cisco.

Cisco Nexus 9000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x

First Published: 2015-02-01 Last Modified: 2023-09-11

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS REFERENCED IN THIS DOCUMENTATION ARE SUBJECT TO CHANGE WITHOUT NOTICE. EXCEPT AS MAY OTHERWISE BE AGREED BY CISCO IN WRITING, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENTATION ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

The Cisco End User License Agreement and any supplemental license terms govern your use of any Cisco software, including this product documentation, and are located at: http://www.cisco.com/go/softwareterms.Cisco product warranty information is available at http://www.cisco.com/go/warranty. US Federal Communications Commission Notices are found here http://www.cisco.com/con/us/products/us-fcc-notice.html.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any products and features described herein as in development or available at a future date remain in varying stages of development and will be offered on a when-and if-available basis. Any such product or feature roadmaps are subject to change at the sole discretion of Cisco and Cisco will have no liability for delay in the delivery or failure to deliver any products or feature roadmap items that may be set forth in this document.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2015-2021 Cisco Systems, Inc. All rights reserved.

CONTENTS

P R E F A C E	Preface xi
	Audience xi
	Document Conventions xi
	Related Documentation for Cisco Nexus 9000 Series Switches xii
	Documentation Feedback xii
	Communications, Services, and Additional Information xii
CHAPTER 1	
	New and Changed Information 1
CHAPTER 2	
	Licensing Requirements 5
	Supported Platforms 5
	Information about Multicast 5
	Multicast Distribution Trees 6
	Source Trees 6
	Shared Trees 7
	Bidirectional Shared Trees 8
	Multicast Forwarding 8
	Cisco NX-OS PIM 9
	ASM 11
	Bidir 11
	SSM 11
	RPF Routes for Multicast 11
	IGMP 11
	IGMP Snooping 11

Interdomain Multicast 12 SSM 12 MSDP 12 MBGP 12 MRIB 12 Virtual Port Channels and Multicast 13 Guidelines and Limitations for Multicast 13 High-Availability Requirements for Multicast 14 Virtual Device Contexts 14 Troubleshooting Inconsistency Between SW and HW Multicast Routes 14 Technical Assistance 15

CHAPTER 3 Configuring IGMP 17

About IGMP 17 IGMP Versions 17 IGMP Basics 18 Prerequisites for IGMP 20 Guidelines and Limitations for IGMP 20 Default Settings for IGMP 21 Configuring IGMP Parameters 21 Configuring IGMP Interface Parameters 22 Configuring an IGMP SSM Translation 27 Configuring the Enforce Router Alert Option Check 28 Restarting the IGMP Process 29 Verifying the IGMP Configuration 29 Configuration Examples for IGMP 30

CHAPTER 4 Configuring MLD 31

About MLD MLD Versions MLD Basics Prerequisites for MLD Guidelines and Limitations for MLD Default Settings for MLD

Configuring MLD Parameters 35 Configuring MLD Interface Parameters 35 Configuring an MLD SSM Translation 40 Verifying the MLD Configuration 41 Configuration Example for MLD **42** CHAPTER 5 **Configuring PIM and PIM6** 43 About PIM and PIM6 43 PIM SSM with vPC 44 Hello Messages 45 Join-Prune Messages 45 State Refreshes 46 Rendezvous Points 46 Static RP 46 BSRs 47 Auto-RP 48 Multiple RPs Configured in a PIM Domain 48 Anycast-RP 48 PIM Register Messages 49 Designated Routers 49 Designated Forwarders 50 ASM Switchover from Shared Tree to Source Tree 50 Administratively Scoped IP Multicast 50 Multicast Counters 50 Multicast Heavy Template 51 Multicast VRF-Lite Route Leaking 51 PIM Graceful Restart 51 Generation IDs 51 PIM Graceful Restart Operations 52 PIM Graceful Restart and Multicast Traffic Flow 54 High Availability 54 Prerequisites for PIM and PIM6 54 Guidelines and Limitations for PIM and PIM6 55 Guidelines and Limitations for Hello Messages 57

Guidelines and Limitations for Rendezvous Points 57 Guidelines and Limitations for Multicast VRF-lite Route Leaking 57 Default Settings 58 Configuring PIM and PIM6 59 PIM and PIM6 Configuration Tasks 60 Enabling the PIM and PIM6 Feature 60 Configuring PIM or PIM6 Sparse Mode Parameters 61 Configuring PIM Sparse Mode Parameters 63 Configuring PIM6 Sparse Mode Parameters 66 Configuring ASM and Bidir 68 Configuring Static RPs 68 Configuring BSRs 70 Configuring Auto-RP 73 Configuring a PIM Anycast-RP Set **75** Configuring Shared Trees Only for ASM 79 Configuring SSM (PIM) 81 Configuring SSM (PIM6) 83 Configuring PIM SSM Over a vPC 84 Configuring RPF Routes for Multicast 85 Configuring Multicast Multipath 86 Configuring Multicast VRF-Lite Route Leaking 87 Configuring Route Maps to Control RP Information Distribution 88 Configuring Route Maps to Control RP Information Distribution (PIM) 88 Configuring Route Maps to Control RP Information Distribution (PIM6) 89 Configuring Message Filtering 90 Configuring Message Filtering (PIM) 92 Configuring Message Filtering (PIM6) 93 Restarting the PIM and PIM6 Processes 94 Restarting the PIM Process 95 Restarting the PIM6 Process **95** Configuring BFD for PIM in VRF Mode 96 Configuring BFD for PIM in Interface Mode 97 Enabling the Multicast Heavy and Extended Heavy Template 97 Verifying the PIM and PIM6 Configuration 99

Displaying Statistics 106
Displaying PIM and PIM6 Statistics 106
Clearing PIM and PIM6 Statistics 106
Configuration Examples for PIM 107
SSM Configuration Example 107
PIM SSM Over vPC Configuration Example 107
BSR Configuration Example 112
Auto-RP Configuration Example 112
PIM Anycast RP Configuration Example 113
Prefix-Based and Route-Map-Based Configurations 114
Output 115
Related Documents 116
Standards 117
MIBs 117
nfiguring IGMP Snooping 119
About IGMP Snooping 119
IGMPv1 and IGMPv2 120
IGMPv3 120
IGMP Snooping Querier 121

CHAPTER	6
---------	---

Configuring	IGMP	Snooping	119
Comparing		Shooping	

About IOMF Shooping 113
IGMPv1 and IGMPv2 120
IGMPv3 120
IGMP Snooping Querier 121
Virtualization Support 121
Prerequisites for IGMP Snooping 121
Guidelines and Limitations for IGMP Snooping 122
Default Settings 123
Configuring IGMP Snooping Parameters 123
Configuring Global IGMP Snooping Parameters 124
Configuring IGMP Snooping Parameters per VLAN 126
Verifying the IGMP Snooping Configuration 130
Displaying IGMP Snooping Statistics 131
Clearing IGMP Snooping Statistics 131
Configuration Examples for IGMP Snooping 131

CHAPTER 7

- **Configuring MSDP** 133
 - About MSDP 133

SA Messages and Caching 134 MSDP Peer-RPF Forwarding 135 MSDP Mesh Groups 135 Prerequisites for MSDP 135 Default Settings 135 Configuring MSDP 136 Enabling the MSDP Feature 136 Configuring MSDP Peers 137 Configuring MSDP Peer Parameters 138 Configuring MSDP Global Parameters 140 Configuring MSDP Mesh Groups 142 Restarting the MSDP Process 142 Verifying the MSDP Configuration 143 Monitoring MSDP 144 Displaying Statistics 144 Clearing Statistics 144 Configuration Examples for MSDP 144 Related Documents 146 Standards 146

CHAPTER 8 Configuring MVR 147

About MVR 147 MVR Interoperation with Other Features 148 Guidelines and Limitations for MVR 148 Default MVR Settings 148 Configuring MVR 149 Configuring MVR Global Parameters 149 Configuring MVR Interfaces 150 Verifying the MVR Configuration 152 Configuration Examples for MVR 154

APPENDIX A IETF RFCs for IP Multicast 155 IETF RFCs for IP Multicast 155 APPENDIX B Configuration Limits for Cisco NX-OS Multicast 157 Configuration Limits 157

Contents

Preface

This preface includes the following sections:

- Audience, on page xi
- Document Conventions, on page xi
- Related Documentation for Cisco Nexus 9000 Series Switches, on page xii
- Documentation Feedback, on page xii
- Communications, Services, and Additional Information, on page xii

Audience

This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions

Command descriptions use the following conventions:

Convention	Description		
bold	Bold text indicates the commands and keywords that you enter literally as shown.		
Italic	Italic text indicates arguments for which you supply the values.		
[x]	Square brackets enclose an optional element (keyword or argument).		
[x y]	Square brackets enclosing keywords or arguments that are separated by a vertical bar indicate an optional choice.		
{x y}	Braces enclosing keywords or arguments that are separated by a vertical bar indicate a required choice.		
$[x \{y z\}]$	Nested set of square brackets or braces indicate optional or required choices within optional or required elements. Braces and a vertical bar within square brackets indicate a required choice within an optional element.		

Convention	Description
variable	Indicates a variable for which you supply values, in context where italics cannot be used.
string	A nonquoted set of characters. Do not use quotation marks around the string or the string includes the quotation marks.

Examples use the following conventions:

Convention	Description		
screen font	Terminal sessions and information the switch displays are in screen font.		
boldface screen font	Information that you must enter is in boldface screen font.		
italic screen font	Arguments for which you supply values are in italic screen font.		
<>	Nonprinting characters, such as passwords, are in angle brackets.		
[]	Default responses to system prompts are in square brackets.		
!,#	An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.		

Related Documentation for Cisco Nexus 9000 Series Switches

The entire Cisco Nexus 9000 Series switch documentation set is available at the following URL: http://www.cisco.com/en/US/products/ps13386/tsd_products_support_series_home.html

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to nexus9k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.

Preface

I

CHAPTER

New and Changed Information

This chapter provides release-specific information for each new and changed feature in the *Cisco Nexus* 9000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x.

• New and Changed Information, on page 1

New and Changed Information

This table summarizes the new and changed features for the *Cisco Nexus 9000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x* and tells you where they are documented.

Table 1: New and Chan	ed Features for Cisco	NX-OS Release 7.x

Feature	Description	Changed in Release	Where Documented
IGMP snooping	Added vPC support and the ability to filter IGMP joins per VLAN for Cisco Nexus 9508 switches with the N9K-X9636C-R, N9K-X9636C-RX, and N9K-X9636Q-R line cards.	7.0(3)F3(1)	Guidelines and Limitations for IGMP Snooping, on page 122 Configuring IGMP Snooping Parameters per VLAN, on page 126
MVR	Introduced this feature for Cisco Nexus 9508 switches with the N9K-X9636C-R, N9K-X9636C-RX, and N9K-X9636Q-R line cards.	7.0(3)F3(1)	Configuring MVR, on page 147
PIM ASM and SSM	Added vPC support for Cisco Nexus 9508 switches with the N9K-X9636C-R, N9K-X9636C-RX, and N9K-X9636Q-R line cards.	7.0(3)F3(1)	Guidelines and Limitations for PIM and PIM6, on page 55
IGMP snooping	Added support for Cisco Nexus 9508 switches with the N9K-X9636C-R and N9K-X9636Q-R line cards.	7.0(3)F2(1)	Guidelines and Limitations for IGMP Snooping, on page 122

I

Feature	Description	Changed in Release	Where Documented
PIM	Added PIM ASM and SSM support for Cisco Nexus 9508 switches with the N9K-X9636C-R and N9K-X9636Q-R line cards.	7.0(3)F2(1)	Guidelines and Limitations for PIM and PIM6, on page 55
Layer 3 multicast routing	Added support on FEX ports and FEX port channels for Cisco Nexus 9300-EX platform switches.	7.0(3)I7(1)	Guidelines and Limitations for Multicast, on page 13
Multicast VRF-lite route leaking	Introduced this feature.	7.0(3)I7(1)	Configuring PIM and PIM6, on page 43
PIM	Added support for the multicast heavy template and multicast counters for Cisco Nexus 9300-FX Series switches.	7.0(3)I7(1)	Configuring PIM and PIM6, on page 43
PIM	Added Layer 3 port-channel subinterface support for PIM sparse mode for Cisco Nexus 9300-EX Series switches, Cisco Nexus 3232C and 3264Q switches, and N9K-X9732C-EX, N9K-X9736C-EX, and N9K-X97160YC-EX line cards.	7.0(3)I6(1)	Guidelines and Limitations for PIM and PIM6, on page 55
PIM	Introduced multicast counters for Cisco Nexus 9300-EX Series switches.	7.0(3)I6(1)	Multicast Counters, on page 50 Verifying the PIM and PIM6 Configuration, on page 99
PIM	Added Layer 3 port-channel subinterface support for PIM sparse mode for Cisco Nexus 9300 Series switches.	7.0(3)I5(2)	Configuring PIM and PIM6, on page 43
MLD	Introduced this feature.	7.0(3)I5(1)	Configuring MLD, on page 31
PIM	Added PIM6 ASM and SSM support.	7.0(3)I5(1)	Configuring PIM and PIM6, on page 43
IGMP snooping	Added the ip igmp snooping report-flood and ip igmp snooping proxy-leave use-group-address commands.	7.0(3)I4(2)	Configuring IGMP Snooping Parameters per VLAN, on page 126
PIM	Added PIM SSM support over vPCs.	7.0(3)I4(1)	Configuring PIM and PIM6, on page 43

Feature	Description	Changed in Release	Where Documented
Multicast heavy template	Introduced this feature.	7.0(3)I3(2)	Multicast Heavy Template, on page 51
			Enabling the Multicast Heavy and Extended Heavy Template, on page 97
IGMP	Added a limitation for Cisco Nexus 9200 Series switches.	7.0(3)I3(1)	Configuring IGMP, on page 17
IGMP	Added support for Source-Specific Multicast (SSM) translation.	7.0(3)I2(1)	Configuring IGMP, on page 17
PIM	Added support for the Source-Specific Multicast (SSM) and bidirectional shared trees (Bidir) distribution modes.	7.0(3)I2(1)	Configuring PIM and PIM6, on page 43
PIM	Added the resilient option to the ip multicast multipath command.	7.0(3)I1(1)	Configuring PIM and PIM6, on page 43

Overview

This chapter describes the multicast features of Cisco NX-OS.

- Licensing Requirements, on page 5
- Supported Platforms, on page 5
- About Multicast, on page 5
- Guidelines and Limitations for Multicast, on page 13
- High-Availability Requirements for Multicast, on page 14
- Virtual Device Contexts, on page 14
- Troubleshooting Inconsistency Between SW and HW Multicast Routes , on page 14
- Technical Assistance, on page 15

Licensing Requirements

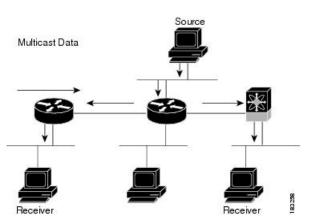
For a complete explanation of Cisco NX-OS licensing recommendations and how to obtain and apply licenses, see the *Cisco NX-OS Licensing Guide* and the *Cisco NX-OS Licensing Options Guide*.

Supported Platforms

Starting with Cisco NX-OS release 7.0(3)I7(1), use the Nexus Switch Platform Support Matrix to know from which Cisco NX-OS releases various Cisco Nexus 9000 and 3000 switches support a selected feature.

About Multicast

IP multicast is a method of forwarding the same set of IP packets to a number of hosts within a network. You can use multicast in IPv4 networks to provide efficient delivery of data to multiple destinations.


Multicast involves both a method of delivery and discovery of senders and receivers of multicast data, which is transmitted on IP multicast addresses called groups. A multicast address that includes a group and source IP address is often referred to as a channel. The Internet Assigned Number Authority (IANA) has assigned 224.0.0.0 through 239.255.255.255 as IPv4 multicast addresses. For more information, see http://www.iana.org/assignments/multicast-addresses.

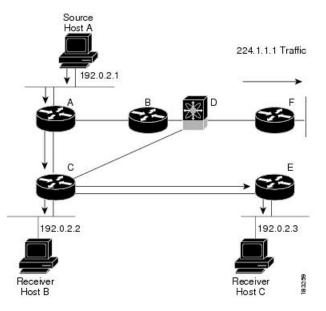
Note

For a complete list of RFCs related to multicast, see the *IETF RFCs for IP Multicast* chapter.

The routers in the network listen for receivers to advertise their interest in receiving multicast data from selected groups. The routers then replicate and forward the data from sources to the interested receivers. Multicast data for a group is transmitted only to those LAN segments with receivers that requested it.

This figure shows one source transmitting multicast data that is delivered to two receivers. In the figure, because the center host is on a LAN segment where no receiver requested multicast data, no data is delivered to that receiver.

Figure 1: Multicast Traffic from One Source to Two Receivers

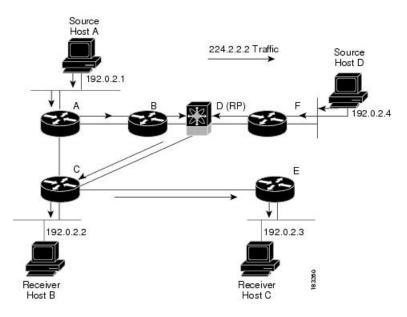

Multicast Distribution Trees

A multicast distribution tree represents the path that multicast data takes between the routers that connect sources and receivers. The multicast software builds different types of trees to support different multicast methods.

Source Trees

A source tree represents the shortest path that the multicast traffic takes through the network from the sources that transmit to a particular multicast group to receivers that requested traffic from that same group. Because of the shortest path characteristic of a source tree, this tree is often referred to as a shortest path tree (SPT). This figure shows a source tree for group 224.1.1.1 that begins at host A and connects to hosts B and C.

Figure 2: Source Tree

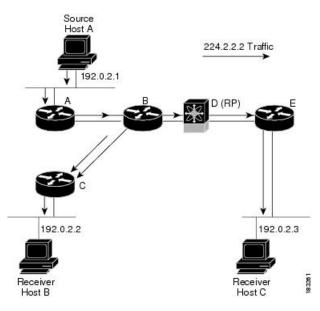


The notation (S, G) represents the multicast traffic from source S on group G. The SPT in this figure is written (192.0.2.1, 224.1.1.1). Multiple sources can be transmitting on the same group.

Shared Trees

A shared tree represents the shared distribution path that the multicast traffic takes through the network from a shared root or rendezvous point (RP) to each receiver. (The RP creates an SPT to each source.) A shared tree is also called an RP tree (RPT). This figure shows a shared tree for group 224.2.2.2 with the RP at router D. Source hosts A and D send their data to router D, the RP, which then forwards the traffic to receiver hosts B and C.

Figure 3: Shared Tree



The notation (*, G) represents the multicast traffic from any source on group G. The shared tree in this figure is written (*, 224.2.2.2).

Bidirectional Shared Trees

A bidirectional shared tree represents the shared distribution path that the multicast traffic takes through the network from a shared root, or rendezvous point (RP), to each receiver. Multicast data is forwarded to receivers encountered on the way to the RP. The advantage of the bidirectional shared tree is shown in the figure below. Multicast traffic flows directly from host A to host B through routers B and C. In a shared tree, the data from source host A is first sent to the RP (router D) and then forwarded to router B for delivery to host B.

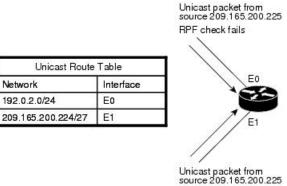
Figure 4: Bidirectional Shared Tree

The notation (*, G) represents the multicast traffic from any source on group G. The bidirectional tree in the figure is written as (*, 224.2.2.2).

Multicast Forwarding

Because multicast traffic is destined for an arbitrary group of hosts, the router uses reverse path forwarding (RPF) to route data to active receivers for the group. When receivers join a group, a path is formed toward the source (SSM mode) or the RP (ASM or Bidir mode). The path from a source to a receiver flows in the reverse direction from the path that was created when the receiver joined the group.

For each incoming multicast packet, the router performs an RPF check. If the packet arrives on the interface leading to the source, the packet is forwarded out each interface in the outgoing interface (OIF) list for the group. Otherwise, the router drops the packet.



Note In Bidir mode, if a packet arrives on a non-RPF interface and the interface was elected as the designated forwarder (DF), then the packet is also forwarded in the upstream direction toward the RP.

This figure shows an example of RPF checks on packets coming in from different interfaces. The packet that arrives on E0 fails the RPF check because the unicast route table lists the source of the network on interface

E1. The packet that arrives on E1 passes the RPF check because the unicast route table lists the source of that network on interface E1.

Figure 5: RPF Check Example

RPF check succeeds

Cisco NX-OS PIM

Cisco NX-OS supports multicasting with Protocol Independent Multicast (PIM) sparse mode. PIM is IP routing protocol independent and can leverage whichever unicast routing protocols are used to populate the unicast routing table. In PIM sparse mode, multicast traffic is sent only to locations of the network that specifically request it. PIM dense mode is not supported by Cisco NX-OS.

83.26.2

Note In this publication, the term "PIM" is used for PIM sparse mode version 2.

To access multicast commands, you must enable the PIM feature. Multicast is enabled only after you enable PIM on an interface of each router in a domain. You can configure PIM for an IPv4 network. By default, IGMP is running on the system.

PIM, which is used between multicast-capable routers, advertises group membership across a routing domain by constructing multicast distribution trees. PIM builds shared distribution trees, on which packets from multiple sources are forwarded, as well as source distribution trees, on which packets from a single source are forwarded.

The distribution trees change automatically to reflect the topology changes due to link or router failures. PIM dynamically tracks both multicast-capable sources and receivers, although the source state is not created in Bidir mode.

The router uses the unicast routing table and RPF routes for multicast to create multicast routing information. In Bidir mode, additional multicast routing information is created.

Note

In this publication, "PIM for IPv4" refers to the Cisco NX-OS implementation of PIM sparse mode.

This figure shows two PIM domains in an IPv4 network.

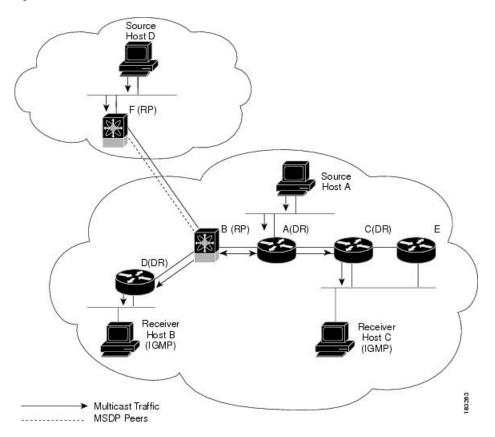


Figure 6: PIM Domains in an IPv4 Network

- The lines with arrows show the path of the multicast data through the network. The multicast data originates from the sources at hosts A and D.
- The dashed line connects routers B and F, which are Multicast Source Discovery Protocol (MSDP) peers. MSDP supports the discovery of multicast sources in other PIM domains.
- Hosts B and C receive multicast data by using Internet Group Management Protocol (IGMP) to advertise requests to join a multicast group.
- Routers A, C, and D are designated routers (DRs). When more than one router is connected to a LAN segment, such as C and E, the PIM software chooses one router to be the DR so that only one router is responsible for putting multicast data on the segment.

Router B is the rendezvous point (RP) for one PIM domain, and router F is the RP for the other PIM domain. The RP provides a common point for connecting sources and receivers within a PIM domain.

PIM supports these multicast modes for connecting sources and receivers:

- Any source multicast (ASM)
- Source-Specific Multicast (SSM)
- Bidirectional shared trees (Bidir)

Cisco NX-OS supports a combination of these modes for different ranges of multicast groups. You can also define RPF routes for multicast.

ASM	
	Any Source Multicast (ASM) is a PIM tree building mode that uses shared trees to discover new sources and receivers as well as source trees to form shortest paths from receivers to sources. The shared tree uses a network node as the root, called the rendezvous point (RP). The source tree is rooted at first-hop routers, directly attached to each source that is an active sender. The ASM mode requires an RP for a group range. An RP can be configured statically or learned dynamically by the Auto-RP or BSR group-to-RP discovery protocols. If an RP is learned and is not known to be a Bidir-RP, the group operates in ASM mode.
	The ASM mode is the default mode when you configure RPs.
Bidir	
	Bidirectional shared trees (Bidir) is a PIM mode that, like the ASM mode, builds a shared tree between receivers and the RP but does not support switching over to a source tree when a new receiver is added to a group. In the Bidir mode, the router that is connected to a receiver is called the designated forwarder (DF) because multicast data can be forwarded directly from the designated router (DR) to the receiver without first going to the RP. The Bidir mode requires that you configure an RP.
	The Bidir mode can reduce the amount of resources required on a router when there are many multicast sources and can continue to operate whether or not the RP is operational or connected.
SSM	
	Source-Specific Multicast (SSM) is a PIM mode that builds a source tree that originates at the designated router on the LAN segment that receives a request to join a multicast source. Source trees are built by sending PIM join messages in the direction of the source. The SSM mode does not require any RP configuration.

The SSM mode allows receivers to connect to sources outside the PIM domain.

RPF Routes for Multicast

You can configure static multicast RPF routes to override what the unicast routing table uses. This feature is used when the multicast topology is different than the unicast topology.

IGMP

By default, the Internet Group Management Protocol (IGMP) for PIM is running on the system.

IGMP is used by hosts that want to receive multicast data to request membership in multicast groups. Once the group membership is established, multicast data for the group is directed to the LAN segment of the requesting host.

You can configure IGMPv2 or IGMPv3 on an interface. You have to configure IGMPv3 with (S, G) to support SSM mode. By default, the software enables IGMPv2.

IGMP Snooping

IGMP snooping is a feature that limits multicast traffic on VLANs to the subset of ports that have known receivers. By examining (snooping) IGMP membership report messages from interested hosts, multicast traffic is sent only to VLAN ports that interested hosts reside on. By default, IGMP snooping is running on the system.

Interdomain Multicast

Cisco NX-OS provides several methods that allow multicast traffic to flow between PIM domains.

SSM

The PIM software uses SSM to construct a shortest path tree from the designated router for the receiver to a known source IP address, which may be in another PIM domain. The ASM and Bidir modes mode cannot access sources from another PIM domain without the use of another protocol.

Once you enable PIM in your networks, you can use SSM to reach any multicast source that has an IP address known to the designated router for the receiver.

MSDP

Multicast Source Discovery Protocol (MSDP) is a multicast routing protocol that is used with PIM to support the discovery of multicast sources in different PIM domains.

Note

Cisco NX-OS supports the PIM Anycast-RP, which does not require MSDP configuration.

MBGP

Multiprotocol BGP (MBGP) defines extensions to BGP4 that enable routers to carry multicast routing information. PIM can use this multicast information to reach sources in external BGP autonomous systems.

MRIB

The Cisco NX-OS IPv4 Multicast Routing Information Base (MRIB) is a repository for route information that is generated by multicast protocols such as PIM and IGMP. The MRIB does not affect the route information itself. The MRIB maintains independent route information for each virtual routing and forwarding (VRF) instance.

The major components of the Cisco NX-OS multicast software architecture are as follows:

- The Multicast FIB (MFIB) Distribution (MFDM) API defines an interface between the multicast Layer 2 and Layer 3 control plane modules, including the MRIB, and the platform forwarding plane. The control plane modules send the Layer 3 route update using the MFDM API.
- The multicast FIB distribution process distributes the multicast update messages to all the relevant modules and the standby supervisor. It runs only on the supervisor.
- The Layer 2 multicast client process sets up the Layer 2 multicast hardware forwarding path. It runs on both the supervisor and the modules.
- The unicast and multicast FIB process manages the Layer 3 hardware forwarding path. It runs on both the supervisor and the modules.

The following figure shows the Cisco NX-OS multicast software architecture.

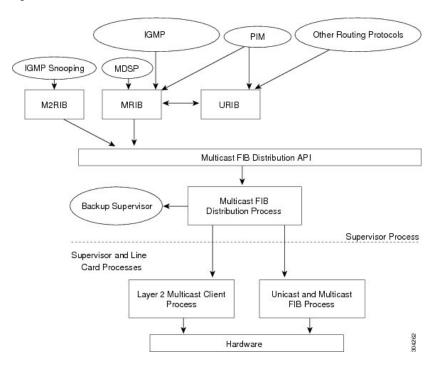


Figure 7: Cisco NX-OS Multicast Software Architecture

Virtual Port Channels and Multicast

A virtual port channel (vPC) allows a single device to use a port channel across two upstream switches. When you configure a vPC, the following multicast features might be affected:

- PIM—Cisco NX-OS software for the Cisco Nexus 9000 Series switches does not support PIM Bidir on a vPC.
- IGMP snooping—You should configure the vPC peers identically.

It is recommended to configure a snooping querier on a L2 device with lower IP address to force the L2 device as the querier. This will be useful in handling the scenario where multi chassis EtherChannel trunk (MCT) is down.

Guidelines and Limitations for Multicast

- Layer 3 Ethernet port-channel subinterfaces are not supported with multicast routing.
- Layer 2 IPv6 multicast packets will be flooded on the incoming VLAN.
- Traffic storm control is not supported for unknown multicast traffic.
- For Cisco Nexus 9300 platform switches, Layer 3 multicast routing on FEX ports is supported beginning with Cisco NX-OS Release 7.0(3)I4(2), and Layer 3 multicast routing on FEX port channels is supported beginning with Cisco NX-OS Release 7.0(3)I5(2). For Cisco Nexus 9300-EX and -EX platform switches, Layer 3 multicast routing on FEX ports and FEX port channels is supported beginning with Cisco NX-OS Release 7.0(3)I5(2).

IPv6 multicast is not supported on Cisco Nexus 9500 R Series line cards.

High-Availability Requirements for Multicast

After a multicast routing protocol is restarted, its state is recovered from the MRIB process. When a supervisor switchover occurs, the MRIB recovers its state from the hardware, and the multicast protocols recover their state from periodic message activity. For more information about high availability, see the *Cisco Nexus 9000* Series NX-OS High Availability and Redundancy Guide.

Virtual Device Contexts

Cisco NX-OS can segment operating system and hardware resources into virtual device contexts (VDCs) that emulate virtual devices. The Cisco Nexus 9000 Series switches currently do not support multiple VDCs. All switch resources are managed in the default VDC.

Troubleshooting Inconsistency Between SW and HW Multicast Routes

Symptom

This section provides symptoms, possible causes, and recommended actions for when *, G, or S,G entries that are seen in the MRIB with active flow, but are not programmed in MFIB.

Possible Cause

The issue can be seen when numerous active flows are received beyond the hardware capacity. This causes some of the entries not to be programmed in hardware while there is no free hardware index.

If the number of active flows are significantly reduced to free up the hardware resource, inconsistency may be seen between MRIB and MFIB for flows that were previously affected when the hardware table was full until the entry, times out, repopulates, and triggers programming.

There is currently no mechanism to walk the MRIB table and reprogram missing entries in HW after hardware resource is freed.

Corrective Action

To ensure reprogramming of the entries, use the clear ip mroute * command.

I

Technical Assistance

Description	Link
Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	

I

Configuring IGMP

This chapter describes how to configure the Internet Group Management Protocol (IGMP) on Cisco NX-OS devices for IPv4 networks.

