint group (EPG) which can be deployed anywhere in the fabric. The monitored traffic is forwarded to the destination wherever the EPG is moved. In the fabric mode, only fabric ports are allowed as source, but both leaf and spine switches are allowed.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	apic1# configure	
Step 2	[no] monitor fabric session session-name	Creates a fabric monitoring session
	Example:	configuration.
	apic1(config)# monitor fabric session	
	mySession	
Step 3	[no] description <i>text</i>	Adds a description for this monitoring session.
	Example:	If the text includes spaces, it must be enclosed in single quotes.
	apic1(config-monitor-fabric)#	in single quotes.
	description "This is my fabric ERSPAN session"	
Step 4	[no] destination tenant tenant-name	Specifies the destination interface as a tenant
-	application application-name epg epg-name	and enters destination configuration mode.
	destination-ip dest-ip-address source-ip-prefix src-ip-address	
	Example:	
	apic1(config-monitor-fabric)#	
	destination tenant t1 application appl	
	epg epg1 destination-ip 192.0.20.123 source-ip-prefix 10.0.20.1	
Step 5	[no] erspan-id <i>flow-id</i>	Configures the ERSPAN ID for the ERSPAN
•	Example:	session. The ERSPAN range is from 1 to 1023.
	apic1(config-monitor-fabric-dest)#	
	erspan-id 100	
Step 6	[no] ip dscp dscp-code	Configures the differentiated services code
	Example:	point (DSCP) value of the packets in the ERSPAN traffic. The range is from 0 to 64.
	<pre>apic1(config-monitor-fabric-dest) # ip dscp 42</pre>	EKSTATV traine. The range is nom 0 to 04.
Step 7	[no] ip ttl ttl-value	Configures the IP time-to-live (TTL) value
	Example:	the ERSPAN traffic. The range is from 1 to 255.
	<pre>apic1(config-monitor-fabric-dest) # ip ttl 16</pre>	235.
Step 8	[no] mtu mtu-value	Configures the maximum transmit unit (MTU)
	Example:	size for the ERSPAN session. The range is
	apic1(config-monitor-fabric-dest)# mtu 9216	to 9216 bytes.

	Command or Action	Purpose
Step 9	exit	Returns to monitor access configuration mode.
	Example:	
	<pre>apicl(config-monitor-fabric-dest)#</pre>	
Step 10	[no] source interface ethernet {slot/port port-range} switch node-id	Specifies the source interface port or port range.
	Example:	
	<pre>apic1(config-monitor-fabric)# source interface eth 1/2 switch 101</pre>	
Step 11	[no] direction {rx tx both}	Specifies direction of traffic to be monitored.
	Example:	The direction can be configured independently
	apic1(config-monitor-fabric-source)# direction tx	for each source port range.
Step 12	[no] filter tenant tenant-name bd bd-name	Filters traffic by bridge domain.
	Example:	
	<pre>apic1(config-monitor-fabric-source)# filter tenant t1 bd bd1</pre>	
Step 13	[no] filter tenant tenant-name vrf vrf-name	Filters traffic by VRF.
	Example:	
	apic1(config-monitor-fabric-source)# filter tenant t1 vrf vrf1	
Step 14	exit	Returns to access monitor session
	Example:	configuration mode.
	apic1(config-monitor-fabric-source)# exit	
Step 15	[no] shutdown	Disables (or enables) the monitoring session.
	Example:	
	apic1(config-monitor-fabric)# no shut	

Examples

This example shows how to configure an ERSPAN fabric monitoring session.

```
apic1# configure terminal
apic1(config)# monitor fabric session mySession
apic1(config-monitor-fabric)# description "This is my fabric ERSPAN session"
apic1(config-monitor-fabric)# destination tenant t1 application app1 epg epg1 destination-ip
192.0.20.123 source-ip-prefix 10.0.20.1
apic1(config-monitor-fabric-dest)# erspan-id 100
apic1(config-monitor-fabric-dest)# ip dscp 42
apic1(config-monitor-fabric-dest)# ip ttl 16
apic1(config-monitor-fabric-dest)# mtu 9216
```

```
apicl(config-monitor-fabric-dest) # exit
apicl(config-monitor-fabric) # source interface eth 1/1 switch 101
apicl(config-monitor-fabric-source) # direction tx
apicl(config-monitor-fabric-source) # filter tenant t1 bd bd1
apicl(config-monitor-fabric-source) # filter tenant t1 vrf vrf1
apicl(config-monitor-fabric-source) # exit
apicl(config-monitor-fabric) # no shut
```

Configuring ERSPAN in Tenant Mode

In the ACI fabric, a tenant mode ERSPAN configuration can be used for monitoring traffic originating from endpoint groups within a tenant.

In the tenant mode, traffic originating from a source EPG is sent to a destination EPG within the same tenant. The monitoring of traffic is not impacted if the source or destination EPG is moved within the fabric.

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	apic1# configure	
Step 2	[no] monitor tenant tenant-name session session-name	Creates a tenant monitoring session configuration.
	Example:	
	<pre>apic1(config) # monitor tenant session mySession</pre>	
Step 3	[no] description <i>text</i>	Adds a description for this access monitoring
	Example:	session. If the text includes spaces, it must be enclosed in single quotes.
	<pre>apic1(config-monitor-tenant)# description "This is my tenant ERSPAN session"</pre>	enclosed in single quotes.
Step 4	[no] destination tenant tenant-name application application-name epg epg-name destination-ip dest-ip-address source-ip-prefix src-ip-address	Specifies the destination interface as a tenant and enters destination configuration mode.
	Example:	
	<pre>apic1(config-monitor-tenant)# destination tenant t1 application app1 epg epg1 destination-ip 192.0.20.123 source-ip-prefix 10.0.20.1</pre>	
Step 5	[no] erspan-id <i>flow-id</i>	Configures the ERSPAN ID for the ERSPAN session. The ERSPAN range is from 1 to 1023
	Example:	
	apicl(config-monitor-tenant-dest)# erspan-id 100	

	Command or Action	Purpose
Step 6	<pre>[no] ip dscp dscp-code Example: apic1(config-monitor-tenant-dest)# ip dscp 42</pre>	Configures the differentiated services code point (DSCP) value of the packets in the ERSPAN traffic. The range is from 0 to 64.
Step 7	<pre>[no] ip ttl ttl-value Example: apic1(config-monitor-tenant-dest)# ip ttl 16</pre>	Configures the IP time-to-live (TTL) value for the ERSPAN traffic. The range is from 1 to 255.
Step 8	<pre>[no] mtu mtu-value Example: apic1(config-monitor-tenant-dest)# mtu 9216</pre>	Configures the maximum transmit unit (MTU) size for the ERSPAN session. The range is 64 to 9216 bytes.
Step 9	<pre>exit Example: apic1(config-monitor-tenant-dest)#</pre>	Returns to monitor access configuration mode.
Step 10	<pre>[no] source application application-name epg epg-name Example: apic1(config-monitor-tenant) # source application app2 epg epg5</pre>	Specifies the source interface port or port range.
Step 11	<pre>[no] direction {rx tx both} Example: apic1(config-monitor-tenant-source)# direction tx</pre>	Specifies direction of traffic to be monitored. The direction can be configured independently for each source port range.
Step 12	<pre>exit Example: apic1(config-monitor-tenant-source)# exit</pre>	Returns to access monitor session configuration mode.
Step 13	<pre>[no] shutdown Example: apic1(config-monitor-tenant)# no shut</pre>	Disables (or enables) the monitoring session.

Examples

This example shows how to configure an ERSPAN tenant monitoring session.

```
apic1# configure terminal
apic1(config)# monitor access session mySession
apic1(config-monitor-tenant)# description "This is my tenant ERSPAN session"
```

```
apic1(config-monitor-tenant)# destination tenant t1 application appl epg epgl destination-ip
192.0.20.123 source-ip-prefix 10.0.20.1
apic1(config-monitor-tenant-dest)# erspan-id 100
apic1(config-monitor-tenant-dest)# ip dscp 42
apic1(config-monitor-tenant-dest)# ip ttl 16
apic1(config-monitor-tenant-dest)# mtu 9216
apic1(config-monitor-tenant-dest)# exit
apic1(config-monitor-tenant)# source application app2 epg epg5
apic1(config-monitor-tenant-source)# direction tx
apic1(config-monitor-tenant-source)# exit
apic1(config-monitor-tenant-source)# exit
apic1(config-monitor-tenant)# no shut
```

Using Statistics

Statistics provide real-time measures of observed object and enable trend analysis and troubleshooting. Statistics gathering can be configured for ongoing or on-demand collection and can be collected in cumulative counters and gauges.

Policies define what statistics are gathered, at what intervals, and what actions to take. For example, a policy could raise a fault on an EPG if a threshold of dropped packets on an ingress VLAN is greater than 1000 per second.

Statistics data are gathered from a variety of sources, including interfaces, VLANs, EPGs, application profiles, ACL rules, tenants, or internal APIC processes. Statistics accumulate data in 5-minute, 15-minute, 1-hour, 1-day, 1-week, 1-month, 1-quarter, or 1-year sampling intervals. Shorter duration intervals feed longer intervals. A variety of statistics properties are available, including last value, cumulative, periodic, rate of change, trend, maximum, min, average. Collection and retention times are configurable. Policies can specify if the statistics are to be gathered from the current state of the system or to be accumulated historically or both. For example, a policy could specify that historical statistics be gathered for 5-minute intervals over a period of 1 hour. The 1 hour is a moving window. Once an hour has elapsed, the incoming 5 minutes of statistics are added, and the earliest 5 minutes of data are abandoned.

Note The maximum number of 5-minute granularity sample records is limited to 12 samples (one hour of statistics). All other sample intervals are limited to 1,000 sample records. For example, hourly granularity statistics can be maintained for up to 41 days.

Viewing Statistics in the GUI

You can view statistics for many objects using the APIC GUI, including application profiles, physical interfaces, bridge domains, and fabric nodes. To view statistics in the GUI, choose the object in the **navigation** pane and click the STATS tab.

Follow these steps to view statistics for an interface:

Procedure

Step 1 On the menu bar, choose **FABRIC** > **INVENTORY**.

- **Step 2** In the **Navigation** pane, choose a pod.
- **Step 3** Expand the pod, and expand a switch.
- **Step 4** In the Navigation pane, expand Interfaces and choose eth1/1.
- **Step 5** In the **Work** pane, choose the **STATS** tab.

The APIC displays interface statistics.

Example

What to do next

You can use the following icons in the **Work** pane to manage how the APIC displays statistics:

- Refresh—Manually refreshes statistics.
- Show Table View—Toggles between table and chart views.
- Start or Stop Stats-Enables or disables automatic refresh for statistics.
- Select Stats—Specifies the counters and sample interval to display.
- Download Object as XML-Downloads the object in XML format.
- Measurement Type (Gear icon)—Specifies the statistics measurement type. Options include cumulative, periodic, average, or trend.

Switch Statistics Commands

You can use the following commands to display statistics on ACI leaf switches.

Command	Purpose	
8 9	For more information, see <i>Cisco Nexus 9000 Series NX-OS Configuration Guides</i> .	

Command	Purpose	
show platform internal counters port [port_num	Displays spine port statistics	
detail nz {internal [nz <i>int_port_num</i>]}]	• <i>port_num</i> —Front port number without the slot.	
	• detail —Returns SNMP, class and forwarding statistics.	
	• nz —Displays only non-zero values.	
	• internal—Displays internal port statistics.	
	• <i>int_port_num</i> —Internal logical port number. For example, for BCM-0/97, enter 97.	
	Note If there is a link reset, the counters will be zeroed out on the switch. The conditions of counter reset include the following:	
	 accidental link reset manually enabled port (after port is disabled) 	
show platform internal counters vlan [hw_vlan_id]	Displays VLAN statistics.	
show platform internal counters tep [tunnel_id]	Displays TEP statistics.	
<pre>show platform internal counters flow [rule_id {dump [asic inst] [slice direction index hw_index]}]</pre>	Displays flow statistics.	
<pre>clear platform internal counters port [port_num {internal [int_port_num]}]</pre>	Clears port statistics.	
clear platform internal counters vlan [hw_vlan_id]	Clears VLAN counters.	
debug platform internal stats logging level log_level	Sets the debug logging level.	
debug platform internal stats logging {err trace flow}	Sets the debug logging type.	

Managing Statistics Thresholds Using the GUI

Procedure

ault).

Step 5	In the Stats Collection Policies window, choose a Monitoring Object and Stats Type for which to set a threshold value		
Step 6	In the Work pane, Click the + icon below CONFIG THRESHOLDS.		
Step 7	In the THRESHOLDS FOR COLLECTION window, click + to add a threshold.		
Step 8	In the Choose a Property window, choose a statistics type.		
Step 9 In the EDIT STATS THRESHOLD window, specify the following threshold values:			
	• Normal Value—A valid value of the counter.		
	• Threshold Direction—Indicates whether the threshold is a maximum or minimum value.		
	• Rising Thresholds (Critical, Major, Minor, Warning)—Triggered when the value exceeds the threshold.		
	 Falling Thresholds (Critical, Major, Minor, Warning)—Triggered when the value drops below the threshold. 		
Step 10	You can specify a set and reset value for rising and falling thresholds. The set value specifies when a fault is triggered; the reset value specifies when the fault is cleared.		
Step 11	Click SUBMIT to save the threshold value.		
Step 12	In the THRESHOLDS FOR COLLECTION window, click CLOSE.		

Statistics Troubleshooting Scenarios

The following table summarizes common statistics troubleshooting scenarios for the Cisco APIC.

Problem	Solution
The APIC does not enforce a configured monitoring policy	The problem occurs when a monitoring policy is in place but the APIC does not perform a corresponding action, such as collecting the statistics or acting on a trigger threshold. Follow these steps to resolve the issue:
	• Verify that monPolDn points to the correct monitoring policy.
	• Ensure that the selectors are configured correctly and that there are no faults.
	• For Tenant objects, check the relation to the monitoring policy.
•	Follow these steps to resolve the issue:
are missing.	• Review the statistics that are disabled by default within the monitoring policy and collection policy.
	• Review the collection policy to determine if the statistics are disabled by default or disabled for certain intervals.
	• Review the statistics policy to determine if the statistics are disabled by default or disabled for certain intervals.
	Note Except for fabric health statistics, 5 minute statistics are stored on the switch and are lost when the switch reboots.

Problem	Solution
Statistics or history are	Follow these steps to resolve the issue:
not maintained for the configured time period.	• Review the collection settings; if configured at the top level of the monitoring policy, the statistics can be overridden for a specific object or statistics type.
	• Review the collection policy assigned to the monitoring object. Confirm that the policy is present and review the administrative state, and history retention values.
	• Verify that the statistics type is configured correctly.
Some statistics are not maintained for the full	Review whether the configuration exceeds the maximum historical record size. The limitations are as follows:
configured interval.	• Switch statistics for 5 minute granularity are limited to 12 samples (1 hour of 5 minute granular statistics).
	• There is a hard limit of 1000 samples. For example, hourly granular statistics can be maintained for up to 41 days.
An export policy is	Follow these steps to resolve the issue:
configured but the APIC does not export statistics.	• Check the status object for the destination policy.
does not export statistics.	• On the node that is expected to export the statistics check the export status object and look at the export status and details properties. Aggregated EPG stats are exported every 15 minutes from APIC nodes. Other statistics are exported from source nodes every 5 minutes. For example, if an EPG is deployed to two leaf switches and configured to exporte EPG aggregation parts, then those parts are exported from the nodes every 5 minutes.
	• Review whether the configuration exceeds the maximum number of export policies. The maximum number of statistics export policies is approximately equal to the number of tenants.
	Note Each tenant can have multiple statistics export policies and multiple tenants can share the same export policy, but the total number number of policies is limited to approximately the number of tenants.
5 Minute Statistics Fluctuate	The APIC system reports statistics every 5 minutes, sampled approximately every 10 seconds. The number of samples taken in 5 minutes may vary, because there are slight time variances when the data is collected. As a result, the statistics might represent a slightly longer or shorter time period. This is expected behavior.
Some historical statistics are missing.	For more information, see Statistics Cleanup.

Statistics Cleanup

The APIC and switches clean up statistics as follows:

- Switch—The switch cleans up statistics as follows:
 - 5 minute statistics on switches are purged if no counter value is reported for 5 minutes. This situation can occur when an object is deleted or statistics are disabled by a policy.
 - Statistics of larger granularity are purged if statistics are missing for more than one hour, which can occur when:
 - Statistics are disabled by a policy.
 - A switch is disconnected from an APIC for more than one hour.
 - The switch cleans up statistics for deleted objects after 5 minutes. If an object is recreated within this time, statistics counts remain unchanged.
 - Disabled object statistics are deleted after 5 minutes.
 - If the system state changes so that statistics reporting is disabled for 5 minutes, this switch cleans up statistics.
- APIC—The APIC cleans up objects including interfaces, EPGs, temperature sensors, and health statistics after one hour.

Specifying Syslog Sources and Destinations

This section explains how to create syslog destination groups, a syslog source, and how to enable syslog to display in NX-OS CLI format using the REST API.

About Syslog

During operation, a fault or event in the Cisco Application Centric Infrastructure (ACI) system can trigger the sending of a system log (syslog) message to the console, to a local file, and to a logging server on another system. A system log message typically contains a subset of information about the fault or event. A system log message can also contain audit log and session log entries.

Note For a list of syslog messages that the APIC and the fabric nodes can generate, see http://www.cisco.com/c/ en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/syslog/guide/aci_syslog/ACI_SysMsg.html.

