

Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 7.x

First Published: 2015-02-01 **Last Modified:** 2021-12-12

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387)

Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS REFERENCED IN THIS DOCUMENTATION ARE SUBJECT TO CHANGE WITHOUT NOTICE. EXCEPT AS MAY OTHERWISE BE AGREED BY CISCO IN WRITING, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENTATION ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

The Cisco End User License Agreement and any supplemental license terms govern your use of any Cisco software, including this product documentation, and are located at: http://www.cisco.com/go/softwareterms.Cisco product warranty information is available at http://www.cisco.com/go/softwareterms.Cisco product warranty information is available at http://www.cisco.com/go/softwareterms.Cisco products/us-fcc-notice.html.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any products and features described herein as in development or available at a future date remain in varying stages of development and will be offered on a when-and if-available basis. Any such product or feature roadmaps are subject to change at the sole discretion of Cisco and Cisco will have no liability for delay in the delivery or failure to deliver any products or feature roadmap items that may be set forth in this document.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2015-2021 Cisco Systems, Inc. All rights reserved.

CONTENTS

PREFACE

Preface xxiii

Audience xxiii

Document Conventions xxiii

Related Documentation for Cisco Nexus 9000 Series Switches xxiv

Documentation Feedback xxiv

Communications, Services, and Additional Information xxiv

Cisco Bug Search Tool xxv

Documentation Feedback xxv

CHAPTER 1

New and Changed Information 1

New and Changed Information 1

CHAPTER 2

Overview 7

Licensing Requirements 7

Supported Platforms 8

Authentication, Authorization, and Accounting 8

RADIUS and TACACS+ Security Protocols 8

LDAP 9

SSH and Telnet 9

User Accounts and Roles 9

IP ACLs 9

MAC ACLs 10

VACLs 10

DHCP Snooping 10

Dynamic ARP Inspection 10

IP Source Guard 11

Password Encryption 11 Keychain Management 11 Control Plane Policing 11 Rate Limits 12 Software Image 12 Virtual Device Contexts 12 **Configuring AAA** About AAA 13 AAA Security Services 13 Benefits of Using AAA 14 Remote AAA Services 14 AAA Server Groups 15 AAA Service Configuration Options 15 Authentication and Authorization Process for User Login 16 AES Password Encryption and Primary Encryption Keys 17 Licensing Requirements for AAA 17 Prerequisites for AAA 18 Guidelines and Limitations for AAA 18 Default Settings for AAA 18 Configuring AAA 19 Process for Configuring AAA 19 Configuring Console Login Authentication Methods 19 Configuring Default Login Authentication Methods 21 Disabling Fallback to Local Authentication 23 Enabling the Default User Role for AAA Authentication 24 Enabling Login Authentication Failure Messages 25 Logging Successful and Failed Login Attempts 25 Enabling CHAP Authentication 27 Enabling MSCHAP or MSCHAP V2 Authentication 28 Configuring AAA Accounting Default Methods 30 Using AAA Server VSAs with Cisco NX-OS Devices 31 About VSAs 31 VSA Format 32

```
Configuring Secure Login Features 33
         Configuring Login Parameters 33
         Restricting User Login Sessions 34
         Restricting the Password Length 34
         Enabling the Password Prompt for the Username 35
         Configuring the Shared Secret for RADIUS or TACACS+
     Monitoring and Clearing the Local AAA Accounting Log
     Verifying the AAA Configuration 37
     Configuration Examples for AAA 38
     Configuration Examples for Login Parameters 38
     Configuration Examples for the Password Prompt Feature 39
     Additional References for AAA 40
Configuring RADIUS 41
     About RADIUS 41
       RADIUS Network Environments 41
       RADIUS Operation 42
       RADIUS Server Monitoring 42
       Vendor-Specific Attributes 43
     Licensing Requirements for RADIUS 44
     Prerequisites for RADIUS 44
     Guidelines and Limitations for RADIUS 44
     Default Settings for RADIUS
     Configuring RADIUS Servers 45
       RADIUS Server Configuration Process 46
       Configuring RADIUS Server Hosts 46
       Configuring Global RADIUS Keys 47
       Configuring a Key for a Specific RADIUS Server 49
       Configuring RADIUS Server Groups 50
       Configuring the Global Source Interface for RADIUS Server Groups 52
       Allowing Users to Specify a RADIUS Server at Login 52
       Configuring the Global RADIUS Transmission Retry Count and Timeout Interval 53
       Configuring the RADIUS Transmission Retry Count and Timeout Interval for a Server 54
```