- About IGMP, on page 17
- Prerequisites for IGMP, on page 20
- Guidelines and Limitations for IGMP, on page 20
- Default Settings for IGMP, on page 21
- Configuring IGMP Parameters, on page 21
- Restarting the IGMP Process, on page 29
- Verifying the IGMP Configuration, on page 29
- Configuration Examples for IGMP, on page 30

About IGMP

IGMP is an IPv4 protocol that a host uses to request multicast data for a particular group. Using the information obtained through IGMP, the software maintains a list of multicast group or channel memberships on a per-interface basis. The systems that receive these IGMP packets send multicast data that they receive for requested groups or channels out the network segment of the known receivers.

By default, the IGMP process is running. You cannot enable IGMP manually on an interface. IGMP is automatically enabled when you perform one of the following configuration tasks on an interface:

- Enable PIM
- · Statically bind a local multicast group
- Enable link-local group reports

IGMP Versions

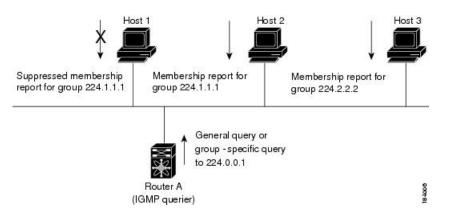
The device supports IGMPv2 and IGMPv3, and IGMPv1 report reception.

By default, the software enables IGMPv2 when it starts the IGMP process. You can enable IGMPv3 on interfaces where you want its capabilities.

IGMPv3 includes the following key changes from IGMPv2:

- Support for Source-Specific Multicast (SSM), which builds shortest path trees from each receiver to the source, through the following features:
 - Host messages that can specify both the group and the source.
 - The multicast state that is maintained for groups and sources, not just for groups as in IGMPv2.
- Hosts no longer perform report suppression, which means that hosts always send IGMP membership reports when an IGMP query message is received.

The Cisco Nexus 9000 Series switches do not support SSM until Cisco NX-OS Release 7.0(3)I2(1).


For detailed information about IGMPv2, see RFC 2236.

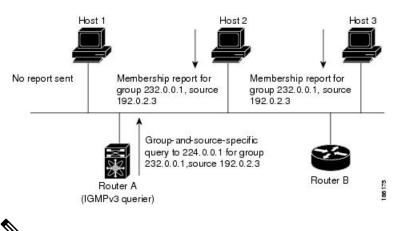
For detailed information about IGMPv3, see RFC 5790.

IGMP Basics

This figure shows the basic IGMP process of a router that discovers multicast hosts. Hosts 1, 2, and 3 send unsolicited IGMP membership report messages to initiate receiving multicast data for a group or channel.

Figure 8: IGMPv1 and IGMPv2 Query-Response Process

In the figure below, router A, which is the IGMP designated querier on the subnet, sends query messages to the all-hosts multicast group at 224.0.0.1 periodically to discover whether any hosts want to receive multicast data. You can configure the group membership timeout value that the router uses to determine that no members of a group or source exist on the subnet.


The software elects a router as the IGMP querier on a subnet if it has the lowest IP address. As long as a router continues to receive query messages from a router with a lower IP address, it resets a timer that is based on its querier timeout value. If the querier timer of a router expires, it becomes the designated querier. If that router later receives a host query message from a router with a lower IP address, it drops its role as the designated querier and sets its querier timer again.

In this figure, host 1's membership report is suppressed, and host 2 sends its membership report for group 224.1.1.1 first. Host 1 receives the report from host 2. Because only one membership report per group needs to be sent to the router, other hosts suppress their reports to reduce network traffic. Each host waits for a random time interval to avoid sending reports at the same time. You can configure the query maximum response time parameter to control the interval in which hosts randomize their responses.

Note IGMPv1 and IGMPv2 membership report suppression occurs only on hosts that are connected to the same port.

In this figure, router A sends the IGMPv3 group-and-source-specific query to the LAN. Hosts 2 and 3 respond to the query with membership reports that indicate that they want to receive data from the advertised group and source. This IGMPv3 feature supports SSM.

Figure 9: IGMPv3 Group-and-Source-Specific Query

IGMPv3 hosts do not perform IGMP membership report suppression.

Messages sent by the designated querier have a time-to-live (TTL) value of 1, which means that the messages are not forwarded by the directly connected routers on the subnet. You can configure the frequency and number of query messages sent specifically for IGMP startup, and you can configure a short query interval at startup so that the group state is established as quickly as possible. Although usually unnecessary, you can tune the query interval used after startup to a value that balances the responsiveness to host group membership messages and the traffic created on the network.

∕!∖

Caution

Changing the query interval can severely impact multicast forwarding.

When a multicast host leaves a group, a host that runs IGMPv2 or later sends an IGMP leave message. To check if this host is the last host to leave the group, the software sends an IGMP query message and starts a timer that you can configure called the last member query response interval. If no reports are received before the timer expires, the software removes the group state. The router continues to send multicast traffic for a group until its state is removed.

You can configure a robustness value to compensate for packet loss on a congested network. The robustness value is used by the IGMP software to determine the number of times to send messages.

Link local addresses in the range 224.0.0.0/24 are reserved by the Internet Assigned Numbers Authority (IANA). Network protocols on a local network segment use these addresses; routers do not forward these addresses because they have a TTL of 1. By default, the IGMP process sends membership reports only for nonlink local addresses, but you can configure the software to send reports for link local addresses.

Prerequisites for IGMP

IGMP has the following prerequisites:

- You are logged onto the device.
- For global configuration commands, you are in the correct virtual routing and forwarding (VRF) mode. The default configuration mode shown in the examples in this chapter applies to the default VRF.

Guidelines and Limitations for IGMP

IGMP has the following guidelines and limitations:

- The IGMP host SG proxy is not supported with vPC.
- Excluding or blocking a list of sources according to IGMPv3 (RFC 5790) is not supported.
- For Cisco Nexus 9200 Series switches, the S, G routes do not expire if IGMP or source traffic originates from the same IP address.
- IGMP is supported on Cisco Nexus 9300-FX platform switches.
- Configuring the route-map in **igmp static-oif** is limited to 255 range. When the route-map is configured with a range larger than /24 such as /8 or /4, the following log will be displayed:

```
2020 May 13 10:10:58 LO5S-NSWDDNGEF01B %IGMP-3-GROUP_RANGE_IGNORE: igmp [29534] Too
many Groups in Group Range 224.4.1.0 - 224.4.13.255
2020 May 13 12:26:13 LO5S-NSWDDNGEF01B %IGMP-3-GROUP_RANGE_IGNORE: igmp [29534] Too
many Groups in Group Range 224.4.1.0 - 224.4.13.255
2020 May 13 12:47:01 LO5S-NSWDDNGEF01B %IGMP-3-GROUP_RANGE_IGNORE: igmp [29534] Too
many Groups in Group Range 224.4.0.64 - 224.4.3.64
```

The work around for this limitation is to split the required range to multiple 255 ranges or smaller and use the multiple route-map sequences for each range.

 Configuration of nondefault IGMP related timers can be done on L3 physical interface and SVI, or in VLAN configuration mode if querier IP is configured in VLAN configuration mode. It is not recommended to configure querier IP in VLAN configuration mode if there is PIM enabled SVI for that VLAN.

When query maximum response time (query-max-response-time) and IGMP query-interval are modified on the L3 physical interface or SVI, IGMP querier, timeout gets adjusted automatically to 2 times query interval plus MRT. To modify further, use **ip igmp querier-timeout** command for L3 physical interface.

However, for SVI the value must be set according to the value shown in **show ip igmp interface vlan X** command output via **ip igmp snooping querier-timeout** command in VLAN configuration mode for querier election to happen as expected shell current querier become unavailable.

For L3 physical interface, use **show ip igmp interface** <**intf**> command . For SVI, use **show ip igmp snooping querier** <**vlan>** to display relevant igmp snooping querier information. Both configuration commands should show same querier timeout for correct configuration.

PIM hello interval determines how fast a PIM neighbor determines its peer availability. If the unavailable PIM neighbor happens to also be IGMP querier, new querier election happens at the same time as neighbor

expiry (90 seconds - 3 x 30 seconds PIM hello interval). At the same time though L2 snooping querier timer dictates when new querier election is to happen (default 2 x query interval plus MRT).

Default Settings for IGMP

This table lists the default settings for IGMP parameters.

Table 2: Default IGMP Parameters

Parameters	Default
IGMP version	2
Startup query interval	30 seconds
Startup query count	2
Robustness value	2
Querier timeout	255 seconds
Query timeout	255 seconds
Query max response time	10 seconds
Query interval	125 seconds
Last member query response interval	1 second
Last member query count	2
Group membership timeout	260 seconds
Report link local multicast groups	Disabled
Enforce router alert	Disabled
Immediate leave	Disabled

Configuring IGMP Parameters

You can configure the IGMP global and interface parameters to affect the operation of the IGMP process.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Configuring IGMP Interface Parameters

You can configure the optional IGMP interface parameters described in the table below.

Parameter	Description	
IGMP version	IGMP version that is enabled on the interface. The IGMP version can be 2 or 3. The default is 2.	
Static multicast groups	Multicast groups that are statically bound to the interface. You can configure the groups to join the interface with the (*, G) state or specify a source IP to join with the (S, G) state. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.	
	Note Although you can configure the (S, G) state, the source tree is built only if you enable IGMPv3.	
	You can configure a multicast group on all the multicast-capable routers on the network so that pinging the group causes all the routers to respond.	
Static multicast groups on OIF	Multicast groups that are statically bound to the output interface. You can configure the groups to join the output interface with the (*, G) state or specify a source IP to join with the (S, G) state. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.	
	Note Although you can configure the (S, G) state, the source tree is built only if you enable IGMPv3.	
Startup query interval	Startup query interval. By default, this interval is shorter than the query interval so that the software can establish the group state as quickly as possible. Values range from 1 to 18,000 seconds. The default is 31 seconds.	
Startup query count	Number of queries sent at startup that are separated by the startup query interval. Values range from 1 to 10. The default is 2.	
Robustness value	Robustness variable that you can tune to reflect expected packet loss on a congested network. You can increase the robustness variable to increase the number of times that packets are resent. Values range from 1 to 7. The default is 2.	
Querier timeout	Number of seconds that the software waits after the previous querier has stopped querying and before it takes over as the querier. Values range from 1 to 65,535 seconds. The default is 255 seconds.	
Query max response time	Maximum response time advertised in IGMP queries. You can tune the IGMP messages on the network by setting a larger value so that host responses are spread out over a longer time. This value must be less than the query interval. Values range from 1 to 25 seconds. The default is 10 seconds.	

Parameter	Description	
Query interval	Frequency at which the software sends IGMP host query messages. You can tune the number of IGMP messages on the network by setting a larger value so that the software sends IGMP queries less often. Values range from 1 to 18,000 seconds. The default is 125 seconds.	
Last member query response interval	Interval in which the software sends a response to an IGMP query after receiving a host leave message from the last known active host on the subnet. If no reports are received in the interval, the group state is deleted. You can use this value to tune how quickly the software stops transmitting on the subnet. The software can detect the loss of the last member of a group or source more quickly when the values are smaller. Values range from 1 to 25 seconds. The default is 1 second.	
Last member query count	Number of times that the software sends an IGMP query, separated by the last member query response interval, in response to a host leave message from the last known active host on the subnet. Values range from 1 to 5. The default is 2.	
	Setting this value to 1 means that a missed packet in either direction causes the software to remove the multicast state from the queried group or channel. The software may wait until the next query interval before the group is added again.	
Group membership timeout	Group membership interval that must pass before the router decides that no members of a group or source exist on the network. Values range from 3 to 65,535 seconds. The default is 260 seconds.	
Report link local multicast groups	Option that enables sending reports for groups in 224.0.0.0/24. Link local addresses are used only by protocols on the local network. Reports are always sent for nonlink local groups. The default is disabled.	
Report policy	Access policy for IGMP reports that is based on a route-map policy.	
Access groups	Option that configures a route-map policy to control the multicast groups that hosts on the subnet serviced by an interface can join.	
	Note Only the match ip multicast group command is supported in this route map policy. The match ip address command for matching an ACL is not supported.	
Immediate leave	Option that minimizes the leave latency of IGMPv2 group memberships on a given IGMP interface because the device does not send group-specific queries. When immediate leave is enabled, the device removes the group entry from the multicast routing table immediately upon receiving a leave message for the group. The default is disabled.	
	Note Use this command only when there is one receiver behind the interface for a given group.	

I

¹ To configure route-map policies, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	interface interface	Enters interface configuration mode.	
	Example:	Note Use the commands listed from	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	step-3 to configure the IGMP interface parameters.	
Step 3	ip igmp version value	Sets the IGMP version to the value specified.	
	Example:	Values can be 2 or 3. The default is 2.	
	<pre>switch(config-if)# ip igmp version 3</pre>	The no form of the command sets the version to 2.	
Step 4	ip igmp join-group {group [source source] route-map policy-name}	Configures an interface on the device to join the specified group or channel. The device	
	Example:	accepts the multicast packets for CPU consumption only.	
	<pre>switch(config-if)# ip igmp join-group 230.0.0</pre>	Caution The device CPU must be able to handle the traffic generated by using this command. Because of CPU load constraints, using this command, especially in any form of scale, is not recommended. Consider using the ip igmp static-oif command instead.	
Step 5	<pre>ip igmp static-oif {group [source source] route-map policy-name}</pre>	Statically binds a multicast group to the outgoing interface, which is handled by the device hardware. If you specify only the group	
	Example:		
	switch(config-if)# ip igmp static-oif	address, the (*, G) state is created. If you specify the source address, the (S, G) state is	
	230.0.0.0	specify the source address, the (3, 6) state is created. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.	
		Note A source tree is built for the (S, G) state only if you enable IGMPv3.	

	Command or Action	Purpose
Step 6	<pre>ip igmp startup-query-interval seconds Example: switch(config-if)# ip igmp startup-query-interval 25</pre>	Sets the query interval used when the software starts up. Values can range from 1 to 18,000 seconds. The default is 31 seconds.
Step 7	<pre>ip igmp startup-query-count count Example: switch(config-if)# ip igmp startup-query-count 3</pre>	Sets the query count used when the software starts up. Values can range from 1 to 10. The default is 2.
Step 8	<pre>ip igmp robustness-variable value Example: switch(config-if)# ip igmp robustness-variable 3</pre>	Sets the robustness variable. Values can range from 1 to 7. The default is 2.
Step 9	<pre>ip igmp querier-timeout seconds Example: switch(config-if)# ip igmp querier-timeout 300</pre>	Sets the querier timeout that the software uses when deciding to take over as the querier. Values can range from 1 to 65,535 seconds. The default is 255 seconds.
Step 10	<pre>ip igmp query-timeout seconds Example: switch(config-if)# ip igmp query-timeout 300</pre>	Sets the query timeout that the software uses when deciding to take over as the querier. Values can range from 1 to 65,535 seconds. The default is 255 seconds.NoteThis command has the same functionality as the ip igmp querier-timeout command.
Step 11	<pre>ip igmp query-max-response-time seconds Example: switch(config-if)# ip igmp query-max-response-time 15</pre>	Sets the response time advertised in IGMP queries. Values can range from 1 to 25 seconds. The default is 10 seconds.
Step 12	<pre>ip igmp query-interval interval Example: switch(config-if)# ip igmp query-interval 100</pre>	Sets the frequency at which the software sends IGMP host query messages. Values can range from 1 to 18,000 seconds. The default is 125 seconds.
Step 13	<pre>ip igmp last-member-query-response-time seconds Example: switch(config-if) # ip igmp last-member-query-response-time 3</pre>	Sets the query interval waited after sending membership reports before the software deletes the group state. Values can range from 1 to 25 seconds. The default is 1 second.
Step 14	ip igmp last-member-query-count <i>count</i> Example:	Sets the number of times that the software sends an IGMP query in response to a host

	Command or Action	Purpose
	<pre>switch(config-if)# ip igmp last-member-query-count 3</pre>	leave message. Values can range from 1 to 5. The default is 2.
Step 15	<pre>ip igmp group-timeout seconds Example: switch(config-if)# ip igmp group-timeout 300</pre>	Sets the group membership timeout for IGMPv2. Values can range from 3 to 65,535 seconds. The default is 260 seconds.
Step 16	<pre>ip igmp report-link-local-groups Example: switch(config-if)# ip igmp report-link-local-groups</pre>	Enables sending reports for groups in 224.0.0.0/24. Reports are always sent for nonlink local groups. By default, reports are not sent for link local groups.
Step 17	<pre>ip igmp report-policy policy Example: switch(config-if)# ip igmp report-policy my_report_policy</pre>	Configures an access policy for IGMP reports that is based on a route-map policy.
Step 18	<pre>ip igmp access-group policy Example: switch(config-if)# ip igmp access-group my_access_policy</pre>	 Configures a route-map policy to control the multicast groups that hosts on the subnet serviced by an interface can join. Note Only the match ip multicast group command is supported in this route map policy. The match ip address command for matching an ACL is not supported.
Step 19	<pre>ip igmp immediate-leave Example: switch(config-if)# ip igmp immediate-leave</pre>	Enables the device to remove the group entry from the multicast routing table immediately upon receiving a leave message for the group. Use this command to minimize the leave latency of IGMPv2 group memberships on a given IGMP interface because the device does not send group-specific queries. The default is disabled. Note Use this command only when there is one receiver behind the interface for a given group.
Step 20	<pre>(Optional) show ip igmp interface [interface] [vrf vrf-name all] [brief] Example: switch(config) # show ip igmp interface</pre>	Displays IGMP information about the interface.

	Command or Action	Purpose
Step 21	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring an IGMP SSM Translation

You can configure an SSM translation to provide SSM support when the router receives IGMPv1 or IGMPv2 membership reports. Only IGMPv3 provides the capability to specify group and source addresses in membership reports. By default, the group prefix range is 232.0.0/8.

The IGMP SSM translation feature enables an SSM-based multicast core network to be deployed when the multicast host does not support IGMPv3 or is forced to send group joins instead of (S,G) reports to interoperate with Layer 2 switches. The IGMP SSM translation feature provides the functionality to configure multiple sources for the same SSM group. Protocol Independent Multicast (PIM) must be configured on the device before configuring the SSM translation.

This table lists the example SSM translations.

Group Prefix	Source Address
232.0.0.0/8	10.1.1.1
232.0.0.0/8	10.2.2.2
232.1.0.0/16	10.3.3.3
232.1.1.0/24	10.4.4.4

Table 4: Example SSM Translations

This table shows the resulting MRIB routes that the IGMP process creates when it applies an SSM translation to the IGMP membership report. If more than one translation applies, the router creates the (S, G) state for each translation.

Table 5: Example Result of Applying SSM Translations

IGMPv2 Membershi	p Report	Resulting MRIB Route
232.1.1.1		(10.4.4.4, 232.1.1.1)
232.2.2.2		(10.1.1.1, 232.2.2.2) (10.2.2.2, 232.2.2.2)

I

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ip igmp ssm-translate group-prefix	Configures the translation of IGMPv1 or
	source-addr	IGMPv2 membership reports by the IGMP
	Example:	process to create the (S,G) state as if the route had received an IGMPv3 membership report.
	<pre>switch(config)# ip igmp ssm-translate 232.0.0.0/8 10.1.1.1</pre>	
Step 3	(Optional) show running-configuration igmp	Shows the running-configuration information,
	Example:	including ssm-translate command lines.
	<pre>switch(config)# show running-configuration igmp</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch(config)# copy running-config startup-config	

Configuring the Enforce Router Alert Option Check

You can configure the enforce router alert option check for IGMPv2 and IGMPv3 packets.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip igmp enforce-router-alert	Enables or disables the enforce router alert
	Example:	option check for IGMPv2 and IGMPv3 packets. By default, the enforce router alert option check
	<pre>switch(config)# ip igmp enforce-router-alert</pre>	is enabled.
Step 3	(Optional) show running-configuration igmp	Shows the running-configuration information.
	Example:	
	<pre>switch(config)# show running-configuration igmp</pre>	

	Command or Action	Purpose
Step 4	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Restarting the IGMP Process

You can restart the IGMP process and optionally flush all routes.

Procedure

	Command or Action	Purpose
Step 1	restart igmp	Restarts the IGMP process.
	Example:	
	switch# restart igmp	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 3	ip igmp flush-routes	Removes routes when the IGMP process is
	Example:	restarted. By default, routes are not flushed.
	<pre>switch(config)# ip igmp flush-routes</pre>	
Step 4	(Optional) show running-configuration igmp	Shows the running-configuration information.
	Example:	
	<pre>switch(config)# show running-configuration igmp</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	
	1	1

Verifying the IGMP Configuration

To display the IGMP configuration information, perform one of the following tasks:

Command	Description
<pre>show ip igmp interface [interface] [vrf vrf-name all] [brief]</pre>	Displays IGMP information about all interfaces or a selected interface, the default VRF, a selected VRF, or all VRFs. If IGMP is in vPC mode, use this command to display vPC statistics.
<pre>show ip igmp groups [{source [group]}] {group [source]}] [interface] [summary] [vrf vrf-name all]</pre>	Displays the IGMP attached group membership for a group or interface, the default VRF, a selected VRF, or all VRFs.
<pre>show ip igmp route [{source [group]}] {group [source]}] [interface] [summary] [vrf vrf-name all]</pre>	Displays the IGMP attached group membership for a group or interface, the default VRF, a selected VRF, or all VRFs.
show ip igmp local-groups	Displays the IGMP local group membership.
show running-configuration igmp	Displays the IGMP running-configuration information.
show startup-configuration igmp	Displays the IGMP startup-configuration information.

Configuration Examples for IGMP

The following example shows how to configure the IGMP parameters:

```
configure terminal
  ip igmp ssm-translate 232.0.0.0/8 10.1.1.1
  interface ethernet 2/1
   ip igmp version 3
   ip igmp join-group 230.0.0.0
   ip igmp startup-query-interval 25
   ip igmp startup-query-count 3
    ip igmp robustness-variable 3
   ip igmp querier-timeout 300
   ip igmp query-timeout 300
   ip igmp query-max-response-time 15
   ip igmp query-interval 100
    ip igmp last-member-query-response-time 3
    ip igmp last-member-query-count 3
   ip igmp group-timeout 300
   ip igmp report-link-local-groups
   ip igmp report-policy my_report_policy
   ip igmp access-group my_access_policy
```


Configuring MLD

This chapter describes how to configure Multicast Listener Discovery (MLD) on Cisco NX-OS devices for IPv6 networks.

- About MLD, on page 31
- Prerequisites for MLD, on page 34
- Guidelines and Limitations for MLD, on page 34
- Default Settings for MLD, on page 34
- Configuring MLD Parameters, on page 35
- Verifying the MLD Configuration, on page 41
- Configuration Example for MLD, on page 42

About MLD

MLD is an IPv6 protocol that a host uses to request multicast data for a particular group. Using the information obtained through MLD, the software maintains a list of multicast group or channel memberships on a per-interface basis. The devices that receive MLD packets send the multicast data that they receive for requested groups or channels out the network segment of the known receivers.

MLDv1 is derived from IGMPv2, and MLDv2 is derived from IGMPv3. IGMP uses IP Protocol 2 message types while MLD uses IP Protocol 58 message types, which is a subset of the ICMPv6 messages.

The MLD process is started automatically on the device. You cannot enable MLD manually on an interface. MLD is enabled automatically when you perform one of the following configuration tasks on an interface:

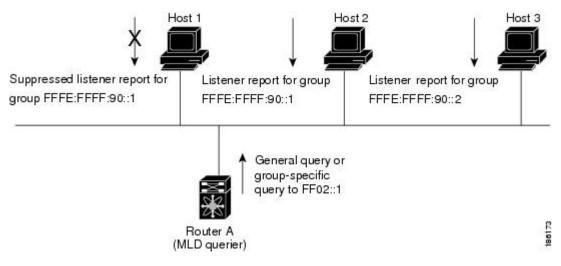
- Enable PIM6
- Statically bind a local multicast group
- Enable link-local group reports

MLD Versions

The device supports MLDv1 and MLDv2. MLDv2 supports MLDv1 listener reports.

By default, the software enables MLDv2 when it starts the MLD process. You can enable MLDv1 on interfaces where you want only its capabilities.

MLDv2 includes the following key changes from MLDv1:


- Support for Source-Specific Multicast (SSM), which builds shortest path trees from each receiver to the source, through the following features:
 - Host messages that can specify both the group and the source.
 - The multicast state that is maintained for groups and sources, not just for groups as in MLDv1.
- Hosts no longer perform report suppression, which means that hosts always send MLD listener reports when an MLD query message is received.

For detailed information about MLDv1, see RFC 2710. For detailed information about MLDv2, see RFC 3810.

MLD Basics

The basic MLD process of a router that discovers multicast hosts is shown in the figure below.

Figure 10: MLD Query-Response Process

Hosts 1, 2, and 3 send unsolicited MLD listener report messages to initiate receiving multicast data for a group or channel. Router A, which is the MLD designated querier on the subnet, sends a general query message to the link-scope all-nodes multicast address FF02::1 periodically to discover which multicast groups hosts want to receive. The group-specific query is used to discover whether a specific group is requested by any hosts. You can configure the group membership timeout value that the router uses to determine if any members of a group or source exist on the subnet.

Host 1's listener report is suppressed, and host 2 sends its listener report for group FFFE:FFFF:90::1 first. Host 1 receives the report from host 2. Because only one listener report per group needs to be sent to the router, other hosts suppress their reports to reduce network traffic. Each host waits for a random time interval to avoid sending reports at the same time. You can configure the query maximum response time parameter to control the interval at which hosts randomize their responses.

Note MLDv1 membership report suppression occurs only on hosts that are connected to the same port.

Router A sends the MLDv2 group-and-source-specific query to the LAN. Hosts 2 and 3 respond to the query with listener reports to indicate that they want to receive data from the advertised group and source. This MLDv2 feature supports SSM.

The software elects a router as the MLD querier on a subnet if it has the lowest IP address. As long as a router continues to receive query messages from a router with a lower IP address, it remains a nonquerier and resets a timer that is based on its querier timeout value. If the querier timer of a router expires, it becomes the designated querier. If that router later receives a host query message from a router with a lower IP address, it drops its role as the designated querier and sets its querier timer again.

Messages sent by the designated querier have a time-to-live (TTL) value of 1, which means that the messages are not forwarded by the directly connected routers on the subnet, and you can configure the frequency and number of query messages sent specifically for MLD startup. You can configure a short query interval at startup so that the group state is established as quickly as possible. Although usually unnecessary, you can tune the query interval used after startup to a value that balances responsiveness to host group membership and the traffic created on the network.

Caution If you change the query interval, you can severely impact multicast forwarding in your network.

When a multicast host leaves a group, it should send a done message for MLDv1 or a listener report that excludes the group to the link-scope all-routers multicast address FF02::2. To check if this host is the last host to leave the group, the software sends an MLD query message and starts a timer that you can configure called the last member query response interval. If no reports are received before the timer expires, the software removes the group state. The router continues to send multicast traffic for a group until its state is removed.

You can configure a robustness value to compensate for the packet loss on a congested network. The robustness value is used by the MLD software to determine the number of times to send messages.

Link local addresses in the range FF02::0/16 have link scope, as defined by the Internet Assigned Numbers Authority (IANA). Network protocols on a local network segment use these addresses; routers do not forward these addresses because they have a TTL of 1. By default, the MLD process sends listener reports only for nonlink local addresses, but you can configure the software to send reports for link local addresses.

Prerequisites for MLD

MLD has the following prerequisites:

- You are logged into the device.
- For global configuration commands, you are in the correct virtual routing and forwarding (VRF) mode. The default configuration mode shown in the examples in this chapter applies to the default VRF.

Guidelines and Limitations for MLD

MLD has the following guidelines and limitations:

- Excluding or blocking a list of sources according to MLDv2 (RFC 3810) is not supported.
- Only the Cisco Nexus 9200, 9300, and 9300-EX Series switches support MLD.
- The Cisco Nexus 3232C and 3264Q switches do not support MLD.

Default Settings for MLD

Table 6: Default MLD Parameters

Parameters	Default
MLD version	2
Startup query interval	30 seconds
Startup query count	2
Robustness value	2
Querier timeout	255 seconds
Query timeout	255 seconds
Query max response time	10 seconds
Query interval	125 seconds
Last member query response interval	1 second
Last member query count	2

Parameters	Default
Group membership timeout	260 seconds
Report link local multicast groups	Disabled
Immediate leave	Disabled

Configuring MLD Parameters

You can configure the MLD global and interface parameters to affect the operation of the MLD process.

Note

Before you can configure MLD snooping, enable the MLD feature using the **ipv6 mld snooping** and **system mld snooping** commands.

Configuring MLD Interface Parameters

Table 7: MLD Interface Parameters

Parameter	Description	
MLD version	The MLD version that is enabled on the interface. MLDv2 supports MLDv1. The MLD version can be 1 or 2. The default is 2.	
Static multicast groups	Multicast groups that are statically bound to the interface. You can configure the groups to join the interface with the (*, G) state or specify a source IP to join with the (S, G) state. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.	
	Note Although you can configure the (S, G) state, the source tree is built only if you enable MLDv2.	
	You can configure a multicast group on all the multicast-capable routers or the network so that pinging the group causes all the routers to respond.	
Static multicast groups on OIF	F Multicast groups that are statically bound to the output interface. You can configure the groups to join the output interface with the (*, G) state or specify a source IP to join with the (S, G) state. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.	
	Although you can configure the (S, G) state, the source tree is built only if you enable MLDv2.	
	Note Group prefixes in the route map must have a mask of 120 longer.	

I

Parameter	Description	
Startup query interval	Startup query interval. By default, this interval is shorter than the query interval so that the software can establish the group state as quickly as possible. Values range from 1 to 18,000 seconds. The default is 30 seconds.	
Startup query count	The number of queries sent at startup that are separated by the startup query interval. Values range from 1 to 10. The default is 2.	
Robustness value	A robustness variable that you can tune to reflect expected packet loss on a congested network. You can increase the robustness variable to increase the number of times that packets are resent. Values range from 1 to 7. The default is 2.	
Querier timeout	The number of seconds that the software waits after the previous querier has stopped querying and before it takes over as the querier. Values range from 1 to 65,535 seconds. The default is 255 seconds.	
Query max response time	The maximum response time advertised in MLD queries. You can tune the burstiness of MLD messages on the network by setting a larger value so that host responses are spread out over a longer time. This value must be less than the query interval. Values range from 1 to 25 seconds. The default is 10 seconds.	
Query interval	The frequency at which the software sends MLD host query messages. You can tune the number of MLD messages on the network by setting a larger value so that the software sends MLD queries less often. Values range from 1 to 18,000 seconds. The default is 125 seconds.	
Last member query response interval	The query interval for response to an MLD query that the software sends after receiving a host leave message from the last known active host on the subnet. If no reports are received in the interval, the group state is deleted. You can use this value to tune how quickly the software stops transmitting on the subnet. The software can detect the loss of the last member of a group or source more quickly when the values are smaller. Values range from 1 to 25 seconds. The default is 1 second.	
Last member query count	The number of times that the software sends an MLD query, separated by the last member query response interval, in response to a host leave message from the last known active host on the subnet. Values range from 1 to 5. The default is 2.	
	Caution Setting this value to 1 means that a missed packet in either direction causes the software to remove the multicast state from the queried group or channel. The software can wait until the next query interval before the group is added again.	
Group membership timeout	The group membership interval that must pass before the router decides that no members of a group or source exist on the network. Values range from 3 to 65,535 seconds. The default is 260 seconds.	