Many system log messages are specific to the action that a user is performing or the object that a user is configuring or administering. These messages can be the following:

- Informational messages, providing assistance and tips about the action being performed
- Warning messages, providing information about system errors related to an object, such as a user account
 or service profile, that the user is configuring or administering

In order to receive and monitor system log messages, you must specify a syslog destination, which can be the console, a local file, or one or more remote hosts running a syslog server. In addition, you can specify the minimum severity level of messages to be displayed on the console or captured by the file or host. The local file for receiving syslog messages is /var/log/external/messages.

A syslog source can be any object for which an object monitoring policy can be applied. You can specify the minimum severity level of messages to be sent, the items to be included in the syslog messages, and the syslog destination.

You can change the display format for the Syslogs to NX-OS style format.

Additional details about the faults or events that generate these system messages are described in the *Cisco APIC Faults, Events, and System Messages Management Guide*, and system log messages are listed in the *Cisco ACI System Messages Reference Guide*.

Note

Not all system log messages indicate problems with your system. Some messages are purely informational, while others may help diagnose problems with communications lines, internal hardware, or the system software.

Creating a Syslog Destination and Destination Group

This procedure configures syslog data destinations for logging and evaluation. You can export syslog data to the console, to a local file, or to one or more syslog servers in a destination group.

Procedure

Step 1	In the menu bar, click Admin .
Step 2	In the submenu bar, click External Data Collectors.
Step 3	In the Navigation pane, expand Monitoring Destinations.
Step 4	Right-click Syslog and choose Create Syslog Monitoring Destination Group.
Step 5	In the Create Syslog Monitoring Destination Group dialog box, perform the following actions:
	a) In the group and profile Name field, enter a name for the monitoring destination group and profile.b) In the group and profile Format field, choose the format for Syslog messages.

The default is **aci**, or the RFC 5424 compliant message format, but you can choose to set it to the NX-OS style format instead.

- c) In the group and profile Admin State drop-down list, choose enabled.
- d) To enable sending of syslog messages to a local file, choose enabled from the Local File Destination Admin State drop-down list and choose a minimum severity from the Local File Destination Severity drop-down list.

The local file for receiving syslog messages is /var/log/external/messages.

- e) To enable sending of syslog messages to the console, choose enabled from the Console Destination Admin State drop-down list and choose a minimum severity from the Console Destination Severity drop-down list.
- f) Click Next.
- g) In the Create Remote Destinations area, click + to add a remote destination.
- **Caution** Risk of hostname resolution failure for remote Syslog destinations, if the DNS server used is configured to be reachable over in-band connectivity. To avoid the issue, configure the Syslog server using the IP address, or if you use a hostname, ensure that the DNS server is reachable over an out-of-band interface.

Step 6	In the Create Syslog Remote Destination dialog box, perform the following actions:			
	a) In the Host field, enter an IP address or a fully qualified domain name for the destination host.			
	b) (Optional) In the Name field, enter a name for the destination host.			
	c) In the Admin State field, click the enabled radio button.			
	d) (Optional) Choose a minimum severity Severity, a Port number, and a syslog Facility.			
	The Facility is a number that you can optionally use to indicate which process generated the message, and can then be used to determine how the message will be handled at the receiving end.			
	e) From the Management EPG drop-down list, choose the management endpoint group.f) Click OK.			
Step 7	(Optional) To add more remote destinations to the remote destination group, click + again and repeat the steps in the Create Syslog Remote Destination dialog box			
Step 8	Click Finish.			

Creating a Syslog Source

A syslog source can be any object for which an object monitoring policy can be applied.

Before you begin

Create a syslog monitoring destination group.

Procedure

Step 1	From the menu bar and the navigation frame, navigate to a Monitoring Policies menu for the area of interest.		
	You can configure monitoring policies for tenants, fabric, and access.		
Step 2	Expand Monitoring Policies, then select and expand a monitoring policy.		
	Under Fabric > Fabric Policies > Monitoring Policies > Common Policy is a basic monitoring policy that applies to all faults and events and is automatically deployed to all nodes and controllers in the fabric. Alternatively, you can specify an existing policy with a more limited scope.		
Step 3	Under the monitoring policy, click Callhome/SNMP/Syslog.		
Step 4	In the Work pane, choose Syslog from the Source Type drop-down list.		
Step 5	From the Monitoring Object list, choose a managed object to be monitored.		
	If the desired object does not appear in the list, follow these steps:		
	a) Click the Edit icon to the right of the Monitoring Object drop-down list.		
	b) From the Select Monitoring Package drop-down list, choose an object class package.		
	c) Select the checkbox for each object that you want to monitor.		
	d) Click Submit .		
Step 6	In a tenant monitoring policy, if you select a specific object instead of All, a Scope selection appears.		
	In the Scope field, select a radio button to specify the system log messages to send for this object:		
	• all—Send all events and faults related to this object		

Cisco APIC Troubleshooting Guide, Release 3.x and Earlier

- **specific event**—Send only the specified event related to this object. From the **Event** drop-down list, choose the event policy.
- **specific fault**—Send only the specified fault related to this object. From the **Fault** drop-down list, choose the fault policy.
- **Step 7** Click + to create a syslog source.
- **Step 8** In the **Create Syslog Source** dialog box, perform the following actions:
 - a) In the Name field, enter a name for the syslog source.
 - b) From the **Min Severity** drop-down list, choose the minimum severity of system log messages to be sent.
 - c) In the Include field, check the checkboxes for the type of messages to be sent.
 - d) From the **Dest Group** drop-down list, choose the syslog destination group to which the system log messages will be sent.
 - e) Click **Submit**.

```
Step 9 (Optional) To add more syslog sources, click + again and repeat the steps in the Create Syslog Source dialog box
```

Enabling Syslog to Display in NX-OS CLI Format, Using the REST API

By default the Syslog format is RFC 5424 compliant. You can change the default display of Syslogs to NX-OS type format, similar to the following example:

```
apic1# moquery -c "syslogRemoteDest"
Total Objects shown: 1
# syslog.RemoteDest
                    : 172.23.49.77
host
adminState
                   : enabled
childAction
                    :
descr
                    :
                    : uni/fabric/slgroup-syslog-mpod/rdst-172.23.49.77
dn
epgDn
                    •
format
                    : nxos
forwardingFacility : local7
ip
                   : local
lcOwn
modTs
                    : 2016-05-17T16:51:57.231-07:00
                   : uni/fabric/monfab-default
monPolDn
                    : syslog-dest
name
                    : unknown
operState
                    : 514
port
                    : rdst-172.23.49.77
rn
severity
                   : information
status
                    :
                    : 15374
uid
vrfId
                    : 0
```

vrfName : To enable the Syslogs to display in NX-OS type format, perform the following steps, using the REST API. Procedure Step 1 Enable the Syslogs to display in NX-OS type format, as in the following example: POST https://192.168.20.123/api/node/mo/uni/fabric.xml <syslogGroup name="DestGrp77" format="nxos"> <syslogRemoteDest name="slRmtDest77" host="172.31.138.20" severity="debugging"/> </syslogGroup> The **syslogGroup** is the Syslog monitoring destination group, the **syslogRemoteDest** is the name you previously configured for your Syslog server, and the **host** is the IP address for the previously configured Syslog server. Step 2 Set the Syslog format back to the default RFC 5424 format, as in the following example: POST https://192.168.20.123/api/node/mo/uni/fabric.xml <syslogGroup name="DestGrp77" format="aci"> <syslogRemoteDest name="slRmtDest77" host="172.31.138.20" severity="debugging"/> </syslogGroup>

Discovering Paths and Testing Connectivity with Traceroute

This section lists the traceroute guidelines and restriction and explains how to perform a traceroute between endpoints.

About Traceroute

The traceroute tool is used to discover the routes that packets actually take when traveling to their destination. Traceroute identifies the path taken on a hop-by-hop basis and includes a time stamp at each hop in both directions. You can use traceroute to test the connectivity of ports along the path between the generating device and the device closest to the destination. If the destination cannot be reached, the path discovery traces the path up to the point of failure.

A traceroute that is initiated from the tenant endpoints shows the default gateway as an intermediate hop that appears at the ingress leaf switch.

Traceroute supports a variety of modes, including endpoint-to-endpoint, and leaf-to-leaf (tunnel endpoint, or TEP to TEP). Traceroute discovers all paths across the fabric, discovers point of exits for external endpoints, and helps to detect if any path is blocked.

Traceroute Guidelines and Restrictions

• When the traceroute source or destination is an endpoint, the endpoint must be dynamic and not static. Unlike a dynamic endpoint (fv:CEp), a static endpoint (fv:StCEp) does not have a child object (fv:RsCEpToPathEp) that is required for traceroute.

- Traceroute works for IPv6 source and destinations but configuring source and destination IP addresses across IPv4 and IPv6 addresses is not allowed.
- See the Verified Scalability Guide for Cisco ACI document for traceroute-related limits.
- When an endpoint moves from one ToR switch to a different ToR switch that has a new MAC address (one that is different than the MAC address that you specified while configuring the traceroute policy), the traceroute policy shows "missing-target" for the endpoint. In this scenario you must configure a new traceroute policy with the new MAC address.
- When performing a traceroute for a flow involving the policy-based redirect feature, the IP address used by the leaf switch to source the time-to-live (TTL) expired message when the packet goes from the service device to the leaf switch may not always be the IP address of the bridge domain's switch virtual interface (SVI) of the service device. This behavior is cosmetic and does not indicate that the traffic is not taking the expected path.

Performing a Traceroute Between Endpoints

Procedure

In the me	enu bar, click Tenants .		
In the su	In the submenu bar, click the tenant that contains the source endpoint.		
In the Na	avigation pane, expand the tenant and expand Policies > Troubleshoot.		
	roubleshoot, right-click Endpoint-to-Endpoint Traceroute Policies and choose Create at-to-Endpoint Traceroute Policy.		
Enter the click Su l	e appropriate values in the Create Endpoint-to-Endpoint Traceroute Policy dialog box fields and bmit .		
Note	For the description of a field, click the information icon (i) in the top-right corner of the Create Endpoint-to-Endpoint Traceroute Policy dialog box.		
In the Na	avigation pane or the Traceroute Policies table, click the traceroute policy.		
The trace	eroute policy is displayed in the Work pane.		
In the W	fork pane, click the Operational tab, click the Source End Points tab, and click the Results tab.		
In the T r	raceroute Results table, verify the path or paths that were used in the trace.		
Note	• More than one path might have been traversed from the source node to the destination node.		
	• For readability, you can increase the width of one or more columns, such as the Name column.		
	In the su In the Na Under Th Endpoin Enter the click Sul Note In the Na The trace In the W In the Tr		

Using the Troubleshooting Wizard

The Troubleshooting Wizard allows you understand and visualize how your network is behaving, which can ease your networking concerns should issues arise.

This wizard allows you (the Administrative user) to troubleshoot issues that occur during specific time frames, which can be designated by selecting two endpoints. For example, you may have two endpoints that are having intermittent packet loss but you don't understand why. Through the troubleshooting GUI, you can evaluate the issue so that you can effectively resolve it rather than logging onto each machine that you suspect to be causing this faulty behavior.

Since you may want to revisit the session later, you should give the session a unique name. You may also choose to use a pre-configured test. You can debug from endpoint to endpoint, or from an internal or external endpoint, or from an external to an internal endpoint.

Further, you can define a time window in which you want to perform the debug. The Troubleshooting GUI allows you to enter a source and destination endpoint for the endpoints you are looking for. You can do this with a MAC, IPv4, or IPv6 address and then select by tenant. You also have the option to generate a troubleshooting report that can be sent to TAC.

The following section describes the topology of the Troubleshooting Wizard, which is a simplified view of the fabric with only the elements that are relevant to your two endpoints under inspection.

Note

For a list of Troubleshooting Wizard CLI commands, see the *Cisco APIC Command-Line Interface User Guide*.

Getting Started with the Troubleshooting Wizard

Before you start using the Troubleshooting Wizard, you must be logged on as an Administrative user. Then you must designate Source and Destination endpoints (Eps) and select a time window for your troubleshooting session. The time window is used for retrieving Events, Fault Records, Deployment Records, Audit Logs, and Statistics. (The description and time window can only be edited in the first page of the wizard, before clicking on **Start**.)

Note

- You cannot modify the Source and Destination endpoints once you have clicked either the GENERATE REPORT button or the START button. If you want to change the Source and Destination information after you have entered it, you have to start a new session.
- As you navigate through the screens of the Troubleshooting Wizard, you have the option to take a screen

shot at any time and send it to a printer (or save it as a PDF) by clicking the Print icon (💙) at the

top, right side of the screen. There are also Zoom In and Zoom Out icons (to modify your view of any screen.

To set up your troubleshooting session information:

Procedure

Step 1	Select OPERATIONS from the top of the screen then choose VISIBILITY & TROUBLESHOOTING .		
	The Visi	bility & Troubleshooting screen appears.	
Step 2		choose to either use an existing troubleshooting session (using the drop-down menu) or you can new one. To create a new one, enter a name for it in the Session Name field.	
Step 3		lescription in the Description field to provide additional information. p is optional.)	
Step 4	From the	e Source pull-down menu, enter a MAC, IPv4, or IPv6 address or choose an existing one.	
Step 5	Click SEARCH . A box appears (shown as follows) displaying one or multiple rows with detailed information to help you make a selection. Each row shows that the IP address (in the IP column) you entered is in a specific endpoint group (in the EPG column), which belongs to a certain application (in the Application column), which is in a particular tenant (in the Tenant column). The leaf number, fex number, and port details are shown in the Learned At column.		
Step 6	From the Destination pull-down menu, enter a MAC, IPv4, or IPv6 address or choose an existing one.		
Step 7	Click SEARCH . A box appears displaying one or multiple rows to help you make a selection (as previously described for the Source endpoint search).		
Step 8	Check th	e External IP checkbox if you are using an endpoint to external internet protocol.	
	Note	• For more information about endpoints and external IPs, refer to the <i>Cisco Application Centric</i> <i>Infrastructure Fundamentals</i> guide.	
		• Ideally, you should select the Source and Destination endpoints from the same tenant or some of the troubleshooting functionality may be impacted, as explained later in this document. Once you make selections for these endpoints, you can learn about the topology that connects the two in the Faults troubleshooting screen.	
Step 9	Select a time window by making selections from the From (for session Start time) and To (for session End time) pull-down menus. The Time Window (shown as follows) is used for debugging an issue that occurred during a specific time frame in the past, and is used for retrieving Events, All Records, Deployment Records, Audit Logs, and Statistics. There are two sets of windows; one for all records and one for individual leafs (or nodes).		
	Note	You have two options for setting the time window, which you can toggle back and forth from using the Use fixed time checkbox.	
		• You can specify a rolling time window based on any number of Latest Minutes (the default is 240 minutes but this can be changed).	
		• Or, you can specify a fixed time window for the session in the From and To fields by checking the Use fixed time checkbox.	

	Note	The default time window is based on a default of latest 240 minutes (which means that the session contains data for the past 240 minutes) preceding the time you created the session. You can also set up or modify time window information from the bottom of the left navigation pane.
Step 10	Click START at the bottom right side of the screen to begin your troubleshooting session. The topology diagram for your troubleshooting session loads and then appears.	
	Note	For a list of Troubleshooting Wizard CLI commands, see the Cisco APIC Command-Line Interface User Guide.

Generating Troubleshooting Reports

You can generate a troubleshooting report in several formats, including JSON, XML, PDF, and HTML. Once you select a format, you can download the report (or schedule a download of the report) and use it for offline analysis or you can send it to TAC so that a support case can be created.

To generate a troubleshooting report:

Procedure

Step 1		e bottom right corner of the screen, click GENERATE REPORT. nerate Report dialog box appears.	
Step 2	Choose an output format from the Report Format drop-down menu (XML, HTML, JSON, or PDF).		
Step 3	If you want to schedule the download of the report to happen immediately, click the Now > SUBMIT . An Information box appears indicating where to obtain the report once it has been generated.		
Step 4	To schedule the generation of the report for a later time, choose a schedule by clicking Use a scheduler > Scheduler drop-down menu then choose either an existing schedule or create a new one by clicking Create Scheduler. The CREATE TRIGGER SCHEDULE dialog appears.		
Step 5	Enter information for the Name, Description (optional), and Schedule Windows fields.		
	Note	For more information on how to use the SCHEDULER , please refer to the online help.	
Step 6	Click SI	JBMIT.	

The reports take some time to generate (from a couple of minutes to up to ten minutes), depending on the size of the fabric and how many faults or events exist. A status message displays while the report is being generated. To retrieve and view the troubleshooting report, click **SHOW GENERATED REPORTS**.

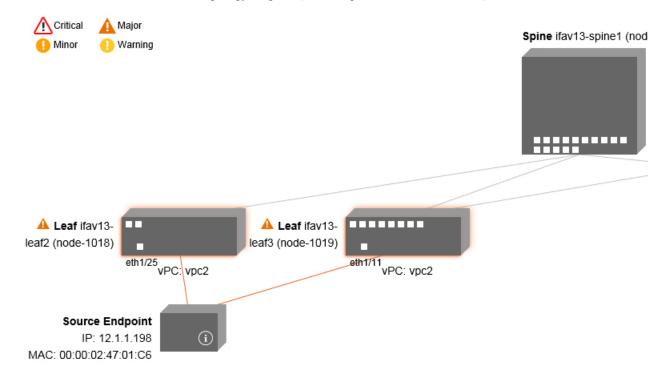
Supply the credentials (User Name and Password) of the server in the Authentication Required window. The troubleshooting report is then downloaded locally to your system.