Specifying Cisco NX-OS User Roles and SNMPv3 Parameters on AAA Servers 32

```
Configuring Accounting and Authentication Attributes for RADIUS Servers 55
       Configuring Global Periodic RADIUS Server Monitoring 57
       Configuring Periodic RADIUS Server Monitoring on Individual Servers 58
       Configuring the RADIUS Dead-Time Interval 59
       Configuring One-Time Passwords 60
       Manually Monitoring RADIUS Servers or Groups 61
     Verifying the RADIUS Configuration 61
     Monitoring RADIUS Servers 62
     Clearing RADIUS Server Statistics 62
     Configuration Example for RADIUS 63
     Where to Go Next
     Additional References for RADIUS 63
Configuring TACACS+
     About TACACS+
       TACACS+ Advantages 65
       TACACS+ Operation for User Login 66
       Default TACACS+ Server Encryption Type and Secret Key 67
       Command Authorization Support for TACACS+ Servers 67
       TACACS+ Server Monitoring 67
       Vendor-Specific Attributes for TACACS+
         Cisco VSA Format for TACACS+
     Licensing Requirements for TACACS+ 69
     Prerequisites for TACACS+ 69
     Guidelines and Limitations for TACACS+
     Default Settings for TACACS+ 70
     Configuring TACACS+ 70
       TACACS+ Server Configuration Process 70
       Enabling TACACS+
                           71
       Configuring TACACS+ Server Hosts 71
       Configuring Global TACACS+ Keys 72
       Configuring a Key for a Specific TACACS+ Server 74
       Configuring TACACS+ Server Groups 75
       Configuring the Global Source Interface for TACACS+ Server Groups 76
```

```
Allowing Users to Specify a TACACS+ Server at Login 77
       Configuring the Timeout Interval for a TACACS+ Server 78
       Configuring TCP Ports 79
       Configuring Global Periodic TACACS+ Server Monitoring 80
       Configuring Periodic TACACS+ Server Monitoring on Individual Servers 82
       Configuring the TACACS+ Dead-Time Interval 83
       Configuring ASCII Authentication 85
       Configuring AAA Authorization on LDAP Servers 85
       Configuring Command Authorization on TACACS+ Servers
       Testing Command Authorization on TACACS+ Servers 88
       Enabling and Disabling Command Authorization Verification 89
       Configuring Privilege Level Support for Authorization on TACACS+ Servers 90
       Permitting or Denying Commands for Users of Privilege Roles 92
       Manually Monitoring TACACS+ Servers or Groups 93
       Disabling TACACS+
     Monitoring TACACS+ Servers 94
     Clearing TACACS+ Server Statistics 95
     Verifying the TACACS+ Configuration 95
     Configuration Examples for TACACS+
     Where to Go Next 98
     Additional References for TACACS+
Configuring LDAP
     About LDAP
       LDAP Authentication and Authorization 100
       LDAP Operation for User Login 100
       LDAP Server Monitoring 101
       Vendor-Specific Attributes for LDAP
                                          101
         Cisco VSA Format for LDAP
       Virtualization Support for LDAP
     Licensing Requirements for LDAP
     Prerequisites for LDAP 102
     Guidelines and Limitations for LDAP
```

Default Settings for LDAP 103

```
LDAP Server Configuration Process 103
       Enabling or Disabling LDAP 104
       Configuring LDAP Server Hosts 105
       Configuring the RootDN for an LDAP Server 106
       Configuring LDAP Server Groups 107
       Configuring the Global LDAP Timeout Interval 108
       Configuring the Timeout Interval for an LDAP Server 109
       Configuring TCP Ports 110
       Configuring LDAP Search Maps 111
       Configuring Periodic LDAP Server Monitoring 112
       Configuring the LDAP Dead-Time Interval 113
        Configuring AAA Authorization on LDAP Servers 114
     Monitoring LDAP Servers 115
     Clearing LDAP Server Statistics 116
     Verifying the LDAP Configuration 116
     Configuration Examples for LDAP 117
     Where to Go Next 117
     Additional References for LDAP 118
Configuring SSH and Telnet 119
     About SSH and Telnet 119
        SSH Server 119
       SSH Client 119
       SSH Server Keys 120
       SSH Authentication Using Digital Certificates 120
       Telnet Server 121
     Licensing Requirements for SSH and Telnet 121
     Prerequisites for SSH and Telnet 121
```

Configuring LDAP 103

Guidelines and Limitations for SSH and Telnet 121

Specifying the SSH Public Keys for User Accounts 124

Default Settings for SSH and Telnet 122

Generating SSH Server Keys 122

Configuring SSH

```
Specifying the SSH Public Keys in IETF SECSH Format 124
    Specifying the SSH Public Keys in OpenSSH Format 125
  Configuring a Maximum Number of SSH Login Attempts 125
  Starting SSH Sessions 126
  Starting SSH Sessions from Boot Mode 127
  Configuring SSH Passwordless File Copy 127
  Configuring SCP and SFTP Servers 129
  Configuring X.509v3 Certificate-Based SSH Authentication
                                                           130
  Configuring Legacy SSH Algorithm Support 132
  Clearing SSH Hosts 134
  Disabling the SSH Server 134
  Deleting SSH Server Keys 135
  Clearing SSH Sessions 136
Configuring Telnet 136
  Enabling the Telnet Server 136
  Starting Telnet Sessions to Remote Devices 137
  Clearing Telnet Sessions 138
Verifying the SSH and Telnet Configuration 138
Configuration Example for SSH 139
Configuration Example for SSH Passwordless File Copy 140
Configuration Example for X.509v3 Certificate-Based SSH Authentication 142
Additional References for SSH and Telnet 142
```

CHAPTER 8 **Configuring User Accounts and RBAC** 145

About User Accounts and RBAC 145 User Accounts 145 Characteristics of Strong Passwords 146 User Roles 147 User Role Rules 147 Licensing Requirements for User Accounts and RBAC 148