Parameter	Description	
Report link local multicast groups	An option that enables sending reports for groups in FF02::0/16. Link local addresses are used only by protocols on the local network. Reports are always sent for nonlink local groups. The default is disabled.	
Report policy	An access policy for MLD reports that is based on a route-map policy.	
Access groups	 An option that configures a route-map policy to control the multicast groups that hosts on the subnet serviced by an interface can join. Note Only the match ip multicast group command is supported in 	
	this route map policy. The match ip address command for matching an ACL is not supported.	
Immediate leave	An option that minimizes the leave latency of MLDv1 group memberships on a given MLD interface because the device does not send group-specific queries. When immediate leave is enabled, the device will remove the group entry from the multicast routing table immediately upon receiving a leave message for the group. The default is disabled.	
	Note Use this command only when there is one receiver behind the interface for a given group.	

² To configure route-map policies, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface interface	Enters interface configuration mode.
	<pre>Example: switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	Note Use the commands listed from step-3 to configure the MLD interface parameters.
Step 3	<pre>ipv6 mld version value Example: switch(config-if)# ipv6 mld version 2</pre>	Sets the MLD version that is enabled on the interface. MLDv2 supports MLDv1. Values can be 1 or 2. The default is 2. The <i>no</i> form of the command sets the version to 2.
Step 4	<pre>ipv6 mld join-group {group [source source] route-map policy-name} Example:</pre>	Statically binds a multicast group to the interface. If you specify only the group address, the (*, G) state is created. If you specify the source address, the (S, G) state is

I

	Command or Action	Purpose	
	<pre>switch(config-if)# ipv6 mld join-group FFFE::1</pre>	name that ranges, an	ou can specify a route-map policy lists the group prefixes, group d source prefixes to use with the multicast command.
		Note	A source tree is built for the (S, G) state only if you enable MLDv2.
		Caution	The device CPU must handle the traffic generated by using this command.
Step 5	<pre>ipv6 mld static-oif {group [source source] route-map policy-name} Example: switch(config-if) # ipv6 mld static-oif FFFE::1</pre>	Statically binds a multicast group to the outgoing interface, which is handled by the device hardware. If you specify only the group address, the (*, G) state is created. If you specify the source address, the (S, G) state is created. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.	
		Note	A source tree is built for the (S, G) state only if you enable MLDv2. The maximum number of groups
			supported per entry in the route map is 256.
Step 6	ipv6 mld startup-query-interval seconds	-	iery interval used when the software
	Example:	-	Values can range from 1 to 18,000 The default is 31 seconds.
	<pre>switch(config-if)# ipv6 mld startup-query-interval 25</pre>		
Step 7	ipv6 mld startup-query-count count	Sets the query count used when the software	
	Example:	starts up. default is 2	Values can range from 1 to 10. The
	<pre>switch(config-if)# ipv6 mld startup-query-count 3</pre>		-
Step 8	ipv6 mld robustness-variable value	Sets the robustness variable. You can use a larger value for a network prone to packet loss Values can range from 1 to 7. The default is	
	Example:		
	<pre>switch(config-if)# ipv6 mld robustness-variable 3</pre>	2.	
0/ 0	invé mid quariar timoaut seconds	Sets the au	uerier timeout that the software uses
Step 9	ipv6 mld querier-timeout seconds	bets the qu	action inflood that the software uses

	Command or Action	Purpose	
	<pre>switch(config-if)# ipv6 mld querier-timeout 300</pre>	Values can range from 1 to 65,535 seconds. The default is 255 seconds.	
Step 10	<pre>ipv6 mld query-timeout seconds Example: switch(config-if)# ipv6 mld query-timeout 300</pre>	Sets the query timeout that the software uses when deciding to take over as the querier. Values can range from 1 to 65,535 seconds. The default is 255 seconds.	
		Note This command has the same functionality as the ipv6 mld querier-timeout command.	
Step 11	ipv6 mld query-max-response-time seconds Example: switch(config-if)# ipv6 mld query-max-response-time 15	Sets the response time advertised in MLD queries. Values can range from 1 to 25 seconds. The default is 10 seconds.	
Step 12	<pre>ipv6 mld query-interval interval Example: switch(config-if)# ipv6 mld query-interval 100</pre>	Sets the frequency at which the software sends MLD host query messages. Values can range from 1 to 18,000 seconds. The default is 125 seconds.	
Step 13	<pre>ipv6 mld last-member-query-response-time seconds Example: switch(config-if)# ipv6 mld last-member-query-response-time 3</pre>	e Sets the query response time after sending membership reports before the software deletes the group state. Values can range from 1 to 25 seconds. The default is 1 second.	
Step 14	<pre>ipv6 mld last-member-query-count count Example: switch(config-if)# ipv6 mld last-member-query-count 3</pre>	Sets the number of times that the software sends an MLD query in response to a host leave message. Values can range from 1 to 5. The default is 2.	
Step 15	<pre>ipv6 mld group-timeout seconds Example: switch(config-if)# ipv6 mld group-timeout 300</pre>	MLDv2. Values can range from 3 to 65,53: seconds. The default is 260 seconds.	
Step 16	<pre>ipv6 mld report-link-local-groups Example: switch(config-if)# ipv6 mld report-link-local-groups</pre>	Enables sending reports for groups in 224.0.0.0/24. Reports are always sent for nonlink local groups. By default, reports are not sent for link local groups.	
Step 17	<pre>ipv6 mld report-policy policy Example: switch(config-if)# ipv6 mld report-policy my_report_policy</pre>	Configures an access policy for MLD reports that is based on a route-map policy.	

	Command or Action	Purpose
Step 18	<pre>ipv6 mld access-group policy Example: switch(config-if)# ipv6 mld access-group)</pre>	Configures a route-map policy to control the multicast groups that hosts on the subnet serviced by an interface can join.
	my_access_policy	NoteOnly the match ip multicast group command is supported in this route map policy. The match ip address command for matching an ACL is not supported.
Step 19	<pre>ipv6 mld immediate-leave Example: switch(config-if)# ipv6 mld immediate-leave</pre>	Enables the device to remove the group entry from the multicast routing table immediately upon receiving a leave message for the group. Use this command to mnimize the leave latency of MLDv1 group memberships on a given MLD interface because the device does not send group-specific queries. The default is disabled.
		Note Use this command only when there is one receiver behind the interface for a given group.
Step 20	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	<pre>Example: switch(config)# copy running-config startup-config</pre>	

Configuring an MLD SSM Translation

You can configure an SSM translation to provide SSM support when the router receives MLDv1 listener reports. Only MLDv2 provides the capability to specify group and source addresses in listener reports. By default, the group prefix range is FF3x/96.

Table 8: Example SSM Translations

Group Prefix	Source Address
FF30::0/16	2001:0DB8:0:ABCD::1
FF30::0/16	2001:0DB8:0:ABCD::2
FF30:30::0/24	2001:0DB8:0:ABCD::3
FF32:40::0/24	2001:0DB8:0:ABCD::4

The following table shows the resulting M6RIB routes that the MLD process creates when it applies an SSM translation to the MLD v1 listener report. If more than one translation applies, the router creates the (S, G) state for each translation.

Table 9: Example Result of Applying SSM Translations

MLDv1 Listener Report	Resulting M6RIB Route	
FF32:40::40	(2001:0DB8:0:ABCD::4, FF32:40::40)	
FF30:10::10	(2001:0DB8:0:ABCD::1, FF30:10::10) (2001:0DB8:0:ABCD::2, FF30:10::10)	

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2 ipv6 [icmp] mld ssm-translate group-prefix source-addr source-addr	ipv6 [icmp] mld ssm-translate group-prefix source-addr	Configures the translation of MLDv1 listener reports by the MLD process to create the (S, G)
	Example:	state as if the router had received an MLDv2 listener report.
	<pre>switch(config)# ipv6 mld ssm-translate FF30::0/16 2001:0DB8:0:ABCD::1</pre>	insteller report.
Step 3	(Optional) show running-configuration ssm-translate	Shows <i>ssm-translate</i> configuration lines in the running configuration.
	Example:	
	<pre>switch(config)# show running-configuration ssm-translate</pre>	
Step 4	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Verifying the MLD Configuration

To display the MLD configuration information, perform one of the following tasks:

show ipv6 mld groups [group interface] [vrf vrf-name all]	Displays the MLD attached group
	membership for a group or interface or for the default VRF, a selected VRF, or all VRFs.

show ipv6 mld local-groups	Displays the MLD local group
	membership.

The following example displays the **show ipv6 mld groups** command output. This output shows ten interfaces are sending MLD joins to group ff03:0:0:1::1 out of which nine interfaces are sending MLDv1 joins and the tenth interface is sending MLDv2 join with source 2005:0:0:1::2. There are nine entries for the group and tenth entry is appended as the source entry.

```
switch# show ipv6 mld groups vrf vrf1
MLD Connected Group Membership for VRF "VRF1" - 52 total entries
Type: S - Static, D - Dynamic, L - Local, T - SSM Translated, H - Host Proxy
        * - Cache Only
Group Address Type Interface

ff03:0:0:1::1 D Ethernet3/25.1

ff03:0:0:1::1 D Ethernet3/25.3
                                                               Uptime
                                                                             Expires
                                                                                          Last Reporter
                                                           00:02:13 00:03:47 fe80::1
                                                            00:02:13 00:04:12 fe80::2:0:0:1
1103.0.0.1.11DEthernet3/25.3ff03:0:0:1:11DEthernet3/25.5ff03:0:0:1:11DEthernet3/25.6ff03:0:0:1:11DEthernet3/25.7ff03:0:0:1:11DEthernet3/25.8ff03:0:0:1:11DEthernet3/25.92005:0:0:1:12DEthernet3/25.10
                                                            00:02:13 00:02:26 fe80::4:0:0:1
                                                            00:02:13 00:03:31 fe80::3:0:0:1
                                                            00:02:13 00:02:47 fe80::5:0:0:1
00:02:13 00:03:10 fe80::6:0:0:1
                                                            00:02:13 00:03:56 fe80::7:0:0:1
                                                            00:02:13 00:03:28 fe80::8:0:0:1
                                                             2d15h 00:03:37 fe80::9:0:0:1
```

Configuration Example for MLD

The following example shows how to configure MLD:

```
configure terminal
  ipv6 mld ssm-translate FF30::0/16 2001:0DB8:0:ABCD::1
  interface ethernet 2/1
   ipv6 mld version 2
   ipv6 mld join-group FFFE::1
   ipv6 mld startup-query-interval 25
   ipv6 mld startup-query-count 3
   ipv6 mld robustness-variable 3
   ipv6 mld querier-timeout 300
    ipv6 mld query-timeout 300
   ipv6 mld query-max-response-time 15
   ipv6 mld query-interval 100
    ipv6 mld last-member-query-response-time 3
   ipv6 mld last-member-query-count 3
    ipv6 mld group-timeout 300
    ipv6 mld report-link-local-groups
   ipv6 mld report-policy my report policy
    ipv6 mld access-group my access policy
```


Configuring PIM and PIM6

This chapter describes how to configure the Protocol Independent Multicast (PIM) and PIM6 features on Cisco NX-OS devices in your IPv4 and IPv6 networks.

- About PIM and PIM6, on page 43
- Prerequisites for PIM and PIM6, on page 54
- Guidelines and Limitations for PIM and PIM6, on page 55
- Default Settings, on page 58
- Configuring PIM and PIM6, on page 59
- Verifying the PIM and PIM6 Configuration, on page 99
- Displaying Statistics, on page 106
- Configuration Examples for PIM, on page 107
- Related Documents, on page 116
- Standards, on page 117
- MIBs, on page 117

About PIM and PIM6

PIM, which is used between multicast-capable routers, advertises group membership across a routing domain by constructing multicast distribution trees. PIM builds shared distribution trees on which packets from multiple sources are forwarded, as well as source distribution trees on which packets from a single source are forwarded.

Cisco NX-OS supports PIM sparse mode for IPv4 networks (PIM) and for IPv6 networks (PIM6). In PIM sparse mode, multicast traffic is sent only to locations of the network that specifically request it. You can configure PIM and PIM6 to run simultaneously on a router. You can use PIM and PIM6 global parameters to configure rendezvous points (RPs), message packet filtering, and statistics. You can use PIM and PIM6 interface parameters to enable multicast, identify PIM borders, set the PIM hello message interval, and set the designated router (DR) priority.

Note

Cisco NX-OS does not support PIM dense mode.

In Cisco NX-OS, multicast is enabled only after you enable the PIM and PIM6 feature on each router and then enable PIM or PIM6 sparse mode on each interface that you want to participate in multicast. You can

configure PIM for an IPv4 network and PIM6 for an IPv6 network. In an IPv4 network, if you have not already enabled IGMP on the router, PIM enables it automatically. In an IPv6 network, MLD is enabled by default.

You use the PIM and PIM6 global configuration parameters to configure the range of multicast group addresses to be handled by these distribution modes:

- Any Source Multicast (ASM) provides discovery of multicast sources. It builds a shared tree between sources and receivers of a multicast group and supports switching over to a source tree when a new receiver is added to a group. ASM mode requires that you configure an RP.
- Source-Specific Multicast (SSM) builds a source tree originating at the designated router on the LAN segment that receives a request to join a multicast source. SSM mode does not require you to configure RPs. Source discovery must be accomplished through other means.
- Bidirectional shared trees (Bidir) build a shared tree between sources and receivers of a multicast group but do not support switching over to a source tree when a new receiver is added to a group. Bidir mode requires that you configure an RP. Bidir forwarding does not require source discovery because only the shared tree is used.

Note Cisco Nexus 9000 Series switches do not support PIM6 Bidir.

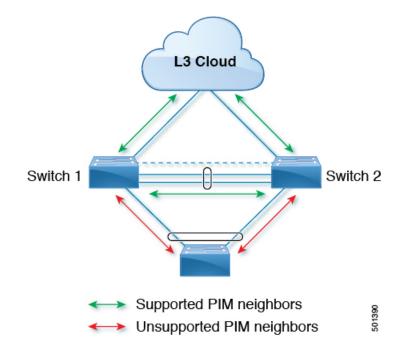
You can combine these modes to cover different ranges of group addresses.

For more information about PIM sparse mode and shared distribution trees used by the ASM and Bidir modes, see RFC 4601.

For more information about PIM SSM mode, see RFC 3569.

For more information about PIM Bidir mode, see draft-ietf-pim-bidir-09.txt.

PIM SSM with vPC


Beginning with Cisco NX-OS Release 7.0(3)I4(1), you can enable PIM SSM on Cisco Nexus 9000 Series switches with an upstream Layer 3 cloud along with the vPC feature.

A PIM adjacency between a Switched Virtual Interface (SVI) on a vPC VLAN (a VLAN that is carried on a vPC Peer-Link) and a downstream device is not supported; this configuration can result in dropped multicast packets. If a PIM neighbor relationship is required with a downstream device, a physical Layer 3 interface must be used on the Nexus switches instead of a vPC SVI.

For SVIs on vPC VLANs, only one PIM adjacency is supported, which is with the vPC peer switch. PIM adjacencies over the vPC peer-link with devices other than the vPC peer switch for the vPC-SVI are not supported.

Note Cisco Nexus 9508 switches with the N9K-X9636C-R and N9K-X9636Q-R line cards support PIM SSM beginning with Cisco NX-OS Release 7.0(3)F2(1) but do not support PIM SSM on vPCs until Cisco NX-OS Release 7.0(3)F3(1). The N9K-X9636C-RX line card supports PIM SSM with and without vPCs beginning with Cisco NX-OS Release 7.0(3)F3(1).

Hello Messages

The PIM process begins when the router establishes PIM neighbor adjacencies by sending PIM hello messages to the multicast IPv4 address 224.0.0.13 or IPv6 address ff02::d. Hello messages are sent periodically at the interval of 30 seconds. When all neighbors have replied, the PIM software chooses the router with the highest priority in each LAN segment as the designated router (DR). The DR priority is based on a DR priority value in the PIM hello message. If the DR priority value is not supplied by all routers, or the priorities match, the highest IP address is used to elect the DR.

The hello message also contains a hold-time value, which is typically 3.5 times the hello interval. If this hold time expires without a subsequent hello message from its neighbor, the device detects a PIM failure on that link.

The configured hold-time changes may not take effect on first two hellos sent after enabling or disabling PIM on an interface. For the first two hellos sent on the interface, thereafter, the configured hold times will be used. This may cause the PIM neighbor to set the incorrect neighbor timeout value for the initial neighbor setup until a hello with the correct hold time is received.

For added security, you can configure an MD5 hash value that the PIM software uses to authenticate PIM hello messages with PIM neighbors.

Note PIM6 does not support MD5 authentication.

Join-Prune Messages

When the DR receives an IGMP membership report message from a receiver for a new group or source, the DR creates a tree to connect the receiver to the source by sending a PIM join message out the interface toward the rendezvous point (ASM or Bidir mode) or source (SSM mode). The rendezvous point (RP) is the root of

a shared tree, which is used by all sources and hosts in the PIM domain in the ASM or Bidir mode. SSM does not use an RP but builds a shortest path tree (SPT) that is the lowest cost path between the source and the receiver.

When the DR determines that the last host has left a group or source, it sends a PIM prune message to remove the path from the distribution tree.

The routers forward the join or prune action hop by hop up the multicast distribution tree to create (join) or tear down (prune) the path.

Note

In this publication, the terms "PIM join message" and "PIM prune message" are used to simplify the action taken when referring to the PIM join-prune message with only a join or prune action.

Join-prune messages are sent as quickly as possible by the software. You can filter the join-prune messages by defining a routing policy.

State Refreshes

PIM requires that multicast entries are refreshed within a 3.5-minute timeout interval. The state refresh ensures that traffic is delivered only to active listeners, and it keeps routers from using unnecessary resources.

To maintain the PIM state, the last-hop DR sends join-prune messages once per minute. State creation applies to both (*, G) and (S, G) states as follows:

- (*, G) state creation example—An IGMP (*, G) report triggers the DR to send a (*, G) PIM join message toward the RP.
- (S, G) state creation example—An IGMP (S, G) report triggers the DR to send an (S, G) PIM join message toward the source.

If the state is not refreshed, the PIM software tears down the distribution tree by removing the forwarding paths in the multicast outgoing interface list of the upstream routers.

Rendezvous Points

A rendezvous point (RP) is a router that you select in a multicast network domain that acts as a shared root for a multicast shared tree. You can configure as many RPs as you like, and you can configure them to cover different group ranges.

Static RP

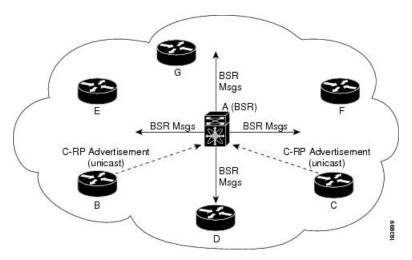
You can statically configure an RP for a multicast group range. You must configure the address of the RP on every router in the domain.

You can define static RPs for the following reasons:

- · To configure routers with the Anycast-RP address
- To manually configure an RP on a device

BSRs

The bootstrap router (BSR) ensures that all routers in the PIM domain have the same RP cache as the BSR. You can configure the BSR to help you select an RP set from BSR candidate RPs. The function of the BSR is to broadcast the RP set to all routers in the domain. You select one or more candidate BSRs to manage the RPs in the domain. Only one candidate BSR is elected as the BSR for the domain.


BSR is supported on Cisco Nexus 9300-FX, Cisco Nexus 9300-FX2, and Cisco Nexus 9300-FX3S platform switches.

BSR is supported on Cisco Nexus 9300-EX/FX/FX2/FX3/GX/C and 9500-EX/FX/GX platform switches.

This figure shows the BSR mechanism. Router A, the software-elected BSR, sends BSR messages out all enabled interfaces (shown by the solid lines in the figure). The messages, which contain the RP set, are flooded hop by hop to all routers in the network. Routers B and C are candidate RPs that send their candidate-RP advertisements directly to the elected BSR (shown by the dashed lines in the figure).

The elected BSR receives candidate-RP messages from all the candidate RPs in the domain. The bootstrap message sent by the BSR includes information about all of the candidate RPs. Each router uses a common algorithm to select the same RP address for a given multicast group.

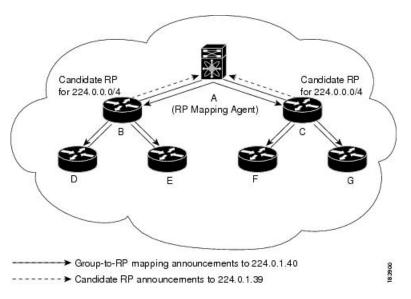
Figure 12: BSR Mechanism

In the RP selection process, the RP address with the best priority is determined by the software. If the priorities match for two or more RP addresses, the software might use the RP hash in the selection process. Only one RP address is assigned to a group.

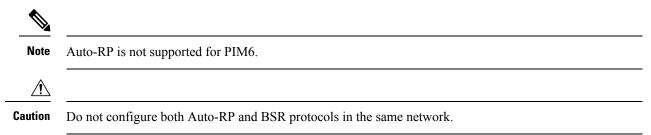
By default, routers are not enabled to listen or forward BSR messages. You must enable the BSR listening and forwarding feature so that the BSR mechanism can dynamically inform all routers in the PIM domain of the RP set assigned to multicast group ranges.

Note

e The BSR mechanism is a nonproprietary method of defining RPs that can be used with third-party routers.


Note BSR is not supported for PIM6.

Auto-RP


Auto-RP is a Cisco protocol that was introduced prior to the Internet standard bootstrap router mechanism. You configure Auto-RP by selecting candidate mapping agents and RPs. Candidate RPs send their supported group range in RP-Announce messages to the Cisco RP-Announce multicast group 224.0.1.39. An Auto-RP mapping agent listens for RP-Announce messages from candidate RPs and forms a Group-to-RP mapping table. The mapping agent multicasts the Group-to-RP mapping table in RP-Discovery messages to the Cisco RP-Discovery multicast group 224.0.1.40.

This figure shows the Auto-RP mechanism. Periodically, the RP mapping agent multicasts the RP information that it receives to the Cisco-RP-Discovery group 224.0.1.40 (shown by the solid lines in the figure).

Figure 13: Auto-RP Mechanism

By default, routers are not enabled to listen or forward Auto-RP messages. You must enable the Auto-RP listening and forwarding feature so that the Auto-RP mechanism can dynamically inform routers in the PIM domain of the group-to-RP mapping.

Multiple RPs Configured in a PIM Domain

This section describes the election process rules when multiple RPs are configured in a PIM domain.

Anycast-RP

Anycast-RP has two implementations: one uses Multicast Source Discovery Protocol (MSDP) and the other is based on *RFC 4610, Anycast-RP Using Protocol Independent Multicast (PIM)*. This section describes how to configure PIM Anycast-RP.

You can use PIM Anycast-RP to assign a group of routers, called the Anycast-RP set, to a single RP address that is configured on multiple routers. The set of routers that you configure as Anycast-RPs is called the Anycast-RP set. This method is the only RP method that supports more than one RP per multicast group, which allows you to load balance across all RPs in the set. The Anycast RP supports all multicast groups.

PIM register messages are sent to the closest RP, and PIM join-prune messages are sent in the direction of the closest RP as determined by the unicast routing protocols. If one of the RPs goes down, unicast routing ensures these messages will be sent in the direction of the next-closest RP.

You must configure PIM on the loopback interface that is used for the PIM Anycast RP and the PIM Bidir RP.

For more information about PIM Anycast-RP, see RFC 4610.

PIM Register Messages

PIM register messages are unicast to the RP by designated routers (DRs) that are directly connected to multicast sources. The PIM register message has the following functions:

- To notify the RP that a source is actively sending to a multicast group.
- To deliver multicast packets sent by the source to the RP for delivery down the shared tree.

The DR continues to send PIM register messages to the RP until it receives a Register-Stop message from the RP. The RP sends a Register-Stop message in either of the following cases:

- The RP has no receivers for the multicast group being transmitted.
- The RP has joined the SPT to the source but has not started receiving traffic from the source.

The PIM triggered register is enabled by default.

You can use the **ip pim register-source** command to configure the IP source address of register messages when the IP source address of a register message is not a uniquely routed address to which the RP can send packets. This situation might occur if the source address is filtered so that the packets sent to it are not forwarded or if the source address is not unique to the network. In these cases, the replies sent from the RP to the source address will fail to reach the DR, resulting in Protocol Independent Multicast sparse mode (PIM-SM) protocol failures.

The following example shows how to configure the IP source address of the register message to the loopback 3 interface of a DR:

ip pim register-source loopback 3

Note In Cisco NX-OS, PIM register messages are rate limited to avoid overwhelming the RP.

You can filter PIM register messages by defining a routing policy.

Designated Routers

In PIM ASM and SSM modes, the software chooses a designated router (DR) from the routers on each network segment. The DR is responsible for forwarding multicast data for specified groups and sources on that segment.

The DR for each LAN segment is determined as described in the Hello messages.

In ASM mode, the DR is responsible for unicasting PIM register packets to the RP. When a DR receives an IGMP membership report from a directly connected receiver, the shortest path is formed to the RP, which may or may not go through the DR. The result is a shared tree that connects all sources transmitting on the same multicast group to all receivers of that group.

In SSM mode, the DR triggers (S, G) PIM join or prune messages toward the source. The path from the receiver to the source is determined hop by hop. The source must be known to the receiver or the DR.

Designated Forwarders

In PIM Bidir mode, the software chooses a designated forwarder (DF) at RP discovery time from the routers on each network segment. The DF is responsible for forwarding multicast data for specified groups on that segment. The DF is elected based on the best metric from the network segment to the RP.

If the router receives a packet on the RPF interface toward the RP, the router forwards the packet out all interfaces in the OIF-list. If a router receives a packet on an interface on which the router is the elected DF for that LAN segment, the packet is forwarded out all interfaces in the OIF-list except the interface that it was received on and also out the RPF interface toward the RP.

Note

Cisco NX-OS puts the RPF interface into the OIF-list of the MRIB but not in the OIF-list of the MFIB.

ASM Switchover from Shared Tree to Source Tree

Note

Cisco NX-OS puts the RPF interface into the OIF-list of the MRIB but not into the OIF-list of the MFIB.

In ASM mode, the DR that is connected to a receiver switches over from the shared tree to the shortest-path tree (SPT) to a source unless you configure the PIM parameter to use shared trees only.

During the switchover, messages on the SPT and shared tree might overlap. These messages are different. The shared tree messages are propagated upstream toward the RP, while SPT messages go toward the source.

For information about SPT switchovers, see the "Last-Hop Switchover to the SPT" section in RFC 4601.

Administratively Scoped IP Multicast

The administratively scoped IP multicast method allows you to set boundaries on the delivery of multicast data. For more information, see RFC 2365.

You can configure an interface as a PIM boundary so that PIM messages are not sent out on that interface.

You can use the Auto-RP scope parameter to set a time-to-live (TTL) value.

Multicast Counters

Multicast flow counters collection can be enabled in two different ways.

- Enable multicast heavy template as described in the Enabling the Multicast Heavy and Extended Heavy Templatesection.
- Configure the hardware profile multicast flex-stats-enable command in the default template.

Only Cisco Nexus 9300-EX, X9700-FX, 9300-FX, and 9300-FX2 Series switches support multicast counters. These counters provide more granularity and visibility about multicast traffic. Specifically, they show an absolute multicast packet count (bytes and rate for every multicast S,G route). These counters are valid only for S,G routes and not for *,G routes. Multicast counters appear in the output of the **show ip mroute detail**and **show ip mroute summary** commands when the multicast heavy template is enabled.

Multicast Heavy Template

You can enable the multicast heavy template in order to support significantly more multicast routes and to display multicast counters in the output of the **show ip mroute** command.

The multicast heavy template is supported for the following devices and releases:

- Cisco Nexus N9K-X9732C-EX, N9K-X9736C-E, and N9K-X97160YC-EX line cards, beginning with Cisco NX-OS Release 7.0(3)I3(2), but only for increased scalability
- Cisco Nexus 9300-EX Series switches, beginning with Cisco NX-OS Release 7.0(3)I6(1), for both increased scalability and multicast counters
- Cisco Nexus 9300-FX Series switches, beginning with Cisco NX-OS Release 7.0(3)I7(1), for both increased scalability and multicast counters

Multicast VRF-Lite Route Leaking

Beginning with Cisco NX-OS Release 7.0(3)I7(1), multicast receivers can forward IPv4 traffic across VRFs. In previous releases, multicast traffic can flow only within the same VRF.

With multicast VRF-lite route leaking, Reverse Path Forwarding (RPF) lookup for multicast routes in the receiver VRF can be performed in the source VRF. Therefore, traffic originating from the source VRF can be forwarded to the receiver VRF.

PIM Graceful Restart

Protocol Independent Multicast (PIM) graceful restart is a multicast high availability (HA) enhancement that improves the convergence of multicast routes (mroutes) after a route processor (RP) switchover. In the event of an RP switchover, the PIM graceful restart feature utilizes the generation ID (GenID) value (defined in RFC 4601) as a mechanism to trigger adjacent PIM neighbors on an interface to send PIM join messages for all (*, G) and (S, G) states that use that interface as a reverse path forwarding (RPF) interface. This mechanism enables PIM neighbors to immediately reestablish those states on the newly active RP.

Generation IDs

A generation ID (GenID) is a randomly generated 32-bit value that is regenerated each time Protocol Independent Multicast (PIM) forwarding is started or restarted on an interface. In order to process the GenID value in PIM hello messages, PIM neighbors must be running Cisco software with an implementation of PIM that is compliant with RFC 4601.

Note

PIM neighbors that are not compliant with RFC 4601 and are unable to process GenID differences in PIM hello messages will ignore the GenIDs.

PIM Graceful Restart Operations

This figure illustrates the operations that occur after a route processor (RP) switchover on devices that support the PIM graceful restart feature.

Figure 14: PIM Graceful Restart Operations During an RP Switchover

The PIM graceful restart operations are as follows:

- In steady state, PIM neighbors exchange periodic PIM hello messages.
- An active RP receives PIM joins periodically to refresh multicast route (mroute) states.
- When an active RP fails, the standby RP takes over to become the new active RP.
- The new active RP then modifies the generation ID (GenID) value and sends the new GenID in PIM hello messages to adjacent PIM neighbors.
- Adjacent PIM neighbors that receive PIM hello messages on an interface with a new GenID send PIM graceful restart for all (*, G) and (S, G) mroutes that use that interface as an RPF interface.
- Those mroute states are then immediately reestablished on the newly active RP.

PIM Graceful Restart and Multicast Traffic Flow

Multicast traffic flow on PIM neighbors is not affected if the multicast traffic detects support for PIM graceful restart PIM or PIM hello messages from a node with the failing RP within the default PIM hello hold-time interval. Multicast traffic flow on a failing RP is not affected if it is non-stop forwarding (NSF) capable.