The **ALL REPORTS** window appears showing a list of all the reports that have been generated, including the one you just triggered. From there, you can click the link to either download or immediately view the report, depending on the output file format you chose (for example, if the file is a PDF, it may open immediately in your browser).

Topology in the Troubleshooting Wizard

This section explains the topology in the Troubleshooting Wizard. The topology shows how the Source and Destination end points (Eps) are connected to the fabric, what the network path is from the Source to the Destination, and what the intermediate switches are.

The Source end point is displayed on the left side of the topology and the Destination end point is on the right, as shown in the following wizard topology diagram.



Note

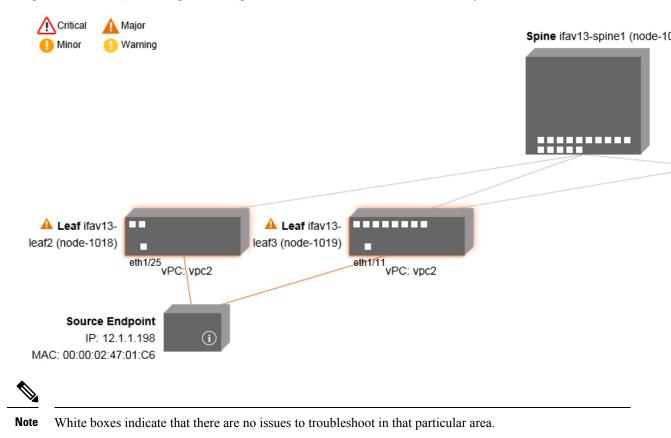
This wizard topology only shows the leafs, spines, and fexes of the devices involved in the traffic from the Source end point to the Destination end point. However, there may be many other leafs (tens or hundreds of leafs and many other spines) that exist.

This topology also shows links, ports, and devices. If you hover over the *icon*, you can see the tenant that the Ep belongs to, which application it belongs to, and the traffic encapsulation it is using (such as VLAN).

There is a color legend on the left side of the screen (shown as follows) that describes the severity levels associated with each color in the topology diagram (for example, critical versus minor).

Hovering over items such as boxes or ports in the topology provides more detailed information. If the port or link has a color, this means that there is a problem for you to troubleshoot. For example, if the color is red or orange, this indicates that there is a fault on a port or link. If the color is white, then there are no faults that exist. If the link has a number in a circle, it indicates how many parallel links between the same two nodes are affected by a fault of the severity given by the color of the circle. Hovering over a port allows you to see which port is connected to the Source Ep.

Right-clicking on a leaf allows you to access the console of the switch. A pop-up window appears that allows you to log into that device.


Note

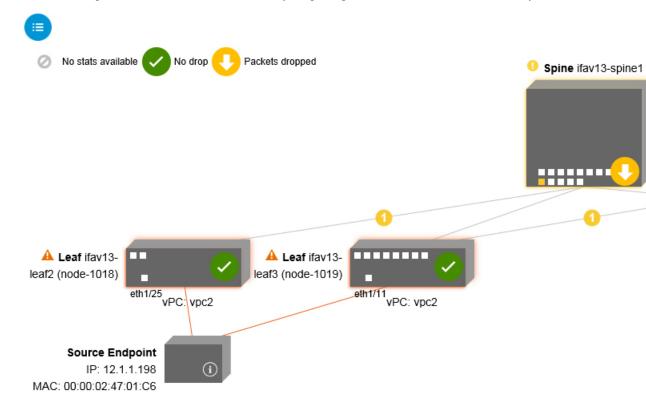
- If there are L4 though L7 services (firewall and load balancer) they will be shown in the topology as well
- For a topology with the load balancer, the destination is expected to be the VIP (Virtual IP)
- When the endpoint is behind an ESX server, the ESX is shown in the topology

Using the Faults Troubleshooting Screen

Click Faults in the Navigation pane to begin using the Faults troubleshooting screen.

The **Faults** screen shows the topology that connects the two endpoints that you previously selected as well as the faults that were found. Only faults for the designated communication are shown. Wherever there are faults, they are highlighted in a certain color to convey the severity. Refer to the color legend at the top of the screen (shown as follows) to understand the severity levels associated with each color. This topology also shows the relevant leafs, spines, and fexes to your troubleshooting session. Hovering over items such as leafs, spines, and fexes (or clicking on faults) provides more detailed information for analysis.

Clicking on a fault displays a dialog box with two tabs (FAULTS and RECORDS) that contain more detailed information for analysis, including Severity, Affected Object, Creation Time, Last Transaction, Lifecycle, and Description fields.


Related Topics

Using the Drop/Statistics Troubleshooting Screen, on page 75

Using the Drop/Statistics Troubleshooting Screen

Click Drop/Stats in the Navigation pane to begin using the Drop/Stats troubleshooting screen.

The **Drop/Stats** window displays the topology with all the statistics from the drops so that you can clearly see where drops exist or not. You can click on any drop image to see more information for analysis.

Once you click a drop image, there are three tabs at the top of the **Drop/Stats** screen, and the statistics shown are localized to that particular leaf or switch.

The three statistics tabs are:

DROP STATS

This tab shows the statistics for drop counters. The packets that are dropped at various levels are shown here.

Note By default, counters with zero values are hidden but the user can choose to see all the values.

• CONTRACT DROPS

This tab shows a list of the contract drops that have occurred, which are individual packet logs (ACL logs), and shows information for each packet such as the **Source Interface**, **Source IP address**, **Source Port, Destination IP address**, **Destination Port**, and **Protocol**.

Note Not every packet is displayed here.

TRAFFIC STATS

This tab shows the statistics that indicate ongoing traffic. These are how many packets have been transferring.

Note By default, counters with zero values are hidden but the user can choose to see all the values.

You can also view all of the statistics for all managed objects at once by clicking the All icon () located in the top, left corner of the screen.

You also have the option to pick zero or non-zero drops. Checking the box for **Show stats with zero values** (located in the top, left corner of the screen) allows you to see all the existing drops. The fields for **Time**, **Affected Object, Stats**, and **Value** become populated with data for all the zero values.

If you do not check the **Show stats with zero values** box, you will see results with non-zero drops.

Note

The same logic applies if you click the All icon. All three tabs (DROP STATS, CONTRACT DROPS, and TRAFFIC STATS) are also available and have the same type of information appearing.

Related Topics

Using the Contracts Troubleshooting Screen, on page 76

Using the Contracts Troubleshooting Screen

Click Contracts in the Navigation pane to begin using the Contracts troubleshooting screen.

The **Contracts** troubleshooting screen displays the contracts that are applicable from the Source to the Destination and from the Destination to the Source.

Each one of the blue table heading rows indicates a filter. There are multiple rows under each filter that indicate multiple filter entries (**Protocol, L4 Src, L4 Dest, TCP Flags, Action, Nodes**, and **Hits**) for a particular leaf or switch.

Hovering over the certificate icon, shows you the contract name and the contract filter name. The text appearing on the right side of each blue table heading row (or filter) tells what type of contract it is, for example:

- Epg to Epg
- BD Allow

- Any to Any
- Context Deny

These contracts are categorized from the Source to the Destination and from the Destination to the Source.

///
· //)

Note The hits shown for each filter are cumulative (that is, the total hits for that contract hit, contract filter, or rule are shown for each particular leaf.) Statistics are refreshed automatically every (one) minute.

You can get policy information by hovering over the Information ((i)) icon. You can also see which EPGs are being referred to.

```
N
```

Note If there are no contracts between the endpoints, this will be indicated with a **There is no contract data** pop-up.

Related Topics

Using the Events Troubleshooting Screen, on page 77

Using the Events Troubleshooting Screen

Click **Events and Audits** in the **Navigation** pane to begin using the **Events and Audits** troubleshooting screen.

If you click on an individual leaf or spine switch, you can see more detailed information about that individual event.

There are two tabs available: EVENTS and DEPLOYMENT RECORDS.

- **EVENTS** show event records for any changes that have occurred in systems (such as physical interfaces or VLANS, for example). There are individual events listed for each particular leaf. You can sort these events based on **Severity, Affected Object, Creation Time, Cause**, and **Description**.
- **DEPLOYMENT RECORDS** show the deployment of policies on physical interfaces, VLANs, VXLANs, and L3 CTXs. These records show the time when a VLAN was placed on a leaf because of the epg.

If you click the **All** icon () for the **All Changes** screen, you can see all the events indicating any changes that have occurred during your specified time interval (or troubleshooting session).

There are three tabs in the All Changes screen, including:

AUDITS

Audits do not have a leaf association, which is why they are only available in the **All Changes** screen.

- EVENTS (described above)
- **DEPLOYMENT RECORDS** (described above)

Related Topics

Using the Traceroute Troubleshooting Screen, on page 78

Using the Traceroute Troubleshooting Screen

Click Traceroute in the Navigation pane to begin using the Traceroute troubleshooting screen.

To create and run a traceroute for troubleshooting:

- 1. In the **TRACEROUTE** dialog box, choose a destination port from the **Destination Port** drop-down menu.
- 2. Choose a protocol from the Protocol pull-down menu. The options supported include:
 - **icmp**—This protocol is uni-directional, in that it does a traceroute from the Source leaf to the Destination endpoint only.
 - tcp—This protocol is also bi-directional, as described above for the udp protocol.
 - **udp**—This protocol is bi-directional, in that it does a traceroute from the Source leaf to the Destination endpoint, then from the Destination leaf back to the Source endpoint.

Note UDP, TCP and ICMP are the only supported protocols for IPv4. For IPv6, only UDP is supported.

3. Once you create a traceroute, click the Play (or Start) button to start the traceroute.

Note When you press the Play button, the polices are created on the system and a Warning message appears.

- 4. Click**OK** to proceed and the traceroute starts to run.
- 5. Click the Stop button to end the traceroute.

Note When you press the **Stop** button, the policies are removed from the system.

Once the traceroute completes, you can see where it was launched and what the result was. There is a pull-down menu next to **Traceroute Results** that shows where the traceroute was launched (from the Source to the Destination or from the Destination to the Source).

The result is also shown in the **Traceroute** dialog, which includes information for **Running Time, Traceroute Status, Destination Port,** and **Protocol**.

The results are represented by green and/or red arrows. A green arrow is used to represent each node in the path that responded to the traceroute probes. The beginning of a red arrow represents where the path ends as that's the last node that responded to the traceroute probes. You don't choose which direction to launch the traceroute. Instead, the traceroute is always started for the session. If the session is:

- EP to external IP or external IP to EP, the traceroute is always launched from EP to external IP.
- EP to EP and protocol is ICMP, the traceroute is always launched from the source to the destination.
- EP to EP and protocol is UDP/TCP, the traceroute is always bidirectional.

Note

- The **Traceroute Results** drop-down menu can be used to expose/visualize the results for each direction for scenario #3 above. In scenarios #1 and #2, it's always greyed out.
 - If the **Traceroute Status** shows as incomplete, this means you are still waiting for part of the data to come back. If the **Traceroute Status** shows as **complete**, then it is actually complete.

Related Topics

Using the Atomic Counter Troubleshooting Screen, on page 79

Using the Atomic Counter Troubleshooting Screen

Click Atomic Counter in the Navigation pane to begin using the Atomic Counter troubleshooting screen.

The Atomic Counter screen is used to take source and destination information and create a counter policy based on that. You can create an atomic counter policy between two endpoints and monitor the traffic going back and forth from the Source to the Destination and from the Destination to the Source. You can determine how much traffic is going through and especially determine if any anomalies (drops or excess packets) are reported between the source and destination leaves.

There are **Play** (or Start) and **Stop** buttons at the top of the screen so that you can start and stop the atomic counter policy at any point and can count the packets that are being sent.

Note When you press the **Play** button, the polices are created on the system and the packet counter starts. When you press the **Stop** button, the policies are removed from the system.

The results are shown in two different formats. You can view them in either a brief format, which includes a summary, or in a longer format (by clicking on the **Expand** button). Both brief and expanded formats show both directions. The expanded format shows the cumulative counts plus the counts for each of the latest 30s intervals, while the brief format only shows the counts for cumulative and last interval.

Related Topics

Using the SPAN Troubleshooting Screen, on page 79

Using the SPAN Troubleshooting Screen

Click SPAN in the Navigation pane to begin using the SPAN troubleshooting screen.

Using this screen, you can span (or mirror) bi-directional traffic and redirect it to the analyzer. In a SPAN session, you are making a copy and sending it to the analyzer.

This copy goes to a particular host (the analyzer IP address) and then you can use a software tool such as Wireshark to view the packets. The session information has source and destination information, session type, and the timestamp range.

Note

When you press the **Play** button, the polices are created on the system. When you press the **Stop** button, the policies are removed from the system.

Note

For a list of Troubleshooting Wizard CLI commands, see the *Cisco APIC Command-Line Interface User Guide*.

L4 - L7 Services Validated Scenarios

The Troubleshooting Wizard allows you to provide two endpoints and see the corresponding topology between those endpoints. When L4 - L7 services exist between the two endpoints in the topology, you are able to view these as well.

This section describes the L4 - L7 scenarios that have been validated for this release. Within the L4 - L7 services, the number of topologies is very high, which means that you can have different configurations for firewalls, load balancers, and combinations of each. If a firewall exists between the two endpoints in the topology, the Troubleshooting Wizard retrieves the firewall data and connectivity from the firewall to the leafs. If a load balancer exists between the two endpoints, you can retrieve and view information up to the load balancer but not up to the server.

Scenario	1	2	3	4	5	6
Number of Nodes	1	1	2	1	1	2
Device	GoTo FW (vrf split)	GoTo SLB	GoTo,GoTo FW,SLB	FW-GoThrough	SLB-GoTo	FW, SLB (GoThrough, GoTo)
Number of Arms	2	2	2	2	2	2
Consumer	EPG	EPG	EPG	L3Out	L3Out	L3Out
Provider	EPG	EPG	EPG	EPG	EPG	EPG
Device Type	VM	VM	VM	physical	physical	physical
Contract Scope	tenant	context	context	context	context	global
Connector Mode	L2	L2	L2, L2	L3, L2	L3	L3 / L2,L3
Service Attach	BSW	BSW	DL/PC	regular port	vPC	regular port
Client Attach	FEX	FEX	FEX	Regular Port	Regular Port	regular port
Server Attach	vPC	vPC	vPC	regular port	regular port	regular port

The following table shows the L4 - L7 service scenarios that were validated for the Troubleshooting Wizard:

List of APIs for Endpoint to Endpoint Connections

The following is a list of the available Troubleshooting Wizard APIs for EP to EP (endpoint to endpoint) connections:

• interactive API, on page 81

- createsession API, on page 82
- modifysession API, on page 83
- atomiccounter API, on page 83
- traceroute API, on page 84
- span API, on page 84
- generatereport API, on page 85
- schedulereport API, on page 86
- getreportstatus API, on page 86
- getreportslist API, on page 87
- getsessionslist API, on page 87
- getsessiondetail API, on page 87
- deletesession API, on page 87
- clearreports API, on page 88
- contracts API, on page 89

interactive API

To create an endpoint (ep) to endpoint interactive troubleshooting session, use the **interactive** API. The module name is **troubleshoot.eptoeputils.topo** and the function is **getTopo**. The required argument (**req_args**) for the interactive API is **- session**.

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session

- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
- description	Description about the session
- scheduler	Scheduler name for report generation
- srcepid	Obsolete
- dstepid	Obsolete
- include	Obsolete
- format	Format of report to be generated
- ui	Used internally (ignore)
- sessionurl	Location of the report
-action	Start/stop/status etc. for traceroute/atomiccounter
- mode	Used internally
dc	Used internally
- ctx	Used internally

createsession API

To create an endpoint (ep) to endpoint troubleshooting session, use the **createsession** API. The module name is **troubleshoot.eptoeputils.session** and the function is **createSession**.

The required argument (req_args) for the createsession API is - session (session name).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session

- endtime	End time of the troubleshooting session
- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
- description	Description about the session
- format	Format of report to be generated
- ui	Used internally (ignore)
-action	Start/stop/status etc. for traceroute/atomiccounter
- scheduler	
- srctenant	Name of the tenant for the source endpoint
- srcapp	Name of the app for the source endpoint
- srcepg	Name of the endpoint group for the source endpoint
- dsttenant	Name of the tenant for the destination endpoint
- dstapp	Name of the app for the destination endpoint
- dstepg	Name of the endpoint group for the destination endpoint
- mode	Used internally

modifysession API

To modify an endpoint (ep) to endpoint troubleshooting session, use the **modifysession** API. The module name is **troubleshoot.eptoeputils.topo**and the function is **modifySession**.

The required arguments (req_args) for the modifysession API are - session (session name) and - mode.

The following table lists the optional arguments (opt_args) and descriptions for each.

Syntax Description	Optional Arguments (opt_args)	Description
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- description	Description about the session

atomiccounter API

To create an endpoint (ep) to endpoint atomic counter session, use the **atomiccounter** API. The module name is **troubleshoot.eptoeputils.atomiccounter** and the function is **manageAtomicCounterPols**.

The required arguments (req_args) for the atomiccounter API include:

- session
- action
- - mode

Note

There are no optional arguments (opt_args) for the atomiccounter API.

traceroute API

To create an endpoint (ep) to endpoint traceroute session using the API, use the **traceroute** API. The module name is **troubleshoot.eptoeputils.traceroute** and the function is **manageTraceroutePols**.