Guidelines and Limitations for User Accounts and RBAC 148

Default Settings for User Accounts and RBAC 149

Enabling Password-Strength Checking 149

Configuring User Accounts 150

Configuring Roles 152

Creating User Roles and Rules 152

```
Creating Feature Groups 155
       Changing User Role Interface Policies 156
       Changing User Role VLAN Policies 157
        Changing User Role VRF Policies 158
      Verifying User Accounts and RBAC Configuration 160
     Configuration Examples for User Accounts and RBAC 160
     Additional References for User Accounts and RBAC 162
Configuring 802.1X
     About 802.1X
       Device Roles 163
       Authentication Initiation and Message Exchange 164
       Authenticator PAE Status for Interfaces
       Ports in Authorized and Unauthorized States 166
       Single Host and Multiple Hosts Support 167
       Supported Topology 167
     Prerequisites for 802.1X 167
     802.1X Guidelines and Limitations 167
     Default Settings for 802.1X 169
     Configuring 802.1X 170
       Process for Configuring 802.1X 170
       Enabling the 802.1X Feature 170
       Configuring AAA Authentication Methods for 802.1X 171
        Controlling 802.1X Authentication on an Interface 172
       Creating or Removing an Authenticator PAE on an Interface 173
       Enabling Periodic Reauthentication for an Interface 174
       Manually Reauthenticating Supplicants
       Changing 802.1X Authentication Timers for an Interface 175
       Enabling Single Host or Multiple Hosts Mode 178
       Disabling 802.1X Authentication on the Cisco NX-OS Device 179
       Disabling the 802.1X Feature 180
       Resetting the 802.1X Global Configuration to the Default Values 180
```

```
Resetting the 802.1X Interface Configuration to the Default Values 181

Setting the Global Maximum Authenticator-to-Supplicant Frame 182

Setting the Maximum Authenticator-to-Supplicant Frame for an Interface 183

Enabling RADIUS Accounting for 802.1X Authentication 184

Configuring AAA Accounting Methods for 802.1X 185

Setting the Maximum Reauthentication Retry Count on an Interface 185

Verifying the 802.1X Configuration 186

Monitoring 802.1X 187

Configuration Example for 802.1X 187

Additional References for 802.1X 188
```

CHAPTER 10 Configuring IP ACLs 189

```
About ACLs 189
  ACL Types and Applications 190
  Order of ACL Application 191
  About Rules 192
    Protocols for IP ACLs and MAC ACLs 192
    Source and Destination 192
    Implicit Rules for IP and MAC ACLs 192
    Additional Filtering Options 193
    Sequence Numbers 194
    Logical Operators and Logical Operation Units 195
    ACL Logging 195
  Time Ranges 195
  Policy-Based ACLs 197
  Statistics and ACLs 197
  Atomic ACL Updates 198
  Session Manager Support for IP ACLs 198
  ACL TCAM Regions 199
  Maximum Label Sizes Supported for ACL Types 203
Licensing Requirements for IP ACLs 204
Prerequisites for IP ACLs 204
Guidelines and Limitations for IP ACLs 204
```

Default Settings for IP ACLs 208

```
Configuring IP ACLs 208
  Creating an IP ACL 208
  Changing an IP ACL 210
  Creating a VTY ACL 211
  Changing Sequence Numbers in an IP ACL 213
  Removing an IP ACL 213
  Configuring ACL TCAM Region Sizes 214
  Using Templates to Configure ACL TCAM Region Sizes 223
  Configuring TCAM Carving - For Cisco NX-OS Release 6.1(2)I2(1) and Later Releases 225
  Configuring UDF-Based Port ACLs 231
  Applying an IP ACL as a Router ACL 234
  Applying an IP ACL as a Port ACL 235
  Applying an IP ACL as a VACL 236
  Configuring ACL Logging 236
  Configuring ACLs Using HTTP Methods to Redirect Requests 238
Verifying the IP ACL Configuration 241
Monitoring and Clearing IP ACL Statistics
Configuration Examples for IP ACLs 243
About System ACLs 244
  Carving a TCAM Region 245
  Configuring System ACLs
  Configuration and Show Command Examples for the System ACLs
Configuring Object Groups 247
  Session Manager Support for Object Groups 247
  Creating and Changing an IPv4 Address Object Group
  Creating and Changing an IPv6 Address Object Group
  Creating and Changing a Protocol Port Object Group
  Removing an Object Group 251
Verifying the Object-Group Configuration 252
Configuring Time-Ranges 252
  Session Manager Support for Time-Ranges
  Creating a Time-Range
  Changing a Time-Range 254
  Removing a Time-Range 255
```

Changing Sequence Numbers in a Time Range 256
Verifying the Time-Range Configuration 257
Additional References for IP ACLs 257

CHAPTER 11 Configuring MAC ACLs 259

About MAC ACLs 259

MAC Packet Classification 259

Licensing Requirements for MAC ACLs 260

Guidelines and Limitations for MAC ACLs 260

Default Settings for MAC ACLs 260

Configuring MAC ACLs 261

Creating a MAC ACL **261**

Changing a MAC ACL 261

Changing Sequence Numbers in a MAC ACL 263

Removing a MAC ACL 263

Applying a MAC ACL as a Port ACL 264

Applying a MAC ACL as a VACL 265

Enabling or Disabling MAC Packet Classification 265

Verifying the MAC ACL Configuration 266

Monitoring and Clearing MAC ACL Statistics 267

Configuration Example for MAC ACLs 267

Additional References for MAC ACLs 267

CHAPTER 12 Configuring VLAN ACLs 269

About VLAN ACLs 269

VLAN Access Maps and Entries 269

VACLs and Actions 269

VACL Statistics 270

Session Manager Support for VACLs 270

Licensing Requirements for VACLs 270

Prerequisites for VACLs 270

Guidelines and Limitations for VACLs 271

Default Settings for VACLs 271

Configuring VACLs 272

Creating a VACL or Adding a VACL Entry
Removing a VACL or a VACL Entry 273
Applying a VACL to a VLAN 274
Verifying the VACL Configuration 275
Monitoring and Clearing VACL Statistics 275
Configuration Example for VACLs 275
Additional References for VACLs 276