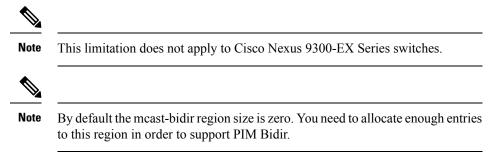
Caution

The default PIM hello hold-time interval is 3.5 times the PIM hello period. Multicast high availability (HA) operations might not function as per design if you configure the PIM hello interval with a value lower than the default value of 30 seconds.

High Availability

When a route processor reloads, multicast traffic across VRFs behaves the same as traffic forwarded within the same VRF.

For information about high availability, see the Cisco Nexus 9000 Series NX-OS High Availability and Redundancy Guide.


Prerequisites for PIM and PIM6

PIM and PIM6 have the following prerequisites:

- · You are logged onto the device.
- For global commands, you are in the correct virtual routing and forwarding (VRF) mode. The default configuration mode shown in the examples in this chapter applies to the default VRF.
- For PIM Bidir, you must configure the ACL TCAM region size using the hardware access-list tcam region mcast-bidir command.

Use the **hardware access-list tcam region ing-sup** command to change the ACL TCAM region size and to configure the size of the ingress supervisor TCAM region.

See Configuring ACL TCAM Region Sizes for more information.

• For Cisco Nexus 9300 Series switches, make sure that the mask length for Bidir ranges is equal to or greater than 24 bits.

Guidelines and Limitations for PIM and PIM6

PIM and PIM6 have the following guidelines and limitations:

- Configuring a secondary IP address as an RP address is not supported.
- For most Cisco Nexus devices, RPF failure traffic is dropped and sent to the CPU at a very low rate to trigger PIM asserts. For the Cisco Nexus 9000 Series switches, RPF failure traffic is always copied to the CPU in order to learn multicast sources.
- For first-hop source detection in most Cisco Nexus devices, traffic coming from the first hop is detected based on the source subnet check, and multicast packets are copied to the CPU only if the source belongs to the local subnet. The Cisco Nexus 9000 Series switches cannot detect the local source, so multicast packets are sent to the supervisor to learn the local multicast source.
- Cisco NX-OS PIM and PIM6 do not interoperate with any version of PIM dense mode or PIM Sparse Mode version 1.
- Cisco Nexus 9300-FX platform switches support PIM and PIM6.
- Beginning with Cisco NX-OS Release 7.0(3)I4(1), Cisco Nexus 9000 Series switches support PIM SSM on vPCs.

Note Cisco Nexus 9508 switches with the N9K-X9636C-R and N9K-X9636Q-R line cards support PIM SSM beginning with Cisco NX-OS Release 7.0(3)F2(1) but do not support PIM SSM on vPCs until Cisco NX-OS Release 7.0(3)F3(1). The N9K-X9636C-RX line card supports PIM SSM with and without vPCs beginning with Cisco NX-OS Release 7.0(3)F3(1).

• Cisco Nexus 9000 Series switches support PIM ASM on vPCs.

Note Cisco Nexus 9508 switches with the N9K-X9636C-R and N9K-X9636Q-R line cards support PIM ASM beginning with Cisco NX-OS Release 7.0(3)F1(1) but do not support PIM ASM on vPCs until Cisco NX-OS Release 7.0(3)F3(1). The N9K-X9636C-RX line card supports PIM ASM with and without vPCs beginning with Cisco NX-OS Release 7.0(3)F3(1).

- Cisco Nexus 9000 Series switches do not support PIM adjacency with a vPC leg or with a router behind a vPC.
- Beginning with Cisco NX-OS Release 7.0(3)I5(1), Cisco Nexus 9000 Series switches support PIM6 ASM and SSM.

Note Only Cisco Nexus 9500 Series switches with N9K-X9400 or N9K-X9500 line cards and or N9K-C9504-FM, N9K-C9508-FM, and N9K-C9516-FM fabric modules support PIM6 ASM and SSM. Cisco Nexus 9500 Series switches with other line cards or fabric modules do not support PIM6.

Note Cisco Nexus 9508 switches running a Cisco NX-OS 7.0(3)Fx(x) release do not support PIM6 ASM and SSM.

- PIM bidirectional multicast source VLAN bridging is not supported on FEX ports.
- PIM6 bidirectional is not supported.
- PIM6 is not supported on SVIs.
- PIM6 is not supported on any FEX ports (Layer 2 and Layer 3).
- Cisco Nexus 9000 Series switches do not support PIM Bidir on vPCs or PIM6 ASM, SSM, and bidirectional on vPCs.
- The following devices support PIM and PIM6 sparse mode on Layer 3 port-channel subinterfaces:
 - Cisco Nexus 9300 Series switches, beginning with Cisco NX-OS Release 7.0(3)I5(2) for PIM and beginning with Cisco NX-OS Release 7.0(3)I6(1) for PIM6
 - Cisco Nexus 9300-EX Series switches and Cisco Nexus 3232C and 3264Q switches
 - Cisco Nexus 9500 Series switches with N9K-X9400 or N9K-X9500 line cards and or N9K-C9504-FM, N9K-C9508-FM, and N9K-C9516-FM fabric modules, beginning with Cisco NX-OS Release 7.0(3)I7(1)
- The multicast heavy template supports real-time packets and byte statistics but does not support VXLAN and tunnel egress statistics.
- Multicast heavy template is recommended for optimal bandwidth utilization when using multicast traffic flows.
- The Cisco Nexus 3232C and 3264Q switches do not support PIM6.

- PIM must be configured on all L3 interfaces between sources, receivers, and rendezvous points (RPs).
- If the NAT flows are established before the service interface is created as shown below, use the **clear ip mroute** *group source* command to manually clear the affected routes:

```
2024 Jan 30 15:26:17.127933 MFX2-4
%IPFIB-SLOT1-2-MFIB_EGR_NAT_INVALID_INTF: Service Intf Ethernet1/31.100
not available, Impacted translation flow:
(118.4.0.1,2.1.13.153)->(228.4.11.49,204.0.1.59)L4(0,0)2024 Jan 30
15:26:23.039119 MFX2-4 %ETHPORT-5-IF_UP: Interface Ethernet1/31.100
is up in Layer3
```

Guidelines and Limitations for Hello Messages

The following guidelines and limitations apply to Hello Messages:

• Default values for the PIM hello interval are recommended and should not be modified.

Guidelines and Limitations for Rendezvous Points

The following guidelines and limitations apply to Rendezvous Points (RP):

- Configure candidate RP intervals to a minimum of 15 seconds.
- Do not configure both Auto-RP and BSR protocols in the same network.
- PIM6 does not support BSRs and Auto-RP.
- You must configure PIM on the loopback interface that is used for the PIM Anycast RP and the PIM Bidir RP.
- To avoid excessive punts of the RPF failed packets, the Cisco Nexus 9000 Series switches may create S, G entries for active sources in ASM, although there is no rendezvous point (RP) for such group, or in situation when a reverse path forwarding (RPF) fails for the source.

This behavior does not apply to Nexus 9200, 9300-EX platform switches, and N9K-X9700-EX LC platforms.

- If a device is configured with a BSR policy that should prevent it from being elected as the BSR, the device ignores the policy. This behavior results in the following undesirable conditions:
 - If a device receives a BSM that is permitted by the policy, the device, which incorrectly elected itself as the BSR, drops that BSM so that routers downstream fail to receive it. Downstream devices correctly filter the BSM from the incorrect BSR so that these devices do not receive RP information.
 - A BSM received by a BSR from a different device sends a new BSM but ensures that downstream devices do not receive the correct BSM.

Guidelines and Limitations for Multicast VRF-lite Route Leaking

The following guidelines and limitations apply to multicast VRF-lite route leaking:

· Cisco Nexus 9000 Series switches support multicast VRF-lite route leaking.

- PIM Sparse Mode and PIM SSM are supported with multicast VRF-lite route leaking. However, PIM SSM with vPC is not supported with multicast VRF-lite route leaking.
- Only static rendezvous points (RPs) are supported with multicast VRF-lite route leaking.
- The source and rendezvous point (RP) should be in the same VRF.

Default Settings

This table lists the default settings for PIM and PIM6 parameters.

Table 10: Default PIM and PIM6 Parameters

Parameters	Default
Use shared trees only	Disabled
Flush routes on restart	Disabled
Log neighbor changes	Disabled
Auto-RP message action	Disabled
BSR message action	Disabled
SSM multicast group range or policy	IPv4 • 232.0.0.0/8
	IPv6
	• ff32::/32
	• ff33::/32
	• ff34::/32
	• ff35::/32
	• ff36::/32
	• ff37::/32
	• ff38::/32
	• ff39::/32
	• ff3a::/32
	• ff3b::/32
	• ff3c::/32
	• ff3d::/32
	• ff3e::/32

Parameters	Default
PIM sparse mode	Disabled
Designated router priority	1
Hello authentication mode	Disabled
Domain border	Disabled
RP address policy	No message filtering
PIM register message policy	No message filtering
BSR candidate RP policy	No message filtering
BSR policy	No message filtering
Auto-RP mapping agent policy	No message filtering
Auto-RP RP candidate policy	No message filtering
Join-prune policy	No message filtering
Neighbor adjacency policy	Become adjacent with all PIM neighbors
BFD	Disabled

Configuring PIM and PIM6

You can configure both PIM and PIM6 on the same router. You can configure either PIM or PIM6 for each interface, depending on whether that interface is running IPv4 or IPv6.

Note

Cisco NX-OS supports only PIM sparse mode version 2. In this publication, "PIM" refers to PIM sparse mode version 2.

You can configure separate ranges of addresses in the PIM or PIM6 domain using the multicast distribution modes described in the table below.

Multicast Distribution Mode	Requires RP Configuration	Description
ASM	Yes	Any source multicast
Bidir	Yes	Bidirectional shared trees
SSM	No	Source-Specific Multicast
RPF routes for multicast	No	RPF routes for multicast

PIM and PIM6 Configuration Tasks

The following steps configure PIM and PIM6.

- 1. Select the range of multicast groups that you want to configure in each multicast distribution mode.
- 2. Enable PIM and PIM6.
- 3. Follow the configuration steps for the multicast distribution modes that you selected in Step 1.
 - For ASM or Bidir mode, see Configuring ASM and Bidir.
 - For SSM mode, see Configuring SSM (PIM).
 - For RPF routes for multicast, see Configuring RPF Routes for Multicast.
- 4. Configure message filtering.

Note The CLI commands used to configure PIM are as follows:

- Configuration commands begin with ip pim for PIM and with ipv6 pim for PIM6.
- Show commands begin with show ip pim for PIM and with show ipv6 pim for PIM6.

Enabling the PIM and PIM6 Feature

Before you can access the PIM or PIM6 commands, you must enable the PIM or PIM6 feature.

Note Beginning with Cisco NX-OS Release 7.0(3)I5(1), you no longer need to enable at least one interface with IP PIM sparse mode in order to enable PIM or PIM6.

Before you begin

Ensure that you have installed the Enterprise Services license.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	feature pim	Enables PIM. By default, PIM is disabled.
	Example:	
	switch(config)# feature pim	

	Command or Action	Purpose
Step 3	feature pim6	Enables PIM6. By default, PIM6 is disabled.
	Example:	
	<pre>switch(config)# feature pim6</pre>	
Step 4	(Optional) show running-configuration pim	Shows the running-configuration information
	Example:	for PIM.
	switch(config)# show	
	running-configuration pim	
Step 5	(Optional) show running-configuration pim6	
	Example:	for PIM6.
	switch(config)# show	
	running-configuration pim6	
Step 6	(Optional) copy running-config startup-config	
	Example:	configuration.
	switch(config)# copy running-config	
	startup-config	

Configuring PIM or PIM6 Sparse Mode Parameters

You configure PIM or PIM6 sparse mode on every device interface that you want to participate in a sparse mode domain. You can configure the sparse mode parameters described in the table below.

Parameter	Description	
Global to the device		
Auto-RP message action	 Enables listening for and forwarding of Auto-RP messages. The default is disabled, which means that the router does not listen for or forward Auto-RP messages unless it is configured as a candidate RP or mapping agent. Note PIM6 does not support the Auto-RP method. 	
BSR message action	 Enables listening for and forwarding of BSR messages. The default is disabled, which means that the router does not listen for or forward BSR messages unless it is configured as a candidate RP or BSR candidate. Note PIM6 does not support BSR. 	
Bidir RP limit	Configures the number of Bidir RPs that you can configure for IPv4. The maximum number of Bidir RPs supported per VRF for PIM cannot exceed 8 Values range from 0 to 8. The default is 6.NotePIM6 does not support Bidir.	

I

Parameter	Description	
Register rate limit	Configures the IPv4 or IPv6 register rate limit in packets per second. The range is from 1 to 65,535. The default is no limit.	
Initial holddown period	Configures the IPv4 or IPv6 initial holddown period in seconds. This holddown period is the time it takes for the MRIB to come up initially. If you want faster convergence, enter a lower value. The range is from 90 to 210. Specify 0 to disable the holddown period. The default is 210.	
Per device interface		
PIM sparse mode	Enables PIM or PIM6 on an interface.	
Designated router priority	Sets the designated router (DR) priority that is advertised in PIM hello messages on this interface. On a multi-access network with multiple PIM-enabled routers, the router with the highest DR priority is elected as the DR router. If the priorities match, the software elects the DR with the highest IP address. The DR originates PIM register messages for the directly connected multicast sources and sends PIM join messages toward the rendezvous point (RP) for directly connected receivers. Values range from 1 to 4294967295. The default is 1.	
Designated router delay	Delays participation in the designated router (DR) election by setting the DR priority that is advertised in PIM hello messages to 0 for a specified period. During this delay, no DR changes occur, and the current switch is given time to learn all of the multicast states on that interface. After the delay period expires, the correct DR priority is sent in the hello packets, which retriggers the DR election. Values range from 3 to 0xffff seconds.	
Hello authentication mode	 Enables an MD5 hash authentication key, or password, in PIM hello messages on the interface so that directly connected neighbors can authenticate each other. The PIM hello messages are IPsec encoded using the Authentication Header (AH) option. You can enter an unencrypted (cleartext) key or one of these values followed by a space and the MD5 authentication key: 0—Specifies an unencrypted (cleartext) key 3—Specifies a 3-DES encrypted key 7—Specifies a Cisco Type 7 encrypted key The authentication key can be up to 16 characters. The default is disabled. Note PIM6 does not support MD5 authentication. 	
Hello interval	Configures the interval at which hello messages are sent in milliseconds. The range is from 1000 to 18724286. The default is 30000.	
	Note See the <i>Cisco Nexus 9000 Series NX-OS Verified Scalability</i> <i>Guide</i> for the verified range of this parameter and associated PIM neighbor scale.	

Parameter	Description		
Domain border	candidat	Enables the interface to be on the border of a PIM domain so that no bootstrap, candidate-RP, or Auto-RP messages are sent or received on the interface. The default is disabled.	
	Note	PIM6 does not support the Auto-RP method.	
Neighbor policy	policy. ³ a policy,	Configures which PIM neighbors to become adjacent to based on a prefix-list policy. ³ If the policy name does not exist or no prefix lists are configured in a policy, adjacency is established with all neighbors. The default is to become adjacent with all PIM neighbors.	
	Note	ote We recommend that you should configure this feature only if you are an experienced network administrator.	
	Note	The PIM neighbor policy supports only prefix lists. It does not support ACLs used inside a route map.	

³ To configure prefix-list policies, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Configuring PIM Sparse Mode Parameters

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	(Optional) ip pim auto-rp { listen [forward] forward [listen]}	Enables listening for or forwarding of Auto-RP messages. The default is disabled, which
	<pre>Example: switch(config)# ip pim auto-rp listen</pre>	means that the software does not listen for or forward Auto-RP messages.
Step 3	(Optional) ip pim bsr { listen [forward] forward [listen] }	Enables listening for or forwarding of BSR messages. The default is disabled, which
	<pre>Example: switch(config)# ip pim bsr forward</pre>	means that the software does not listen for or forward BSR messages.
Step 4	(Optional) ip pim bidir-rp-limit <i>limit</i>	Specifies the number of Bidir RPs that you can
	Example: switch(config)# ip pim bidir-rp-limit 4	configure for IPv4. The maximum number of Bidir RPs supported per VRF for PIM cannot exceed 8. Values range from 0 to 8. The default value is 6.

I

	Command or Action	Purpose
Step 5	(Optional) ip pim register-rate-limit <i>rate</i> Example: switch(config)# ip pim register-rate-limit 1000	Configures the rate limit in packets per second. The range is from 1 to 65,535. The default is no limit.
Step 6	<pre>(Optional) ip pim spt-threshold infinity group-list route-map-name Example: switch(config)# ip pim spt-threshold infinity group-list my_route-map-name</pre>	Creates the IPv4 PIM (*, G) state only, for the group prefixes defined in the specified route map. Cisco NX-OS Release 3.1 supports up to 1000 route-map entries, and Cisco NX-OS releases prior to 3.1 support up to 500 route-map entries.
		Note The ip pim use-shared-tree-only group-list command performs the same function as the ip pim spt-threshold infinity group-list command. You can choose to use either command to implement this step.
		Both the commands (ip pim spt-threshold infinity group-list and ip pim use-shared-tree-only group-list has the following limitations:
		• It is only supported for virtual port channels (vPC) on the Cisco Nexus 9000 Cloud Scale Switches.
		• It is supported in NX-OS (non-vPC) Last Hop Router (LHR) configurations.
Step 7	(Optional) [ip ipv4] routing multicast holddown holddown-period Example: switch(config)# ip routing multicast holddown 100	Configures the initial holddown period in seconds. The range is from 90 to 210. Specify 0 to disable the holddown period. The default is 210.
Step 8	(Optional) show running-configuration pim Example: switch(config) # show running-configuration pim	Displays PIM running-configuration information, including the Bidir RP limit and register rate limit.
Step 9	<pre>interface interface Example: switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	Enters interface configuration mode.

	Command or Action	Purpose
Step 10	<pre>ip pim sparse-mode Example: switch(config-if)# ip pim sparse-mode</pre>	Enables PIM sparse mode on this interface. The default is disabled.
Step 11	(Optional) ip pim dr-priority Example: switch(config-if)# ip pim dr-priority 192	Sets the designated router (DR) priority that is advertised in PIM hello messages. Values range from 1 to 4294967295. The default is 1.
Step 12	<pre>(Optional) ip pim dr-delay delay Example: switch(config-if)# ip pim dr-delay 3</pre>	 Delays participation in the designated router (DR) election by setting the DR priority that is advertised in PIM hello messages to 0 for a specified period. During this delay, no DR changes occur, and the current switch is given time to learn all of the multicast states on that interface. After the delay period expires, the correct DR priority is sent in the hello packets, which retriggers the DR election. Values range from 3 to 0xffff seconds. Note This command delays participation in the DR election only upon bootup or following an IP address or interface state change. It is intended for use with multicast-access non-vPC Layer 3 interfaces only.
Step 13	<pre>(Optional) ip pim hello-authentication ah-md5 auth-key Example: switch(config-if)# ip pim hello-authentication ah-md5 my_key</pre>	 Enables an MD5 hash authentication key in PIM hello messages. You can enter an unencrypted (cleartext) key or one of these values followed by a space and the MD5 authentication key: 0—Specifies an unencrypted (cleartext) key 3—Specifies a 3-DES encrypted key 7—Specifies a Cisco Type 7 encrypted key The key can be up to 16 characters. The default is disabled.
Step 14	(Optional) ip pim hello-interval Example: switch(config-if)# ip pim hello-interval 25000	Configures the interval at which hello messages are sent in milliseconds. The range is from 1000 to 18724286. The default is 30000.

I

	Command or Action	Purpose
		Note The minimum value is 1 millisecond.
Step 15	(Optional) ip pim border Example: switch(config-if)# ip pim border	Enables the interface to be on the border of a PIM domain so that no bootstrap, candidate-RP, or Auto-RP messages are sent or received on the interface. The default is disabled.
Step 16	<pre>(Optional) ip pim neighbor-policy prefix-list prefix-list Example: switch(config-if)# ip pim neighbor-policy prefix-list AllowPrefix</pre>	PIM domain so that no bootstrap, candidate-RP, or Auto-RP messages are sent or received on the interface. The default is disabled.
Step 17	<pre>(Optional) show ip pim interface [interface brief] [vrf vrf-name all] Example: switch(config-if)# show ip pim interface</pre>	Displays PIM interface information.
Step 18	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	<pre>Example: switch(config-if)# copy running-config startup-config</pre>	

Configuring PIM6 Sparse Mode Parameters

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
_	<pre>switch# configure terminal switch(config)#</pre>	

I

	Command or Action	Purpose
Step 2	(Optional) ipv6 pim register-rate-limit rate Example: switch(config)# ipv6 pim register-rate-limit 1000	Configures the rate limit in packets per second. The range is from 1 to 65,535. The default is no limit.
Step 3	<pre>(Optional) ipv6 routing multicast holddown holddown-period Example: switch(config)# ipv6 routing multicast holddown 100</pre>	Configures the initial holddown period in seconds. The range is from 90 to 210. Specify 0 to disable the holddown period. The default is 210.
Step 4	(Optional) show running-configuration pim6 Example: switch(config) # show running-configuration pim6	Displays PIM6 running-configuration information, including the register rate limit.
Step 5	<pre>interface interface Example: switch(config)# interface vlan 10 switch(config-if)#</pre>	Enters interface configuration mode on the specified interface.
Step 6	<pre>ipv6 pim sparse-mode Example: switch(config-if)# ipv6 pim sparse-mode</pre>	Enables PIM sparse mode on this interface. The default is disabled.
Step 7	<pre>(Optional) ipv6 pim dr-priority priority Example: switch(config-if)# ipv6 pim dr-priority 192</pre>	Sets the designated router (DR) priority that is advertised in PIM6 hello messages. Values range from 1 to 4294967295. The default is 1.
Step 8	(Optional) ipv6 pim hello-interval interval Example: switch(config-if)# ipv6 pim hello-interval 25000	Configures the interval at which hello messages are sent in milliseconds. The range is from 1000 to 18724286. The default is 30000.
Step 9	<pre>(Optional) ipv6 pim border Example: switch(config-if)# ipv6 pim border</pre>	Enables the interface to be on the border of a PIM6 domain so that no bootstrap, candidate-RP, or Auto-RP messages are sent or received on the interface. The default is disabled.
Step 10	<pre>(Optional) ipv6 pim neighbor-policy prefix-list prefix-list Example: switch(config-if)# ipv6 pim neighbor-policy prefix-list AllowPrefix</pre>	Configures which PIM6 neighbors to become adjacent to based on a prefix-list policy with the ipv6 prefix-list <i>prefix-list</i> command. The prefix list can be up to 63 characters. The default is to become adjacent with all PIM6 neighbors.

	Command or Action	Purpose
		Note We recommend that you configure this feature only if you are an experienced network administrator.
Step 11	show ipv6 pim interface [<i>interface</i> brief] [vrf <i>vrf-name</i> all]	Displays PIM6 interface information.
	Example:	
	<pre>switch(config-if)# show ipv6 pim interface</pre>	
Step 12	copy running-config startup-config	(Optional) Saves configuration changes.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Configuring ASM and Bidir

Any Source Multicast (ASM) and bidirectional shared trees (Bidir) are multicast distribution modes that require the use of RPs to act as a shared root between sources and receivers of multicast data.

To configure ASM or Bidir mode, you configure sparse mode and the RP selection method, where you indicate the distribution mode and assign the range of multicast groups.

Configuring Static RPs

You can configure an RP statically by configuring the RP address on every router that will participate in the PIM domain.

Note

We recommend that the RP address uses the loopback interface and also the interface with the RP address must have **ip pim sparse-mode** enabled.

You can specify a route-map policy name that lists the group prefixes to use with the **match ip multicast** command or specify a prefix-list method of configuration.

Ŵ

Note

Cisco NX-OS always uses the longest-match prefix to find the RP, so the behavior is the same irrespective of the position of the group prefix in the route map or in the prefix list.

The following example configuration produces the same output using Cisco NX-OS (231.1.1.0/24 is always denied irrespective of the sequence number):

ip prefix-list plist seq 10 deny 231.1.1.0/24 ip prefix-list plist seq 20 permit 231.1.0.0/16 ip prefix-list plist seq 10 permit 231.1.0.0/16 ip prefix-list plist seq 20 deny 231.1.1.0/24

Configuring Static RPs (PIM)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>ip-prefix prefix-list name override route-map policy-name] [bidir] Example: switch(config)# ip pim rp-address 192.0.2.33 group-list 224.0.0.0/9</pre>	Configures a PIM static RP address for a multicast group range.
		You can specify a prefix-list policy name for the static RP address or a route-map policy name that lists the group prefixes to use with the match ip multicast command.
		The mode is ASM unless you specify the bidir keyword.
		The override option causes the RP address to override the dynamically learned RP addresses for specified groups in route-map.
		The example configures PIM ASM mode for the specified group range.
Step 3	(Optional) show ip pim group-range [<i>ip-prefix</i> vrf <i>vrf-name</i>]	Displays PIM RP information, including BSR listen and forward states.
	Example:	
	<pre>switch(config) # show ip pim group-range</pre>	
Step 4	(Optional) copy running-config startup-config Example:	Copies the running configuration to the startup configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring Static RPs (PIM6)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM6.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ipv6 pim rp-address <i>rp-address</i> [group-list <i>ipv6-prefix</i> route-map <i>policy-nsmr</i>]	Configures a PIM6 static RP address for a multicast group range. You can specify a
	Example:	route-map policy name that lists the group prefixes to use with the match ip multicast
	<pre>switch(config)# ipv6 pim rp-address 2001:0db8:0:abcd::1 group-list ffle:abcd:def1::0/24</pre>	command. The mode is ASM. The default group range is ff00::0/8.
		The example configures PIM6 ASM mode for the specified group range.
Step 3	(Optional) show ipv6 pim group-range [<i>ipv6-prefix</i> vrf <i>vrf-name</i>]	Displays PIM6 modes and group ranges.
	Example:	
	switch(config)# show ipv6 pim group-range	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch(config)# copy running-config startup-config	

Procedure

Configuring BSRs

You configure BSRs by selecting candidate BSRs and RPs.

 \triangle

Caution Do not configure both Auto-RP and BSR protocols in the same network.

You can configure a candidate BSR with the arguments described in the table below.

Note PIM6 does not support BSRs.

Table 12: Candidate BSR Arguments

Argument	Description
interface	Interface type and number used to derive the BSR source IP address used in bootstrap messages.

Argument	Description
hash-length	Number of high order 1s used to form a mask that is ANDed with group address ranges of candidate RPs to form a hash value. The mask determines the number of consecutive addresses to assign across RPs with the same group range. For PIM, this value ranges from 0 to 32 and has a default of 30. For PIM6, this value ranges from 0 to 128 and has a default of 126.
priority	Priority assigned to this BSR. The software elects the BSR with the highest priority, or if the BSR priorities match, the software elects the BSR with the highest IP address. This value ranges from 0, the lowest priority, to 255 and has a default of 64.

Configuring BSRs Candidate RP Arguments and Keywords

You can configure a candidate RP with the arguments and keywords described in this table.

Argument or Keyword	Description	
interface	Interface type and number used to derive the BSR source IP address used in boot messages.	
group-list ip-prefix	Multicast groups handled by this RP specified in a prefix format.	
interval	Number of seconds between sending candidate-RP messages. This value ranges t 1 to 65,535 and has a default of 60 seconds.	
	Note We recommend that you configure the candidate RP interval to a minimum of 15 seconds.	
priority	Priority assigned to this RP. The software elects the RP with the highest priority a range of groups or, if the priorities match, the highest IP address. (The highest priority is the lowest numerical value.) This value ranges from 0, the highest prior to 255 and has a default of 192.	
	Note This priority differs from the BSR BSR-candidate priority, which pre the highest value between 0 and 255.	
bidir	Unless you specify bidir, this RP will be in ASM mode. If you specify bidir, the will be in Bidir mode.	
route-map policy-name	Route-map policy name that defines the group prefixes where this feature is app	

Tip You should choose the candidate BSRs and candidate RPs that have good connectivity to all parts of the PIM domain.

You can configure the same router to be both a BSR and a candidate RP. In a domain with many routers, you can select multiple candidate BSRs and RPs to automatically fail over to alternates if a BSR or an RP fails.

To configure candidate BSRs and RPs, follow these steps:

- 1. Configure whether each router in the PIM domain should listen for and forward BSR messages. A router configured as either a candidate RP or a candidate BSR will automatically listen for and forward all bootstrap router protocol messages, unless an interface is configured with the domain border feature.
- 2. Select the routers to act as candidate BSRs and RPs.
- 3. Configure each candidate BSR and candidate RP as described in this section.
- 4. Configure BSR message filtering.

Configuring BSRs (PIM)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	ip pim bsr {forward [listen] listen [forward]}	Configures listen and forward.	
	Example:	Ensure that you have entered this command in each VRF on the remote PE.	
	switch(config)# ip pim bsr listen forward		
Step 3	ip pim [bsr] bsr-candidate <i>interface</i> [hash-len <i>hash-length</i>] [priority <i>priority</i>]	Configures a candidate bootstrap router (BSR). The source IP address used in a bootstrap	
		message is the IP address of the interface. The	
	Example:	hash length ranges from 0 to 32 and has a	
	switch(config)# ip pim bsr-candidate ethernet 2/1 hash-len 24	default of 30. The priority ranges from 0 to 25 and has a default of 64.	
Step 4	ip pim sparse-mode	Enables PIM sparse mode on this interface. The	
	Example:	default is disabled.	
	<pre>switch(config-if)# ip pim sparse-mode</pre>		
Step 5	(Optional) ip pim [bsr] rp-candidate <i>interface</i> group-list <i>ip-prefix</i> route-map <i>policy-name</i> priority <i>priority</i> interval <i>interval</i> [bidir]	Configures a candidate RP for BSR. The priority ranges from 0, the highest priority, to 65,535 and has a default of 192. The interval ranges from 1 to 65,535 seconds and has a default of 60.	
	Example:		
	<pre>switch(config)# ip pim rp-candidate ethernet 2/1 group-list 239.0.0.0/24</pre>	Use the bidir option to create a Bidir candidate RP.	
		Note We recommend that you configure the candidate RP interval to a minimum of 15 seconds.	

	Command or Action	Purpose
		The example configures an ASM candidate RP.
Step 6	(Optional) show ip pim group-range [<i>ip-prefix</i> vrf <i>vrf-name</i>]	Displays PIM modes and group ranges.
	Example:	
	<pre>switch(config)# show ip pim group-range</pre>	
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring Auto-RP

You can configure Auto-RP by selecting candidate mapping agents and RPs. You can configure the same router to be both a mapping agent and a candidate RP.

Note Auto-RP is not supported by PIM6.

Â

Caution

n Do not configure both Auto-RP and BSR protocols in the same network.

You can configure an Auto-RP mapping agent with the arguments described in this table.

Table 14: Auto-RP Mapping Agent Arguments

Argument	Description
interface	Interface type and number used to derive the IP address of the Auto-RP mapping agent used in bootstrap messages.
scope <i>ttl</i>	Time-to-Live (TTL) value that represents the maximum number of hops that RP-Discovery messages are forwarded. This value can range from 1 to 255 and has a default of 32.

If you configure multiple Auto-RP mapping agents, only one is elected as the mapping agent for the domain. The elected mapping agent ensures that all candidate RP messages are sent out. All mapping agents receive the candidate RP messages and advertise the same RP cache in their RP-discovery messages.