The required arguments (req_args) for the traceroute API include:

- - session (session name)
- action (start/stop/status)
- - mode

Syntax Description	Optional Arguments (opt_args)	Description
	- protocol	Protocol name
	- dstport	Destination port name

span API

To create an endpoint (ep) to endpoint span troubleshooting session, use the **span** API. The module name is **troubleshoot.eptoeputils.span** and the function is **monitor**.

The required arguments (req_args) for the span API include:

- - session (session name)
- - action (start/stop/status)

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address

- srcmac	Source endpoint MAC
- dstmac	Destination endpoint MAC
- srcextip	L3 external source IP address
- dstextip	L3 external destination IP address
- starttime	Start time of the troubleshooting session
- endtime	End time of the troubleshooting session
- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
- description	Description about the session
- scheduler	Scheduler name for report generation
- srcepid	Obsolete
- dstepid	Obsolete
- include	Obsolete
- format	Format of report to be generated
- ui	Used internally (ignore)
- sessionurl	Location of the report
-action	Start/stop/status etc. for traceroute/atomiccounter
- srctenant	Name of the tenant for the source endpoint
- srcapp	Name of the app for the source endpoint
- srcepg	Name of the endpoint group for the source endpoint
- dsttenant	Name of the tenant for the destination endpoint
- dstapp	Name of the app for the destination endpoint
- dstepg	Name of the endpoint group for the destination endpoint
- mode	Used internally
dc	Used internally
- ctx	Used internally

generatereport API

To generate a troubleshooting report using the API, use the **generatereport** API. The module name is **troubleshoot.eptoeputils.report** and the function is **generateReport**.

The required arguments (**req_args**) for the generatereport API are **- session** (session name) and **- mode**.

The following table lists the optional arguments (opt_args) and descriptions for each.

Syntax Description	Optional Arguments (opt_args)	Description
	- include	Obsolete
	- format	Format of report to be generated

schedulereport API

To schedule the generation of a troubleshooting report using the API, use the **schedulereport** API. The module name is **troubleshoot.eptoeputils.report** and the function is **scheduleReport**. The required argument (**req_args**) for the schedulereport API is **- session**

The required arguments (req_args) for the schedulereport API include:

- - session (session name)
- - scheduler (scheduler name)
- - mode

The following table lists the optional arguments (**opt_args**) and descriptions for each.

Syntax Description	Optional Arguments (opt_args)	Description
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- include	Obsolete
	- format	Format of report to be generated
	- action	Start/stop/status etc. for traceroute/atomiccounter

getreportstatus API

To get the status of a generated report using the API, use the **getreportstatus** API. The module name is **troubleshoot.eptoeputils.report** and the function is **getStatus**.

The required arguments (req_args) for the getreportstatus API include:

- - session (session name)
- - sessionurl (session URL)
- mode

Note

There are no optional arguments (**opt_args**) for the getreportstatus API.

getreportslist API

To get a list of generated reports using the API, use the **getreportslist** API. The module name is **troubleshoot.eptoeputils.report** and the function is **getReportsList**.

The required arguments (req_args) for the getreportslist API are- session (session name) and - mode.

There are no optional arguments (**opt_args**) for the getreportslist API.

getsessionslist API

To get a list of troubleshooting sessions using the API, use the **getsessionslist** API. The module name is **troubleshoot.eptoeputils.session** and the function is **getSessions**.

The required argument (req_args) for the getsessionlist API is - mode.

Note

There are no optional arguments (opt_args) for the getsessionlist API.

getsessiondetail API

To get specific details about a troubleshooting session using the API, use the **getsessiondetail** API. The module name is **troubleshoot.eptoeputils.session** and the function is **getSessionDetail**.

The required arguments (req_args) for the getsessiondetail API are - session (session name) and - mode.

Note There are no optional arguments (opt_args) for the getsessiondetail API.

deletesession API

To delete a particular troubleshooting session using the API, use the **deletesession** API. The module name is **troubleshoot.eptoeputils.session** and the function is **deleteSession**.

The required argument (req_args) for the deletesession API is - session (session name).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name

- dstep	Destination endpoint name
- srcip	Source endpoint IP address
- dstip	Destination endpoint IP address
- srcmac	Source endpoint MAC
- dstmac	Destination endpoint MAC
- srcextip	L3 external source IP address
- dstextip	L3 external destination IP address
- starttime	Start time of the troubleshooting session
- endtime	End time of the troubleshooting session
- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
- description	Description about the session
- scheduler	Scheduler name for report generation
- srcepid	Obsolete
- dstepid	Obsolete
- include	Obsolete
- format	Format of report to be generated
- ui	Used internally (ignore)
- sessionurl	Location of report
- action	Start/stop/status etc. for traceroute/atomiccounter
- mode	Used internally
dc	Used internally
- ctx	Used internally

clearreports API

To clear the list of generated reports using the API, use the **clearreports** API. The module name is **troubleshoot.eptoeputils.report** and the function is **clearReports**.

The required arguments (req_args) for the clearreports API are- session (session name) and - mode.

Note

There are no optional arguments (opt_args) for the clearreports API.

contracts API

To get contracts information using the API, use the **contracts** API. The module name is **troubleshoot.eptoeputils.contracts** and the function is **getContracts**.

The required arguments (req_args) for the contracts API are- session (session name) and -mode.

There are no optional arguments (opt_args) for the contracts API.

List of APIs for Endpoint to Layer 3 External Connections

The following is a list of the available Troubleshooting Wizard APIs for EP to EP (endpoint to endpoint) connections:

- interactive API, on page 89
- modifysession API, on page 91
- atomiccounter API, on page 92
- traceroute API, on page 93
- span API, on page 93
- generatereport API, on page 94
- schedulereport API, on page 95
- getreportstatus API, on page 86
- getreportslist API, on page 87
- clearreports API, on page 88
- createsession API, on page 90
- getsessionslist API, on page 97
- getsessiondetail API, on page 98
- deletesession API, on page 99
- contracts API, on page 99
- ratelimit API, on page 100
- 13ext API, on page 101

interactive API

To create an endpoint (ep) to Layer 3 (L3) external interactive troubleshooting session, use the **interactive** API. The module name is **troubleshoot.epextutils.epext_topo** and the function is **getTopo**. The required arguments (**req_args**) for the interactive API are **- session**, **- include**, and **- mode**.

The following table shows the optional argument (**opt_args**):

|--|

- refresh

createsession API

To create an endpoint (Ep) to Layer 3 (L3) external troubleshooting session using the API, use the **createsession** API. The module name is **troubleshoot.epextutils.epextsession** and the function is **createSession**. The required argument (**req_args**) for the createsession API is **- session** (session name).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- description	Description about the session
	- scheduler	Scheduler name for report generation
	- srcepid	Obsolete
	- dstepid	Obsolete
	- include	Obsolete
	- format	Format of report to be generated
	- ui	Used internally (ignore)
	- sessionurl	Location of the report
	-action	Start/stop/status etc. for traceroute/atomiccounter
	- mode	Used internally

dc	Used internally
- ctx	Used internally

modifysession API

To modify an endpoint (Ep) to Layer 3 (L3) external troubleshooting session, use the **modifysession** API. The module name is **troubleshoot.epextutils.epextsession** and the function is **modifySession**. The required argument (**req_args**) for the modifysession API is **- session** (session name).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- description	Description about the session
	- scheduler	Scheduler name for report generation
	- srcepid	Obsolete
	- dstepid	Obsolete
	- include	Obsolete
	- format	Format of report to be generated
	- ui	Used internally (ignore)
	- sessionurl	Location of the report
	-action	Start/stop/status etc. for traceroute/atomiccounter

- mode	Used internally
dc	Used internally
- ctx	Used internally

atomiccounter API

To create an endpoint (ep) to endpoint atomic counter session, use the **atomiccounter** API. The module name is **troubleshoot.epextutils.epext_ac** and the function is **manageAtomicCounterPols**.

The required arguments (req_args) for the atomiccounter API include:

- - session (session name)
- - action (start/stop/status)

srcep dstep srcip	Source endpoint name Destination endpoint name Source ordenint ID oddrogg
	-
srcip	Source and noint ID address
	Source endpoint IP address
dstip	Destination endpoint IP address
srcmac	Source endpoint MAC
dstmac	Destination endpoint MAC
srcextip	L3 external source IP address
dstextip	L3 external destination IP address
starttime	Start time of the troubleshooting session
endtime	End time of the troubleshooting session
latestmin	Time window for the troubleshooting session starting from start time (in minutes)
ui	Used internally (ignore)
mode	Used internally
_dc	Used internally
ctx	Used internally
	srcmac dstmac srcextip dstextip starttime endtime latestmin ui mode _dc

traceroute **API**

To create an endpoint (ep) to to Layer 3 external traceroute troubleshooting session using the API, use the **traceroute** API. The module name is **troubleshoot.epextutils.epext_traceroute** and the function is **manageTraceroutePols**.

The required arguments (req_args) for the traceroute API include:

- - session (session name)
- action (start/stop/status)

Syntax Description	Optional Arguments (opt_args)	Description
	- protocol	Protocol name
	- dstport	Destination port name
	- srcep	Source endpoint
	- dstep	Destination endpoint
	- srcip	Source IP address
	- dstip	Destination IP address
	- srcextip	Source external IP address
	- dstIp	Destination external IP address
	- ui	Used internally (ignore)
	- mode	Used internally
	dc	Used internally
	- ctx	Used internally

span API

To create an endpoint (Ep) to Layer 3 (L3) external span troubleshooting session, use the **span** API. The module name is **troubleshoot.epextutils.epext_span** and the function is **monitor**.

The required arguments (req_args) for the span API include:

- - session (session name)
- action (start/stop/status)
- - mode

Syntax Description Optional Arguments (opt_args) Description	
--	--

- portslist	List of ports
- dstapic	Destination APIC
- srcipprefix	Source endpoint IP address prefix
- flowid	Flow ID
- dstepg	Destination endpoint group
- dstip	Destination endpoint IP address
- analyser	???
- desttype	Destination type
- spansrcports	Span source ports

generatereport API

To generate a troubleshooting report using the API, use the **generatereport** API. The module name is **troubleshoot.eptoeputils.report** and the function is **generateReport**.

The required argument (req_args) for the generatereport API is - session (session name).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- description	Description about the session
	- scheduler	Scheduler name for report generation

- srcepid	Obsolete	
- dstepid	Obsolete	
- include	Obsolete	
- format	Format of report to be generated	
- ui	Used internally (ignore)	
- sessionurl	Location of the report	
-action	Start/stop/status etc. for traceroute/atomiccounter	
-action - mode	Start/stop/status etc. for traceroute/atomiccounter Used internally	
- mode	Used internally	

schedulereport API

To schedule the generation of a troubleshooting report using the API, use the **schedulereport** API. The module name is **troubleshoot.eptoeputils.report** and the function is **scheduleReport**. The required argument (**req_args**) for the schedulereport API is **- session**

The required arguments (req_args) for the schedulereport API include:

- - session (session name)
- - scheduler (scheduler name)

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint
	- dstep	Destination endpoint
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session

- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
- description	Description about the session
- srcepid	Obsolete
- dstepid	Obsolete
- include	Obsolete
- format	Format of report to be generated
- ui	Used internally (ignore)
- sessionurl	Location of the report
-action	Start/stop/status etc. for traceroute/atomiccounter
- mode	Used internally
dc	Used internally
- ctx	Used internally

getreportstatus API

To get the status of a generated report using the API, use the **getreportstatus** API. The module name is **troubleshoot.eptoeputils.report** and the function is **getStatus**.

The required arguments (req_args) for the getreportstatus API include:

- - session (session name)
- - sessionurl (session URL)
- - mode

There are no optional arguments (opt_args) for the getreportstatus API.

getreportslist API

To get a list of generated reports using the API, use the **getreportslist** API. The module name is **troubleshoot.eptoeputils.report** and the function is **getReportsList**.

The required arguments (req_args) for the getreportslist API are- session (session name) and - mode.

Note

There are no optional arguments (opt_args) for the getreportslist API.

getsessionslist API

To get a list of troubleshooting sessions using the API, use the **getsessionslist** API. The module name is **troubleshoot.epextutils.epextsession** and the function is **getSessions**.

Note There are no required arguments for this API.

Syntax Description	Optional Arguments (opt_args)	Description
	- session	Session name
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- description	Description about the session
	- scheduler	Scheduler name for report generation
	- srcepid	Obsolete
	- dstepid	Obsolete
	- include	Obsolete
	- format	Format of report to be generated
	- ui	Used internally (ignore)
	- sessionurl	Location of report
	- action	Start/stop/status etc. for traceroute/atomiccounter

- mode	Used internally
dc	Used internally
- ctx	Used internally

getsessiondetail API

To get specific details about a troubleshooting session using the API, use the **getsessiondetail** API. The module name is **troubleshoot.epextutils.session** and the function is **getSessionDetail**. The required argument (**req_args**) for the getsessiondetail API is **- session** (session name).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- description	Description about the session
	- scheduler	Scheduler name for report generation
	- srcepid	Obsolete
	- dstepid	Obsolete
	- include	Obsolete
	- format	Format of report to be generated
	- ui	Used internally (ignore)
	- sessionurl	Location of report

- action	Start/stop/status etc. for traceroute/atomiccounter
- mode	Used internally
dc	Used internally
- ctx	Used internally

deletesession API

To delete a particular troubleshooting session using the API, use the **deletesession** API. The module name is **troubleshoot.epextutils.epextsession** and the function is **deleteSession**.

The required arguments (req_args) for the deletesession API are - session (session name) and - mode.

There are no optional arguments (opt_args) for the deletesession API.

clearreports API

To clear the list of generated reports using the API, use the **clearreports** API. The module name is **troubleshoot.eptoeputils.report** and the function is **clearReports**.

The required arguments (req_args) for the clearreports API are- session (session name) and - mode.

Note

There are no optional arguments (opt_args) for the clearreports API.

contracts API

To get contracts information using the API, use the **contracts** API. The module name is **troubleshoot.epextutils.epext_contracts** and the function is **getContracts**. The required argument (**req_args**) for the contracts API is **- session** (session name).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC

- srcextip	L3 external source IP address
- dstextip	L3 external destination IP address
- starttime	Start time of the troubleshooting session
- endtime	End time of the troubleshooting session
- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
- epext	Endpoint to external
- mode	Used internally
dc	Used internally
- ctx	Used internally
- ui	Used internally (ignore)

ratelimit API

This section provides information on the the **ratelimit** API. The module name is **troubleshoot.eptoeputils.ratelimit** and the function is **control**. The required argument (**req_args**) for the ratelimit API is **- action** (start/stop/status).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- epext	Endpoint to external

- mode	Used internally
dc	Used internally
- ctx	Used internally

13ext API

This section provides information on the the **13ext** API. The module name is **troubleshoot.epextutils.l3ext** and the function is **execute**. The required argument (**req_args**) for the 13ext API is **- action** (start/stop/status).

Syntax Description	Optional Arguments (opt_args)	Description
	- srcep	Source endpoint name
	- dstep	Destination endpoint name
	- srcip	Source endpoint IP address
	- dstip	Destination endpoint IP address
	- srcmac	Source endpoint MAC
	- dstmac	Destination endpoint MAC
	- srcextip	L3 external source IP address
	- dstextip	L3 external destination IP address
	- starttime	Start time of the troubleshooting session
	- endtime	End time of the troubleshooting session
	- latestmin	Time window for the troubleshooting session starting from start time (in minutes)
	- epext	Endpoint to external
	- mode	Used internally

CHAPTER

Manually Removing Disabled Interfaces and Decommissioned Switches from the GUI

In a scenario where a fabric port is shut down then brought back up, it is possible that the port entry will remain disabled in the GUI. If this occurs, no operations can be performed on the port. To resolve this, the port must be manually removed from the GUI.

• Manually Removing Disabled Interfaces and Decommissioned Switches from the GUI, on page 103

Manually Removing Disabled Interfaces and Decommissioned Switches from the GUI

This section explains how to manually remove disabled interfaces and decommissioned switches in the GUI.

Procedure

Step 1	From the Fabric tab, click Inventory .					
Step 2	In the Navigation pane, click Disabled Interfaces and Decommissioned Switches.					
	The list of disabled interfaces and decommissioned switches appears in a summary table in the Work pane.					
Step 3	From the Work pane, right-click on the interface or switch that you want to remove and choose Delete .					

Manually Removing Disabled Interfaces and Decommissioned Switches from the GUI

Decommissioning and Recommissioning Switches

This chapter contains the following sections:

• Decommissioning and Recommissioning Switches, on page 105

Decommissioning and Recommissioning Switches

To decommission and recommission all the nodes in a pod, perform this proceedure. One use case for this would be to change the node IDs to a more logical, scalable numbering convention.

Procedure

Step 1	Decommission the nodes in the pod, following these steps for each one:					
	 a) Navigate to Fabric > Inventory and expand the Pod. b) Select the switch, right-click on it, and choose Remove from Controller. c) Confirm the action and click OK. 					
	The process takes about 10 minutes. The node is automatically wiped and reloaded. In addition, the node configuration is removed from the controller.					
	d) If a decommissioned node had the Port Profile feature deployed on it, some port configurations are not removed with the rest of the configuration. It is necessary to manually delete the configurations after decommission, for the ports to return to the default state. To do this, log onto the switch, run the setup-clean-config.sh script, and wait for it to run. Then, enter the reload command.					
Step 2	When all the switches have been decommissioned from the pod, verify they are all physically connected ar booted in the desired configuration.					
Step 3	Perform the following actions to recommission each node.					
	a) Navigate to Fabric > Inventory, expand Quick Start, and click Node or Pod Setup.					
	b) Click Setup Node.					
	c) In the Pod ID field, choose the pod ID.					
	d) Click the + to open the Nodes table.					
	e) Enter the node ID, serial number, Switch name, TEP Pool ID, and Role (leaf or spine) for the switch.					
	f) Click Update.					