CHAPTER 13 Configuring Port Security 277

About Port Security 277 Secure MAC Address Learning 277 Static Method 278 Dynamic Method 278 Sticky Method 278 Dynamic Address Aging Secure MAC Address Maximums 279 Security Violations and Actions 280 Port Security and Port Types Port Security and Port-Channel Interfaces 281 Port Type Changes 283 Licensing Requirements for Port Security Prerequisites for Port Security 283 Default Settings for Port Security 283 Guidelines and Limitations for Port Security 284 Guidelines and Limitations for Port Security on vPCs Configuring Port Security 285 Enabling or Disabling Port Security Globally 285 Enabling or Disabling Port Security on a Layer 2 Interface 286 Enabling or Disabling Sticky MAC Address Learning Adding a Static Secure MAC Address on an Interface Removing a Static Secure MAC Address on an Interface 289 Removing a Sticky Secure MAC Address 290 Removing a Dynamic Secure MAC Address 291

Configuring a Maximum Number of MAC Addresses

Configuring an Address Aging Type and Time 293

Configuring a Security Violation Action 294

Verifying the Port Security Configuration 295

Displaying Secure MAC Addresses 295

Configuration Example for Port Security 296

Configuration Examples for Port Security in a vPC Domain 29

Example: Configuring Port Security on an Orphan Port 296

Example: Configuring Port Security on the vPC Leg 296

Additional References for Port Security 297

CHAPTER 14 Configuring DHCP 299

About DHCP Snooping 299 Trusted and Untrusted Sources DHCP Snooping Binding Database DHCP Snooping in a vPC Environment Synchronizing DHCP Snooping Binding Entries 301 Packet Validation 301 DHCP Snooping Option 82 Data Insertion About the DHCP Relay Agent 303 DHCP Relay Agent 303 DHCP Relay Agent Option 82 304 VRF Support for the DHCP Relay Agent 305 DHCP Smart Relay Agent 306 About the DHCPv6 Relay Agent 306 DHCPv6 Relay Agent 306 VRF Support for the DHCPv6 Relay Agent 306 About DHCP Client 306 Licensing Requirements for DHCP 307 Prerequisites for DHCP 307 Guidelines and Limitations for DHCP 307 Default Settings for DHCP 309 Configuring DHCP 309 Minimum DHCP Configuration 309 Enabling or Disabling the DHCP Feature 310

```
Configuring DHCP Snooping 310
    Enabling or Disabling DHCP Snooping Globally 310
    Enabling or Disabling DHCP Snooping on a VLAN 311
    Enabling or Disabling DHCP Snooping MAC Address Verification 312
    Enabling or Disabling Option 82 Data Insertion and Removal 313
    Enabling or Disabling Strict DHCP Packet Validation 315
    Configuring an Interface as Trusted or Untrusted
    Enabling or Disabling DHCP Relay Trusted Port Functionality
    Configuring an Interface as a DHCP Relay Trusted or Untrusted Port 317
    Configuring all Interfaces as Trusted or Untrusted 318
  Enabling or Disabling the DHCP Relay Agent 319
  Enabling or Disabling Option 82 for the DHCP Relay Agent 320
  Enabling or Disabling VRF Support for the DHCP Relay Agent 321
  Configuring DHCP Server Addresses on an Interface
  Configuring the DHCP Relay Source Interface 324
  Enabling or Disabling DHCP Smart Relay Globally
  Enabling or Disabling DHCP Smart Relay on a Layer 3 Interface 326
Configuring DHCPv6 327
  Enabling or Disabling the DHCPv6 Relay Agent 327
  Enabling or Disabling VRF Support for the DHCPv6 Relay Agent 327
  Configuring DHCPv6 Server Addresses on an Interface
  Configuring the DHCPv6 Relay Source Interface
  Configuring IPv6 RA Guard 331
Enabling DHCP Client 332
Verifying the DHCP Configuration
Displaying IPv6 RA Guard Statistics 334
Displaying DHCP Snooping Bindings 334
Clearing the DHCP Snooping Binding Database
Monitoring DHCP 335
Clearing DHCP Snooping Statistics
Clearing DHCP Relay Statistics 335
Clearing DHCPv6 Relay Statistics 335
Configuration Examples for DHCP 335
Configuration Examples for DHCP Client
```

Additional References for DHCP 336

CHAPTER 15 Configuring IPv6 First Hop Security About First-Hop Security IPv6 Global Policies 340 IPv6 First-Hop Security Binding Table 340 Guidelines and Limitations of First-Hop Security 340 About vPC First-Hop Security Configuration 341 DHCP Relay On-stack 341 DHCP Relay on VPC Leg 342 DHCP Client Relay on Orphan Ports 343 RA Guard 344 Overview of IPv6 RA Guard 344 IPv6 RA Router Advertisement and the Flags 345 Guidelines and Limitations of IPv6 RA Guard 345 DHCPv6 Guard 346 Overview of DHCP—DHCPv6 Guard 346 Limitation of DHCPv6 Guard 346 IPv6 Snooping 346 Overview of IPv6 Snooping 346 Guidelines and Limitations for IPv6 Snooping 347 How to Configure IPv6 FHS 347 Configuring the IPv6 RA Guard Policy on the Device 347 Configuring IPv6 RA Guard on an Interface Configuring DHCP—DHCPv6 Guard 350 Configuring IPv6 Snooping 352 Verifying and Troubleshooting IPv6 Snooping Configuration Examples 355 Example: IPv6 RA Guard Configuration **355** Example: Configuring DHCP—DHCPv6 Guard **356** Example: Configuring IPv6 First-Hop Security Binding Table 356 Example: Configuring IPv6 Snooping Additional References for IPv6 First-Hop Security

```
About DAI 359
                             ARP 359
                            ARP Spoofing Attacks 359
                            DAI and ARP Spoofing Attacks 360
                            Interface Trust States and Network Security
                            Logging DAI Packets 362
                          Licensing Requirements for DAI 362
                          Prerequisites for DAI 362
                           Guidelines and Limitations for DAI 363
                           Default Settings for DAI 363
                          Configuring DAI 364
                            Enabling or Disabling DAI on VLANs
                             Configuring the DAI Trust State of a Layer 2 Interface
                            Enabling or Disabling Additional Validation 366
                             Configuring the DAI Logging Buffer Size 367
                             Configuring DAI Log Filtering
                           Verifying the DAI Configuration 368
                           Monitoring and Clearing DAI Statistics
                           Configuration Examples for DAI
                             Two Devices Support DAI 369
                               Configuring Device A 370
                               Configuring Device B 372
                           Additional References for DAI 374
                             Related Documents 374
                             Standards 374
CHAPTER 17
                     Configuring IP Source Guard 375
                           About IP Source Guard 375
                          Licensing Requirements for IP Source Guard 376
                          Prerequisites for IP Source Guard 376
                          Guidelines and Limitations for IP Source Guard 376
                          Default Settings for IP Source Guard 377
```