You can configure a candidate RP with the arguments and keywords described in this table.

Table 15: Auto-RP Candidate RP Arguments and Keywords

Argument or Keyword	Description
interface	Interface type and number used to derive the IP address of the candidate RP used in bootstrap messages.
group-list <i>ip-prefix</i>	Multicast groups handled by this RP. It is specified in a prefix format.

Argument or Keyword	Description
scope ttl	Time-to-Live (TTL) value that represents the maximum number of hops that RP-Discovery messages are forwarded. This value can range from 1 to 255 and has a default of 32.
interval	Number of seconds between sending RP-Announce messages. This value can range from 1 to 65,535 and has a default of 60.
	Note We recommend that you configure the candidate RP interval to a minimum of 15 seconds.
bidir	If not specified, this RP will be in ASM mode. If specified, this RP will be in Bidir mode.
route-map policy-name	Route-map policy name that defines the group prefixes where this feature is applied.

\mathcal{P}

Tip You should choose mapping agents and candidate RPs that have good connectivity to all parts of the PIM domain.

To configure Auto-RP mapping agents and candidate RPs, follow these steps:

- 1. For each router in the PIM domain, configure whether that router should listen for and forward Auto-RP messages. A router configured as either a candidate RP or an Auto-RP mapping agent will automatically listen for and forward all Auto-RP protocol messages, unless an interface is configured with the domain border feature.
- 2. Select the routers to act as mapping agents and candidate RPs.
- 3. Configure each mapping agent and candidate RP as described in this section.
- 4. Configure Auto-RP message filtering.

Ensure that you have installed the Enterprise Services license and enabled PIM.

Configuring Auto RP (PIM)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	<pre>ip pim {send-rp-discovery auto-rp mapping-agent} interface [scope ttl] Example: switch(config) # ip pim auto-rp mapping-agent ethernet 2/1</pre>	Configures an Auto-RP mapping agent. The source IP address used in Auto-RP Discovery messages is the IP address of the interface. The default scope is 32.
Step 3	<pre>ip pim {send-rp-announce auto-rp rp-candidate} interface {group-list ip-prefix prefix-list name route-map policy-name} [scope ttl] interval interval] [bidir] Example:</pre>	Configures an Auto-RP candidate RP. The default scope is 32. The default interval is 60 seconds. By default, the command creates an ASM candidate RP. Use the bidir option to create a Bidir candidate RP.
	<pre>switch(config)# ip pim auto-rp rp-candidate ethernet 2/1 group-list 239.0.0.0/24</pre>	Note We recommend that you configure the candidate RP interval to a minimum of 15 seconds.
		The example configures an ASM candidate RP.
Step 4	<pre>ip pim sparse-mode Example: switch(config-if)# ip pim sparse-mode</pre>	Enables PIM sparse mode on this interface. The default is disabled.
Step 5	(Optional) show ip pim group-range [ip-prefix vrf vrf-name]	Displays PIM modes and group ranges.
	<pre>Example: switch(config)# show ip pim group-range</pre>	
Step 6	<pre>(Optional) copy running-config startup-config Example: switch(config)# copy running-config startup-config</pre>	Copies the running configuration to the startup configuration.

Configuring a PIM Anycast-RP Set

To configure a PIM Anycast-RP set, follow these steps:

- 1. Select the routers in the PIM Anycast-RP set.
- 2. Select an IP address for the PIM Anycast-RP set.
- 3. Configure each peer RP in the PIM Anycast-RP set as described in this section.

Configuring a PIM Anycast RP Set (PIM)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface loopback number	Configures an interface loopback.
	Example:	This example configures interface loopback 0.
	<pre>switch(config)# interface loopback 0 switch(config-if)#</pre>	
Step 3	ip address ip-prefix	Configures an IP address for this interface. It
	Example:	should be a unique IP address that helps to identify this router.
	<pre>switch(config-if)# ip address 192.168.1.1/32</pre>	identify this fourer.
Step 4	ip pim sparse-mode	Enables PIM sparse mode.
	Example:	
	<pre>switch(config-if)# ip pim sparse-mode</pre>	
Step 5	ip router routing-protocol-configuration	Enables the interface to be reachable by other
	Example:	routers in the Anycast RP set.
	<pre>switch(config-if)# ip router ospf 1 area 0.0.0.0</pre>	
Step 6	exit	Exits interface configuration mode.
	Example:	
	<pre>switch(config-if)# exit switch(config)#</pre>	
Step 7	interface loopback number	Configures an interface loopback.
	Example:	This example configures interface loopback 1.
	<pre>switch(config)# interface loopback 1 switch(config-if)#</pre>	
Step 8	ip address <i>ip-prefix</i>	Configures an IP address for this interface. It
	Example:	should be a common IP address that acts as the Anycast RP address.
	<pre>switch(config-if)# ip address 10.1.1.1/32</pre>	the Anyeast R1 address.
Step 9	ip pim sparse-mode	Enables PIM sparse mode on this interface.
	Example:	The default is disabled.
	<pre>switch(config-if)# ip pim sparse-mode</pre>	
Step 10	ip router routing-protocol-configuration	Enables the interface to be reachable by other
	Example:	routers in the Anycast RP set.

	Command or Action	Purpose
	<pre>switch(config-if)# ip router ospf 1 area 0.0.0.0</pre>	
Step 11	exit	Exits interface configuration mode.
	Example:	
	<pre>switch(config-if)# exit switch(config)#</pre>	
Step 12	ip pim rp-address anycast-rp-address [group-list ip-address]	Configures the PIM Anycast RP address.
	Example:	
	<pre>switch(config)# ip pim rp-address 10.1.1.1 group-list 224.0.0.0/4</pre>	
Step 13	ip pim anycast-rp anycast-rp-address anycast-rp-set-router-address	Configures a PIM Anycast-RP peer address for the specified Anycast-RP address. Each
	Example:	command with the same Anycast-RP address forms an Anycast-RP set. The IP addresses of
	<pre>switch(config)# ip pim anycast-rp 10.1.1.1 192.168.1.1</pre>	RPs are used for communication with RPs in the set.
Step 14	Repeat Step 13 using the same Anycast-RP address for each peer router in the RP set (including the local router).	
Step 15	(Optional) show ip pim rp	Displays the PIM RP mapping.
	Example:	
	switch(config)# show ip pim rp	
Step 16	(Optional) show ip mroute <i>ip-address</i>	Displays the mroute entries.
	Example:	
	<pre>switch(config)# show ip mroute 239.1.1.1</pre>	
Step 17	(Optional) show ip pim group-range [<i>ip-prefix</i> vrf <i>vrf-name</i>]	Displays PIM modes and group ranges.
	Example:	
	switch(config)# show ip pim group-range	
Step 18	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring a PIM Anycast RP Set (PIM6)

I

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM6.

I

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface loopback number	Configures an interface loopback.
	Example:	This example configures interface loopback 0.
	<pre>switch(config)# interface loopback 0 switch(config-if)#</pre>	
Step 3	ipv6 address ipv6-prefix	Configures an IP address for this interface. It
	Example:	should be a unique IP address that helps to identify this router.
	<pre>switch(config-if)# ipv6 address 2001:0db8:0:abcd::5/32</pre>	
Step 4	ipv6 pim sparse-mode	Enable PIM6 sparse mode.
	Example:	
	<pre>switch(config-if)# ipv6 pim sparse-mode</pre>	
Step 5	ipv6 router routing-protocol-configuration	Enables the interface to be reachable by other
	Example:	routers in the Anycast RP set.
	<pre>switch(config-if)# ipv6 router ospfv3 1 area 0.0.0.0</pre>	
Step 6	exit	Exits interface configuration mode.
	Example:	
	<pre>switch(config-if)# exit switch(config)#</pre>	
Step 7	interface loopback number	Configures an interface loopback.
	Example:	This example configures interface loopback 1.
	<pre>switch(config)# interface loopback 1 switch(config-if)#</pre>	
Step 8	ipv6 address ipv6-prefix	Configures an IP address for this interface. It
	Example:	should be a common IP address that acts as the Anycast RP address.
	<pre>switch(config-if)# ipv6 address 2001:0db8:0:abcd::1111/32</pre>	the Arrycast R1 address.
Step 9	ipv6 router routing-protocol-configuration	Enables the interface to be reachable by other
	Example:	routers in the Anycast RP set.
	switch(config-if)# ipv6 router ospfv3 1 area 0.0.0.0	

	Command or Action	Purpose	
Step 10	exit	Exits interface configuration mode.	
	Example:		
	<pre>switch(config-if)# exit switch(config)#</pre>		
Step 11	ipv6 pim rp-address <i>anycast-rp-address</i> [group-list <i>ip-address</i>]	Configures the PIM6 Anycast RP address.	
	Example:		
	<pre>switch(config)# ipv6 pim rp-address 2001:0db8:0:abcd::1111 group-list ffle:abcd:def1::0/24</pre>		
Step 12	ipv6 pim anycast-rp anycast-rp-address	Configures a PIM6 Anycast-RP peer address	
	anycast-rp-set-router-address	for the specified Anycast-RP address. Each command with the same Anycast-RP address	
	Example:	forms an Anycast-RP set. The IP addresses of	
	<pre>switch(config)# ipv6 pim anycast-rp 2001:0db8:0:abcd::5 2001:0db8:0:abcd::1111</pre>	RPs are used for communication with RPs in the set.	
Step 13	Repeat Step 13 using the same Anycast-RP address for each peer router in the RP set	-	
	(including the local router).		
Step 14	(Optional) show ipv6 pim rp	Displays the PIM RP mapping.	
	Example:		
	switch(config)# show ipv6 pim rp		
Step 15	(Optional) show ipv6 mroute ipv6-address	Displays the mroute entries.	
	Example:		
	<pre>switch(config)# show ipv6 mroute ffle:2222::1:1:1:1</pre>		
Step 16	(Optional) show ipv6 pim group-range [<i>ipv6-prefix</i>] [vrf <i>vrf-name</i> all]	Displays PIM6 modes and group ranges.	
	Example:		
	switch(config)# show ipv6 pim group-range		
Step 17	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	<pre>switch(config)# copy running-config startup-config</pre>		

Configuring Shared Trees Only for ASM

You can configure shared trees only on the last-hop router for Any Source Multicast (ASM) groups, which means that the router never switches over from the shared tree to the SPT when a receiver joins an active

group. You can specify a group range where the use of shared trees is to be enforced with the **match ip**[v6] **multicast** command. This option does not affect the normal operation of the router when a source tree join-prune message is received.

Note The Cisco NX-OS software does not support the shared-tree feature on vPCs. For more information about vPCs, see the *Cisco Nexus 9000 Series NX-OS Interfaces Configuration Guide*.

The default is disabled, which means that the software can switch over to source trees.

In ASM mode, only the last-hop router switches from the shared tree to the SPT.

Configuring Shared Trees Only for ASM (PIM)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ip pim use-shared-tree-only group-list <i>policy-name</i>	Builds only shared trees, which means that the software never switches over from the shared
	Example:	tree to the SPT. You specify a route-map policy name that lists the groups to use with the match
	<pre>switch(config)# ip pim use-shared-tree-only group-list my_group_policy</pre>	ip multicast command. By default, the software triggers a PIM (S, G) join toward the source when it receives multicast packets for a source for which it has the (*, G) state.
		This command has the following limitations:
		• It is only supported for virtual port channels (vPC) on the Cisco Nexus 9000 Cloud Scale Switches.
		• It is supported in NX-OS (non-vPC) Last Hop Router (LHR) configurations.
Step 3	(Optional) show ip pim group-range [<i>ip-prefix</i> vrf <i>vrf-name</i>]	Displays PIM modes and group ranges.
	Example:	
	<pre>switch(config)# show ip pim group-range</pre>	

L

	Command or Action	Purpose
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Configuring Shared Trees Only for ASM (PIM6)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM6.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ipv6 pim use-shared-tree-only group-list <i>policy-name</i>	Builds only shared trees, which means that the software never switches over from the shared
	Example:	tree to the SPT. You specify a route-map policy name that lists the groups to use with the match
swi use	<pre>switch(config)# ipv6 pim use-shared-tree-only group-list my_group_policy</pre>	ipv6 multicast command. By default, the software triggers a PIM (S, G) join toward the source when it receives multicast packets for a source for which it has the (*, G) state.
Step 3	(Optional) show ipv6 pim group-range [<i>ipv6-prefix</i> vrf <i>vrf-name</i>]	Displays PIM6 modes and group ranges.
	Example:	
	switch(config)# show ipv6 pim group-range	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Configuring SSM (PIM)

SSM is a multicast distribution mode where the software on the DR connected to a receiver that is requesting data for a multicast source builds a shortest path tree (SPT) to that source.

On an IPv4 network, a host can request multicast data for a specific source only if it is running IGMPv3 and the DR for that host is running IGMPv3. You will usually enable IGMPv3 when you configure an interface for PIM in the SSM mode. For hosts running IGMPv1 or IGMPv2, you can configure group-to-source mapping using SSM translation.

You can only configure the IPv4 group range that is used by SSM.

Note If you want to use the default SSM group range, you do not need to configure the SSM group range.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip pim ssm {prefix-list <i>name</i> range { <i>ip-prefix</i> none} route-map <i>policy-name</i> }	The following options are available: • prefix-list—Specifies a prefix-list policy
	Example:	name for the SSM range.
	<pre>switch(config)# ip pim ssm range 239.128.1.0/24</pre>	• range —Configures a group range for SSM. The default range is 232.0.0.0/8. If
	<pre>Example: switch(config)# no ip pim ssm range none</pre>	the keyword none is specified, all group
		• route-map —Specifies a route-map policy name that lists the group prefixes to use with the match ip multicast command.
		The no option removes the specified prefix from the SSM range or removes the prefix-list or route-map policy. If the keyword none is specified, the no command resets the SSM range to the default value of 232.0.0.0/8.
		Note You can configure a maximum of four ranges for SSM multicast, using the prefix-list , range , or route-map commands.
Step 3	(Optional) show ip pim group-range [<i>ip-prefix</i> vrf <i>vrf-name</i>]	Displays PIM modes and group ranges.
	Example:	
	switch(config)# show ip pim group-range	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startur
	Example:	configuration.

Command or Action	Purpose
<pre>switch(config)# copy running-config startup-config</pre>	

Configuring SSM (PIM6)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM6.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ipv6 pim ssm {prefix-list name range {ivp6-prefix none} route-map policy-name}	The following options are available:
	Example:	 prefix-list—Specifies a prefix-list policy name for the SSM range.
	<pre>switch(config)# ipv6 pim ssm range FF30::0/32</pre>	• range —Configures a group range for SSM. The default range is FF3x/96. If th
	Example:	keyword none is specified, all group
	• switch(config)# no ipv6 pim ssm range none	ranges are removed.
	none	• route-map—Specifies a route-map polic name that lists the group prefixes to use with the match ipv6 multicast command
		The no option removes the specified prefix from the SSM range or removes the prefix-list or route-map policy. If the keyword none is specified, the no command resets the SSM range to the default value of FF3x/96.
		Note You can configure a maximum of four ranges for SSM multicast, using the prefix-list , range , or route-map commands.
Step 3	(Optional) show ipv6 pim group-range [<i>ipv6-prefix</i> vrf <i>vrf-name</i>]	Displays PIM6 modes and group ranges.
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startu
	Example:	configuration.
	switch(config)# copy running-config startup-config	

Configuring PIM SSM Over a vPC

Configuring PIM SSM over a vPC enables support for IGMPv3 joins and PIM S,G joins over vPC peers in the SSM range. This configuration is supported for orphan sources or receivers in the Layer 2 or Layer 3 domain. When you configure PIM SSM over a vPC, no rendezvous point (RP) configuration is required.

(S,G) entries will have the RPF as the interface toward the source, and no *,G states will be maintained in the MRIB.

Before you begin

Ensure that you have the PIM and vPC features enabled.

Ensure that you have installed the Enterprise Services license and enabled PIM.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	<pre>vrf context name Example: switch(config)# vrf context Enterprise switch(config-vrf)#</pre>	Creates a new VRF and enters VRF configuration mode. The <i>name</i> can be any case-sensitive, alphanumeric string up to 32 characters.
range {ip-p policy-name} Example: switch(conf	(Optional) [no] ip pim ssm { prefix-list <i>name</i> range { <i>ip-prefix</i> none } route-map <i>policy-name</i> }	The following options are available: • prefix-list—Specifies a prefix-list policy name for the SSM range.
	<pre>Example: switch(config-vrf)# ip pim ssm range 234.0.0.0/24</pre>	• range —Configures a group range for SSM. The default range is 232.0.0.0/8. If the keyword none is specified, all group ranges are removed.
		• route-map —Specifies a route-map policy name that lists the group prefixes to use with the match ip multicast command.
		By default, the SSM range is 232.0.0.0/8. PIM SSM over vPC works as long as S,G joins are received in this range. If you want to override the default with some other range, you must specify that range using this command. The command in the example overrides the default range to 234.0.0.0/24.
		The no option removes the specified prefix from the SSM range or removes the prefix-list or route-map policy. If the keyword none is

	Command or Action	Purpose
		specified, the no command resets the SSM range to the default value of 232.0.0.0/8.
Step 4	(Optional) show ip pim group-range [<i>ip-prefix</i>] [vrf <i>vrf-name</i> all]	Displays PIM modes and group ranges.
	Example:	
	<pre>switch(config-vrf)# show ip pim group-range</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config-vrf)# copy running-config startup-config</pre>	

Configuring RPF Routes for Multicast

You can define reverse path forwarding (RPF) routes for multicast when you want multicast data to diverge from the unicast traffic path. You can define RPF routes for multicast on border routers to enable RPF to an external network.

Multicast routes are used not to directly forward traffic but to make RPF checks. RPF routes for multicast cannot be redistributed.

Note

IPv6 static multicast routes are not supported.

Note If the ip multicast multipath s-g-hash CLI is not configured, the multicast traffic may fail the RFP check.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>ip mroute {ip-addr mask ip-prefix} {next-hop nh-prefix interface } [route-preference] [vrf vrf-name] Example:</pre>	Configures an RPF route for multicast for use in RPF calculations. Route preference values range from 1 to 255. The default preference is 1.

I

	Command or Action	Purpose
	switch(config)# ip mroute 192.0.2.33/1 224.0.0.0/1	
Step 3	(Optional) show ip static-route [multicast] [vrf <i>vrf-name</i>]	Displays configured static routes.
	Example:	
	<pre>switch(config)# show ip static-route multicast</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring Multicast Multipath

By default, the RPF interface for multicast is chosen automatically when multiple ECMP paths are available.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ip multicast multipath {none resilient s-g-hash}	Configure multicast multipath using the following options:
	<pre>Example: switch(config)# ip multicast multipath none</pre>	• none —Disables multicast multipath by suppressing hashing across multiple ECMPs in the URIB RPF lookup. With this option, the highest RPF neighbor (next-hop) address is used for the RPF interface.
		Note Use the ip multicast multipath none command to completely disable hashing.
		• s-g-hash —Initiates S, G, nexthop hashing (rather than the default of S/RP, G-based hashing) to select the RPF interface. This option configures the hash based on source and group address. This is the default setting.
		• resilient —If the ECMP path list changes and the old RPF information is still part of the ECMP, this option uses the old RPF information instead of performing a rehash and potentially changing the RPF

	Command or Action	Purpose	
		information. The ip multicast multipath resilient command is for maintaining resiliency (Stickiness) to the current RPF if there is a path in the route reachability notification from URIB.	
		Note	The no ip multicast multipath resilient command disables the stickiness algorithm. This command is independent of the hashing algorithm.
		Note	For Cisco Nexus 9508 switches with the X9636C-R or X9636Q-R line card or the C9508-FM-R fabric module, if you want to change from the resilient option to the none option, first enter the no ip multicast multipath resilient command and then enter the ip multicast multipath none command.
-	clear ip mroute *		nultipath routes and activates multicast h suppression.
	Example:	maniput	n suppression.
	<pre>switch(config)# clear ip mroute *</pre>		

Configuring Multicast VRF-Lite Route Leaking

Beginning with Cisco NX-OS Release 7.0(3)I7(1), you can configure multicast VRF-lite route leaking, which allows IPv4 multicast traffic across VRFs.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ip multicast rpf select vrf src-vrf-name group-list group-list	Specifies which VRF to use for RPF lookup for a particular multicast group.
	Example:	

	Command or Action	Purpose
	<pre>switch(config)# ip multicast rpf select vrf blue group-list 236.1.0.0/16</pre>	<i>src-vrf-name</i> is the name of the source VRF. It can be a maximum of 32 alphanumeric characters and is case sensitive.
		<i>group-list</i> is the group range for the RPF. The format is A.B.C.D/LEN with a maximum length of 32.
Step 3	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring Route Maps to Control RP Information Distribution

You can configure route maps to help protect against some RP configuration errors and malicious attacks.

By configuring route maps, you can control distribution of RP information that is distributed throughout the network. You specify the BSRs or mapping agents to be listened to on each client router and the list of candidate RPs to be advertised (listened to) on each BSR and mapping agent to ensure that what is advertised is what you expect.

Note Only the match ipv6 multicast command has an effect in the route map.

Ensure that you have installed the Enterprise Services license and enabled PIM or PIM6.

Configuring Route Maps to Control RP Information Distribution (PIM)

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	route-map map-name [permit deny] [sequence-number]	Enters route-map configuration mode.
	Example:	
	<pre>switch(config)# route-map ASM_only permit 10 switch(config-route-map)#</pre>	
	Example:	
	<pre>switch(config)# route-map Bidir_only permit 10 switch(config-route-map)#</pre>	

	Command or Action	Purpose
Step 3	match ip multicast { rp <i>ip-address</i> [rp-type <i>rp-type</i>]} { group <i>ip-prefix</i> } { source <i>source-ip-address</i> }	Matches the group, RP, and RP type specified. You can specify the RP type (ASM or Bidir). This configuration method requires the group and RP specified as shown in the example.
	Example:	and RI specified as shown in the example.
	<pre>switch(config-route-map)# match ip multicast group 224.0.0.0/4 rp 0.0.0.0/0 rp-type ASM</pre>	
	Example:	
	<pre>switch(config-route-map)# match ip multicast group 224.0.0.0/4 rp 0.0.0.0/0 rp-type Bidir</pre>	
Step 4	(Optional) show route-map	Displays configured route maps.
	Example:	
	switch(config-route-map)# show route-map	
Step 5	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch(config-route-map)# copy running-config startup-config</pre>	

Configuring Route Maps to Control RP Information Distribution (PIM6)

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	route-map <i>map-name</i> [permit deny] [<i>sequence-number</i>]	Enters route-map configuration mode.	
	Example:		
	<pre>switch(config)# route-map ASM_only permit 10 switch(config-route-map)#</pre>		
Step 3	match ipv6 multicast {rp ip-address [rp-typerp-type]} {group ipv6-prefix} {sourcesource-ip-address}	You can specify the RP type (ASM). This configuration method requires the group and	
	Example:	RP specified as shown in the example.	
	<pre>switch(config-route-map)# match ipv6 multicast group ffle:abcd:def1::0/24 rp 2001:0db8:0:abcd::1 rp-type ASM</pre>		

	Command or Action	Purpose	
Step 4	(Optional) show route-map	Displays configured route maps.	
	Example:		
	<pre>switch(config-route-map)# show route-map</pre>		
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup	
	Example:	configuration.	
	<pre>switch(config-route-map)# copy running-config startup-config</pre>		

Configuring Message Filtering

Note Prefix matches in the rp-candidate-policy must be exact relative to what the c-rp is advertising. Subset matches are not possible.

You can configure filtering of the PIM and PIM6 messages described in the table below.

Table 16: PIM and PIM6 Message Filtering

Description		
Global to the Device		
Enables syslog messages that list the neighbor state changes to be generated. The default is disabled.		
Enables PIM register messages to be filtered based on a route-map $policy^4$ where you can specify group or group and source addresses with the match ip [v6] multicast command. This policy applies to routers that act as an RP. The default is disabled, which means that the software does not filter PIM register messages.		
cy Enables BSR candidate RP messages to be filtered by the router based on a route-map policy where you can specify the RP and group addresses and whether the type is Bidir or ASM with the match ip multicast command. This command can be used on routers that are eligible for BSR election. The default is no filtering of BSR messages.		
Note PIM6 does not support BSRs.		
 Enables BSR messages to be filtered by the BSR client routers based on a route-map policy where you can specify BSR source addresses with the match ip multicast command. This command can be used on client routers that listen to BSR messages. The default is no filtering of BSR messages. Note PIM6 does not support BSRs. 		

Message Type	Description	
Auto-RP candidate RP policy	Enables Auto-RP announce messages to be filtered by the Auto-RP mapping agents based on a route-map policy where you can specify the RP and group addresses and whether the type is Bidir or ASM with the match ip multicast command. This command can be used on a mapping agent. The default is no filtering of Auto-RP messages.	
	Note PIM6 does not support the Auto-RP method.	
Auto-RP mapping agent policy	t Enables Auto-RP discover messages to be filtered by client routers based on a route-map policy where you can specify mapping agent source addresses with the match ip multicast command. This command can be used on client routers that listen to discover messages. The default is no filtering of Auto-RP messages.	
	Note PIM6 does not support the Auto-RP method.	
Per Device Interface	1	
Join-prune policy	Enables join-prune messages to be filtered based on a route-map policy where you can specify group, group and source, or group and RP addresses with the match ip[v6] multicast command. The default is no filtering of join-prune messages.	

⁴ For information about configuring route-map policies, see the Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide.

Route maps as a filtering policy can be used (either **permit** or **deny** for each statement) for the following commands:

- The **jp-policy** command can use (S,G), (*,G), or (RP,G).
- The register-policy command can use (S,G) or (*,G).
- The **igmp report-policy** command can use (*,G) or (S,G).
- The state-limit reserver-policy command can use (*,G) or (S,G).
- The auto-rp rp-candidate-policy command can use (RP,G).
- The **bsr rp-candidate-policy** command can use (RP,G).
- The autorp mapping-agent policy command can use (S).
- The **bsr bsr-policy** command can use (S).

Route maps as containers can be used for the following commands, where the route-map action (**permit** or **deny**) is ignored:

- The **ip pim rp-address route map** command can use only G.
- The ip pim ssm-range route map can use only G.
- The ip igmp static-oif route map command can use (S,G), (*,G), (S,G-range), (*,G-range).
- The ip igmp join-group route map command can use (S,G), (*,G), (S,G-range, (*, G-range).

Configuring Message Filtering (PIM)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example: switch# configure terminal switch(config)#	
Step 2	(Optional) ip pim log-neighbor-changes Example: switch(config)# ip pim log-neighbor-changes	Enables syslog messages that list the neighbor state changes to be generated. The default is disabled.
Step 3	<pre>(Optional) ip pim register-policy policy-name Example: switch(config) # ip pim register-policy my_register_policy</pre>	Enables PIM register messages to be filtered based on a route-map policy. You can specify group or group and source addresses with the match ip multicast command.
Step 4	<pre>(Optional) ip pim bsr rp-candidate-policy policy-name Example: switch(config) # ip pim bsr rp-candidate-policy my_bsr_rp_candidate_policy</pre>	Enables BSR candidate RP messages to be filtered by the router based on a route-map policy where you can specify the RP and group addresses and whether the type is ASM or Bidir with the match ip multicast command. This command can be used on routers that are eligible for BSR election. The default is no filtering of BSR messages.
Step 5	(Optional) ip pim bsr bsr-policy policy-name Example: switch(config) # ip pim bsr bsr-policy my_bsr_policy	Enables BSR messages to be filtered by the BSR client routers based on a route-map policy where you can specify BSR source addresses with the match ip multicast command. This command can be used on client routers that listen to BSR messages. The default is no filtering of BSR messages.
Step 6	<pre>(Optional) ip pim auto-rp rp-candidate-policy policy-name Example: switch(config) # ip pim auto-rp rp-candidate-policy my_auto_rp_candidate_policy</pre>	Enables Auto-RP announce messages to be filtered by the Auto-RP mapping agents based on a route-map policy where you can specify the RP and group addresses and whether the type is ASM or Bidir with the match ip multicast command. This command can be used on a mapping agent. The default is no filtering of Auto-RP messages.

Cisco Nexus 9000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x

	Command or Action	Purpose
Step 7	<pre>(Optional) ip pim auto-rp mapping-agent-policy policy-name Example: switch(config) # ip pim auto-rp mapping-agent-policy my_auto_rp_mapping_policy</pre>	Enables Auto-RP discover messages to be filtered by client routers based on a route-map policy where you can specify mapping agent source addresses with the match ip multicast command. This command can be used on client routers that listen to discover messages. The default is no filtering of Auto-RP messages.
Step 8	<pre>interface interface Example: switch(config) # interface ethernet 2/1 switch(config-if) #</pre>	Enters interface mode on the specified interface.
Step 9	<pre>(Optional) ip pim jp-policy policy-name [in out] Example: switch(config-if)# ip pim jp-policy my_jp_policy</pre>	Enables join-prune messages to be filtered based on a route-map policy where you can specify group, group and source, or group and RP addresses with the match ip multicast command. The default is no filtering of join-prune messages.
Step 10	(Optional) show run pim Example: switch(config-if)# show run pim	Displays PIM configuration commands.
Step 11	<pre>(Optional) copy running-config startup-config Example: switch(config-if)# copy running-config startup-config</pre>	Copies the running configuration to the startup configuration.

Configuring Message Filtering (PIM6)

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM6.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	(Optional) ipv6 pim log-neighbor-changes Example: switch(config)# ipv6 pim log-neighbor-changes	Enables syslog messages that list the neighbor state changes to be generated. The default is disabled.
Step 3	<pre>(Optional) ipv6 pim register-policy policy-name Example: switch(config) # ipv6 pim register-policy my_register_policyinterface interfaceEnters interface mode on the specified interface. switch(config) # interface ethernet 2/1 switch(config-if) #</pre>	Enables PIM register messages to be filtered based on a route-map policy. You can specify group or group and source addresses with the match ipv6 multicast command. The default is disabled.
Step 4	<pre>ignore routeable Example: switch(config)# ignore routeable</pre>	Enables the filtering of multicast traffic.
Step 5	<pre>(Optional) ipv6 pim jp-policy policy-name [in out] Example: switch(config-if) # ipv6 pim jp-policy my_jp_policy</pre>	Enables join-prune messages to be filtered based on a route-map policy where you can specify group, group and source, or group and RP addresses with the match ipv6 multicast command. The default is no filtering of join-prune messages. This command filters messages in both
		incoming and outgoing directions.
Step 6	(Optional) show run pim6	Displays PIM6 configuration commands.
	<pre>Example: switch(config-if)# show run pim6</pre>	
Step 7	<pre>(Optional) copy running-config startup-config Example: switch(config-if)# copy running-config startup-config</pre>	Copies the running configuration to the startup configuration.

Restarting the PIM and PIM6 Processes

When routes are flushed, they are removed from the Multicast Routing Information Base (MRIB and M6RIB) and the Multicast Forwarding Information Base (MFIB and M6FIB).

When you restart PIM or PIM6, the following tasks are performed:

- The PIM database is deleted.
- The MRIB and MFIB are unaffected and forwarding of traffic continues.
- The multicast route ownership is verified through the MRIB.