Step 4 Verify the nodes are all set up by navigating to **Fabric** > **Inventory** > **Fabric Membership**.

What to do next

If the pod is one of the pods in a multipod topology, reconfigure multipod for this pod and the nodes. For more information, see *Multipod* in the *Cisco APIC Layer 3 Networking Configuration Guide*.

CHAPTER

Troubleshooting Steps for Endpoint Connectivity Problems

This chapter lists the steps for troubleshooting endpoint connectivity issues using the Cisco APIC tools, contains procedures for inspecting the operational status of your endpoints and tunnel interfaces, and explains how to connect an SFP module.

This chapter contains the following sections:

- Troubleshooting Endpoint Connectivity, on page 107
- Inspecting Endpoint and Tunnel Interface Status, on page 108
- Connecting an SFP Module, on page 109

Troubleshooting Endpoint Connectivity

Procedure

Step 1	Inspect the operational status of each endpoint.					
	The operational status will reveal any fault or misconfiguration of the endpoints. See					
	Inspecting the Endpoint Status, on page 108.					
Step 2	Inspect the status of the tunnel interface.					
	The operational status will reveal any fault or misconfiguration of the tunnel. See Inspecting the Tunnel Interface Status, on page 109.					
Step 3	Perform a traceroute between the endpoint groups (EPGs).					
	A traceroute will reveal any problems with intermediate nodes, such as spine nodes, between the endpoints. See Performing a Traceroute Between Endpoints, on page 69.					
Step 4	Configure an atomic counter on an endpoint.					
	The atomic counter will confirm whether the source endpoint is transmitting packets or the destination endpoint is receiving packets, and whether the number of packets received equals the number of packets sent. See Configuring Atomic Counters, on page 31.					
Step 5	Inspect the contracts under each EPG.					

Inspect the contracts under each EPG to make sure they allow the traffic that should flow between the EPGs. As a test, you can temporarily open the contracts to allow unrestricted traffic.

Step 6 Configure a SPAN policy to forward source packets to a monitoring node.

A packet analyzer on the monitoring node will reveal any packet issues such as an incorrect address or protocol. See Configuring a SPAN Session, on page 48.

Inspecting Endpoint and Tunnel Interface Status

This section explains how to inspect the operational status of endpoints and tunnel interfaces. Performing these procedures enables you to reveal any fault or misconfiguration of the endpoints and tunnel interfaces.

Inspecting the Endpoint Status

Procedure

Step 1	In the menu bar, click Tenants .					
Step 2	In the submenu bar, click the tenant that contains the source endpoint.					
Step 3	In the Navigation pane, expand the tenant, expand Application Profiles , and expand the application profile that contains the endpoint.					
Step 4	Expand Application EPGs and click the EPG to be inspected.					
Step 5	In the Work pane, from the list of endpoints in the Endpoint table, double-click the source endpoint to open the Client End Point dialog box.					
Step 6	In the Client End Point dialog box, verify the endpoint properties and click the Operational tab.					
Step 7	In the Operational tab, view the health, status, and fault information.					
	In the Status table, click any items with entries, such as changes, events, or faults.					
Step 8	Close the Client End Point dialog box.					
Step 9	In the Endpoint table, view the Interface entry for the endpoint and note the node and tunnel IDs.					
Step 10	Repeat this procedure for the destination endpoint.					

Note Occasionally, bidirectional traffic is interrupted between IP addresses in two micro-segmented EPGs deployed behind two leaf switches in the fabric. This can occur when the IP addresses are transitioning because of a configuration change from micro-segment EPG to base EPG. Or conversely, this can occur on two different leaf switches at the same time while bidirectional traffic is running. In this case, the policy tag for each remote endpoint still points to its previous EPG.

Workaround: Manually clear the remote endpoints on the switches or wait for the remote endpoint to age out. To clear the endpoints, log on to the CLI on each switch and enter the **clear system internal epm endpoint** command with the appropriate option. For example, if your endpoints are based on the IP address, enter **clear system internal epm endpoint key vrf** *vrf_name* {**ip** | **ipv6**} *ip-address*. The endpoints are then relearned with the correct policy tag.

Inspecting the Tunnel Interface Status

This procedure shows how to inspect the operational status of the tunnel interface.

Procedure

Step 1	In the menu bar, click Fabric .					
Step 2	In the submenu bar, click Inventory .					
Step 3	In the Navigation pane, expand the pod and expand the node ID of the source endpoint interface.					
Step 4	Under the node, expand Interfaces , expand Tunnel Interfaces , and click the tunnel ID of the source endpoint interface.					
Step 5	In the Work pane, verify the tunnel interface properties and click the Operational tab.					
Step 6	In the Operational tab, view the health, status, and fault information.					
	In the Status table, click any items with entries, such as changes, events, or faults.					
Step 7	Repeat this procedure for the destination endpoint interface.					

Connecting an SFP Module

When you connect an SFP module to a new card, you need to create a link speed policy for the module to communicate with the card. Follow these steps to create a link speed policy.

Procedure

Step 1 Create an interface policy to specify the link speed:

Example:

<fabricHIfPol name="SpeedPol" speed="1G"/>

Step 2 Reference the link speed policy within an interface policy group:

```
<infraAccPortGrp name="myGroup">
    <infraRsHIfPol tnFabricHIfPolName="SpeedPol"/>
</infraAccPortGrp>
```


Troubleshooting EVPN Type-2 Route Advertisement

• Troubleshooting EVPN Type-2 Route Distribution to a DCIG, on page 111

Troubleshooting EVPN Type-2 Route Distribution to a DCIG

For optimal traffic forwarding in an EVPN topology, you can enable fabric spines to distribute host routes to a Data Center Interconnect Gateway (DCIG) using EVPN type-2 (MAC-IP) routes along with the public BD subnets in the form of BGP EVPN type-5 (IP Prefix) routes. This is enabled using the HostLeak object. If you encounter problems with route distribution, use the steps in this topic to troubleshoot.

Procedure

Step 1 Verify that HostLeak object is enabled under the VRF-AF in question, by entering a command such as the following in the spine-switch CLI:

Example:

```
spine1# ls /mit/sys/bgp/inst/dom-apple/af-ipv4-ucast/
ctrl-l2vpn-evpn ctrl-vpnv4-ucast hostleak summary
```

Step 2 Verify that the config-MO has been successfully processed by BGP, by entering a command such as the following in the spine-switch CLI:

Example:

spine1# show bgp process vrf apple

Look for output similar to the following:

Information for address family IPv4 Unicast in VRF apple : 0 Table Id Table state : UP • 3 Table refcount Peers Active-peers Routes Paths Networks Aggregates 0 0 0 0 0 0 Redistribution None Wait for IGP convergence is not configured

```
GOLF EVPN MAC-IP route is enabled
EVPN network next-hop 192.41.1.1
EVPN network route-map map_pfxleakctrl_v4
Import route-map rtctrlmap-apple-v4
EVPN import route-map rtctrlmap-evpn-apple-v4
```

Step 3 Verify that the public BD-subnet has been advertised to DCIG as an EVPN type-5 route:

Example:

```
spine1# show bgp l2vpn evpn 10.6.0.0 vrf overlay-1
```

```
Route Distinguisher: 192.41.1.5:4123 (L3VNI 2097154)
BGP routing table entry for [5]:[0]:[16]:[10.6.0.0]:[0.0.0.0]/224, version 2088
Paths: (1 available, best #1)
Flags: (0x00002 0000000) on xmit-list, is not in rib/evpn
Multipath: eBGP iBGP
```

```
Advertised path-id 1

Path type: local 0x4000008c 0x0 ref 1, path is valid, is best path

AS-Path: NONE, path locally originated

192.41.1.1 (metric 0) from 0.0.0.0 (192.41.1.5)

Origin IGP, MED not set, localpref 100, weight 32768

Received label 2097154

Community: 1234:444

Extcommunity:

RT:1234:5101

4BYTEAS-GENERIC:T:1234:444
```

```
Path-id 1 advertised to peers: 50.41.50.1
```

In the **Path type** entry, **ref 1** indicates that one route was sent.

Step 4 Verify whether the host route advertised to the EVPN peer was an EVPN type-2 MAC-IP route:

Example:

```
spine1# show bgp l2vpn evpn 10.6.41.1 vrf overlay-1
Route Distinguisher: 10.10.41.2:100
                                      (L2VNI 100)
BGP routing table entry for [2]:[0]:[2097154]:[48]:[0200.0000.0002]:[32]:[10.6.41
.1]/272, version 1146
Shared RD: 192.41.1.5:4123
                              (L3VNI 2097154)
Paths: (1 available, best #1)
Flags: (0x00010a 0000000) on xmit-list, is not in rib/evpn
Multipath: eBGP iBGP
  Advertised path-id 1
  Path type: local 0x4000008c 0x0 ref 0, path is valid, is best path
  AS-Path: NONE, path locally originated
  EVPN network: [5]:[0]:[16]:[10.6.0.0]:[0.0.0.0] (VRF apple)
    10.10.41.2 (metric 0) from 0.0.0.0 (192.41.1.5)
     Origin IGP, MED not set, localpref 100, weight 32768
     Received label 2097154 2097154
      Extcommunity:
         RT:1234:16777216
 Path-id 1 advertised to peers:
```

50.41.50.1

The Shared RD line indicates the RD/VNI shared by the EVPN type-2 route and the BD subnet.

The **EVPN Network** line shows the EVPN type-5 route of the BD-Subnet.

The **Path-id advertised to peers** indicates the path advertised to EVPN peers.

Step 5 Verify that the EVPN peer (a DCIG) received the correct type-2 MAC-IP route and the host route was successfully imported into the given VRF, by entering a command such as the following on the DCIG device (assuming that the DCIG is a Cisco ASR 9000 switch in the example below):

Example:

```
RP/0/RSP0/CPU0:asr9k#show bgp vrf apple-2887482362-8-1 10.6.41.1
Tue Sep 6 23:38:50.034 UTC
BGP routing table entry for 10.6.41.1/32, Route Distinguisher: 44.55.66.77:51
Versions:
                   bRIB/RIB SendTblVer
 Process
 Speaker
                       2088
                                   2088
Last Modified: Feb 21 08:30:36.850 for 28w2d
Paths: (1 available, best #1)
  Not advertised to any peer
  Path #1: Received by speaker 0
 Not advertised to any peer
 Local
   192.41.1.1 (metric 42) from 10.10.41.1 (192.41.1.5)
     Received Label 2097154
      Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate,
imported
     Received Path ID 0, Local Path ID 1, version 2088
     Community: 1234:444
     Extended community: 0x0204:1234:444 Encapsulation Type:8 Router
MAC:0200.c029.0101 RT:1234:5101
     RIB RNH: table id 0xe0000190, Encap 8, VNI 2097154, MAC Address: 0200.c029.0101,
IP Address: 192.41.1.1, IP table id 0x0000000
     Source AFI: L2VPN EVPN, Source VRF: default,
Source Route Distinguisher: 192.41.1.5:4123
```

In this output, the received RD, next hop, and attributes are the same for the type-2 route and the BD subnet.

Performing a Rebuild of the Fabric

This chapter explains how to rebuild your fabric.

• Rebuilding the Fabric, on page 115

Rebuilding the Fabric

Caution This procedure is extremely disruptive. It eliminates the existing fabric and recreates a new one.

This procedure allows you to rebuild (reinitialize) your fabric, which you may need to do for any of the following reasons:

- To change the TEP IPs
- To change the Infra VLAN
- To change the fabric name
- To perform TAC troubleshooting tasks

Deleting the APICs erases the configuration on them and brings them up in the startup script. Performing this on the APICs can be done in any order, but ensure that you perform the procedure on all of them (every leaf and spine in the fabric).

Before you begin

Ensure that the following is in place:

- Regularly scheduled backups of the configuration
- · Console access to the leaves and spines
- · A configured and reachable CIMC, which is necessary for KVM console access
- No Java issues

Procedure

Step 1	If you would like to retain your current configuration, you can perform a configuration export using the
	following procedure: http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_KB_Using_
	Import_Export_to_Recover_Config_States.html

- **Step 2** Erase the configuration on the APICs by connecting to the KVM console and entering the following commands:
 - a) >acidiag touch clean
 - b) >acidiag touch setup
 - c) >acidiag reboot

Ensure that each node boots up in fabric discovery mode and is not part of the previously configured fabric.

- **Note** The **acidiag touch** command alone is not useful for this procedure, because it does not bring the APIC up in the startup script.
- **Caution** It is extremely important that you ensure that all previous fabric configurations have been removed. If any previous fabric configuration exists on even a single node, the fabric cannot be rebuilt.
- **Step 3** When all previous configurations have been removed, run the startup script for all APICs. At this point, you can change any of the above values, TEP, TEP Vlan, and/or Fabric Name. Ensure that these are consistent across all APICs. For more information, refer to: http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/getting-started/b_APIC_Getting_Started_Guide/b_APIC_Getting_Started_Guide_chapter_01.html#concept_F46E2193E3134CD090B65B16038D11A9.
- **Step 4** To clean reboot the fabric nodes, log in to each fabric node and execute the following:
 - a) >setup-clean-config.sh
 - b) >reload
- **Step 5** Log in to apic1 and perform a configuration import using the following procedure: http://www.cisco.com/c/ en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_KB_Using_Import_Export_to_Recover_Config_States.html.
- **Step 6** Wait for a few minutes as the fabric now uses the previous fabric registration policies to rebuild the fabric over the nodes. (Depending on the size of the fabric, this step may take awhile.)

Verifying IP-Based EPG Configurations

There are two types of endpoint groups (EPGs) that you can create: application EPGs and IP-based EPGs. IP-based EPGs differ from regular application EPGs in that they are microsegment EPGs. This chapter explains how to verify that your IP-based EPG configurations are properly classified as IP-based using the GUI or using switch commands.

This chapter contains the following sections:

- Verifying IP-Based EPG Configurations Using the GUI, on page 117
- Verifying IP-EPG Configurations Using Switch Commands, on page 118

Verifying IP-Based EPG Configurations Using the GUI

This procedure explains how to verify that you have correctly configured an IP-based EPG using the GUI and Visore tool.

Procedure

Step 1	Verify that the IP-based EPG you created is listed under the uSeg EPGs folder in the GUI (shown in the following screen capture). Note that there is one IP-based EPG listed under uSeg EPGs named "IP" that was created using the REST API.
Step 2	Verify that the information is correct in the EPG - IP properties screen (right side window pane) for each EPG IP (IP-based EPG). Note the list of IP-based EPGs and IP addresses that are shown at the bottom of the screen.
Step 3	From your web browser, enter the APIC IP address followed by "/visore.html." Visore is a tool that allows you to view all the objects in the system, such as EPGs. You can use Visore to verify that your IP-based EPGs have been properly configured. For more information about Visore, see the <i>Application Policy Infrastructure Controller Visore Tool Introduction</i> document.
Step 4	Enter your username and password then click Login to log into Visore.
Step 5	Run a query for the IP-based EPGs that you verified in the GUI by entering the name of the class in the field next to Class or DN (for example, "fvAEPg").

	Note	This is a view from the APIC point of view. You can see that the "Total objects shown" above is "3", meaning there are three EPGs that were downloaded to the switch. You can see that the IP-based EPG that was previously listed in the GUI as "IP" is now shown next to "dn". Also note that "yes" is displayed next to "isAttrBasedEPg", which means that this has been properly configured as an IP-based EPG. You can verify all the objects have been configured successfully using Visore, including both application EPGs and IP-based EPGs.				
Step 6	the EPGs Verify that configurat	a view from the switch point of view. On the switch, you can run a query for the fvEpP class to s Gs and check for the "crtrnEnabled" attribute. It will be set to "yes" for IP-based EPGs. that under this EPG, the children of the EPG are shown with IP addresses to ensure a proper tration. For each IP address configured, there is one object (named "l3IpCktEp") that the switch using the traffic. Once the configuration is there, when the packets arrive, the switch uses these object if them.				
Step 7	pcTag. All endpoint h verify whe	t the pcTags for all the endpoints and IP addresses that you configured match. Every EPG has a the endpoints that match with the IP addresses you configured are classified into this pcTag. Every has an IP address that you can run a class query on. When you are troubleshooting, you want to ether these endpoints (servers) are properly getting classified into this IP-based EPG or not. (The ould match for the IP-based EPG.)				

Verifying IP-EPG Configurations Using Switch Commands

This procedure explains how to use switch commands to verify you IP-EPG ("IpCkt") configurations.

Procedure

Step 1	Log in to the leaf.								
Step 2	Navigate	Navigate to the /mit/sys directory.							
Step 3	In the /n	nit/sys directory, find ctx (vrf context directory)							
Step 4	In the VRF cts directory, go to the specific BD directory where the IpCkt is configured. You should see the IpCkt.								
	Note	"IpCkt" and "IP-EPG" are used interchangeably in this document.							
Step 5	Navigate	Navigate to the directory and the "cat summary" gives you the information regarding IpCkt.							
Step 6	Ensure t	Ensure that the summary's "operSt' does not say "unsupported".							
Step 7	Find out the VLAN ID that corresponds to the BD where the IpCkt is configured.								
	Note	The VLAN ID can be found through any of the show vlan internal bd-info commands or through the show system internal epm vlan all command.							
Step 8	Once you find the VLAN ID of the BD, issue show system internal epm <vlan-id> detail</vlan-id> . Here you should be able to see all the configured IpCkts with a specific sclass. (It should match that of what you see in the /mit/sys directory.)								
Step 9	Repeat the steps for vsh lc that you followed for vsh.								