Configuring Dynamic ARP Inspection 359

Adding or Removing a Static IP Source Entry 378 Configuring IP Source Guard for Trunk Ports Displaying IP Source Guard Bindings 380 Clearing IP Source Guard Statistics 380 Configuration Example for IP Source Guard Additional References 380 Related Documents 380 Configuring Password Encryption 381 About AES Password Encryption and Primary Encryption Keys 381 Licensing Requirements for Password Encryption 381 Guidelines and Limitations for Password Encryption 382 Default Settings for Password Encryption 382 Configuring Password Encryption 382 Configuring a Primary Key and Enabling the AES Password Encryption Feature Converting Existing Passwords to Type-6 Encrypted Passwords Converting Type-6 Encrypted Passwords Back to Their Original States Deleting Type-6 Encrypted Passwords 384 Verifying the Password Encryption Configuration Configuration Examples for Password Encryption Configuring Keychain Management 387 About Keychain Management 387 Licensing Requirements for Keychain Management Prerequisites for Keychain Management 388 Guidelines and Limitations for Keychain Management Default Settings for Keychain Management 389 Configuring Keychain Management 389 Creating a Keychain 389 Removing a Keychain **390** Configuring a Primary Key and Enabling the AES Password Encryption Feature 390 Configuring Text for a Key 392

Configuring IP Source Guard 377

CHAPTER 18

CHAPTER 19

Enabling or Disabling IP Source Guard on a Layer 2 Interface 377

CHAPTER 21

Configuring Accept and Send Lifetimes for a Key Configuring a Key for OSPFv2 Cryptographic Authentication 395 Determining Active Key Lifetimes 396 Verifying the Keychain Management Configuration 396 Configuration Example for Keychain Management Where to Go Next 397 Additional References for Keychain Management Configuring Traffic Storm Control 399 About Traffic Storm Control 399 Licensing Requirements for Traffic Storm Control 401 Guidelines and Limitations for Traffic Storm Control 401 Default Settings for Traffic Storm Control 402 Configuring Traffic Storm Control 403 Verifying Traffic Storm Control Configuration Monitoring Traffic Storm Control Counters 404 Configuration Example for Traffic Storm Control 405 Additional References for Traffic Storm Control **Configuring Unicast RPF** About Unicast RPF Unicast RPF Process 408 Licensing Requirements for Unicast RPF Guidelines and Limitations for Unicast RPF 409 Default Settings for Unicast RPF 410 Configuring Unicast RPF for Cisco Nexus 9500 Switches with -R Line Cards 411 Configuring Unicast RPF for Cisco Nexus 9300 Switches 412 Configuration Examples for Unicast RPF Verifying the Unicast RPF Configuration Additional References for Unicast RPF **Configuring Switchport Blocking**

Licensing Requirements for Switchport Blocking 417

About Switchport Blocking 417

Default Settings for Switchport Blocking 418 Configuring Switchport Blocking Verifying the Switchport Blocking Configuration 419 Configuration Example for Switchport Blocking **Configuring Control Plane Policing** About CoPP 421 Control Plane Protection 422 Control Plane Packet Types 422 Classification for CoPP 423 Rate Controlling Mechanisms 423 Dynamic and Static CoPP ACLs 424 **Default Policing Policies** Modular QoS Command-Line Interface CoPP and the Management Interface 438 Licensing Requirements for CoPP 438 Guidelines and Limitations for CoPP 438 Default Settings for CoPP Configuring CoPP 440 Configuring a Control Plane Class Map Configuring a Control Plane Policy Map 442 Configuring the Control Plane Service Policy 444 Configuring the CoPP Scale Factor Per Line Card Changing or Reapplying the Default CoPP Policy Copying the CoPP Best Practice Policy Verifying the CoPP Configuration 448 Displaying the CoPP Configuration Status Monitoring CoPP 450 Clearing the CoPP Statistics 451 Configuration Examples for CoPP CoPP Configuration Example 451 Changing or Reapplying the Default CoPP Policy Using the Setup Utility 452