• Periodic PIM join and prune messages from neighbors are used to repopulate the database.

Restarting the PIM Process

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

Procedure

	Command or Action	Purpose	
Step 1	restart pim	Restarts the PIM process.	
	Example:	Note Traffic loss might occur during	
	switch# restart pim	the restart process.	
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 3	ip pim flush-routes	Removes routes when the PIM process is	
	Example:	restarted. By default, routes are not flushed.	
	<pre>switch(config)# ip pim flush-routes</pre>		
Step 4	(Optional) show running-configuration pim		
	Example:	information, including the flush-routes command.	
	switch(config) # show	command.	
	running-configuration pim		
Step 5	(Optional) copy running-config startup-config		
	Example:	configuration.	
	switch(config)# copy running-config startup-config		

Restarting the PIM6 Process

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM6.

Procedure

	Command or Action	Purpose
Step 1	restart pim6	Restarts the PIM6 process.
	Example:	
	switch# restart pim6	

ration mode.	
Removes routes when the PIM6 process is	
routes are not flushed.	
nning-configuration	
g the flush-routes	
nfiguration to the startup	
£	

Configuring BFD for PIM in VRF Mode

Note You can configure Bidirectional Forwarding Detection (BFD) for PIM by either VRF or interface.

Note BFD is not supported for PIM6.

Before you begin

Ensure that you have installed the Enterprise Services license, enabled PIM, and enabled BFD.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	vrf context vrf-name	Enters VRF configuration mode.
	Example:	
	<pre>switch# vrf context test switch(config-vrf)#</pre>	

	Command or Action	Purpose	
Step 3	ip pim bfd	Enables B	BFD on the specified VRF.
	<pre>Example: switch(config-vrf)# ip pim bfd</pre>	Note	You can also enter the ip pim bfd command in global configuration mode, which enables BFD on the VRF instance.

Configuring BFD for PIM in Interface Mode

Before you begin

Ensure that you have installed the Enterprise Services license, enabled PIM, and enabled BFD.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	interface interface-type	Enters interface configuration mode.	
	Example:		
	<pre>switch(config)# interface ethernet 7/40 switch(config-if)#</pre>		
Step 3	ip pim bfd instance	Enables BFD on the specified interfaces. You	
	Example:	can enable or disable BFD on PIM interfaces irrespective of whether BFD is enabled on the	
	<pre>switch(config-if)# ip pim bfd instance</pre>	VRF.	
Step 4	(Optional) show running-configuration pim	Displays the PIM running-configuration	
	Example:	information.	
	<pre>switch(config-if) # show</pre>		
	running-configuration pim		
Step 5	(Optional) copy running-config startup-config		
	Example:	configuration.	
	<pre>switch(config-if)# copy running-config startup-config</pre>		

Enabling the Multicast Heavy and Extended Heavy Template

You can enable the multicast heavy template in order to support up to 32K IPv4 mroutes.

You must enable the multicast extended heavy template and configure the multicast route memory in order to support the 128K IPv4 route.

With the heavy template, the **show ip mroute** command displays the multicast traffic counters.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM.

Note If the **feature tunnel** command is configured, you must not enable multicast heavy template because the **feature tunnel** command may break the multicast functionality if multicast heavy template is enforced.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	system routing template-name	Enables the multicast template. The template	
	Example:	can be template-multicast-heavy or template-multicast-ext-heavy or	
	<pre>switch(config)# system routing template-multicast-heavy</pre>	template-dual-stack-mcast. You need to reload the system after enabling the command when	
	<pre>switch(config)# system routing template-multicast-ext-heavy</pre>	you use template-multicast-heavy or template-multicast-eavy templates.	
	<pre>switch(config)# system routing template-dual-stack-mcast</pre>		
Step 3	vdc vdc-name	Specifies a VDC and enters VDC configuration	
	Example:	mode.	
	<pre>switch(config)# vdc vdc1</pre>		
Step 4	limit-resource m4route-mem [minimum	Configures IPv4 multicast route map memory	
	min-value]maximum max-value	resource limits for a VDC. After configuring this command, save it to the startup	
	Example:	configuration and reload the device.	
	<pre>switch(config-vdc)# limit-resource m4route-mem minimum 150 maximum 150</pre>		
Step 5	exit	Exits VDC configuration mode.	
	Example:		
	<pre>switch(config-vdc)# exit</pre>		
Step 6	ip routing multicast mfdm-buffer-route-count <i>size</i>	Configures the multicast mfdm buffer route size.	
	Example:		
	<pre>switch(config)# ip routing multicast mfdm-buffer-route-count 400</pre>		

	Command or Action	Purpose
Step 7	ip pim mtu size	Enables bigger frame sizes for the PIM control
	Example:	plane traffic and improves the convergence.
	switch(config)# ip pim mtu 1500	
Step 8	exit	Exits the global configuration mode.
	Example:	
	<pre>switch(config)# exit</pre>	
Step 9	show system routing mode	Displays the configured routing mode -
	Example:	multicast heavy or multicast extended heavy
	switch# show system routing mode	or dual stack.
	Configured System Routing Mode:	
	Multicast Extended Heavy Scale	
	Applied System Routing Mode: Multicast Extended Heavy Scale	
	Switch#	
Step 10	(Optional) copy running-config	Copies the running configuration to the startur
	startup-config	configuration.
	Example:	
	switch(config)# copy running-config	
	startup-config	

Verifying the PIM and PIM6 Configuration

To display the PIM and PIM6 configuration information, perform one of the following tasks. Use the **show ip** form of the command for PIM and the **show ipv6** form of the command for PIM6.

Command	Description
<pre>show ip[v6] mroute [ip-address] [detail summary]</pre>	Displays the IP or IPv6 multicast routing table.
	The detail option displays detailed route attributes.
	The summary option displays route counts and packet rates.
	Note This command also displays multicast counters for Cisco Nexus 9300-EX and 9300-FX Series switches, if the multicast heavy template is enabled. See sample outputs below.
<pre>show ip[v6] pim df [vrf vrf-name all]</pre>	Displays the designated forwarder (DF) information for each RP by interface.
show ip[v6] pim group-range [ip-prefix] [vrf vrf-name all]	Displays the learned or configured group ranges and modes. For similar information, see the show ip [v6] pim rp command.
<pre>show ip[v6] pim interface [interface brief] [vrf vrf-name all]</pre>	Displays information by the interface.
show ip[v6] pim neighbor [interface interface ip-prefix] [vrf vrf-name all]	Displays neighbors by the interface.
show ip[v6] pim oif-list group [source] [vrf vrf-name all]	Displays all the interfaces in the outgoing interface (OIF) list.
<pre>show ip[v6] pim route [source group [source]] [vrf vrf-name all]</pre>	Displays information for each multicast route, including interfaces on which a PIM join for that (S, G) has been received.

Command	Description
show ip[v6] pim rp [ip-prefix] [vrf vrf-name all]	Displays rendezvous points (RPs) known to the software, how they were learned, and their group ranges. For similar information, see the show ip [v6] pim group-range command.
show ip pim rp-hash group [vrf vrf-name all]	Displays the bootstrap router (BSR) RP hash information.

Command	Description
show ip[v6] pim config-sanity	

Command	Description
	Displays the following messages if any PIM configuration errors are detected:
	For Static RPs:
	• <i>interface_name</i> should be PIM enabled
	• <i>interface_name</i> should be UP
	For Anycast RPs:
	• Anycast-RP <i>rp_address</i> should be configured on local interface
	• For Anycast-RP <i>rp_address</i> , <i>interface_name</i> should be PIM enabled
	• Anycast-RP <i>rp_address</i> is not configured as RP for any group-range
	• <i>interface_name</i> should be PIM enabled
	• <i>interface_name</i> should be UP
	• None of the members in Anycast-RP set for <i>rp_address</i> is local
	For BSR RPs:
	• BSR RP Candidate interface <i>interface_name</i> is not PIM/IP enabled
	• BSR RP Candidate interface <i>interface_name</i> is not IP enabled
	• BSR RP Candidate interface <i>interface_name</i> is not PIM enabled
	• <i>interface_name</i> should be PIM enabled

Command	Description
	• BSR Candidate interface interface_name is not PIM/IP enabled
	• BSR Candidate interface <i>interface_name</i> is not IP enabled
	• BSR Candidate interface <i>interface_name</i> is not PIM enabled
	For Auto-RPs:
	• Auto-RP RP Candidate interface <i>interface_name</i> is not PIM/IP enabled
	• Auto-RP RP Candidate interface <i>interface_name</i> is not IP enabled
	• Auto-RP RP Candidate interface <i>interface_name</i> is not PIM enabled
	• <i>interface_name</i> should be PIM enabled
	• Auto-RP Candidate interface <i>interface_name</i> is not PIM/IP enabled
	• Auto-RP Candidate interface <i>interface_name</i> is not IP enabled
	• Auto-RP Candidate interface <i>interface_name</i> is not PIM enabled
show running-config pim[6]	Displays the running-configuration information.
show startup-config pim[6]	Displays the startup-configuration information.
<pre>show ip[v6] pim vrf [vrf-name all] [detail]</pre>	Displays per-VRF information.

This example shows sample output, including multicast counters, for the **show ip mroute summary** command:

switch# show ip mroute summary IP Multicast Routing Table for VRF "default" Route Statistics unavailable - only liveness detected Total number of routes: 701 Total number of (*,G) routes: 0 Total number of (S,G) routes: 700 Total number of (*,G-prefix) routes: 1 Group count: 700, rough average sources per group: 1.0 Group: 224.1.24.0/32, Source count: 1 packets bytes Source aps pps bit-rate oifs 27.200 bps 5 192.205.38.2 3110 158610 51 0 Group: 224.1.24.1/32, Source count: 1 Source packets bytes aps pps bit-rate oifs 192.205.38.2 3106 158406 51 0 27.200 bps 5

This example shows sample output, including multicast counters, for the **show ip mroute** *ip-address* **summary** command:

switch# show ip mroute 224.1.24.1 summary IP Multicast Routing Table for VRF "default" Route Statistics unavailable - only liveness detected Total number of routes: 701 Total number of (*,G) routes: 0 Total number of (S,G) routes: 700 Total number of (*,G-prefix) routes: 1 Group count: 700, rough average sources per group: 1.0 Group: 224.1.24.1/32, Source count: 1 Source packets bytes bit-rate oifs ags pps 3114 192.205.38.2 158814 51 0 27.200 bps 5

This example shows sample output, including multicast counters, for the show ip mroute detail command:

```
IP Multicast Routing Table for VRF "default"
Total number of routes: 701
Total number of (*,G) routes: 0
Total number of (S,G) routes: 700
Total number of (*,G-prefix) routes: 1
(192.205.38.2/32, 224.1.24.0/32), uptime: 13:03:24, nbm(5) pim(0) ip(0)
  Data Created: No
  Stats: 3122/159222 [Packets/Bytes], 27.200 bps
 Stats: Active Flow
  Incoming interface: Ethernet1/51, uptime: 13:03:24, internal
  Outgoing interface list: (count: 5)
   Ethernet1/39, uptime: 13:03:24, nbm
    Ethernet1/40, uptime: 13:03:24, nbm
   Ethernet1/38, uptime: 13:03:24, nbm
   Ethernet1/37, uptime: 13:03:24, nbm
    Ethernet1/36, uptime: 13:03:24, nbm
```

This example shows sample output, including multicast counters, for the **show ip mroute** *ip-address* **detail** command:

```
switch# show ip mroute 224.1.24.1 detail
IP Multicast Routing Table for VRF "default"
```

switch# show ip mroute detail

```
Total number of routes: 701
Total number of (*,G) routes: 0
Total number of (S,G) routes: 700
Total number of (*,G-prefix) routes: 1
(192.205.38.2/32, 224.1.24.1/32), uptime: 13:00:32, nbm(5) ip(0) pim(0)
  Data Created: No
  Stats: 3110/158610 [Packets/Bytes], 27.200 bps
  Stats: Active Flow
  Incoming interface: Ethernet1/50, uptime: 12:59:04, internal
  Outgoing interface list: (count: 5)
   Ethernet1/39, uptime: 12:59:04, nbm
   Ethernet1/40, uptime: 12:59:04, nbm
   Ethernet1/38, uptime: 12:59:04, nbm
   Ethernet1/37, uptime: 12:59:04, nbm
   Ethernet1/36, uptime: 13:00:32, nbm
```

Displaying Statistics

You can display and clear PIM and PIM6 statistics by using the commands in this section.

Displaying PIM and PIM6 Statistics

You can display the PIM and PIM6 statistics and memory usage using these commands.

Note

Use the **show ip** form of the command for PIM and the **show ipv6** form of the command for PIM6.

Command	Description
show ip[v6] pim policy statistics	Displays policy statistics for register, RP, and join-prune message policies.
<pre>show ip[v6] pim statistics [vrf vrf-name]</pre>	Displays global statistics.

Clearing PIM and PIM6 Statistics

You can clear the PIM and PIM6 statistics using these commands. Use the **show ip** form of the command for PIM and the **show ipv6** form of the command for PIM6.

Command	Description
clear ip[v6] pim interface statistics interface	Clears counters for the specified interface.
clear ip[v6] pim policy statistics	Clears policy counters for register, RP, and join-prune message policies.
clear ip[v6] pim statistics [vrf vrf-name]	Clears global counters handled by the PIM process.

Configuration Examples for PIM

This section describes how to configure PIM using different data distribution modes and RP selection methods.

SSM Configuration Example

To configure PIM in SSM mode, follow these steps for each router in the PIM domain:

Configure PIM sparse mode parameters on the interfaces that you want to participate in the domain. We
recommend that you enable PIM on all interfaces.

```
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# ip pim sparse-mode
```

2. Configure the parameters for IGMP that support SSM. Usually, you configure IGMPv3 on PIM interfaces to support SSM.

```
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# ip igmp version 3
```

3. Configure the SSM range if you do not want to use the default range.

```
switch# configure terminal
switch(config)# ip pim ssm range 239.128.1.0/24
```

4. Configure message filtering.

```
switch# configure terminal
switch(config)# ip pim log-neighbor-changes
```

The following example shows how to configure PIM SSM mode:

```
configure terminal
  interface ethernet 2/1
   ip pim sparse-mode
   ip igmp version 3
   exit
   ip pim ssm range 239.128.1.0/24
   ip pim log-neighbor-changes
```

PIM SSM Over vPC Configuration Example

This example shows how to override the default SSM range of 232.0.0.0/8 to 225.1.1.0/24. PIM SSM over vPC will work as long as S,G joins are received in this range.

```
switch# configure terminal
switch(config)# vrf context Enterprise
```

switch(config-vrf)# ip pim ssm range 225.1.1.0/24 switch(config-vrf)# show ip pim group-range --> Shows the configured SSM group range. PIM Group-Range Configuration for VRF "Enterprise" Group-range Mode RP-address Shared-tree-only range 225.1.1.0/24 SSM -switch1# show vpc (primary vPC) --> Shows vPC-related information. Legend: (*) - local vPC is down, forwarding via vPC peer-link vPC domain id : 10 Peer status : peer adjacency formed ok vPC keep-alive status : peer is alive Configuration consistency status : success Per-vlan consistency status : success Type-2 consistency status : success vPC role : primary Number of vPCs configured : 2 Peer Gateway : Disabled Dual-active excluded VLANs : -Graceful Consistency Check : Enabled : Disabled Auto-recovery status Delay-restore status : Timer is off.(timeout = 30s) : Timer is off.(timeout = 10s) Delay-restore SVI status vPC Peer-link status _____ id Port Status Active vlans ____ _____ ____ 1 Po1000 up 101-102 vPC status _____ id Port Status Consistency Reason Active vlans ___ ____ ----- ----- -----_____ up success success 1 Po1 102 2 Po2 up success success 101 switch2# **show vpc** (secondary vPC) Legend: (*) - local vPC is down, forwarding via vPC peer-link $% \left({{\left({{{\left({{{\left({{{\left({{{}}} \right)}} \right.} \right.} \right)}_{\rm{cl}}}}} \right)} \right)$ vPC domain id : 10 Peer status : peer adjacency formed ok vPC keep-alive status : peer is alive Configuration consistency status : success Per-vlan consistency status : success Type-2 consistency status : success vPC role : secondary : 2 Number of vPCs configured Peer Gateway : Disabled Dual-active excluded VLANs : -Graceful Consistency Check : Enabled Auto-recovery status : Disabled : Timer is off.(timeout = 30s) Delav-restore status : Timer is off.(timeout = 10s) Delay-restore SVI status vPC Peer-link status _____ id Port Status Active vlans _____ Po1000 up 101-102 1

vPC status _____ id Port Status Consistency Reason Active vlans --____ ----- ------ ------_____ 1 up success 102 Po1 success 2 Po2 up success success 101

switch1# **show ip igmp snooping group vlan 101** (primary vPC IGMP snooping states) --> Shows if S,G v3 joins are received and on which VLAN. The same VLAN should be OIF in the MRIB output.

Type: S - Static, D - Dynamic, R - Router port, F - Fabricpath core port

Vlan	Group Address	Ver	Туре	Port list
101	*/*	-	R	Po1000 Vlan101
101	225.1.1.1	v3		
	100.6.160.20		D	Po2

switch2# show ip igmp snooping group vlan 101 (secondary vPC IGMP snooping states)
Type: S - Static, D - Dynamic, R - Router port, F - Fabricpath core port

Vlan	Group Address	Ver	Type	Port list
101	*/*	-	R	Po1000 Vlan101
101	225.1.1.1	v3		
	100.6.160.20		D	Po2

switch1# **show ip pim route** (primary vPC PIM route) --> Shows the route information in the PIM protocol.

PIM Routing Table for VRF "default" - 3 entries

(10.6.159.20/32, 225.1.1.1/32), expires 00:02:37 Incoming interface: Ethernet1/19, RPF nbr 10.6.159.20 Oif-list: (1) 0000000, timeout-list: (0) 00000000 Immediate-list: (1) 0000000, timeout-list: (0) 00000000 Sgr-prune-list: (0) 0000000 Timeout-interval: 2, JP-holdtime round-up: 3

(100.6.160.20/32, 225.1.1.1/32), expires 00:01:19
Incoming interface: Vlan102, RPF nbr 100.6.160.20
Oif-list: (0) 00000000, timeout-list: (0) 00000000
Immediate-list: (0) 00000000, timeout-list: (0) 00000000
Sgr-prune-list: (0) 00000000
Timeout-interval: 2, JP-holdtime round-up: 3

(*, 232.0.0.0/8), expires 00:01:19
Incoming interface: Null0, RPF nbr 0.0.0.0
Oif-list: (0) 00000000, timeout-list: (0) 00000000
Immediate-list: (0) 00000000, timeout-list: (0) 00000000
Sgr-prune-list: (0) 00000000
Timeout-interval: 2, JP-holdtime round-up: 3

switch2# show ip pim route (secondary vPC PIM route)
PIM Routing Table for VRF "default" - 3 entries
(10.6.159.20/32, 225.1.1.1/32), expires 00:02:51
Incoming interface: Vlan102, RPF nbr 100.6.160.100
Oif-list: (0) 00000000, timeout-list: (0) 00000000
Immediate-list: (0) 00000000, timeout-list: (0) 00000000
Sgr-prune-list: (0) 00000000
Timeout-interval: 3, JP-holdtime round-up: 3

(100.6.160.20/32, 225.1.1.1/32), expires 00:02:51

```
Incoming interface: Vlan102, RPF nbr 100.6.160.20
              (0) 00000000, timeout-list: (0) 0000000
  Oif-list:
  Immediate-list: (0) 00000000, timeout-list: (0) 00000000
  Sgr-prune-list: (0) 0000000
  Timeout-interval: 3, JP-holdtime round-up: 3
(*, 232.0.0.0/8), expires 00:02:51
  Incoming interface: NullO, RPF nbr 0.0.0.0
                  (0) 00000000, timeout-list: (0) 0000000
  Oif-list:
  Immediate-list: (0) 00000000, timeout-list: (0) 00000000
  Sgr-prune-list: (0) 0000000
  Timeout-interval: 3, JP-holdtime round-up: 3
switch2# show ip pim route (secondary vPC PIM route)
PIM Routing Table for VRF "default" - 3 entries
(10.6.159.20/32, 225.1.1.1/32), expires 00:02:29
  Incoming interface: Vlan102, RPF nbr 100.6.160.100
               (0) 00000000, timeout-list: (0) 0000000
  Oif-list:
  Immediate-list: (0) 00000000, timeout-list: (0) 0000000
  Sgr-prune-list: (0) 0000000
  Timeout-interval: 3, JP-holdtime round-up: 3
(100.6.160.20/32, 225.1.1.1/32), expires 00:02:29
  Incoming interface: Vlan102, RPF nbr 100.6.160.20
                 (0) 00000000, timeout-list: (0) 0000000
  Oif-list:
  Immediate-list: (0) 00000000, timeout-list: (0) 0000000
  Sgr-prune-list: (0) 0000000
  Timeout-interval: 3, JP-holdtime round-up: 3
(*, 232.0.0.0/8), expires 00:02:29
  Incoming interface: NullO, RPF nbr 0.0.0.0
  Oif-list:
                  (0) 00000000, timeout-list: (0) 0000000
  Immediate-list: (0) 00000000, timeout-list: (0) 00000000
  Sgr-prune-list: (0) 0000000
  Timeout-interval: 3, JP-holdtime round-up: 3
switch1# show ip mroute (primary vPC MRIB route) --> Shows the IP multicast routing table.
IP Multicast Routing Table for VRF "default"
(10.6.159.20/32, 225.1.1.1/32), uptime: 03:16:40, pim ip
  Incoming interface: Ethernet1/19, RPF nbr: 10.6.159.20
  Outgoing interface list: (count: 1)
   Vlan102, uptime: 03:16:40, pim
(100.6.160.20/32, 225.1.1.1/32), uptime: 03:48:57, igmp ip pim
  Incoming interface: Vlan102, RPF nbr: 100.6.160.20
  Outgoing interface list: (count: 1)
   Vlan101, uptime: 03:48:57, igmp
(*, 232.0.0.0/8), uptime: 6d06h, pim ip
  Incoming interface: Null, RPF nbr: 0.0.0.0
  Outgoing interface list: (count: 0)
switch1# show ip mroute detail (primary vPC MRIB route) --> Shows if the (S,G) entries have
the RPF as the interface toward the source and no *,G states are maintained for the SSM
group range in the MRIB.
IP Multicast Routing Table for VRF "default"
Total number of routes: 3
Total number of (*,G) routes: 0
```

```
Total number of (S,G) routes: 2
Total number of (*,G-prefix) routes: 1
(10.6.159.20/32, 225.1.1.1/32), uptime: 03:24:28, pim(1) ip(0)
 Data Created: Yes
  VPC Flags
   RPF-Source Forwarder
  Stats: 1/51 [Packets/Bytes], 0.000
                                       bps
  Stats: Inactive Flow
  Incoming interface: Ethernet1/19, RPF nbr: 10.6.159.20
  Outgoing interface list: (count: 1)
   Vlan102, uptime: 03:24:28, pim
(100.6.160.20/32, 225.1.1.1/32), uptime: 03:56:45, igmp(1) ip(0) pim(0)
  Data Created: Yes
  VPC Flags
   RPF-Source Forwarder
  Stats: 1/51 [Packets/Bytes], 0.000
                                       bps
  Stats: Inactive Flow
  Incoming interface: Vlan102, RPF nbr: 100.6.160.20
 Outgoing interface list: (count: 1)
   Vlan101, uptime: 03:56:45, igmp (vpc-svi)
(*, 232.0.0.0/8), uptime: 6d06h, pim(0) ip(0)
  Data Created: No
  Stats: 0/0 [Packets/Bytes], 0.000
                                      bps
  Stats: Inactive Flow
  Incoming interface: Null, RPF nbr: 0.0.0.0
  Outgoing interface list: (count: 0)
switch2# show ip mroute detail (secondary vPC MRIB route)
IP Multicast Routing Table for VRF "default"
Total number of routes: 3
Total number of (*,G) routes: 0
Total number of (S,G) routes: 2
Total number of (*,G-prefix) routes: 1
(10.6.159.20/32, 225.1.1.1/32), uptime: 03:26:24, igmp(1) pim(0) ip(0)
  Data Created: Yes
  Stats: 1/51 [Packets/Bytes], 0.000
                                      bps
  Stats: Inactive Flow
  Incoming interface: Vlan102, RPF nbr: 100.6.160.100
  Outgoing interface list: (count: 1)
    Ethernet1/17, uptime: 03:26:24, igmp
(100.6.160.20/32, 225.1.1.1/32), uptime: 04:06:32, igmp(1) ip(0) pim(0)
  Data Created: Yes
  VPC Flags
   RPF-Source Forwarder
  Stats: 1/51 [Packets/Bytes], 0.000
                                       bps
  Stats: Inactive Flow
  Incoming interface: Vlan102, RPF nbr: 100.6.160.20
  Outgoing interface list: (count: 1)
   Vlan101, uptime: 04:03:24, igmp (vpc-svi)
(*, 232.0.0.0/8), uptime: 6d06h, pim(0) ip(0)
  Data Created: No
  Stats: 0/0 [Packets/Bytes], 0.000
                                      bps
  Stats: Inactive Flow
  Incoming interface: Null, RPF nbr: 0.0.0.0
  Outgoing interface list: (count: 0)
```

BSR Configuration Example

To configure PIM in ASM mode using the BSR mechanism, follow these steps for each router in the PIM domain:

Configure PIM sparse mode parameters on the interfaces that you want to participate in the domain. We
recommend that you enable PIM on all interfaces.

```
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# ip pim sparse-mode
```

2. Configure whether that router should listen and forward BSR messages.

```
switch# configure terminal
switch(config)# ip pim bsr forward listen
```

3. Configure the BSR parameters for each router that you want to act as a BSR.

```
switch# configure terminal
switch(config)# ip pim bsr-candidate ethernet 2/1 hash-len 30
```

4. Configure the RP parameters for each router that you want to act as a candidate RP.

```
switch# configure terminal
switch(config)# ip pim rp-candidate ethernet 2/1 group-list 239.0.0.0/24
```

5. Configure message filtering.

```
switch# configure terminal
switch(config)# ip pim log-neighbor-changes
```

The following example shows how to configure PIM ASM mode using the BSR mechanism and how to configure the BSR and RP on the same router:

```
configure terminal
interface ethernet 2/1
ip pim sparse-mode
exit
ip pim bsr forward listen
ip pim bsr-candidate ethernet 2/1 hash-len 30
ip pim rp-candidate ethernet 2/1 group-list 239.0.0.0/24
ip pim log-neighbor-changes
```

Auto-RP Configuration Example

To configure PIM in Bidir mode using the Auto-RP mechanism, follow these steps for each router in the PIM domain:

1. Configure PIM sparse mode parameters on the interfaces that you want to participate in the domain. We recommend that you enable PIM on all interfaces.

```
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# ip pim sparse-mode
```

2. Configure whether that router should listen and forward Auto-RP messages.

```
switch# configure terminal
switch(config)# ip pim auto-rp forward listen
```

3. Configure the mapping agent parameters for each router that you want to act as a mapping agent.

```
switch# configure terminal
switch(config)# ip pim auto-rp mapping-agent ethernet 2/1
```

4. Configure the RP parameters for each router that you want to act as a candidate RP.

```
switch# configure terminal
switch(config)# ip pim auto-rp rp-candidate ethernet 2/1 group-list 239.0.0.0/24 bidir
```

5. Configure message filtering.

```
switch# configure terminal
switch(config)# ip pim log-neighbor-changes
```

This example shows how to configure PIM Bidir mode using the Auto-RP mechanism and how to configure the mapping agent and RP on the same router:

```
configure terminal
interface ethernet 2/1
ip pim sparse-mode
exit
ip pim auto-rp listen
ip pim auto-rp forward
ip pim auto-rp mapping-agent ethernet 2/1
ip pim auto-rp rp-candidate ethernet 2/1 group-list 239.0.0.0/24 bidir
ip pim log-neighbor-changes
```

PIM Anycast RP Configuration Example

To configure ASM mode using the PIM Anycast-RP method, follow these steps for each router in the PIM domain:

1. Configure PIM sparse mode parameters on the interfaces that you want to participate in the domain. We recommend that you enable PIM on all interfaces.

```
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# ip pim sparse-mode
```

2. Configure the RP address that you configure on all routers in the Anycast-RP set.

```
switch# configure terminal
switch(config)# interface loopback 0
switch(config-if)# ip address 192.0.2.3/32
switch(config-if)# ip pim sparse-mode
```

3. Configure a loopback with an address to use in communication between routers in the Anycast-RP set for each router that you want to be in the Anycast-RP set.

```
switch# configure terminal
switch(config)# interface loopback 1
switch(config-if)# ip address 192.0.2.31/32
switch(config-if)# ip pim sparse-mode
```

4. Configure the Anycast-RP parameters and repeat with the IP address of each Anycast-RP for each router that you want to be in the Anycast-RP set. This example shows two Anycast-RPs.

```
switch# configure terminal
switch(config)# ip pim anycast-rp 192.0.2.3 193.0.2.31
switch(config)# ip pim anycast-rp 192.0.2.3 193.0.2.32
```

5. Configure message filtering.

```
switch# configure terminal
switch(config)# ip pim log-neighbor-changes
```

The following example shows how to configure PIM Anycast RP for IPv6:

```
configure terminal
interface loopback 0
ipv6 address 2001:0db8:0:abcd::5/32
ipv6 pim sparse-mode
ipv6 router ospfv3 1 area 0.0.0
exit
interface loopback 1
ipv6 address 2001:0db8:0:abcd::1111/32
ipv6 pim sparse-mode
ipv6 router ospfv3 1 area 0.0.0.0
exit
ipv6 pim rp-address 2001:0db8:0:abcd::1111 group-list ffle:abcd:def1::0/24
ipv6 pim anycast-rp 2001:0db8:0:abcd::5 2001:0db8:0:abcd::1111
```

The following example shows how to configure PIM ASM mode using two Anycast-RPs:

```
configure terminal
interface ethernet 2/1
ip pim sparse-mode
exit
interface loopback 0
ip address 192.0.2.3/32
ip pim sparse-mode
exit
interface loopback 1
ip address 192.0.2.31/32
ip pim sparse-mode
exit
ip pim anycast-rp 192.0.2.3 192.0.2.31
ip pim anycast-rp 192.0.2.3 192.0.2.32
ip pim log-neighbor-changes
```