Step 10Send the traffic with an IP matching the IpCtk in the BD, and through show system internal epm endp ip
<a.b.c.d>, you can verify that the learned IP has the IP-flags for "sclass" and a specific sclass value.

Step 11 Repeat the steps for vsh_lc that you followed for vsh.

List of the Switch Troubleshooting Commands Used in this Procedure:

```
Cd /mits/sys/ctx-vxlan.../bd-vxlan...

- cat summary

Vsh -c "show system internal epm vlan all" or

Vsh -c "show vlan internal bd-info"

Vsh -c "show system internal epm vlan <vlan-id> detail"

Vsh -c "show system internal epm vlan all" or

Vsh_lc -c "show system internal bd-info"

Vsh_lc -c "show vlan internal bd-info"

Vsh_lc -c "show system internal epm vlan <vlan-id> detail"

vsh_lc -c "show system internal epm vlan <vlan-id> detail"

vsh_lc -c "show system internal epm endp ip <a.b.c.d>"

vsh_lc -c "show system internal epm endp ip <a.b.c.d>"
```


Recovering a Disconnected Leaf

If all fabric interfaces on a leaf are disabled (interfaces connecting a leaf to the spine) due to a configuration pushed to the leaf, connectivity to the leaf is lost forever and the leaf becomes inactive in the fabric. Trying to push a configuration to the leaf does not work because connectivity has been lost. This chapter describes how to recover a disconnected leaf.

- Recovering a Disconnected Leaf Using the NX-OS-Style CLI, on page 121
- Recovering a Disconnected Leaf Using the REST API, on page 122

Recovering a Disconnected Leaf Using the NX-OS-Style CLI

This this procedure enables fabric interfaces using the Cisco Application Policy Infrastructure Controller (APIC) NX-OS-style CLI. Use this procedure if you do not have any external tools from which you can make REST API calls.

Note This procedure assumes that 1/31 is one of the leaf switch ports connecting to the spine switch.

Procedure

Step 1 Using Cisco APIC NX-OS-style CLI, remove the block list policy.

Example:

```
apicl# podId='1'
apicl# nodeId='103'
apicl# interface='eth1/31'
apicl# icurl -sX POST 'http://127.0.0.1:7777/api/mo/.json' -d
'{"fabricRsOosPath":{"attributes":
```

{"dn":"uni/fabric/outofsvc/rscosPath-[topology/pod-'\$podId'/paths-'\$nodeId'/pathep-['\$interface']]","status":"deleted"}}}

Step 2 Using the CLI of a leaf or spine switch, set the port in service to bring up the port on the leaf switch.

```
switch1# podId='1'
switch1# nodeId='103'
switch1# interface='eth1/31'
```

```
switch1# icurl -X POST
'http://127.0.0.1:7777/api/node/mo/topology/pod-'$podId'/node-'$nodeId'/sys/action.json'
   -d
'{"actionLSubj":{"attributes":{"oDn":"sys/phys-['$interface']"},"children":[{"llEthIfSetInServiceLTask":
    {"attributes":{"adminSt":"start"}}]}}'
```

Recovering a Disconnected Leaf Using the REST API

To recover a disconnected leaf switch, you must enable at least one of the fabric interfaces using this procedure. You can enable the remaining interfaces using the GUI, REST API, or CLI.

To enable the first interface, post a policy using the REST API to delete the policy posted and bring the fabric ports Out-of-Service. You can post a policy to the leaf switch to bring the port that is Out-of-Service to In-Service as follows:

Note

This procedure assumes that 1/49 is one of the leaf switch ports connecting to the spine switch.

Procedure

Step 1 Clear the block list policy from the Cisco APIC using the REST API.

Example:

Step 2 Post a local task to the node itself to bring up the interfaces you want using **l1EthIfSetInServiceLTask**.

Troubleshooting a Loopback Failure

• Identifying a Failed Line Card, on page 123

Identifying a Failed Line Card

This section expains how to identify a failed line card when getting a loopback failure.

Before you begin

You should have created a On-Demand TechSupport policy for the fabric node. If you have not already created an On-Demand TechSupport policy, see the "Sending an On-Demand Tech Support File Using the GUI" section in the *Cisco APIC Basic Configuration Guide*.

Procedure

- **Step 1** Collect the Logs Location file of the On-Demand TechSupport policy for the fabric node. To initiate the collection:
 - a) In the menu bar, click Admin.
 - b) In the submenu bar, click Import/Export.
 - c) In the **Navigation** pane, expand **Export Policies** and right-click the On-Demand TechSupport policy for the fabric node.
 - A list of options appears.
 - d) Choose Collect Tech Supports. The Collect Tech Supports dialog box appears.
 - e) In the Collect Tech Supports dialog box, click Yes to begin collecting tech support information.
- **Step 2** Download the the Logs Location file of the On-Demand TechSupport policy for the fabric node. To download the Logs Location file:
 - a) From the On-Demand TechSupport policy window in the **Work** pane, click the **Operational** tab. A summary table appears in the On-Demand TechSupport policy window with several columns, including the **Logs Location** column.
 - b) Click the URL in the Logs Location column.
- **Step 3** Inside the Logs Location file, go to the /var/sysmgr/tmp_logs/ directory and unzip the svc_ifc_techsup_nxos.tar file.

-bash-4.1\$ tar xopf svc_ifc_techsup_nxos.tar

The show_tech_info directory is created.

Step 4 Run zgrep "fclc-conn failed" show-tech-sup-output.gz | less.

```
-bash-4.1$ zgrep "fclc-conn failed" show-tech-sup-output.gz | less
[103] diag_port_lb_fail_module: Bringing down the module 25 for Loopback test failed. Packets
possibly lost on the switch SPINE or LC fabric (fclc-conn failed)
[103] diag_port_lb_fail_module: Bringing down the module 24 for Loopback test failed. Packets
possibly lost on the switch SPINE or LC fabric (fclc-conn failed)
```

Note The **fclc-conn failed** message indicates a failed line card.

- **Step 5** Power cycle the currently failed fabric cards and ensure the fabric cards come online.
- **Step 6** If the fabric cards fail to come online, or after the fabric cards go offline again, immediately collect the diag_port_lb.log file and send the file to the TAC team. The diag_port_lb.log file is located in the /var/sysmgr/tmp_logs/ directory of the Logs Location file.

Determining Why a PIM Interface Was Not Created

A PIM interface (pim:if) is created for L3Out interfaces (note that L3Out SVI interfaces are not supported), multicast tunnel interfaces (per VRF), SVI interfaces corresponding to PIM-enabled pervasive BDs, and loopback interfaces on border leafs (each per VRF).

This chapter contains troubleshooting information for situations where the pim: if is not being created. For more information on PIM, see the Cisco ACI and Layer 3 Multicast with Cisco ACI and the Cisco Application Centric Infrastructure Fundamentals guides.

This chapter contains the following sections:

- A PIM Interface Was Not Created For an L3Out Interface, on page 125
- A PIM Interface Was Not Created For a Multicast Tunnel Interface, on page 126
- A PIM Interface Was Not Created For a Multicast-Enabled Bridge Domain, on page 126

A PIM Interface Was Not Created For an L3Out Interface

If a PIM interface (pim:If) is not being created for an L3Out interface, confirm the following:

- 1. PIM is enabled on the L3Out. If PIM is disabled, enable it.
- If PIM is enabled on the container L3Out, confirm that a multicast l3ext:InstP has been created with 2. " int " as a prefixed name. This multicast l3ext:InstP is used to deploy L3Out PIM policies to the switches. There should be one multicast l3ext:InstP per L3Out.

Note • If a multicast l3ext:InstP exists on the IFC, we can check whether a corresponding fv:RtdEpP is created and deployed on each switch where there is an interface in that L3Out.

• We do not support an L3Out SVI interface for PIM.

A PIM Interface Was Not Created For a Multicast Tunnel Interface

If a PIM interface (pim:if) is not created for a multicast tunnel interface (tunnel:If), confirm the following:

1. The corresponding tunnel: If has been created.

Note The tunnel: If should have type "underlay-mcast."

- 2. Each mcast-enabled VRF has created an mcast tunnel.
- 3. The destination IP field of the tunnel: If is populated with a valid GIPO address.
- **4.** If the tunnel:If is not populated with a valid GIPO address, check the pim:CtxP on the IFC and the pim:CtxDef on the switches to make sure GIPO is allocated correctly.
- 5. The source IP of the tunnel: If has the loopback address of an L3Out for BL and "127.0.0.100" for NBL.

A PIM Interface Was Not Created For a Multicast-Enabled Bridge Domain

If a PIM interface (pim:if) is not created for a multicast-enabled bridge domain (BD), confirm the following:

- 1. The corresponding BD or corresponding Ctx has PIM enabled.
- 2. The corresponding BD is pervasive.
- 3. The pervasive BD-based pim: If takes default parameters.

Note

For interaction with igmp snooping, when PIM is enabled on a pervasive BD, the routing bit should be automatically enabled for the corresponding igmpsnoop:If.

Confirming the Port Security Installation

This chapter explains how to confirm the port security installation in the APIC and leaf switch using Visore and how to confirm port security has been programmed in the hardware using the Cisco NX-OS-style CLI. For information about configuring port security, see the *Cisco Port Security* document.

This chapter contains the following sections:

- Confirming Your Port Security Installation Using Visore, on page 127
- Confirming Your Hardware Port Security Installation Using the Cisco NX-OS CLI, on page 127

Confirming Your Port Security Installation Using Visore

Procedure

- **Step 1** On the Cisco APIC, run a query for the l2PortSecurityPol class in Visore to verify the port security policy installation.
- **Step 2** On the leaf switch, run a query for l2PortSecurityPolDef in Visore to confirm that the concrete object exists on the interface.

If you have confirmed that port security is installed on the Cisco APIC and leaf switch, use the Cisco NX-OS CLI to confirm that port security has been programmed in the hardware.

Confirming Your Hardware Port Security Installation Using the Cisco NX-OS CLI

Procedure

Step 1

View the port security status on the switch interface as follows:

```
switch# show system internal epm interface ethernet 1/35 det
name : Ethernet1/35 ::: if index : 0x1a022000 ::: state : UP
```

vPC : No ::: EPT : 0x0

```
MAC Limit : 8 ::: Learn Disable : No ::: PortSecurity Action : Protect
VLANs : 4-23
Endpoint count : 5
Active Endpoint count : 5
switch# show system internal epm interface port-channel 1 det
name : port-channel1 ::: if index : 0x16000000 ::: state : UP
vPC : No ::: EPT : 0x0
MAC Limit : 6 ::: Learn Disable : No ::: PortSecurity Action : Protect
VLANs :
Endpoint count : 0
Active Endpoint count : 0
Number of member ports : 1
Interface : Ethernet1/34 /0x1a021000
```

Step 2

View the port security status on the module interface as follows:

Example:

::::

```
module-1# show system internal epmc interface ethernet 1/35 det
if index : 0x1a022000 ::: name : Ethernet1/35 ::: tun_ip = 0.0.0.0
MAC limit : 8 ::: is_learn_disable : No ::: MAC limit action: Protect
pc if index : 0 ::: name :
is_vpc_fc FALSE ::: num_mem_ports : 0
interface state : up
Endpoint count : 5
EPT : 0
```

```
module-1# show system internal epmc interface port-channel 1 det
if index : 0x16000000 ::: name : port-channel1 ::: tun_ip = 0.0.0.0
MAC limit : 6 ::: is_learn_disable : No ::: MAC limit action: Protect
pc if index : 0 ::: name :
is_vpc_fc FALSE ::: num_mem_ports : 1
interface state : up
Endpoint count : 0
EPT : 0
::::
```

Step 3 View the port security status on the leaf switch as follows:

Example:

```
swtb15-leaf2# show system internal epm interface ethernet 1/35 det
```

```
name : Ethernet1/35 ::: if index : 0x1a022000 ::: state : UP
vPC : No ::: EPT : 0x0
MAC Limit : 5 ::: Learn Disable : Yes ::: PortSecurity Action : Protect
VLANs : 4-23
Endpoint count : 5
Active Endpoint count : 5
::::
```

Step 4 Confirm the MAC limit on the module interface as follows:

Example:

```
module-1# show system internal eltmc info interface port-channel1 | grep mac_limit
mac_limit_reached: 0 ::: mac_limit: 8
port_sec_feature_set: 1 ::: mac_limit_action: 1
```

module-1# show system interna	al eltmc	info	interface ethernet	1/35 grep mac_limit
<pre>mac_limit_reached:</pre>	0	:::	mac_limit:	8
<pre>port_sec_feature_set:</pre>	1	:::	mac_limit_action:	1

Step 5 View the port security status in the module and confirm the MAC limit as follows:

Example:

```
module-1# show system internal epmc interface ethernet 1/35 det
if index : 0x1a022000 ::: name : Ethernet1/35 ::: tun_ip = 0.0.0.0
MAC limit : 5 ::: is_learn_disable : Yes ::: MAC limit action: Protect
pc if index : 0 ::: name :
is_vpc_fc FALSE ::: num_mem_ports : 0
interface state : up
Endpoint count : 5
EPT : 0
::::
```

module-1# show system internal	eltmc	info	interface ethernet 1/35	grep mac_limit
<pre>mac_limit_reached:</pre>	1	:::	mac_limit:	5
port_sec_feature_set: module-1# exit	1	:::	<pre>mac_limit_action:</pre>	1

Troubleshooting QoS Policies

This section provides solutions for troubleshooting QoS policies.

• Troubleshooting Cisco APIC QoS Policies, on page 131

Troubleshooting Cisco APIC QoS Policies

The following table summarizes common troubleshooting scenarios for the Cisco APIC QoS.

Problem	Solution	
Unable to update a		Invoke the following API to ensure that <code>qospDscpRule</code> is present on the leaf.
configured QoS policy.		GET https://192.0.20.123/api/node/class/qospDscpRule.xml
	2.	Ensure that the QoS rules are accurately configured and associated to the EPG ID to which the policy is attached.
		Use the following NX-OS style CLI commands to verify the configuration.
		leafl# show vlan
		<pre>leaf1# show system internal aclqos qos policy detail</pre>
		<pre>apicl# show running-config tenant tenant-name policy-map type qos custom-qos-policy-name apicl# show running-config tenant tenant-name application</pre>
		application-name epg epg-name

Determining the Supported SSL Ciphers

This chapter explains how to determine which SSL ciphers are supported.

- About SSL Ciphers, on page 133
- Determining the Supported SSL Ciphers Using the CLI, on page 134

About SSL Ciphers

The Cisco Application Centric Infrastructure (ACI) Representational State Transfer (REST) Application Programming Interface (API) has gone through an evolution from the day the solution debuted to recent versions where the HTTPS/SSL/TLS support has gotten increasingly more stringent. This document is intended to cover the evolution of HTTPS, SSL, and TLS support on the Cisco ACI REST API and provide customers with a guide of what is required for a client to utilize the REST API securely.

HTTPS is a protocol that utilizes either Secure Socket Layers (SSL) or Transport Layer Security (TLS) to form a secure connection for a HTTP session. SSL or TLS is used to encrypt the traffic between a client and a HTTP server. In addition, servers that support HTTPS have a certificate that can usually be used by the client to verify the server's authenticity. This is the opposite of the client authenticating with the server. In this case, the server is saying, "I am server_xyz and here is the certificate that proves it." The client can then utilize that certificate to verify the server is "server_xyz."

There are other important aspects to SSL/TLS that involve the supported encryption ciphers available in each protocol as well as the inherent security of the SSL or TLS protocols. SSL has gone through three iterations - SSLv1, SSLv2 and SSLv3 - all of which are now considered insecure. TLS has gone through three iterations - TLSv1, TLSv1.1 and TLSv1.2 - of which only TLSv1.1 and TLSv1.2 are considered "secure." Ideally, a client should utilize the highest available TLS version it can and the server should support only TLSv1.1 and TLSv1.2. However, most servers must keep TLSv1 for outdated clients.

Almost all modern browsers support both TLSv1.1 and TLSv1.2. However, a client that utilizes HTTPS may not be a browser. The client may be a java application or a python script that communicates with a web server and must negotiate HTTPS/TLS. In this type of a situation, the questions of what is supported and where becomes much more important.

Determining the Supported SSL Ciphers Using the CLI

Before you begin

This section describes how to use the CLI to determine which SSL ciphers are supported.

```
Procedure
```

Step 1 Get the supported ciphers in your openssl environment, shown as follows:

Example:

openssl ciphers 'ALL:eNULL'

Step 2 Separate the ciphers using sed or some other tool, shown as follows:

Example:

openssl ciphers 'ALL:eNULL' | sed -e 's/:/\n/g'

Step 3 Loop over the ciphers and poll the APIC to see which ones are supported, shown as follows:

Example:

openssl s_client -cipher ?<some cipher to test>? -connect <apic ipaddress>:<ssl port, usually 443>

See the following example cipher:

Example:

openssl s_client -cipher ?ECDHE-ECDSA-AES128-GCM-SHA256? -connect 10.1.1.14:443

Note If the response contains CONNECTED, then the cipher is supported.