Additional References for CoPP 453

Guidelines and Limitations for Switchport Blocking 417

CHAPTER 24 Configuring Rate Limits 455

About Rate Limits 455

Licensing Requirements for Rate Limits 456

Guidelines and Limitations for Rate Limits 456

Default Settings for Rate Limits 457

Configuring Rate Limits 457

Monitoring Rate Limits 459

Clearing the Rate Limit Statistics 459

Verifying the Rate Limit Configuration 460

Configuration Examples for Rate Limits 460

Additional References for Rate Limits 461

CHAPTER 25 Configuring MACsec 463

About MACsec 463

Key Lifetime and Hitless Key Rollover 464

Fallback Key 464

Licensing Requirements for MACsec 464

Guidelines and Limitations for MACsec 464

Enabling MACsec 467

Disabling MACsec 467

Configuring a MACsec Keychain and Keys 468

MACsec Packet-Number Exhaustion 470

Configuring MACsec Fallback Key 470

Configuring a MACsec Policy 471

Rotating PSKs 473

Verifying the MACsec Configuration 473

Displaying MACsec Statistics 476

Configuration Example for MACsec 479

XML Examples 480

MIBs 488

Related Documentation 488

Preface

This preface includes the following sections:

- Audience, on page xxiii
- Document Conventions, on page xxiii
- Related Documentation for Cisco Nexus 9000 Series Switches, on page xxiv
- Documentation Feedback, on page xxiv
- Communications, Services, and Additional Information, on page xxiv

Audience

This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions

Command descriptions use the following conventions:

Convention	Description		
bold	Bold text indicates the commands and keywords that you enter literally as shown.		
Italic	Italic text indicates arguments for which you supply the values.		
[x]	Square brackets enclose an optional element (keyword or argument).		
[x y]	Square brackets enclosing keywords or arguments that are separated by a vertical bar indicate an optional choice.		
{x y}	Braces enclosing keywords or arguments that are separated by a vertical bar indicate a required choice.		
[x {y z}]	Nested set of square brackets or braces indicate optional or required choices within optional or required elements. Braces and a vertical bar within square brackets indicate a required choice within an optional element.		

Convention	Description
variable	Indicates a variable for which you supply values, in context where italics cannot be used.
string	A nonquoted set of characters. Do not use quotation marks around the string or the string includes the quotation marks.

Examples use the following conventions:

Convention	Description		
screen font	Terminal sessions and information the switch displays are in screen font.		
boldface screen font	Information that you must enter is in boldface screen font.		
italic screen font	Arguments for which you supply values are in italic screen font.		
<>	Nonprinting characters, such as passwords, are in angle brackets.		
[]	Default responses to system prompts are in square brackets.		
!,#	An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.		

Related Documentation for Cisco Nexus 9000 Series Switches

The entire Cisco Nexus 9000 Series switch documentation set is available at the following URL:

https://www.cisco.com/en/US/products/ps13386/tsd_products_support_series_home.html

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to nexus9k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions, and services, visit Cisco DevNet.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a gateway to the Cisco bug-tracking system, which maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. The BST provides you with detailed defect information about your products and software.

Documentation Feedback

To provide feedback about Cisco technical documentation, use the feedback form available in the right pane of every online document.

Documentation Feedback

New and Changed Information

This chapter provides release-specific information for each new and changed feature in the *Cisco Nexus 9000 Series NX-OS Security Guide, Release 7.x.*

• New and Changed Information, on page 1

New and Changed Information

This table summarizes the new and changed features for the *Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 7.x* and tells you where they are documented.

Table 1: New and Changed Features for Cisco NX-OS Release 7.x

Feature	Description	Changed in Release	Where Documented
MACsec	Added MACsec support on N9K-X9732C-FX line cards.	NX-OS 7.0(3)I7(8)	Guidelines and Limitations for MACsec, on page 464
SSH Algorithm Support	The ssh ciphers and ssh kexalgos commands were modified. The aes256-gcm keyword was added to the ssh ciphers command and ecdh-sha2-nistp384 keyword was added to the ssh kexalgos command.	NX-OS 7.0(3)I7(8)	Configuring Legacy SSH Algorithm Support, on page 132
MACsec	Added the capability to drop CDP/LLDP packets whenever the MACsec configuration on a port with a must-secure policy is not in a secured state.	NX-OS 7.0(3)I7(7)	Guidelines and Limitations for MACsec, on page 464
MACsec	Added the ability to disable MACsec without removing the MACsec configurations for Cisco Nexus 9000 Series switches with N9K-X9732C-EXM and N9K-X9736C-FX line cards.	NX-OS 7.0(3)I7(4)	Configuring MACsec, on page 463

Feature	Description	Changed in Release	Where Documented
IP ACLs	Added IPv6 wildcard mask support for access lists and object groups for Cisco Nexus 9200, 9300-EX, and 9300-FX/FX2/FXP switches and the Cisco Nexus 9364C switch.	NX-OS 7.0(3)I7(3)	Creating an IP ACL, on page 208
			Creating and Changing an IPv6 Address Object Group, on page 249
MACsec fallback key	Introduced this feature.	NX-OS 7.0(3)I7(3)	Configuring MACsec Fallback Key, on page 470
SSH	Added new SSH commands for enabling legacy security algorithms.	NX-OS 7.0(3)I7(3)	Configuring Legacy SSH Algorithm Support, on page 132
Unicast RPF	Introduced this feature for Cisco Nexus 9300 platform switches.	NX-OS 7.0(3)I7(3)	Configuring Unicast RPF, on page 407
Unicast RPF	Introduced this feature for Cisco Nexus 9500 Series switches with N9K-X9636C-R and N9K-X963Q-R line cards.	7.0(3)F2(1)	Configuring Unicast RPF, on page 407
MACsec	Introduced this feature for Cisco Nexus 9500 Series switches with the N9K-X9736C-FX line card.	7.0(3)I7(2)	Configuring MACsec, on page 463
802.1X	Introduced this feature.	7.0(3)17(1)	Configuring 802.1X, on page 170
Traffic storm control	Added the ability to enable packets per second for Cisco Nexus 9500 Series switches with 94xx line cards and Cisco Nexus 9300 Series switches.	7.0(3)17(1)	Configuring Traffic Storm Control, on page 403
Option 82	Introduced this feature.	7.0(3)17(1)	DHCP Snooping Option 82 Data Insertion, on page 302
First-hop security	Introduced this feature.	7.0(3)17(1)	Configuring IPv6 First Hop Security, on page 339
ACL TCAM regions	Added new ACL TCAM regions for the Cisco Nexus 9300-FX Series switches.	7.0(3)17(1)	ACL TCAM Regions, on page 199
VACL redirect	Supports the VACL redirect option.	7.0(3)I6(1)	Configuring VLAN ACLs, on page 269
Storm control	Added support for configuring the traffic storm control rate for ARP packets entering a port channel.	7.0(3)I6(1)	#unique_25