Prefix-Based and Route-Map-Based Configurations

```
ip prefix-list plist11 seq 10 deny 231.129.128.0/17
ip prefix-list plist11 seq 20 deny 231.129.0.0/16
```

```
ip prefix-list plist11 seq 30 deny 231.128.0.0/9
ip prefix-list plist11 seq 40 permit 231.0.0.0/8
ip prefix-list plist22 seq 10 deny 231.129.128.0/17
ip prefix-list plist22 seq 20 deny 231.129.0.0/16
ip prefix-list plist22 seq 30 permit 231.128.0.0/9
ip prefix-list plist22 seq 40 deny 231.0.0.0/8
ip prefix-list plist33 seq 10 deny 231.129.128.0/17
ip prefix-list plist33 seq 20 permit 231.129.0.0/16
ip prefix-list plist33 seg 30 deny 231.128.0.0/9
ip prefix-list plist33 seq 40 deny 231.0.0.0/8
ip pim rp-address 172.21.0.11 prefix-list plist11
ip pim rp-address 172.21.0.22 prefix-list plist22
ip pim rp-address 172.21.0.33 prefix-list plist33
route-map rmap11 deny 10
match ip multicast group 231.129.128.0/17
route-map rmap11 deny 20
match ip multicast group 231.129.0.0/16
route-map rmap11 deny 30
match ip multicast group 231.128.0.0/9
route-map rmap11 permit 40
match ip multicast group 231.0.0/8
route-map rmap22 deny 10
match ip multicast group 231.129.128.0/17
route-map rmap22 deny 20
match ip multicast group 231.129.0.0/16
route-map rmap22 permit 30
match ip multicast group 231.128.0.0/9
route-map rmap22 deny 40
match ip multicast group 231.0.0/8
route-map rmap33 deny 10
match ip multicast group 231.129.128.0/17
route-map rmap33 permit 20
match ip multicast group 231.129.0.0/16
route-map rmap33 deny 30
match ip multicast group 231.128.0.0/9
route-map rmap33 deny 40
match ip multicast group 231.0.0/8
ip pim rp-address 172.21.0.11 route-map rmap11
ip pim rp-address 172.21.0.22 route-map rmap22
ip pim rp-address 172.21.0.33 route-map rmap33
```

Output

```
dc3rtg-d2(config-if)# show ip pim rp
PIM RP Status Information for VRF "default"
BSR disabled
Auto-RP disabled
BSR RP Candidate policy: None
BSR RP policy: None
Auto-RP Announce policy: None
Auto-RP Discovery policy: None
RP: 172.21.0.11, (0), uptime: 00:12:36, expires: never,
priority: 0, RP-source: (local), group-map: rmap11, group ranges:
231.0.0.0/8 231.128.0.0/9 (deny)
231.129.0.0/16 (deny) 231.129.128.0/17 (deny)
RP: 172.21.0.22, (0), uptime: 00:12:36, expires: never,
```

```
priority: 0, RP-source: (local), group-map: rmap22, group ranges:
     231.0.0.0/8 (deny) 231.128.0.0/9
      231.129.0.0/16 (deny) 231.129.128.0/17 (deny)
RP: 172.21.0.33, (0), uptime: 00:12:36, expires: never,
  priority: 0, RP-source: (local), group-map: rmap33, group ranges:
      231.0.0.0/8 (deny) 231.128.0.0/9 (deny)
      231.129.0.0/16 231.129.128.0/17 (deny)
dc3rtg-d2(config-if) # show ip mroute
IP Multicast Routing Table for VRF "default"
(*, 231.1.1.1/32), uptime: 00:07:20, igmp pim ip
  Incoming interface: Ethernet2/1, RPF nbr: 10.165.20.1
  Outgoing interface list: (count: 1)
    loopback1, uptime: 00:07:20, igmp
(*, 231.128.1.1/32), uptime: 00:14:27, igmp pim ip
  Incoming interface: Ethernet2/1, RPF nbr: 10.165.20.1
  Outgoing interface list: (count: 1)
    loopback1, uptime: 00:14:27, igmp
(*, 231.129.1.1/32), uptime: 00:14:25, igmp pim ip
  Incoming interface: Ethernet2/1, RPF nbr: 10.165.20.1
  Outgoing interface list: (count: 1)
    loopback1, uptime: 00:14:25, igmp
(*, 231.129.128.1/32), uptime: 00:14:26, igmp pim ip
  Incoming interface: Null, RPF nbr: 10.0.0.1
  Outgoing interface list: (count: 1)
    loopback1, uptime: 00:14:26, igmp
(*, 232.0.0.0/8), uptime: 1d20h, pim ip
  Incoming interface: Null, RPF nbr: 10.0.0.1
  Outgoing interface list: (count: 0)
dc3rtg-d2(config-if) # show ip pim group-range
PIM Group-Range Configuration for VRF "default"
                           RP-address
                Mode
                                        Shared-tree-only range
Group-range
232.0.0.0/8
                  ASM
231.0.0/8
                  ASM
                            172.21.0.11
231.128.0.0/9
                 ASM
                            172.21.0.22
231.129.0.0/16
                 ASM
                            172.21.0.33
                                              _
231.129.128.0/17 Unknown
                            -
```

Related Documents

Related Topic	Document Title
ACL TCAM regions	Cisco Nexus 9000 Series NX-OS Security Configuration Guid
Configuring VRFs	Cisco Nexus 9000 Series NX-OS Unicast Routing Configurat

Standards

Standards

No new or modified standards are supported by this feature, and support for existing standards has not been modifie feature

MIBs

MIBs	MIBs Link
MIBs related to PIM	To locate and download supported MIBs, go to the follow
	ftp://ftp.cisco.com/pub/mibs/supportlists/nexus9000/ Nexus9000MIBSupportList.html

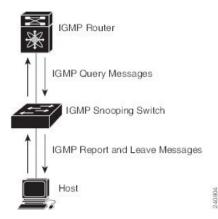
MIBs

Configuring IGMP Snooping

This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping on a Cisco NX-OS device.

- About IGMP Snooping, on page 119
- Prerequisites for IGMP Snooping, on page 121
- Guidelines and Limitations for IGMP Snooping, on page 122
- Default Settings, on page 123
- Configuring IGMP Snooping Parameters, on page 123
- Verifying the IGMP Snooping Configuration, on page 130
- Displaying IGMP Snooping Statistics, on page 131
- Clearing IGMP Snooping Statistics, on page 131
- Configuration Examples for IGMP Snooping, on page 131

About IGMP Snooping


Note

• We recommend that you do not disable IGMP snooping on the device. If you disable IGMP snooping, you might see reduced multicast performance because of excessive false flooding within the device.

IGMP snooping software examines Layer 2 IP multicast traffic within a VLAN to discover the ports where interested receivers reside. Using the port information, IGMP snooping can reduce bandwidth consumption in a multi-access LAN environment to avoid flooding the entire VLAN. IGMP snooping tracks which ports are attached to multicast-capable routers to help the routers forward IGMP membership reports. The IGMP snooping software responds to topology change notifications. By default, IGMP snooping is enabled on the device.

This figure shows an IGMP snooping switch that sits between the host and the IGMP router. The IGMP snooping switch snoops the IGMP membership reports and Leave messages and forwards them only when necessary to the connected IGMP routers.

Figure 15: IGMP Snooping Switch

The IGMP snooping software operates upon IGMPv1, IGMPv2, and IGMPv3 control plane packets where Layer 3 control plane packets are intercepted and influence the Layer 2 forwarding behavior.

The Cisco NX-OS IGMP snooping software has the following proprietary features:

- · Source filtering that allows forwarding of multicast packets based on destination and source IP addresses
- Multicast forwarding based on IP addresses rather than the MAC address
- · Multicast forwarding alternately based on the MAC address

For more information about IGMP snooping, see RFC 4541.

IGMPv1 and IGMPv2

Both IGMPv1 and IGMPv2 support membership report suppression, which means that if two hosts on the same subnet want to receive multicast data for the same group, the host that receives a member report from the other host suppresses sending its report. Membership report suppression occurs for hosts that share a port.

If no more than one host is attached to each VLAN switch port, you can configure the fast leave feature in IGMPv2. The fast leave feature does not send last member query messages to hosts. As soon as the software receives an IGMP leave message, the software stops forwarding multicast data to that port.

IGMPv1 does not provide an explicit IGMP leave message, so the software must rely on the membership message timeout to indicate that no hosts remain that want to receive multicast data for a particular group.

Note

The software ignores the configuration of the last member query interval when you enable the fast leave feature because it does not check for remaining hosts.

IGMPv3

The IGMPv3 snooping implementation on Cisco NX-OS supports full IGMPv3 snooping, which provides constrained flooding based on the (S, G) information in the IGMPv3 reports. This source-based filtering enables the device to constrain multicast traffic to a set of ports based on the source that sends traffic to the multicast group.

By default, the software tracks hosts on each VLAN port. The explicit tracking feature provides a fast leave mechanism. Because every IGMPv3 host sends membership reports, report suppression limits the amount of traffic that the device sends to other multicast-capable routers. When report suppression is enabled, and no IGMPv1 or IGMPv2 hosts requested the same group, the software provides proxy reporting. The proxy feature builds the group state from membership reports from the downstream hosts and generates membership reports in response to queries from upstream queriers.

Even though the IGMPv3 membership reports provide a full accounting of group members on a LAN segment, when the last host leaves, the software sends a membership query. You can configure the parameter last member query interval. If no host responds before the timeout, the software removes the group state.

IGMP Snooping Querier

When PIM is not enabled on an interface because the multicast traffic does not need to be routed, you must configure an IGMP snooping querier to send membership queries. You define the querier in a VLAN that contains multicast sources and receivers but no other active querier.

The querier can be configured to use any IP address in the VLAN.

As a best practice, a unique IP address, one that is not already used by the switch interface or the Hot Standby Router Protocol (HSRP) virtual IP address, should be configured so as to easily reference the querier.

Note The IP address for the querier should not be a broadcast IP address, multicast IP address, or 0 (0.0.0.0).

When an IGMP snooping querier is enabled, it sends out periodic IGMP queries that trigger IGMP report messages from hosts that want to receive IP multicast traffic. IGMP snooping listens to these IGMP reports to establish appropriate forwarding.

The IGMP snooping querier performs querier election as described in RFC 2236. Querier election occurs in the following configurations:

- When there are multiple switch queriers configured with the same subnet on the same VLAN on different switches.
- When the configured switch querier is in the same subnet as with other Layer 3 SVI queriers.

Virtualization Support

You can define multiple virtual routing and forwarding (VRF) instances for IGMP snooping.

You can use the **show** commands with a VRF argument to provide a context for the information displayed. The default VRF is used if no VRF argument is supplied.

For information about configuring VRFs, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Prerequisites for IGMP Snooping

IGMP snooping has the following prerequisites:

You are logged onto the device.

• For global commands, you are in the correct virtual routing and forwarding (VRF) mode. The default configuration mode shown in the examples in this chapter applies to the default VRF.

Guidelines and Limitations for IGMP Snooping

IGMP snooping has the following guidelines and limitations:

- Mrouter/IGMP querier is not supported on the FEX HIF ports.
- IGMP snooping is not supported with PVLAN.
- Cisco Nexus 9000 Series switches support IGMP snooping for IPv4 but do not support MLD snooping for IPv6.
- Layer 3 IPv6 multicast routing is not supported.
- Layer 2 IPv6 multicast packets will be flooded on the incoming VLAN.
- Cisco Nexus 9000 Series switches support IGMP snooping with vPCs.

Note Cisco Nexus 9508 switches with the N9K-X9636C-R and N9K-X9636Q-R line cards support IGMP snooping beginning with Cisco NX-OS Release 7.0(3)F2(1) but do not support IGMP snooping with vPCs until Cisco NX-OS Release 7.0(3)F3(1). The N9K-X9636C-RX line card supports IGMP snooping with and without vPCs beginning with Cisco NX-OS Release 7.0(3)F3(1).

 Beginning with Cisco NX-OS Release 7.0(3)I3(1) the IGMP snooping configuration must be identical on both vPC peers in a vPC pair. Either enable or disable IGMP snooping on both vPC peers.

Note Enabling or disabling IGMP snooping on both vPC peers also enables the forwarding of IGMP queries from different MVR source VLANs into the same MVR receiver VLAN. The resulting IGMP queries may send out queries with different versions and query interval. If you prefer to maintain the behavior prior to Cisco NX-OS Release 7.0(3)I3(1) use the **mvr-suppress-query vlan** *<id>* command.

- In releases prior to Cisco NX-OS Release 7.0(3)I3(1) if you are configuring vPC peers, the differences in the IGMP snooping configuration options between the two devices have the following results:
 - If IGMP snooping is enabled on one device but not on the other, the device on which snooping is disabled floods all multicast traffic.
 - A difference in multicast router or static group configuration can cause traffic loss.
 - The fast leave, explicit tracking, and report suppression options can differ if they are used for forwarding traffic.

- If a query parameter is different between the devices, one device expires the multicast state faster while the other device continues to forward. This difference results in either traffic loss or forwarding for an extended period.
- If an IGMP snooping querier is configured on both devices, only one of them will be active because an IGMP snooping querier shuts down if a query is seen in the traffic.
- You must enable the **ip igmp snooping group-timeout** command when you use the **ip igmp snooping proxy general-queries** command. We recommend that you set it to "never". Otherwise, you might experience multicast packet loss.
- All external multicast router ports (either statically configured or dynamically learned) use the global ltl index. As a result, traffic in VLAN X goes out on the multicast router ports in both VLAN X and VLAN Y, in case both multicast router ports (Layer 2 trunks) carry both VLAN X and VLAN Y.

Default Settings

Parameters	Default
IGMP snooping	Enabled
Explicit tracking	Enabled
Fast leave	Disabled
Last member query interval	1 second
Snooping querier	Disabled
Report suppression	Enabled
Link-local groups suppression	Enabled
Optimise-multicast-flood	Disabled
IGMPv3 report suppression for the entire device	Disabled
IGMPv3 report suppression per VLAN	Enabled

Configuring IGMP Snooping Parameters

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

You must enable IGMP snooping globally before any other commands take effect.

Configuring Global IGMP Snooping Parameters

To affect the operation of the IGMP snooping process globally, you can configure various optional IGMP snooping parameters.

Notes for IGMP Snooping Parameters

IGMP Snooping Proxy parameter

To decrease the burden placed on the snooping switch during each IGMP general query (GQ) interval, the Cisco NX-OS software provides a way to decouple the periodic general query behavior of the IGMP snooping switch from the query interval configured on the multicast routers.

You can configure the device to consume IGMP general queries from the multicast router, rather than flooding the general queries to all the switchports. When the device receives a general query, it produces proxy reports for all currently active groups and distributes the proxy reports over the period specified by the MRT that is specified in the router query. At the same time, independent of the periodic general query activity of the multicast router, the device sends an IGMP general query on each port in the VLAN in a round-robin fashion. It cycles through all the interfaces in the VLAN at the rate given by the following formula.

Rate = {number of interfaces in VLAN} * {configured MRT} * {number of VLANs}

When queries are run in this mode, the default MRT value is 5,000 milliseconds (5 seconds). For a device that has 500 switchports in a VLAN, it would take 2,500 seconds (40 minutes) to cycle through all the interfaces in the system. This is also true when the device itself is the querier.

This behavior ensures that only one host responds to a general query at a given time, and it keeps the simultaneous reporting rate below the packet-per-second IGMP capability of the device (approximately 3,000 to 4,000 pps).

Note

When you use this option, you must change the **ip igmp snooping group-timeout** parameter to a high value or to never time out.

The **ip igmp snooping proxy general-queries** [**mrt**] command causes the snooping function to proxy reply to general queries from the multicast router while also sending round-robin general queries on each switchport with the specified MRT value. (The default MRT value is 5 seconds.)

IGMP Snooping Group-timeout parameter

Configuring the group-timeout parameter disables the behavior of an expiring membership based on three missed general queries. Group membership remains on a given switchport until the device receives an explicit IGMP leave on that port.

The **ip igmp snooping group-timeout** {*timeout* | **never**} command modifies or disables the behavior of an expiring IGMP snooping group membership after three missed general queries.

Procedure

Step 1 configure terminal

Example:

switch# configure terminal
switch(config)#

Enters global configuration mode.

Step 2 Use the following commands to configure global IGMP snooping parameters.

Option	Description		
ip igmp snooping	Enables IGMP snooping for the device. The default is enabled.		
<pre>switch(config)# ip igmp snooping</pre>	Note If the global setting is disabled with the no form of this command, IGMP snooping on all VLANs is disabled, whether IGMP snooping is enabled on a VLAN or not. If you disable IGMP snooping, Layer 2 multicast frames flood to all modules.		
ip igmp snooping event-history	Configures the size of the event history buffer. The default is small.		
<pre>switch(config)# ip igmp snooping event-history</pre>			
<pre>ip igmp snooping group-timeout {minutes never}</pre>	Configures the group membership timeout value for all VLANs on the device.		
<pre>switch(config)# ip igmp snooping group-timeout never</pre>			
ip igmp snooping link-local-groups-suppression	Configures link-local groups suppression for the entire device. The default is enabled.		
<pre>switch(config)# ip igmp snooping link-local-groups-suppression</pre>			
<pre>ip igmp snooping proxy general-inquiries [mrt seconds]</pre>	Configures the IGMP snooping proxy for the device. The default is 5 seconds.		
<pre>switch(config)# ip igmp snooping proxy general-inquiries</pre>			
ip igmp snooping v3-report-suppression	Limits the membership report traffic sent to multicast-capable routers. When you disable report		

Option	Description
<pre>switch(config)# ip igmp snooping v3-report-suppression</pre>	suppression, all IGMP reports are sent as-is to multicast-capable routers. The default is enabled.
ip igmp snooping report-suppression	Configures IGMPv3 report suppression and proxy reporting. The default is disabled.
<pre>switch(config)# ip igmp snooping report-suppression</pre>	

Step 3 copy running-config startup-config

Example:

switch(config)# copy running-config startup-config

(Optional) Copies the running configuration to the startup configuration.

Configuring IGMP Snooping Parameters per VLAN

To affect the operation of the IGMP snooping process per VLAN, you can configure various optional IGMP snooping parameters.


```
Note
```

You configure the IGMP snooping parameters that you want by using this configuration mode; however, the configurations apply only after you specifically create the specified VLAN. See the *Cisco Nexus 9000 Series NX-OS Layer 2 Switching Configuration Guide* for information on creating VLANs.

Procedure

Step 1 configure terminal

Example:

```
switch# configure terminal
switch(config)#
```

Enters global configuration mode.

Step 2 ip igmp snooping

Example:

switch(config)# ip igmp snooping

Enables IGMP snooping. The default is enabled.

Note If the global setting is disabled with the **no** form of this command, IGMP snooping on all VLANs is disabled, whether IGMP snooping is enabled on a VLAN or not. If you disable IGMP snooping, Layer 2 multicast frames flood to all modules.

Step 3 vlan configuration *vlan-id*

Example:

```
switch(config)# vlan configuration 2
switch(config-vlan-config)#
```

Configures the IGMP snooping parameters you want for the VLAN. These configurations do not apply until you create the specified VLAN.

Step 4 Use the following commands to configure IGMP snooping parameters per VLAN.

Option	Description	
ip igmp snooping	Enables IGMP snooping for the current VLAN. The default is enabled.	
<pre>switch(config-vlan-config)# ip igmp snooping</pre>		
<pre>ip igmp snooping access-group {prefix-list route-map}</pre>	Configures a filter for IGMP snooping reports that is based on a prefix-list or route-map policy. The default is disabled.	
policy-name interface interface slot/port	Note Cisco Nexus 9508 switches with the N9K-X9636C-R, N9K-X9636C-RX, and N9K-X9636Q-R line cards support this command beginning with Cisco NX-OS	
<pre>switch(config-vlan-config)# ip igmp snooping access-group prefix-list plist interface ethernet 2/2</pre>	Release 7.0(3)F3(1).	
ip igmp snooping explicit-tracking	Tracks IGMPv3 membership reports from individual host for each port on a per-VLAN basis. The default is enable on all VLANs.	
switch(config-vlan-config)# ip igmp snooping explicit-tracking		
ip igmp snooping fast-leave	Supports IGMPv2 hosts that cannot be explicitly tracked because of the host report suppression mechanism of the IGMPv2 protocol. When you enable fast leave, the IGMP	
switch(config-vlan-config)# ip igmp snooping fast-leave	software assumes that no more than one host is present on each VLAN port. The default is disabled for all VLANs.	
<pre>ip igmp snooping group-timeout {minutes never}</pre>	Configures the group membership timeout for the specified VLANs.	
switch(config-vlan-config)# ip igmp snooping group-timeout never		
ip igmp snooping last-member-query-interval seconds	Removes the group from the associated VLAN port if no hosts respond to an IGMP query message before the last	

Option	Description
switch(config-vlan-config)# ip igmp snooping last-member-query-interval 3	member query interval expires. Values range from 1 to 25 seconds. The default is 1 second.
ip igmp snooping proxy general-queries [mrt seconds]	Configures an IGMP snooping proxy for specified VLANs. The default is 5 seconds.
switch(config-vlan-config)# ip igmp snooping proxy general-queries	
[no] ip igmp snooping proxy-leave use-group-address	Changes the destination address of proxy leave messages to the address of the group that is leaving.
switch(config-vlan-config)# ip igmp snooping proxy-leave use-group-address	Normally, IGMP proxy leave messages generated by the IGMP snooping module use the 224.0.0.2 multicast router address when all hosts leave the group. You should implement this configuration if your multicast applications rely on receiving reports and leave messages to start or stop multicast traffic based on the destination address of the packet.
<pre>ip igmp snooping querier ip-address switch(config-vlan-config)# ip igmp snooping querier 172.20.52.106</pre>	Configures a snooping querier when you do not enable PIM because multicast traffic does not need to be routed. The IP address is used as the source in messages.
ip igmp snooping querier-timeout seconds	Configures a snooping querier timeout value for IGMPv2 when you do not enable PIM because multicast traffic does not need to be routed. The default is 255 seconds.
switch(config-vlan-config)# ip igmp snooping querier-timeout 300	
ip igmp snooping query-interval seconds	Configures a snooping query interval when you do not enable PIM because multicast traffic does not need to be routed. The default value is 125 seconds.
switch(config-vlan-config)# ip igmp snooping query-interval 120	
ip igmp snooping query-max-response-time seconds	Configures a snooping MRT for query messages when you do not enable PIM because multicast traffic does not need to be routed. The default value is 10 seconds.
switch(config-vlan-config)# ip igmp snooping query-max-response-time 12	
[no] ip igmp snooping report-flood {all interface ethernet <i>slot/port</i> }	Floods IGMP reports on all active interfaces of the VLAN or only on specific interfaces.

Option	Description
<pre>switch(config-vlan-config)# ip igmp snooping report-flood interface ethernet 1/2 ip igmp snooping report-flood interface ethernet 1/3</pre>	IGMP reports typically are forwarded to multicast router ports as detected by the IGMP snooping module and are not flooded in the VLAN. However, this command forces the switch to send IGMP reports to custom ports belonging to the VLAN in addition to the multicast router ports. You should implement this configuration if your multicast applications require the ability to view IGMP reports in order to transmit traffic.
<pre>ip igmp snooping report-policy {prefix-list route-map} policy-name interface interface slot/port</pre>	Configures a filter for IGMP snooping reports that is based on a prefix-list or route-map policy. The default is disabled.
<pre>switch(config-vlan-config)# ip igmp snooping report-policy route-map rmap interface ethernet 2/4</pre>	
ip igmp snooping startup-query-count value	Configures snooping for a number of queries sent at startup when you do not enable PIM because multicast traffic does not need to be routed.
switch(config-vlan-config)# ip igmp snooping startup-query-count 5	
<pre>ip igmp snooping startup-query-interval seconds</pre>	Configures a snooping query interval at startup when you do not enable PIM because multicast traffic does not need to be routed.
switch(config-vlan-config)# ip igmp snooping startup-query-interval 15000	
<pre>ip igmp snooping robustness-variable value</pre>	Configures the robustness value for the specified VLANs. The default value is 2.
switch(config-vlan-config)# ip igmp snooping robustness-variable 5	
<pre>ip igmp snooping report-suppression switch(config-vlan-config)# ip igmp</pre>	Limits the membership report traffic sent to multicast-capable routers. When you disable report suppression, all IGMP reports are sent as-is to multicast-capable routers. The default is enabled.
snooping report-suppression	
<pre>ip igmp snooping mrouter interface interface</pre>	Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN. You can specify the interface by the type and the number, such as ethernet <i>slot/port</i> .
<pre>switch(config-vlan-config)# ip igmp snooping mrouter interface ethernet 2/1</pre>	

Option	Description
<pre>ip igmp snooping static-group group-ip-addr [source source-ip-addr] interface interface</pre>	Configures the Layer 2 port of a VLAN as a static member of a multicast group. You can specify the interface by the type and the number, such as ethernet <i>slot/port</i> .
<pre>switch(config-vlan-config)# ip igmp snooping static-group 230.0.0.1 interface ethernet 2/1</pre>	
ip igmp snooping link-local-groups-suppression	Configures link-local groups suppression for the specified VLANs. The default is enabled.
<pre>switch(config-vlan-config)# ip igmp snooping link-local-groups-suppression</pre>	
ip igmp snooping v3-report-suppression	Configures IGMPv3 report suppression and proxy reporting for the specified VLANs. The default is enabled per VLAN.
<pre>switch(config-vlan-config)# ip igmp snooping v3-report-suppression</pre>	
ip igmp snooping version value	Configures the IGMP version number for the specified VLANs.
<pre>switch(config-vlan-config)# ip igmp snooping version 2</pre>	

Step 5 copy running-config startup-config

Example:

switch(config) # copy running-config startup-config

(Optional) Copies the running configuration to the startup configuration.

Verifying the IGMP Snooping Configuration

Command	Description
<pre>show ip igmp snooping [vlan vlan-id]</pre>	Displays the IGMP snooping configuration by VLAN.
show ip igmp snooping groups [source [group] group [source]] [vlan vlan-id] [detail]	Displays IGMP snooping information about groups by VLAN.
show ip igmp snooping querier [vlan <i>vlan-id</i>]	Displays IGMP snooping queriers by VLAN.

Command	Descripti	ion
show ip igmp snooping mroute [vlan vlan-id]	Displays	multicast router ports by VLAN.
<pre>show ip igmp snooping explicit-tracking [vlan vlan-id] [detail]</pre>	Displays by VLAN	IGMP snooping explicit tracking information N.
	Note	For vPC VLANs, you must enter the detail keyword to display this command on both vPC peer switches, beginning with Cisco NX-OS Release 7.0(3)I7(1). If you do not enter the detail keyword, this command displays only on the vPC switch that received the native report.

Displaying IGMP Snooping Statistics

You can display the IGMP snooping statistics using these commands.

Command	Description
show ip igmp snooping statistics vlan	Displays IGMP snooping statistics. You can see the virtual port channel (vPC) statistics in this output.
<pre>show ip igmp snooping {report-policy access-group} statistics [vlan vlan]</pre>	Displays detailed statistics per VLAN when IGMP snooping filters are configured.

Clearing IGMP Snooping Statistics

You can clear the IGMP snooping statistics using these commands.

Command	Description
clear ip igmp snooping statistics vlan	Clears the IGMP snooping statistics.
clear ip igmp snooping {report-policy access-group} statistics [vlan vlan]	Clears the IGMP snooping filter statistics.

Configuration Examples for IGMP Snooping

Note The configurations in this section apply only after you create the specified VLAN. See the *Cisco Nexus* 9000 *Series NX-OS Layer 2 Switching Configuration Guide* for information on creating VLANs.

The following example shows how to configure the IGMP snooping parameters:

```
config t
    ip igmp snooping
    vlan configuration 2
        ip igmp snooping
        ip igmp snooping explicit-tracking
        ip igmp snooping fast-leave
        ip igmp snooping last-member-query-interval 3
        ip igmp snooping querier 172.20.52.106
        ip igmp snooping report-suppression
        ip igmp snooping mrouter interface ethernet 2/1
        ip igmp snooping static-group 230.0.0.1 interface ethernet 2/1
        ip igmp snooping link-local-groups-suppression
        ip igmp snooping v3-report-suppression
```

The following example shows how to configure prefix lists and use them to filter IGMP snooping reports:

```
ip prefix-list plist seq 5 permit 224.1.1.1/32
ip prefix-list plist seq 10 permit 224.1.1.2/32
ip prefix-list plist seq 15 deny 224.1.1.3/32
ip prefix-list plist seq 20 deny 225.0.0.0/8 eq 32
vlan configuration 2
    ip igmp snooping report-policy prefix-list plist interface Ethernet 2/2
    ip igmp snooping report-policy prefix-list plist interface Ethernet 2/3
```

In the above example, the prefix-list permits 224.1.1.1 and 224.1.1.2 but rejects 224.1.1.3 and all the groups in the 225.0.0.0/8 range. The prefix-list is an implicit "deny" if there is no match. If you wish to permit everything else, add **ip prefix-list plist seq 30 permit 224.0.0.0/4 eq 32**.

The following example shows how to configure route maps and use them to filter IGMP snooping reports:

```
route-map rmap permit 10
match ip multicast group 224.1.1.1/32
route-map rmap permit 20
match ip multicast group 224.1.1.2/32
route-map rmap deny 30
match ip multicast group 224.1.1.3/32
route-map rmap deny 40
match ip multicast group 225.0.0.0/8
vlan configuration 2
ip igmp snooping report-policy route-map rmap interface Ethernet 2/4
ip igmp snooping report-policy route-map rmap interface Ethernet 2/5
```

In the above example, the route-map permits 224.1.1.1 and 224.1.1.2 but rejects 224.1.1.3 and all the groups in the 225.0.0.0/8 range. The route-map is an implicit "deny" if there is no match. If you wish to permit everything else, add **route-map rmap permit 50 match ip multicast group 224.0.0.0/4**.

Configuring MSDP

This chapter describes how to configure Multicast Source Discovery Protocol (MSDP) on a Cisco NX-OS device.

- About MSDP, on page 133
- Prerequisites for MSDP, on page 135
- Default Settings, on page 135
- Configuring MSDP, on page 136
- Verifying the MSDP Configuration, on page 143
- Monitoring MSDP, on page 144
- Configuration Examples for MSDP, on page 144
- Related Documents, on page 146
- Standards, on page 146

About MSDP

You can use the Multicast Source Discovery Protocol (MSDP) to exchange multicast source information between multiple Border Gateway Protocol (BGP) enabled Protocol Independent Multicast (PIM) sparse-mode domains. In addition, MSDP can be used to create an Anycast-RP configuration to provide RP redundancy and load sharing. For information about BGP, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

MSDP is supported on all Cisco Nexus 9000 series switches.

When a receiver joins a group that is transmitted by a source in another domain, the rendezvous point (RP) sends PIM join messages in the direction of the source to build a shortest path tree. The designated router (DR) sends packets on the sourcetree within the source domain, which can travel through the RP in the source domain and along the branches of the sourcetree to other domains. In domains where there are receivers, RPs in those domains can be on the sourcetree. The peering relationship is conducted over a TCP connection.

The following figure shows four PIM domains. The connected RPs (routers) are called MSDP peers because they are exchanging active source information with each other. Each MSDP peer advertises its own set of multicast source information to the other peers. Source Host 2 sends the multicast data to group 224.1.1.1. On RP 6, the MSDP process learns about the source through PIM register messages and generates Source-Active (SA) messages to its MSDP peers that contain information about the sources in its domain. When RP 3 and RP 5 receive the SA messages, they forward them to their MSDP peers. When RP 5 receives the request from Host 1 for the multicast data on group 224.1.1.1, it builds a shortest path tree to the source by sending a PIM join message in the direction of Host 2 at 192.1.1.1.