Removing Unwanted _ui_ Objects

Caution

Changes made through the APIC Basic GUI can be seen, but cannot be modified in the Advanced GUI, and changes made in the Advanced GUI cannot be rendered in the Basic GUI. The Basic GUI is kept synchronized with the NX-OS style CLI, so that if you make a change from the NX-OS style CLI, these changes are rendered in the Basic GUI, and changes made in the Basic GUI are rendered in the NX-OS style CLI, but the same synchronization does not occur between the Advanced GUI and the NX-OS style CLI. See the following examples:

- Do not mix Basic and Advanced GUI modes. If you apply an interface policy to two ports using Advanced mode and then change the settings of one port using Basic mode, your changes might be applied to both ports.
- Do not mix the Advanced GUI and the CLI, when doing per-interface configuration on APIC. Configurations performed in the GUI, may only partially work in the NX-OS CLI.

For example, if you configure a switch port in the GUI at **Tenants** > *tenant-name* > **Application Profiles** > *application-profile-name* > **Application EPGs** > *EPG-name* > **Static Ports** > **Deploy Static EPG on PC, VPC, or Interface**

Then you use the show running-config command in the NX-OS style CLI, you receive output such as:

```
leaf 102
interface ethernet 1/15
switchport trunk allowed vlan 201 tenant t1 application ap1 epg ep1
exit
exit
```

If you use these commands to configure a static port in the NX-OS style CLI, the following error occurs:

```
apic1(config)# leaf 102
apic1(config-leaf)# interface ethernet 1/15
apic1(config-leaf-if)# switchport trunk allowed vlan 201 tenant t1 application ap1 epg
ep1
No vlan-domain associated to node 102 interface ethernet1/15 encap vlan-201
```

This occurs because the CLI has validations that are not performed by the APIC GUI. For the commands from the show running-config command to function in the NX-OS CLI, a vlan-domain must have been previously configured. The order of configuration is not enforced in the GUI.

• Do not make changes with the Basic GUI or the NX-OS CLI before using the Advanced GUI. This may also inadvertantly cause objects to be created (with names prepended with <u>ui</u>) which cannot be changed or deleted in the Advanced GUI.

If you make changes with the Basic GUI or the NX-OS CLI before using the Advanced GUI, this may inadvertently cause objects to be created (with names prepended with _ui_) which cannot be changed or deleted in the Advanced GUI.

For the steps to remove such objects, see Removing Unwanted <u>ui</u> Objects Using the REST API, on page 136.

• Removing Unwanted _ui_ Objects Using the REST API, on page 136

Removing Unwanted _ui_ Objects Using the REST API

If you make changes with the Cisco NX-OS-Style CLI before using the Cisco APIC GUI, and objects appear in the Cisco APIC GUI (with names prepended with <u>ui</u>), these objects can be removed by performing a REST API request to the API, containing the following:

- The Class name, for example infraAccPortGrp
- The Dn attribute, for example dn="uni/infra/funcprof/accportgrp-__ui_l101_eth1--31"
- The Status attribute set to status="deleted"

Perform the POST to the API with the following steps:

Procedure

Step 1 Log on to a user account with write access to the object to be removed.

Step 2 Send a POST to the API such as the following example:

```
POST https://192.168.20.123/api/mo/uni.xml
Payload:<infraAccPortGrp dn="uni/infra/funcprof/accportgrp-__ui_l101_eth1--31"
status="deleted"/>
```


Troubleshooting Multipod and Multi-Site Issues

This chapter contains the following sections:

• Troubleshooting Multipod and Multi-Site, on page 137

Troubleshooting Multipod and Multi-Site

This section describes how to troubleshoot Multipod and Multi-Site.

If you receive the following error:

Error:400 - Invalid Configuration Following Intersite Spines are not configured as Mpod Spines: 1202

You must enable the fabric external connectivity for all the existing spines and if you are trying to add new spines use the Setup Multipod method.

There are two ways to resolve this issue.

- Enable all the spines under the external routed network:
 - In the APIC GUI, on the menu bar, click **Tenant** > infra.
 - In the Navigation pane, expand Networking > External Routed Networks, right-click on the external routed network and choose Enable Fabric External Connectivity.
- Add new spines under the external routed network:
 - In the APIC GUI, on the menu bar, click Fabric.
 - In the Navigation pane, expand Quick Start > Node or Pod Setup > Setup Multipod and complete the Multipod setup.

Cisco APIC Troubleshooting Guide, Release 3.x and Earlier

acidiag Command

To troubleshoot operations on the Cisco APIC, use the acidiag command.

Caution This command is not intended for every day operation of ACI. Running all forms of the command can be very disruptive and cause major issues in your network if not used properly. Make sure you understand the full effect on your fabric before running them.

Cluster Commands

acidiag	
acidiag	avread
acidiag	fnvread
acidiag	fnvreadex

Syntax Description	Option	Function
	avread	Displays APICs within the cluster. The avread output includes:
		• Cluster of —Operational cluster size
		• out of targeted—The desired cluster size
		• active= —Indicates whether the APIC is reachable
		 health= —The overall APIC health summary. Displays services with degraded health scores.
		 chassisID=—The known chassis IDs for a given APIC.
		Note Peer chassis IDs can be incorrect for APICs not currently in the cluster.

I

Option	Function
bootcurr	On the next boot, the APIC system will boot the current APIC image in the Linux partition. This option is not expected to normally be used.
bootother	On the next boot, the APIC system will boot the previous APIC image in the Linux partition. This option is not expected to normally be used.
bond0test	Disruptive test of the APIC connection to the leaf. This is used for internal Cisco testing purposes only and outside of that could cause issues with the APIC connection to the fabric.
fnvread	Displays the address and state of switch nodes registered with the fabric.
fnvreadex	Displays additional information for switch nodes registered with the fabric.
linkflap	Brings down and back up a specified APIC interface.
preservelogs	APIC will archive current logs. During a normal reboot this automatically occurs. This option can be used prior to a hard reboot.
run	Two available options are iptables-list and lldptool. The iptables-list is used to display the Linux iptables, which are controlled by the mgmt Tenant contracts. Ildptool is used to display lldp information which is sent or received by the APIC.
rvread	Summarizes the data layer state. The output shows a summary of the data layer state for each service. The shard view shows replicas in ascending order.
acidiag rvread service	Displays the data layer state for a service on all shards across all replicas.
	Note For an example, see Examples, on page 144
acidiag rvread service shard	Displays the data layer state for a service on a specific shard across all replicas.
	Note For an example, see Examples, on page 144
acidiag rvread service shard replica	Displays the data layer state for a service on a specific shard and replica.
	Note For an example, see Examples, on page 144

Option	Function
validateimage	Prior to loading an image into the firmware repository, the image can be validated. Note that this function runs as a normal part of the process of the image being added into the repository.
validateenginxconf	Validates the generated nginx configuration file on APIC to ensure nginx can start with that configuration file. This is meant for debug use, in cases where the nginx webserver is not running on APIC.

Service IDs

The service IDs listed in the table below are also visible when entering the man acidiag command.

Service	ID
cliD	1
controller	2
eventmgr	3
extXMLApi	4
policyelem	5
policymgr	6
reader	7
ae	8
topomgr	9
observer	10
dbgr	11
observerelem	12
dbgrelem	13
vmmmgr	14
nxosmock	15
bootmgr	16
appliancedirector	17
adrelay	18

Table 2: Service IDs

Service	ID
ospaagent	19
vleafelem	20
dhcpd	21
scripthandler	22
idmgr	23
ospaelem	24
osh	25
opflexagent	26
opflexelem	27
confelem	28
vtap	29
snmpd	30
opflexp	31
analytics	32
policydist	33
plghandler	34

Table 3: Data States

State	ID
COMATOSE	0
NEWLY_BORN	1
UNKNOWN	2
DATA_LAYER_DIVERGED	11
DATA_LAYER_DEGRADED_LEADERSHIP	12
DATA_LAYER_ENTIRELY_DIVERGED	111
DATA_LAYER_PARTIALLY_DIVERGED	112
DATA_LAYER_ENTIRELY_DEGRADED_LEADERSHIP	121
DATA_LAYER_PARTIALLY_DEGRADED_LEADERSHIP	122
FULLY_FIT	255

System Keywords

```
acidiag [{start | stop | restart }] [{mgmt | xinetd }]
acidiag installer -u imageurl -c
acidiag reboot
acidiag touch [{clean | setup }]
acidiag verifyapic
```

Syntax Description	Option	Function
	-c	Specifies a clean install
	-u	Specifies a URL for the APIC image.
	imageurl	Specifies an APIC image.
	installer	Installs a new image on the APIC, -c for clean install
	mgmt	Specifies all services on the APIC.
	reboot	Reboots the APIC.
	restart	Restarts services on an APIC.
	start	Starts services on an APIC.
	stop	Stops services on an APIC.
	touch [clean setup]	Resets the APIC configuration.
		• The clean option removes all policy data while retaining the APIC network configuration (such as fabric name, IP address, login)
		• The setup option removes both policy data and the APIC network configuration.
	verifyapic	Displays the APIC software version.
	xinetd	Specifies xinetd (extended internet daemon) service, which controls the ssh and telnet daemons.

Diagnostic Keywords

acidiag	crashsuspecttracker
acidiag	dbgtoken
acidiag	version

Syntax Description Option

Ορτιοπ	Function
crashsuspecttracker	Tracks states of a service or data subset that indicate a crash.
dbgtoken	Generates a token used to generate a root password. This is to be used as directed while working with the TAC as needed.
version	Displays the APIC ISO software version.

Eunstian

Examples

The following examples show how to use the **acidiag** command:

```
apic1# acidiag version 2.2.10
apic1# acidiag verifyapic
openss1_check: certificate details
subject= CN=ABC12345678, serialNumber=PID:APIC-SERVER-L1 SN:ABC12345678
issuer= CN=Cisco Manufacturing CA,O=Cisco Systems
notBefore=Sep 28 17:17:42 2016 GMT
notAfter=Sep 28 17:27:42 2026 GMT
openss1_check: passed
ssh_check: passed
all_checks: passed
```

```
apic1# acidiag avread
Local appliance ID=1 ADDRESS=10.0.0.1 TEP ADDRESS=10.0.0/16
CHASSIS_ID=10220833-ea00-3bb3-93b2-ef1e7e645889
Cluster of 3 lm(t):1(2014-07-12T19:54:04.877+00:00) appliances
  (out of targeted 3 lm(t):3(2014-07-12T19:55:03.442+00:00))
   with FABRIC DOMAIN name=mininet set to version=1.0(0.414)
lm(t):3(2014-07-12T19:55:13.564+00:00)
    appliance id=1 last mutated at 2014-07-12T19:46:06.831+00:00 address=10.0.0.1 tep
address=10.0.0.0/16
      oob address=192.168.10.1/24 version=1.0(0.414) lm(t):1(2014-07-12T19:54:05.146+00:00)
      chassisId=10220833-ea00-3bb3-93b2-ef1e7e645889 lm(t):1(2014-07-12T19:54:05.146+00:00)
        commissioned=1 registered=1 active=yes(zeroTime)
        health=(applnc:255 lm(t):1(2014-07-12T20:01:22.934+00:00) svc's)
    appliance id=2 last mutated at 2014-07-12T19:51:10.649+00:00 address=10.0.0.2 tep
address=10.0.0/16
      oob address=192.168.10.2/24 version=1.0(0.414) lm(t):2(2014-07-12T19:54:05.064+00:00)
```

```
chassisId=5d74122c-2ab9-3ccb-b06d-f620d5e20ccd lm(t):2(2014-07-12T19:54:05.064+00:00)
```

```
commissioned=1 registered=1 active=yes(2014-07-12T19:51:10.651+00:00)
health=(applnc:255 lm(t):2(2014-07-12T20:01:22.442+00:00) svc's)
appliance id=3 last mutated at 2014-07-12T19:54:05.028+00:00 address=10.0.0.3 tep
address=10.0.0.0/16
oob address=192.168.10.3/24 version=1.0(0.414) lm(t):3(2014-07-12T19:54:05.361+00:00)
chassisId=71355d49-6fe7-3a78-a361-72d6cle3360c lm(t):3(2014-07-12T19:54:05.361+00:00)
commissioned=1 registered=1 active=yes(2014-07-12T19:54:05.029+00:00)
health=(applnc:255 lm(t):3(2014-07-12T20:01:22.892+00:00) svc's)
```

```
clusterTime=<diff=0 common=2014-07-14T16:52:20.343+00:00 local=2014-07-14T16:52:20.343+00:00 pF=<displForm=0
```

offsSt=0 offsVlu=0 lm(t):3(2014-07-12T19:55:03.750+00:00)>>

apic1# acidiag rvread 6 3 1

(6,3,1) st:6 lm(t):3(2014-10-16T08:48:20.238+00:00) le: reSt:LEADER voGr:0 cuTerm:0x19 lCoTe:0x18

lcoIn:0x180000000001b2a veFist:0x31 veFiEn:0x31 lm(t):3(2014-10-16T08:48:20.120+00:00)

lastUpdt 2014-10-16T09:07:00.214+00:00

```
clusterTime=<diff=65247252 common=2014-10-16T09:07:01.837+00:00
local=2014-10-15T14:59:34.585+00:00
```

pF=<displForm=0 offsSt=0 offsVlu=0 lm(t):3(2014-10-16T04:50:08.714+00:00)>>

apic1# acidiag rvread 6 3

(6,3,1) st:6 lm(t):3(2014-10-16T08:48:20.238+00:00) le: reSt:LEADER voGr:0 cuTerm:0x19 lCoTe:0x18

lCoIn:0x180000000001b2a veFiSt:0x31 veFiEn:0x31 lm(t):3(2014-10-16T08:48:20.120+00:00)

lastUpdt 2014-10-16T09:08:30.240+00:00

(6,3,2) st:6 lm(t):1(2014-10-16T08:47:25.323+00:00) le: reSt:FOLLOWER voGr:0 cuTerm:0x19 lCoTe:0x18

lCoIn:0x180000000001b2a veFist:0x49 veFiEn:0x49 lm(t):1(2014-10-16T08:48:20.384+00:00)
lp: clSt:2

lm(t):1(2014-10-16T08:47:03.286+00:00) dbSt:2 lm(t):1(2014-10-16T08:47:02.143+00:00)
stMmt:1

lm(t):0(zeroTime) dbCrTs:2014-10-16T08:47:02.143+00:00 lastUpdt

2014-10-16T08:48:20.384+00:00

(6,3,3) st:6 lm(t):2(2014-10-16T08:47:13.576+00:00) le: reSt:FOLLOWER voGr:0 cuTerm:0x19 lCoTe:0x18

lCoIn:0x180000000001b2a veFist:0x43 veFiEn:0x43 lm(t):2(2014-10-16T08:48:20.376+00:00)

lastUpdt 2014-10-16T09:08:30.240+00:00

clusterTime=<diff=65247251 common=2014-10-16T09:08:30.445+00:00

local=2014-10-15T15:01:03.194+00:00

pF=<displForm=0 offsSt=0 offsVlu=0 lm(t):3(2014-10-16T04:50:08.714+00:00)>>

I

Configuring Export Policies for Troubleshooting

Export policies enable you to export statistics, technical support collections, faults, and events to process core files and debug data from the fabric (the APIC as well as the switch) to any external host.

- About Exporting Files, on page 147
- File Export Guidelines and Restrictions, on page 147
- Configuring a Remote Location, on page 148
- Sending an On-Demand Tech Support File, on page 150

About Exporting Files

An administrator can configure export policies in the APIC to export statistics, technical support collections, faults and events, to process core files and debug data from the fabric (the APIC as well as the switch) to any external host. The exports can be in a variety of formats, including XML, JSON, web sockets, secure copy protocol (SCP), or HTTP. You can subscribe to exports in streaming, periodic, or on-demand formats.

An administrator can configure policy details such as the transfer protocol, compression algorithm, and frequency of transfer. Policies can be configured by users who are authenticated using AAA. A security mechanism for the actual transfer is based on a username and password. Internally, a policy element handles the triggering of data.

File Export Guidelines and Restrictions

- HTTP export and the streaming API format is supported only with statistics information. Core and tech support data are not supported.
- The destination IP address for exported files cannot be an IPv6 address.
- Do not trigger tech support from more than five nodes simultaneously, especially if they are to be exported into the Cisco Application Policy Infrastructure Controller (APIC) or to an external server with insufficient bandwidth and compute resources.
- To collect tech support from all of the nodes in the fabric periodically, you must create multiple policies. Each policy must cover a subset of the nodes and should be scheduled to trigger in a staggered way (at least 30 minutes apart).

- Do not schedule more than one tech support policy for the same node on the Cisco APIC. Running multiple instances of tech support policies on the same node at the same time can result in a huge consumption of Cisco APIC or switch CPU cycles and the other resources.
- We recommend that you use the regular tech support policy for the nodes placed in maintenance mode instead of the on-demand tech support policy.
- The status of an on-going tech support for the nodes in maintenance mode will not be available in the Cisco APIC GUI in the Admin > Tech Support > policy_name > Operational > Status section. Based on your selection of Export to Controller or Export Destination in the tech support policy, you can verify the controller (/data/techsupport) or the destination server to confirm that the tech support is being captured.
- Tech support collection from the Cisco APIC can time out when the cores on a leaf switch are busy. The cores can become busy if routing processes such as BGP and platform processes such as HAL hog the CPU. If the tech support collection times out, check for the CPU utilization to see if there is a CPU hog. If there is, you can collect the tech support on the leaf switch directly to avoid the timeout issues.

Configuring a Remote Location

Configuring a Remote Location Using the GUI

This procedure explains how to create a remote location using the APIC GUI.