Feature	Description	Changed in Release	Where Documented
IPv6 ACL/UDF ERSPAN	Added support for IPv6 ACLs with UDF-based match.	7.0(3)16(1)	#unique_25
Egress rate-limiter	Added support for the hardware rate-limiter to show statistics for outbound traffic on SPAN egress ports.	7.0(3)I6(1)	Configuring Rate Limits, on page 455
Port security over vPC	Supports security on vPCs.	7.0(3)16(1)	Configuring Port Security, on page 277
SSH	Changed the default value of the show ssh key command to display the fingerprint in SHA256 format by default and added the md5 option if you want to see the fingerprint in MD5 format.	7.0(3)I6(1)	Configuring SSH and Telnet, on page 119
DHCP	Added the ability to configure Option 82 to use encoded string format.	7.0(3)I5(2)	Enabling or Disabling Option 82 for the DHCP Relay Agent, on page 320
IPv4 ACLs	Added UDF-based match support for port ACLs.	7.0(3)I5(2)	ACL Types and Applications, on page 190
IPv6 RA guard	Introduced this feature.	7.0(3)15(2)	Configuring IPv6 RA Guard, on page 331
Port security	Introduced this feature.	7.0(3)15(1)	Configuring Port Security, on page 277
SSH	Added support for X.509v3 certificate-based SSH authentication.	7.0(3)15(1)	Configuring SSH and Telnet, on page 119
SSH	Changed the default value of the show ssh key command to display the fingerprint in SHA256 format by default and added the md5 option if you want to see the fingerprint in MD5 format.	7.0(3)14(6)	Configuring SSH and Telnet, on page 119
AAA	Added the ability to log successful and failed login attempts.	7.0(3)[4(1)	Logging Successful and Failed Login Attempts, on page 25
СоРР	Changed the police CIR rate range to start with 0 to initiate a packet drop.	7.0(3)[4(1)	Configuring a Control Plane Policy Map, on page 442
IP ACLs	Enabled access control entry (ACE) and ACL information to be displayed in the output of the show logging ip access-list cache command.	7.0(3)14(1)	Configuring ACL Logging, on page 236

Feature	Description	Changed in Release	Where Documented
ACL TCAM regions	Added new ACL TCAM regions for the Cisco Nexus 9200 Series switches.	7.0(3)I3(1)	ACL TCAM Regions, on page 199
ACL TCAM templates	Added the ability to create and apply custom TCAM templates.	7.0(3)I3(1)	Using Templates to Configure ACL TCAM Region Sizes, on page 223
СоРР	Introduced static CoPP ACLs and new show commands for the Cisco Nexus 9200 Series switches. Also added default class maps for Cisco NX-OS Release 7.0(3)I3(1) and instructions for configuring the policer rate for the Cisco Nexus 9200 Series switches in bits per second (rather than in packets per second).	7.0(3)I3(1)	Dynamic and Static CoPP ACLs, on page 424 Verifying the CoPP Configuration, on page 448 Default Class Maps, on page 425 Configuring a Control Plane Policy Map, on page 442
DHCP	Added the ability to program Option 82 with the VLAN + slot + port format.	7.0(3)[3(1)	Enabling or Disabling Option 82 for the DHCP Relay Agent, on page 320
IP ACLs	Added support for Cisco Nexus 9200 Series switches.	7.0(3)I3(1)	Guidelines and Limitations for IP ACLs, on page 204
Keychain management	Added support for OSPFv2 HMAC-SHA authentication.	7.0(3)I3(1)	Configuring Keychain Management, on page 389
DHCP client	Added support for the Cisco Nexus 9500 Series switches.	7.0(3)12(2)	Configuring DHCP, on page 309
User accounts	Added support for an underscore (_) as the first character in a username	7.0(3)I2(2)	Configuring User Accounts and RBAC, on page 145

Feature	Description	Changed in Release	Where Documented
AAA	Introduced the following secure login features:	7.0(3)[2(1)	Configuring AAA, on
	Ability to block login attempts and enforce a quiet period.		page 13
	Ability to restrict the maximum login sessions per user.		
	Ability to restrict the password length		
	Ability to prompt the user to enter a password after entering the username		
	Ability to hide the shared secret used for RADIUS or TACACS+authentication or accounting		
ACL TCAM regions	Added ACL TCAM regions for multicast PIM Bidir, network address translation (NAT), OpenFlow, sFlow, and static MPLS. Also added the ability to attach user-defined fields (UDFs) to the racl, ifacl, and vacl TCAM regions to configure UDF-based SPAN or ERSPAN.	7.0(3)(2(1)	ACL TCAM Regions, on page 199
СоРР	Changed the behavior of the no copp profile and no service-policy input commands. If you try to disable CoPP using one of these commands, an error message appears. If you enter these commands in previous releases, packets are rate limited at 50 packets per seconds.	7.0(3)[2(1)	Configuring Control Plane Policing, on page 421
СоРР	Removed the Skip CoPP policy option from the Cisco NX-OS initial setup utility.	7.0(3)12(1)	Configuring Control Plane Policing, on page 421
DHCP client	Introduced this feature for Cisco Nexus 9300 Series switches.	7.0(3)12(1)	Configuring Control Plane Policing, on page 421
IP ACLs	Added the ability to specify the length of the TCP options header in packets in HTTP method matches.	7.0(3)12(1)	#unique_25
User Accounts	Introduced SHA256 hashing support for encrypted passwords.	7.0(3)12(1)	Configuring User Accounts and RBAC, on page 145
DHCP relay	Added DHCP relay source interface support for IPv4.	7.0(3)I1(2)	Configuring DHCP, on page 299