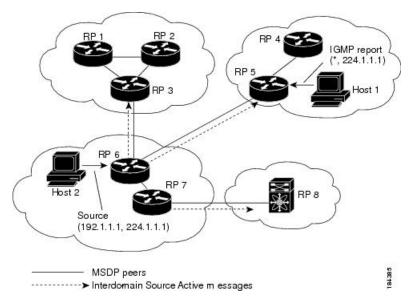


Figure 16: MSDP Peering Between RPs in Different PIM Domains

When you configure MSDP peering between each RP, you create a full mesh. Full MSDP meshing is typically done within an autonomous system, as shown between RPs 1, 2, and 3, but not across autonomous systems. You use BGP to do a loop suppression and MSDP peer-RPF to suppress looping SA messages.

Ò

Note You do not need to configure BGP in order to use Anycast-RP (a set of RPs that can perform load balancing and failover) within a PIM domain.

Note You can use PIM Anycast (RFC 4610) to provide the Anycast-RP function instead of MSDP.

For detailed information about MSDP, see RFC 3618.

SA Messages and Caching

MSDP peers exchange Source-Active (SA) messages to propagate information about active sources. SA messages contain the following information:

- Source address of the data source
- Group address that the data source uses
- IP address of the RP or the configured originator ID

When a PIM register message advertises a new source, the MSDP process reencapsulates the message in an SA message that is immediately forwarded to all MSDP peers.

The SA cache holds the information for all sources learned through SA messages. Caching reduces the join latency for new receivers of a group because the information for all known groups can be found in the cache. You can limit the number of cached source entries by configuring the SA limit peer parameter. You can limit

the number of cached source entries for a specific group prefix by configuring the group limit global parameter. The SA cache is enabled by default and cannot be disabled.

The MSDP software sends SA messages for each group in the SA cache every 60 seconds or at the configured SA interval global parameter. An entry in the SA cache is removed if an SA message for that source and group is not received within the SA interval plus 3 seconds.

MSDP Peer-RPF Forwarding

MSDP peers forward the SA messages that they receive away from the originating RP. This action is called peer-RPF flooding. The router examines the BGP or MBGP routing table to determine which peer is the next hop in the direction of the originating RP of the SA message. This peer is called a reverse path forwarding (RPF) peer.

If the MSDP peer receives the same SA message from a non-RPF peer in the direction of the originating RP, it drops the message. Otherwise, it forwards the message to all its MSDP peers.

MSDP Mesh Groups

You can use MSDP mesh groups to reduce the number of SA messages that are generated by peer-RPF flooding. By configuring a peering relationship between all the routers in a mesh and then configuring a mesh group of these routers, the SA messages that originate at a peer are sent by that peer to all other peers. SA messages received by peers in the mesh are not forwarded.

A router can participate in multiple mesh groups. By default, no mesh groups are configured.

Prerequisites for MSDP

MSDP has the following prerequisites:

- You are logged onto the device.
- For global commands, you are in the correct virtual routing and forwarding (VRF) mode. The default configuration mode shown in the examples in this chapter applies to the default VRF.
- You configured PIM for the networks where you want to configure MSDP.

Default Settings

This table lists the default settings for MSDP parameters.

Table 17: Default MSDP Parameters

Parameters	Default
Description	Peer has no description
Administrative shutdown	Peer is enabled when it is defined
MD5 password	No MD5 password is enabled

Parameters	Default
SA policy IN	All SA messages are received
SA policy OUT	All registered sources are sent in SA messages
SA limit	No limit is defined
Originator interface name	RP address of the local system
Group limit	No group limit is defined
SA interval	60 seconds

Configuring MSDP

You can establish MSDP peering by configuring the MSDP peers within each PIM domain as follows:

- 1. Select the routers to act as MSDP peers.
- 2. Enable the MSDP feature.
- 3. Configure the MSDP peers for each router identified in Step 1.
- 4. Configure the optional MSDP peer parameters for each MSDP peer.
- 5. Configure the optional global parameters for each MSDP peer.
- 6. Configure the optional mesh groups for each MSDP peer.

Note The MSDP commands that you enter before you enable MSDP are cached and then run when MSDP is enabled. Use the **ip msdp peer** or **ip msdp originator-id** command to enable MSDP.

Note If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Enabling the MSDP Feature

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	feature msdp	Enables the MSDP feature so that you can enter
	Example:	MSDP commands. By default, the MSDP feature is disabled
	switch# feature msdp	
Step 3	(Optional) show running-configuration msdp	Shows the running-configuration information
Example: for M	for MSDP.	
	switch# show running-configuration msdp	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring MSDP Peers

You can configure an MSDP peer when you configure a peering relationship with each MSDP peer that resides either within the current PIM domain or in another PIM domain. MSDP is enabled on the router when you configure the first MSDP peering relationship.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM and MSDP.

Ensure that you configured PIM in the domains of the routers that you will configure as MSDP peers.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>ip msdp peer peer-ip-address connect-source interface [remote-as as-number] Example: switch(config) # ip msdp peer 192.168.1.10 connect-source ethernet 2/1 remote-as 8</pre>	peer IP address. The software uses the source IP address of the interface for the TCP connection with the peer. The interface can take the form of <i>type slot/port</i> . If the AS number is the same as the local AS, then the peer is within the PIM domain; otherwise, this peer is external to the PIM domain. By default, MSDP peering is disabled.
		Note MSDP peering is enably you use this command.

	Command or Action	Purpose
Step 3	Repeat Step 2 for each MSDP peering relationship by changing the peer IP address, the interface, and the AS number as appropriate.	
Step 4	(Optional) show ip msdp summary [vrf [<i>vrf-name</i> all]]	Displays a summary of MSDP peers.
	Example: switch# show ip msdp summary	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring MSDP Peer Parameters

You can configure the optional MSDP peer parameters described in this table. You configure these parameters in global configuration mode for each peer based on its IP address.

Table 18: MSDP Peer Parameters

Parameter	Description
Description	Description string for the peer. By default, the peer has no description.
Administrative shutdown	Method to shut down the MSDP peer. The configuration settings are not affected by this command. You can use this parameter to allow configuration of multiple parameters to occur before making the peer active. The TCP connection with other peers is terminated by the shutdown. By default, a peer is enabled when it is defined.
MD5 password	MD5-shared password key used for authenticating the peer. By default, no MD5 password is enabled.
SA policy IN	Route-map policy for incoming SA messages. By default, all SA messages are received.NoteTo configure route-map policies, see the Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide.

Parameter	Description
SA policy OUT	Route-map policy for outgoing SA messages. By default, all registered sources are sent in SA messages.
	Note To configure route-map policies, see the Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide.
SA limit	Number of (S, G) entries accepted from the peer and stored in the SA cache. By default, there is no limit.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM and MSDP.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	<pre>Example: switch# configure terminal switch(config)#</pre>	Note Use the commands listed from step-2 to configure the MSDP peer parameters.	
Step 2	ip msdp description <i>peer-ip-address description</i>	Sets a description string for the peer. By default, the peer has no description.	
	Example:		
	<pre>switch(config)# ip msdp description 192.168.1.10 peer in Engineering network</pre>		
Step 3	<pre>ip msdp shutdown peer-ip-address Example: switch(config)# ip msdp shutdown</pre>	Shuts down the peer. By default, the peer is enabled when it is defined.	
	192.168.1.10		
Step 4	ip msdp password peer-ip-address password	Enables an MD5 password for the peer. By	
	Example:	default, no MD5 password is enabled.	
	<pre>switch(config)# ip msdp password 192.168.1.10 my_md5_password</pre>		
Step 5	ip msdp sa-policy peer-ip-address policy-name in	e Enables a route-map policy for incoming SA messages. By default, all SA messages are	
	Example:	received.	
	<pre>switch(config)# ip msdp sa-policy 192.168.1.10 my_incoming_sa_policy in</pre>		

	Command or Action	Purpose
Step 6	ip msdp sa-policy peer-ip-address policy-name out	Enables a route-map policy for outgoing SA messages. By default, all registered sources are sent in SA messages.
	Example:	
	<pre>switch(config)# ip msdp sa-policy 192.168.1.10 my_outgoing_sa_policy out</pre>	
Step 7	ip msdp sa-limit peer-ip-address limit	Sets a limit on the number of (S, G) entries
	Example:	accepted from the peer. By default, there is no limit.
	switch(config)# ip msdp sa-limit 192.168.1.10 5000	
Step 8	(Optional) show ip msdp peer [<i>peer-address</i>] [vrf [<i>vrf-name</i> all]]	Displays detailed MSDP peer information.
	Example:	
	<pre>switch(config)# show ip msdp peer 192.168.1.10</pre>	
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring MSDP Global Parameters

You can configure the optional MSDP global parameters described in this table.

Table 19: MSDP Global Parameters

Parameter	Description
Originator interface name	 IP address used in the RP field of an SA message entry. When Anycast RPs are used, all RPs use the same IP address. You can use this parameter to define a unique IP address for the RP of each MSDP peer. By default, the software uses the RP address of the local system. Note We recommend that you use a loopback interface for the RP address.
Group limit	Maximum number of (S, G) entries that the software creates for the specified prefix. The software ignores groups when the group limit is exceeded and logs a violation. By default, no group limit is defined.

Parameter	Description
SA interval	Interval at which the software transmits Source-Active (SA) messages. The range is from 60 to 65,535 seconds. The default is 60 seconds.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM and MSDP.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	<pre>ip msdp originator-id interface Example: switch(config)# ip msdp originator-id loopback0</pre>	Sets a description string for the peer. By default, the peer has no description.Sets the IP address used in the RP field of an SA message entry. By default, the software uses the RP address of the local system.NoteWe recommend that you use a loopback interface for the RP address.
Step 3	<pre>ip msdp group-limit limit source source-prefix Example: switch(config)# ip msdp group-limit 1000 source 192.168.1.0/24</pre>	Maximum number of (S, G) entries that the software creates for the specified prefix. The software ignores groups when the group limit is exceeded and logs a violation. By default, no group limit is defined.
Step 4	<pre>ip msdp sa-interval seconds Example: switch(config)# ip msdp sa-interval 80</pre>	Interval at which the software transmits Source-Active (SA) messages. The range is from 60 to 65,535 seconds. The default is 60 seconds.
Step 5	<pre>(Optional) show ip msdp summary [vrf [vrf-name all]] Example: switch(config)# show ip msdp summary</pre>	Displays a summary of the MSDP configuration.
Step 6	(Optional) copy running-config startup-config Example: switch(config)# copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring MSDP Mesh Groups

You can configure optional MSDP mesh groups in global configuration mode by specifying each peer in the mesh. You can configure multiple mesh groups on the same router and multiple peers per mesh group.

Before you begin

Ensure that you have installed the Enterprise Services license and enabled PIM and MSDP.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ip msdp mesh-group peer-ip-addr mesh-name	Configures an MSDP mesh with the peer IP
	Example:	address specified. You can configure multiple meshes on the same router and multiple peers
	<pre>switch(config) # ip msdp mesh-group</pre>	per mesh group. By default, no mesh groups
	192.168.1.10 my_mesh_1	are configured.
Step 3	Repeat Step 2 for each MSDP peer in the mesh	
	by changing the peer IP address.	
Step 4	(Optional) show ip msdp mesh-group [mesh-group] [vrf [vrf-name all]]	Displays information about the MSDP mesh group configuration.
	Example:	
	switch# show ip msdp mesh-group	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startu configuration.
	Example:	
	switch(config)# copy running-config startup-config	

Restarting the MSDP Process

Before you begin

You can restart the MSDP process and optionally flush all routes.

	Command or Action	Purpose
Step 1	restart msdp	Restarts the MSDP process.
	Example:	
	switch# restart msdp	

	Command or Action	Purpose
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 3	ip msdp flush-routes	Removes routes when the MSDP process is
	Example:	restarted. By default, routes are not flushed.
	<pre>switch(config)# ip msdp flush-routes</pre>	
Step 4	(Optional) show running-configuration include flush-routes	Displays flush-routes configuration lines in the running configuration.
	Example:	
	<pre>switch(config)# show running-configuration include flush-routes</pre>	
Step 5 (Optional) copy running-config star Example:	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Verifying the MSDP Configuration

To display the MSDP configuration information, perform one of the following tasks.

Command	Description
<pre>show ip msdp count [as-number] [vrf [vrf-name all]]</pre>	Displays MSDP (S, G) entry and group counts by the autonomous system (AS) number.
show ip msdp mesh-group [mesh-group] [vrf [vrf-name all]]	Displays the MSDP mesh group configuration.
<pre>show ip msdp peer [peer-address] [vrf [vrf-name all]]</pre>	Displays MSDP information for the MSDP peer.
<pre>show ip msdp rpf [rp-address] [vrf [vrf-name all]]</pre>	Displays the next-hop AS on the BGP path to an RP address.
show ip msdp sources [vrf [vrf-name all]]	Displays the MSDP-learned sources and violations of configured group limits.
show ip msdp summary [vrf [vrf-name all]]	Displays a summary of the MSDP peer configuration.

Monitoring MSDP

You can display and clear MSDP statistics by using the features in this section.

Displaying Statistics

You can display MSDP statistics using these commands.

Command	Description
show ip msdp policy statistics sa-policy peer-address {in out} [vrf [vrf-name all]]	Displays the MSDP policy statistics for the MSDP peer.
<pre>show ip msdp {sa-cache route} [source-address] [group-address] [vrf [vrf-name all]] [asn-number] [peer peer-address]</pre>	Displays the MSDP SA route cache. If you specify the source address, all groups for that source are displayed. If you specify a group address, all sources for that group are displayed.

Clearing Statistics

You can clear the MSDP statistics using these commands.

Command	Description
clear ip msdp peer [peer-address] [vrf vrf-name]	Clears the TCP connection to an MSDP peer.
<pre>clear ip msdp policy statistics sa-policy peer-address {in out} [vrf vrf-name]</pre>	Clears statistics counters for MSDP peer SA policies.
clear ip msdp statistics [peer-address] [vrf vrf-name]	Clears statistics for MSDP peers.
clear ip msdp {sa-cache route} [group-address] [vrf [vrf-name all]]	Clears the group entries in the SA cache.

Configuration Examples for MSDP

To configure MSDP peers, some of the optional parameters, and a mesh group, follow these steps for each MSDP peer:

1. Configure the MSDP peering relationship with other routers.

```
switch# configure terminal
switch(config)# ip msdp peer 192.168.1.10 connect-source ethernet 1/0 remote-as 8
```

2. Configure the optional peer parameters.

```
switch# configure terminal
switch(config)# ip msdp password 192.168.1.10 my_peer_password_AB
```

3. Configure the optional global parameters.

```
switch# configure terminal
switch(config)# ip msdp sa-interval 80
```

4. Configure the peers in each mesh group.

```
switch# configure terminal
switch(config)# ip msdp mesh-group 192.168.1.10 mesh_group_1
```

The following example shows how to configure a subset of the MSDP peering that is shown below.

```
RP 3: 192.168.3.10 (AS 7)
configure terminal
 ip msdp peer 192.168.1.10 connect-source ethernet 1/1
 ip msdp peer 192.168.2.10 connect-source ethernet 1/2
 ip msdp peer 192.168.6.10 connect-source ethernet 1/3 remote-as
9
 ip msdp password 192.168.6.10 my_peer_password_36
 ip msdp sa-interval 80
 ip msdp mesh-group 192.168.1.10 mesh group 123
 ip msdp mesh-group 192.168.2.10 mesh group 123
 ip msdp mesh-group 192.168.3.10 mesh group 123
RP 5: 192.168.5.10 (AS 8)
configure terminal
 ip msdp peer 192.168.4.10 connect-source ethernet 1/1
 ip msdp peer 192.168.6.10 connect-source ethernet 1/2 remote-as
g
 ip msdp password 192.168.6.10 my_peer_password_56
 ip msdp sa-interval 80
RP 6: 192.168.6.10 (AS 9)
configure terminal
 ip msdp peer 192.168.7.10 connect-source ethernet 1/1
 ip msdp peer 192.168.3.10 connect-source ethernet 1/2 remote-as
 ip msdp peer 192.168.5.10 connect-source ethernet 1/3 remote-as
8
 ip msdp password 192.168.3.10 my peer password 36
 ip msdp password 192.168.5.10 my peer password 56
 ip msdp sa-interval 80
```

I

Related Documents

Related Topic	Document Title
Configuring MBGP	Cisco Nexus 9000 Series NX-OS Unicast Routing Configurat

Standards

Standards	Title
RFC 4624	Multicast Source Discovery Protocol (MSDP) MIB

Configuring MVR

This chapter describes how to configure the MVR feature on Cisco NX-OS devices.

This chapter contains the following sections:

- About MVR, on page 147
- MVR Interoperation with Other Features, on page 148
- Guidelines and Limitations for MVR, on page 148
- Default MVR Settings, on page 148
- Configuring MVR, on page 149
- Verifying the MVR Configuration, on page 152
- Configuration Examples for MVR, on page 154

About MVR

In a typical Layer 2 multi-VLAN network, subscribers to a multicast group can be on multiple VLANs. To maintain data isolation between these VLANs, the multicast stream on the source VLAN must be passed to a router, which replicates the stream on all subscriber VLANs, wasting upstream bandwidth.

Multicast VLAN registration (MVR) allows a Layer 2 switch to forward the multicast data from a source on a common assigned VLAN to the subscriber VLANs, conserving upstream bandwidth by bypassing the router. The switch forwards multicast data for MVR IP multicast streams only to MVR ports on which hosts have joined, either by IGMP reports or by MVR static configuration. The switch forwards IGMP reports received from MVR hosts only to the source port. For other traffic, VLAN isolation is preserved.

MVR requires at least one VLAN to be designated as the common VLAN to carry the multicast stream from the source. More than one such multicast VLAN (MVR VLAN) can be configured in the system, and you can configure a global default MVR VLAN as well as interface-specific default MVR VLANs. Each multicast group using MVR is assigned to an MVR VLAN.

MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the MVR VLAN by sending IGMP join and leave messages. IGMP leave messages from an MVR group are handled according to the IGMP configuration of the VLAN on which the leave message is received. If IGMP fast leave is enabled on the VLAN, the port is removed immediately; otherwise, an IGMP query is sent to the group to determine whether other hosts are present on the port.

MVR Interoperation with Other Features

MVR and IGMP Snooping

Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independently of each other. One feature can be enabled or disabled without affecting the operation of the other feature. If IGMP snooping is disabled globally or on a VLAN and MVR is enabled on the VLAN, IGMP snooping is internally enabled on the VLAN. Joins received for MVR groups on non-MVR receiver ports or joins received for non-MVR groups on MVR receiver ports are processed by IGMP snooping.

MVR and vPCs

- As with IGMP snooping, IGMP control messages received by virtual port channel (vPC) peer switches are exchanged between the peers, allowing synchronization of MVR group information.
- MVR configuration must be consistent between the peers.
- The **no ip igmp snooping mrouter vpc-peer-link** command applies to MVR. With this command, multicast traffic is not sent to a peer link for the source VLAN and receiver VLAN unless an orphan port is in the VLAN.
- The **show mvr member** command shows the multicast group on the vPC peer switch. However, the vPC peer switch does not show the multicast groups if it does not receive the IGMP membership report of the groups.

Guidelines and Limitations for MVR

MVR has the following guidelines and limitations:

- MVR is supported only for Cisco Nexus 9508 switches with N9K-X9636C-R, N9K-X9636C-RX, or N9K-X9636Q-R line cards.
- MVR is supported only on Layer 2 Ethernet ports, such as individual ports, port channels, and virtual Ethernet (vEth) ports.
- MVR receiver ports can only be access ports; they cannot be trunk ports. MVR source ports can be either access or trunk ports.
- MVR configuration on Flex Link ports is not supported.
- · Priority tagging is not supported on MVR receiver ports.
- The total number of MVR VLANs cannot exceed 250.

Default MVR Settings

This table lists the default settings for MVR parameters.

Table 20:	: Default MVR Paran	neters
-----------	---------------------	--------

Parameter	Default	
MVR	Disabled globally and per interface	
Global MVR VLAN	None configured	
Interface (per port)	Neither a receiver nor a source port	

Configuring MVR

Configuring MVR Global Parameters

You can globally enable MVR and various configuration parameters.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no]mvr	Globally enables MVR. The default is disabled.
	Example:	Use the no form of the command to disable
	<pre>switch(config)# mvr switch(config-mvr)#</pre>	MVR.
Step 3	[no] mvr-vlan vlan-id	Specifies the global default MVR VLAN. The
	Example:	MVR VLAN is the source of the multicast message that subsequent receivers subscribe to.
switch(config-mvr	<pre>switch(config-mvr)# mvr-vlan 7</pre>	The range is from 1 to 4094.
		Use the no form of the command to clear the MVR VLAN.
Step 4	[no] mvr-group addr [/mask] [count groups] [vlan vlan-id]	Adds a multicast group at the specified IPv4 address (and optional netmask length) to the
	Example:	global default MVR VLAN. You can repeat this command to add additional groups to the
	<pre>switch(config-mvr) # mvr-group 230.1. count 4</pre>	MVR VLAN.
		The IP address is entered in the format $a.b.c.d/m$, where <i>m</i> is the number of bits in the netmask, from 1 to 31.
		You can optionally specify a number of MVR groups using contiguous multicast IP addresses starting with the specified IP address. Use the

I

	Command or Action	Purpose
		count keyword followed by a number from 1 to 64.
		You can optionally specify an MVR VLAN for the group by using the vlan keyword. Otherwise, the group is assigned to the default MVR VLAN.
		Use the no form of the command to clear the group configuration.
Step 5	(Optional) clear mvr counters [source-ports receiver-ports]	Clears MVR IGMP packet counters.
	Example:	
	<pre>switch(config-mvr)# clear mvr counters</pre>	
Step 6	(Optional) show mvr	Displays the global MVR configuration.
	Example:	
	switch(config-mvr)# show mvr	
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config-mvr)# copy running-config startup-config</pre>	

Configuring MVR Interfaces

You can configure MVR interfaces on your Cisco NX-OS device.

	Command or Action	Purpose		
Step 1	configure terminal	Enters global configuration mode.		
	Example:			
	<pre>switch# configure terminal switch(config)#</pre>			
Step 2	mvr	Globally enables MVR. The default is disabled.		
	Example:	Note If MVR is enabled globally, this		
	<pre>switch(config)# mvr switch(config-mvr)#</pre>	command is not required.		
Step 3	<pre>interface {ethernet slot/port port-channel channel-number vethernet number}</pre>	Specifies the Layer 2 port to configure and enters interface configuration mode.		
	Example:			

	Command or Action	Purpose
	<pre>switch(config-mvr)# interface ethernet 2/2 switch(config-mvr-if)#</pre>	
Step 4	[no] mvr-type {source receiver} Example:	Configures an MVR port as one of these types of ports:
	switch(config-mvr-if)# mvr-type source	• source —An uplink port that sends and receives multicast data is configured as an MVR source. The port automatically becomes a static receiver of MVR multicast groups. A source port should be a member of the MVR VLAN.
		• receiver—An access port that is connected to a host that wants to subscribe to an MVR multicast group is configured as an MVR receiver. A receiver port receives data only when it becomes a member of the multicast group by using IGMP leave and join messages.
		If you attempt to configure a non-MVR port with MVR characteristics, the configuration is cached and does not take effect until the port becomes an MVR port. The default port mode is non-MVR.
Step 5	<pre>(Optional) [no] mvr-vlan vlan-id Example: switch(config-mvr-if)# mvr-vlan 7</pre>	Specifies an interface default MVR VLAN that overrides the global default MVR VLAN for joins received on the interface. The MVR VLAN is the source of the multicast message that subsequent receivers subscribe to. The range is from 1 to 4094.
Step 6	<pre>(Optional) [no] mvr-group addr [/mask] [vlan vlan-id] Example: switch (config-mvr-if) # mvr-group 205 1 2 1 mlar 100</pre>	Adds a multicast group at the specified IPv4 address (and optional netmask length) to the interface MVR VLAN, overriding the global MVR group configuration. You can repeat this command to add additional groups to the MVR.
	225.1.3.1 vlan 100	The IP address is entered in the format $a.b.c.d/m$, where <i>m</i> is the number of bits in the netmask, from 1 to 31.
		You can optionally specify an MVR VLAN for the group by using the vlan keyword; otherwise, the group is assigned to the interface default (if specified) or the global default MVR VLAN.
		Use the no form of the command to clear the IPv4 address and netmask.

	Command or Action	Purpose
Step 7	(Optional) copy running-config startup-config Example :	Copies the running configuration to the startup configuration.
	switch(config-mvr-if)# copy running-config startup-config	

Verifying the MVR Configuration

To display the MVR configuration information, perform one of the following tasks:

Command	Description
show mvr	Displays the MVR subsystem configuration and status.
show mvr groups	Displays the MVR group configuration.
show ip igmp snooping [vlan vlan-id]	Displays information about IGMP snooping on the specified VLAN.
<pre>show mvr interface {ethernet slot/port port-channel number}</pre>	Displays the MVR configuration on the specified interface.
show mvr members [count]	Displays the number and details of all MVR receiver members.
<pre>show mvr members interface {ethernet slot/port port-channel number}</pre>	Displays details of MVR members on the specified interface.
show mvr members vlan vlan-id	Displays details of MVR members on the specified VLAN.
show mvr receiver-ports [ethernet <i>slot/port</i> port-channel <i>number</i>]	Displays all MVR receiver ports on all interfaces or on the specified interface.
show mvr source-ports [ethernet <i>slot/port</i> port-channel <i>number</i>]	Displays all MVR source ports on all interfaces or on the specified interface.

This example shows how to verify the MVR parameters:

switch# show mvr MVR Status : enabled Global MVR VLAN : 100 Number of MVR VLANs : 4

This example shows how to verify the MVR group configuration:

switch# show mvr groups * - Global default MVR VLAN.				
Group start	Group end	Count Mask	MVR-VLAN	Interface
228.1.2.240	228.1.2.255	/28	101	

230.1.1.1	230.1.1.4	4	*100	
235.1.1.6	235.1.1.6	1	340	
225.1.3.1	225.1.3.1	1	*100	Eth1/10

This example shows how to verify the MVR interface configuration and status:

switch# show	mvr :	interface		
Port	VLAN	Туре	Status	MVR-VLAN
Po10	100	SOURCE	ACTIVE	100-101
Po201	201	RECEIVER	ACTIVE	100-101,340
Po202	202	RECEIVER	ACTIVE	100-101,340
Po203	203	RECEIVER	ACTIVE	100-101,340
Po204	204	RECEIVER	INACTIVE	100-101,340
Po205	205	RECEIVER	ACTIVE	100-101,340
Po206	206	RECEIVER	ACTIVE	100-101,340
Po207	207	RECEIVER	ACTIVE	100-101,340
Po208	208	RECEIVER	ACTIVE	2000-2001
Eth1/9	340	SOURCE	ACTIVE	340
Eth1/10	20	RECEIVER	ACTIVE	100-101,340
Eth2/2	20	RECEIVER	ACTIVE	100-101,340
Eth102/1/1	102	RECEIVER	ACTIVE	100-101,340
Eth102/1/2	102	RECEIVER	INACTIVE	100-101,340
Eth103/1/1	103	RECEIVER	ACTIVE	100-101,340
Eth103/1/2	103	RECEIVER	ACTIVE	100-101,340

Status INVALID indicates one of the following misconfiguration:a) Interface is not a switchport.b) MVR receiver is not in access mode.c) MVR source is in fex-fabric mode.

This example shows how to display all MVR members:

switch# s	switch# show mvr members				
MVR-VLAN	Group Address	Status	Members		
100	230.1.1.1	ACTIVE	Po201 Po202 Po203 Po205 Po206		
100	230.1.1.2	ACTIVE	Po205 Po206 Po207 Po208		
340	235.1.1.6	ACTIVE	Eth102/1/1		
101	225.1.3.1	ACTIVE	Eth1/10 Eth2/2		
101	228.1.2.241	ACTIVE	Eth103/1/1 Eth103/1/2		

This example shows how to display all MVR receiver ports on all interfaces:

switch# show mvr receiver-ports					
Port	MVR-VLAN	Status	Joins	Leaves	
			(v1,v2,v3)		
Po201	100	ACTIVE	8	2	
Po202	100	ACTIVE	8	2	
Po203	100	ACTIVE	8	2	
Po204	100	INACTIVE	0	0	
Po205	100	ACTIVE	10	6	
Po206	100	ACTIVE	10	6	
Po207	100	ACTIVE	5	0	
Po208	100	ACTIVE	6	0	
Eth1/10	101	ACTIVE	12	2	
Eth2/2	101	ACTIVE	12	2	
Eth102/1/1	340	ACTIVE	16	15	
Eth102/1/2	340	INACTIVE	16	16	
Eth103/1/1	101	ACTIVE	33	0	
Eth103/1/2	101	ACTIVE	33	0	

This example shows how to display all MVR source ports on all interfaces:

switch#	show	mvr source	-ports
Port		MVR-VLAN	Status
Po10		100	ACTIVE
Eth1/9		340	ACTIVE

Configuration Examples for MVR

The following example shows how to globally enable MVR and configure the global parameters:

```
switch# configure terminal
switch(config)# mvr
switch(config-mvr)# mvr-vlan 100
switch(config-mvr)# mvr-group 230.1.1.1 count 4
switch(config-mvr)# mvr-group 228.1.2.240/28 vlan 101
switch(config-mvr)# mvr-group 235.1.1.6 vlan 340
switch# show mvr
MVR Status : enabled
```

Global MVR VLAN : 100 Number of MVR VLANs : 3

The following example shows how to configure an Ethernet port as an MVR receiver port:

```
switch# configure terminal
switch(config)# mvr
switch(config-mvr)# interface ethernet 1/10
switch(config-mvr-if)# mvr-group 225.1.3.1 vlan 100
switch(config-mvr-if)# mvr-type receiver
switch(config-mvr-if)## copy running-config startup-config
```


APPENDIX

IETF RFCs for IP Multicast

This appendix contains Internet Engineering Task Force (IETF) RFCs related to IP multicast. For information about IETF RFCs, see https://www.ietf.org/search/?query=RFC.

• IETF RFCs for IP Multicast, on page 155

IETF RFCs for IP Multicast

This table lists the RFCs related to IP multicast.

RFCs	Title	
RFC 2236	Internet Group Management Protocol	
RFC 2365	Administratively Scoped IP Multicast	
RFC 2710	Multicast Listener Discovery (MLD) for IPv6	
RFC 2858	Multiprotocol Extensions for BGP-4	
RFC 3376	Internet Group Management Protocol	
RFC 3446	Anycast Rendezvous Point (RP) mechanism using Protoco Multicast (PIM) and Multicast Source Discovery Protoco	
RFC 3569	An Overview of Source-Specific Multicast (SSM)	
RFC 3618	Multicast Source Discovery Protocol (MSDP)	
RFC 3810	Multicast Listener Discovery Version 2 (MLDv2) for IPv6	
RFC 4601	4601 Protocol Independent Multicast - Sparse Mode (PIM- Specification (Revised)	
RFC 4610	Anycast-RP Using Protocol Independent Multicast (PIM)	
RFC 5132	C 5132 IP Multicast MIB	
i		

I

Configuration Limits for Cisco NX-OS Multicast

This appendix describes the configuration limits for Cisco NX-OS multicast.

• Configuration Limits, on page 157

Configuration Limits

The features supported by Cisco NX-OS have maximum configuration limits. Some of the features have configurations that support limits less than the maximum limits.

The configuration limits are documented in the Cisco Nexus 9000 Series NX-OS Verified Scalability Guide.

Cisco Nexus 9000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x