Procedure

Step 1	On the menu bar, choose ADMIN > Import/Export .		
Step 2		vigation pane, right-click Remote Locations and choose Create Remote Location . Ite Remote Location dialog appears.	
Step 3	Enter the appropriate values in the Create Remote Location dialog fields.		
	Note	For an explanation of a field, click the 'i' icon to display the help file.	
Step 4	When finished entering values in the Create Remote Location dialog fields, click Submit . You have now created a remote location for backing up your data.		

Configuring a Remote Location Using the REST API

This procedure explains how to create a remote location using the REST API.

<fileRemotePath name="local" host="host or ip" protocol="ftp|scp|sftp" remotePath="path to folder" userName="uname" userPasswd="pwd" />

Configuring a Remote Location Using the NX-OS Style CLI

In the ACI fabric, you can configure one or more remote destinations for exporting techsupport or configuration files.

Procedure

	Command or Action	Purpose	
Step 1	configure	Enters global configuration mode.	
	Example: apic1# configure		
Step 2	[no] remote path remote-path-name	Enters configuration mode for a remote path.	
-	<pre>Example: apic1(config)# remote path myFiles</pre>		
Step 3	<pre>user username Example: apic1(config-remote)# user admin5</pre>	Sets the user name for logging in to the remote server. You are prompted for a password.	
Step 4	<pre>path {ftp scp sftp} host [:port] [remote-directory]</pre>	Sets the path and protocol to the remote server. You are prompted for a password.	
	<pre>Example: apic1(config-remote) # path sftp filehost.example.com:21 remote-directory /reports/apic</pre>		

Examples

This example shows how to configure a remote path for exporting files.

```
apic1# configure
apic1(config)# remote path myFiles
apic1(config-remote)# user admin5
You must reset the password when modifying the path:
Password:
Retype password:
apic1(config-remote)# path sftp filehost.example.com:21 remote-directory /reports/apic
You must reset the password when modifying the path:
Password:
Retype password:
```

Sending an On-Demand Tech Support File

Sending an On-Demand Techsupport File Using the GUI

Procedure

Step 1 Step 2 Step 3 Step 4	In the menu bar, click Admin . In the submenu bar, click Import/Export . In the Navigation pane, expand Export Policies . Right-click On-demand TechSupport and choose Create On-demand TechSupport .				
	The Create On-demand TechSupport dialog box appears.				
Step 5	Enter the ap	he appropriate values in the fields of the Create On-demand TechSupport dialog box.			
	Note	For an explanation of a field, click the help icon in the Create On-demand TechSupport dialog box. The help file opens to a properties description page.			
Step 6	Click Submit to send the techsupport file.				
	Note	On-demand tech support files can be saved to another APIC to balance storage and CPU requirements. To verify the location, click on the On-demand TechSupport policy in the Navigation pane, then click the OPERATIONAL tab in the Work pane. The controller is displayed in the EXPORT LOCATION field.			
Step 7 Step 8	Right-click the policy name and choose Collect Tech Support . Choose Yes to begin collecting tech support information.				

Sending an On-Demand Tech Support File Using the REST API

Procedure

Step 1 Set the remote destination for a technical support file using the REST API, by sending a POST with XML such as the following example:

Example:

```
<fileRemotePath userName="" remotePort="22" remotePath="" protocol="sftp" name="ToSupport" host="192.168.200.2" dn="uni/fabric/path-ToSupport" descr="">
```

<fileRsARemoteHostToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

</fileRemotePath>

Step 2 Generate an on-demand technical support file using the REST API by sending a POST with XML such as the following:

Example:

Finding the Switch Inventory

Knowing your switch model and serial numbers can help TAC support with troubleshooting your fabric. This section explains how to find the switch model and serial numbers using the Cisco APIC GUI, CLI, and REST API.

- Finding Your Switch Inventory Using the GUI, on page 153
- Finding Your Switch Inventory Using the NX-OS CLI, on page 153
- Finding Your Switch Inventory Using the REST API, on page 156

Finding Your Switch Inventory Using the GUI

This section explains how to find your switch model and serial numbers using the Cisco APIC GUI.

Before you begin

You must have access to the Cisco APIC GUI

Procedure

Oı	the menu bar, choose Fabric > Inventory .	
	the navigation pane, click a Pod icon. ur switch icons appear in the navigation pane.	
In	the navigation pane, click on a switch icon. ist of tabs appears at the top of the work pane.	
-	ck the General tab. ur switch information appears in the work pane.	

Finding Your Switch Inventory Using the NX-OS CLI

This section explains how to find your switch model and serial numbers using the NX-OS CLI.

Procedure

Find your switch inventory as follows:

Example:

```
switch# show hardware
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html
Copyright (c) 2002-2014, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php
Software
            version 07.56
 BIOS:
  kickstart: version 12.1(1h) [build 12.1(1h)]
  system: version 12.1(1h) [build 12.1(1h)]
  PE:
            version 2.1(1h)
                          06/08/2016
 BIOS compile time:
  kickstart image file is: /bootflash/aci-n9000-dk9.12.1.1h.bin
  kickstart compile time: 10/01/2016 20:10:40 [10/01/2016 20:10:40]
  system image file is:
                          /bootflash/auto-s
  system compile time:
                          10/01/2016 20:10:40 [10/01/2016 20:10:40]
Hardware
  cisco N9K-C93180YC-EX ("supervisor")
  Intel(R) Xeon(R) CPU @ 1.80GHz with 16400384 kB of memory.
  Processor Board ID FDO20101H1W
  Device name: ifav41-leaf204
  bootflash:
              62522368 kB
Kernel uptime is 02 day(s), 21 hour(s), 42 minute(s), 31 second(s)
Last reset at 241000 usecs after Sun Oct 02 01:27:25 2016
 Reason: reset-by-installer
 System version: 12.1(1e)
 Service: Upgrade
plugin
 Core Plugin, Ethernet Plugin
Switch hardware ID information
     _____
Switch is booted up
Switch type is : Nexus C93180YC-EX Chassis
Model number is N9K-C93180YC-EX
H/W version is 0.2010
Part Number is 73-15298-01
Part Revision is 1
Manufacture Date is Year 20 Week 10
Serial number is FDO20101H1W
```

CLEI code is 73-15298-01

L

```
Chassis has one slot
_____
Module1 ok
 Module type is : 48x10/25G
 1 submodules are present
 Model number is N9K-C93180YC-EX
 H/W version is 0.2110
 Part Number is 73-17776-02
 Part Revision is 11
 Manufacture Date is Year 20 Week 10
 Serial number is FDO20101H1W
 CLEI code is 73-17776-02
GEM ok
 Module type is : 6x40/100G Switch
 1 submodules are present
 Model number is N9K-C93180YC-EX
 H/W version is 0.2110
 Part Number is 73-17776-02
 Part Revision is 11
 Manufacture Date is Year 20 Week 10
 Serial number is FDO20101H1W
 CLEI code is 73-17776-02
  Chassis has 2 PowerSupply Slots
_____
PS1 shut
 Power supply type is : 54.000000W 220v AC
 Model number is NXA-PAC-650W-PE
 \rm H/W version is 0.0
 Part Number is 341-0729-01
 Part Revision is A0
 Manufacture Date is Year 19 Week 50
 Serial number is LIT19500ZEK
 CLEI code is 341-0729-01
PS2 ok
 Power supply type is : 54.000000W 220v AC
 Model number is NXA-PAC-650W-PE
 H/W version is 0.0
 Part Number is 341-0729-01
 Part Revision is A0
 Manufacture Date is Year 19 Week 50
 Serial number is LIT19500ZEA
 CLEI code is 341-0729-01
Chassis has 4 Fans
_____
FT1 ok
Fan1(sys_fan1)(fan_model:NXA-FAN-30CFM-F)
                                                                     is inserted
but info is not available
FT2 ok
Fan2(sys_fan2)(fan_model:NXA-FAN-30CFM-F)
                                                                     is inserted
but info is not available
```

FT3 ok
Fan3(sys_fan3)(fan_model:NXA-FAN-30CFM-F) is inserted
but info is not available
FT4 ok
Fan4(sys_fan4)(fan_model:NXA-FAN-30CFM-F) is inserted
but info is not available

Finding Your Switch Inventory Using the REST API

This section explains how to find your switch model and serial numbers using the REST API

Procedure

Find your switch inventory as follows:

Example:

GET https://192.0.20.123/api/node/mo/topology/pod-1.json?query-target=children&target=subtree-class=fabricNode

The following response is returned:

```
response:
  {
     "totalCount":"8",
     "imdata":
     [{
         "fabricNode":{
           "attributes":{
              "adSt":"on",
              "childAction":"",
              "delayedHeartbeat": "no",
              "dn":"topology/pod-1/node-103",
              "fabricSt":"active",
              "id":"103",
              "lcOwn":"local",
              "modTs":"2016-10-08T14:49:35.665+00:00",
              "model":"N9K-C9396PX",
              "monPolDn": "uni/fabric/monfab-default",
              "name":"leaf3",
              "nameAlias":"",
              "role":"leaf",
              "serial":"TEP-1-103",
              "status":"","uid":"0",
              "vendor":"Cisco Systems, Inc",
              "version":""}
             }
     },{
         "fabricNode":{
           "attributes":{
             "adSt":"on",
```

}

```
"childAction":"",
      "delayedHeartbeat": "no",
      "dn":"topology/pod-1/node-105",
      "fabricSt":"active",
      "id":"105",
      "lcOwn":"local",
      "modTs":"2016-10-08T14:47:52.011+00:00",
      "model":"N9K-C9508",
      "monPolDn":"uni/fabric/monfab-default",
      "name":"spine2",
      "nameAlias":"",
      "role":"spine",
      "serial":"TEP-1-105","status":"",
      "uid":"0",
      "vendor":"Cisco Systems, Inc",
      "version":""
   . . .
[TRUNCATED]
   • • •
```


Cisco APIC SSD Replacement

Use this procedure to replace the Solid-State Drive (SSD) in Cisco APIC.

Note This procedure should only be performed when there is at least one APIC with a healthy SSD in the cluster, that is fully fit. If all the APIC controllers in the cluster have SSDs that have failed, open a case with the Cisco Technical Assistance Center (TAC).

• Replacing the Solid-State Drive in Cisco APIC, on page 159

Replacing the Solid-State Drive in Cisco APIC

Procedure

Step 1	Decommission the APIC.				
	a) On the menu bar, choose System > Controllers .				
	b) In the Navigation pane, expand Controllers > apic_controller_name > Cluster as Seen by Node . From this point, select an apic_controller_name that is not the controller that is being decommissioned.				
	c) In the Work pane, verify that the Health State in the Active Controllers summary table indicates the cluster is Fully Fit before continuing.				
	 d) In the same Work pane, click Actions > Decommission after selecting the controller to be decommissioned 				
	 e) Click Yes. The decommissioned controller displays Unregistered in the Operational State column. The controller is then taken out of service and no longer visible in the Work pane. 				
Step 2	This step is conditional and is required if your Cisco IMC version is earlier than 2.0(9c). The minimum Cisco IMC version required to replace SSD is 2.0(9c). Upgrade to Cisco IMC version 2.0(9c) if required.				
	a) Use the Host Upgrade Utility (HUU) to upgrade to Cisco IMC version 2.0(9c).				
	b) Download the .iso image. See Cisco Host Upgrade Utility 2.0(7) User Guide to upgrade to Cisco IMC version 2.0(9c).				
Step 3	Physically remove the old SSD if any, and add the new SSD.				
Step 4	Create RAID volume using the newly installed SSD.				

- a) Log in to Cisco IMC.
- b) Choose Storage > Physical Drive . Select the newly added physical drive.
- c) Choose Storage > Controller Drive Info, and click Clear Foreign Config.
- d) Click OK.
- e) Choose Storage Controller Drive Info, and click Create Virtual Drive from Unused Physical Drives.
- f) Select 0 from the **Raid Level** drop-down list.
- g) Click Create Virtual Drive.
- h) Select the newly created virtual drive and click Initialize.
- i) Select the Initialize Type from the drop-down list and click Fast Initialize.
- **Step 5** Check TPM Status in BIOS or CIMC before installing APIC. If TPM is not activated, enable TPM in BIOS.
- **Step 6** Install the APIC image using the virtual media. In this step, the SSD is partitioned and the APIC software is installed on the HDD.
 - a) Obtain the relevant APIC .iso image from CCO. The image version of the APIC must be the same version as the other Controllers in the cluster.
 - b) Mount the APIC .iso image using the Cisco IMC vMedia functionality.
 - c) Boot or power cycle the controller.
 - d) During the boot process press F6 to select the Cisco vKVM-Mapped vDVD as the one-time boot device. You may be required to enter the BIOS password. The default password is 'password'.
 - e) Follow the onscreen instructions to install the APIC software.
 - f) After the installation is completed, un-map the virtual media mount.

Step 7 Commission the APIC.

- a) Select any other APIC that is part of the cluster. From the menu bar, choose **SYSTEM** > **Controllers**.
- b) In the Navigation pane, expand Controllers > apic_controller_name > Cluster as Seen by Node. From this point, select any apic_controller_name that is part of the cluster.
- c) From the **Work** pane, click the decommissioned controller that displaying **Unregistered** in the **Operational State** column.
- d) From the **Work** pane, click **Actions** > **Commission**.
- e) In the Confirmation dialog box, click Yes.

The commissioned controller displays the Health state as **Fully-fit** and the operational state as **Available**. The controller should now be visible in the **Work** pane.

APPENDIX

Expected Output Errors

• Expected Output Errors, on page 161

Expected Output Errors

Cisco Nexus hardware -EX, -FX1-3, and N93xxC can show output errors on internal interface counters and cause a fault (F119936) to be raised in ACI environments. As long as the output error counters under **show interface** remains unchanged, this is an expected behavior.

Also, note that the **show platform internal counters port** output error will increment. However, if checking the same port with **show interface**, the output error rate will not increment.

This section provides an example of the expected output errors.

```
module-1# show platform internal counters port 51
Stats for port 51
(note: forward drops includes sup redirected packets too)
ΤF
           LPort
                                   Input
                                                               Output
                                                        Packets Bytes
                            Packets Bytes
                  zal 669974 110547179 692398 194500094
Unicast 112138 30292113 439809 161274739
eth-1/51
           51 Total
                  Multicast
                                                      251315
                                                                33075023
                                0
                                          0
                  Flood
                              261736
                                       32880023
                                                        1274
                                                                    150332
                                                       261736
               Total Drops
                              296100
                  Buffer
                                   0
                                                            0
                                   0
                                                       261736
                  Error
                  <...>
leaf-101# show interface ethernet 1/51
Ethernet1/51 is up
admin state is up, Dedicated Interface
 Hardware: 1000/10000/100000/40000 Ethernet, address: 0000.0000.0000 (bia a023.9f56.48f3)
 MTU 9366 bytes, BW 40000000 Kbit, DLY 1 usec
  reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, medium is broadcast
  Port mode is routed
  full-duplex, 40 Gb/s, media type is 40G
  FEC (forward-error-correction) : disable-fec
  Beacon is turned off
  Auto-Negotiation is turned on
  Input flow-control is off, output flow-control is off
  Auto-mdix is turned off
  Rate mode is dedicated
  Switchport monitor is off
  EtherType is 0x8100
```

```
EEE (efficient-ethernet) : n/a
Last link flapped 1d14h
Last clearing of "show interface" counters never
1 interface resets
30 seconds input rate 4912 bits/sec, 3 packets/sec
30 seconds output rate 1944 bits/sec, 2 packets/sec
Load-Interval #2: 5 minute (300 seconds)
 input rate 3360 bps, 2 pps; output rate 10504 bps, 4 pps
L3 in Switched:
 ucast: 0 pkts, 0 bytes - mcast: 0 pkts, 0 bytes
L3 out Switched:
 ucast: 0 pkts, 0 bytes - mcast: 0 pkts, 0 bytes
RX
 352942 unicast packets 317417 multicast packets 0 broadcast packets
  670359 input packets 110608007 bytes
 8643 jumbo packets 0 storm suppression bytes
  0 runts 0 giants 0 CRC 0 no buffer
                                          0 underrun 0 ignored
 0 input error 0 short frame 0 overrun
 0 watchdog 0 bad etype drop 0 bad proto drop 0 if down drop
 0 input with dribble 0 input discard
 0 Rx pause
ТΧ
  417109 unicast packets 275682 multicast packets 0 broadcast packets
  692791 output packets 194559643 bytes
 7173 jumbo packets
  0 output error 0 collision 0 deferred 0 late collision
  0 lost carrier 0 no carrier 0 babble 0 output discard
  0 Tx pause
```


INDEX

(enabling) NX-OS Format **67** (enabling) Syslog **67**

A

acidiag Command 139 ACL deny logging 24–25 ACL permit and deny logs 27 ACL permit logging 22–23 atomic counters 30–33, 73, 80 about 73, 80 configuring 31 guidelines and restrictions 30

C

Contract permit logging 22–23 Contract permit logs 27 core files 147

D

digital optical monitoring 33 Digital Optical Monitoring 34–36 DOM 33–36

Ε

endpoint connectivity 107 eventlog Command 81–101 exporting files 147 about 147

Ρ

permit logging 26, 28

S

```
SNMP 42–45
about 42
configuring policy 43
configuring trap destination 44
configuring trap source 45
SPAN 46, 48
about 46
configuring 48
guidelines and restrictions 46
syslog 64–66
about 64
destination 65
source 66
```

T

Taboo Contract deny logging 24–25 Taboo Contract deny logs 27 Taboo Contract drop logging 25 techsupport file 150 sending 150 techsupport files 147 traceroute 68–69 about 68 configuring 69 guidelines and restrictions 68 INDEX

I