Feature	Description	Changed in Release	Where Documented
DHCP snooping	Added support for multiple IP addresses with the same MAC address and VLAN in static binding entries.	7.0(3)I1(2)	Configuring DHCP, on page 299
Switchport Blocking	Introduced this feature.	7.0(3)I1(2)	Configuring Switchport Blocking, on page 417
ACL TCAM	Added ACL TCAM regions for DAI and IPSG.	7.0(3)I1(1)	ACL TCAM Regions, on page 199
DHCP snooping	Introduced this feature.	7.0(3)I1(1)	Configuring DHCP, on page 299
Dynamic ARP Inspection (DAI)	Introduced this feature.	7.0(3)I1(1)	Configuring Dynamic ARP Inspection, on page 359
IP Source Guard (IPSG)	Introduced this feature.	7.0(3)I1(1)	Configuring IP Source Guard, on page 375

Overview

The Cisco NX-OS software supports security features that can protect your network against degradation or failure and also against data loss or compromise resulting from intentional attacks and from unintended but damaging mistakes by well-meaning network users.

This chapter includes the following sections:

- Licensing Requirements, on page 7
- Supported Platforms, on page 8
- Authentication, Authorization, and Accounting, on page 8
- RADIUS and TACACS+ Security Protocols, on page 8
- LDAP, on page 9
- SSH and Telnet, on page 9
- User Accounts and Roles, on page 9
- IP ACLs, on page 9
- MAC ACLs, on page 10
- VACLs, on page 10
- DHCP Snooping, on page 10
- Dynamic ARP Inspection, on page 10
- IP Source Guard, on page 11
- Password Encryption, on page 11
- Keychain Management, on page 11
- Control Plane Policing, on page 11
- Rate Limits, on page 12
- Software Image, on page 12
- Virtual Device Contexts, on page 12

Licensing Requirements

For a complete explanation of Cisco NX-OS licensing recommendations and how to obtain and apply licenses, see the *Cisco NX-OS Licensing Guide* and the *Cisco NX-OS Licensing Options Guide*.

Supported Platforms

Starting with Cisco NX-OS release 7.0(3)I7(1), use the Nexus Switch Platform Support Matrix to know from which Cisco NX-OS releases various Cisco Nexus 9000 and 3000 switches support a selected feature.

Authentication, Authorization, and Accounting

Authentication, authorization, and accounting (AAA) is an architectural framework for configuring a set of three independent security functions in a consistent, modular manner.

Authentication

Provides the method of identifying users, including login and password dialog, challenge and response, messaging support, and, depending on the security protocol that you select, encryption. Authentication is the way a user is identified prior to being allowed access to the network and network services. You configure AAA authentication by defining a named list of authentication methods and then applying that list to various interfaces.

Authorization

Provides the method for remote access control, including one-time authorization or authorization for each service, per-user account list and profile, user group support, and support of IP, IPX, ARA, and Telnet.

Remote security servers, such as RADIUS and TACACS+, authorize users for specific rights by associating attribute-value (AV) pairs, which define those rights, with the appropriate user. AAA authorization works by assembling a set of attributes that describe what the user is authorized to perform. These attributes are compared with the information contained in a database for a given user, and the result is returned to AAA to determine the user's actual capabilities and restrictions.

Accounting

Provides the method for collecting and sending security server information used for billing, auditing, and reporting, such as user identities, start and stop times, executed commands (such as PPP), number of packets, and number of bytes. Accounting enables you to track the services that users are accessing, as well as the amount of network resources that they are consuming.

Note

You can configure authentication outside of AAA. However, you must configure AAA if you want to use RADIUS or TACACS+, or if you want to configure a backup authentication method.

For more information, see the Configuring AAA, on page 13 chapter.

RADIUS and TACACS+ Security Protocols

AAA uses security protocols to administer its security functions. If your router or access server is acting as a network access server, AAA is the means through which you establish communication between your network access server and your RADIUS or TACACS+ security server.

The chapters in this guide describe how to configure the following security server protocols:

RADIUS

A distributed client/server system implemented through AAA that secures networks against unauthorized access. In the Cisco implementation, RADIUS clients run on Cisco routers and send authentication requests to a central RADIUS server that contains all user authentication and network service access information.

TACACS+

A security application implemented through AAA that provides a centralized validation of users who are attempting to gain access to a router or network access server. TACACS+ services are maintained in a database on a TACACS+ daemon running, typically, on a UNIX or Windows NT workstation. TACACS+ provides for separate and modular authentication, authorization, and accounting facilities.

For more information, see the Configuring TACACS+, on page 65 chapter and the Configuring RADIUS, on page 41 chapter.

LDAP

The Lightweight Directory Access Protocol (LDAP) provides centralized validation of users attempting to gain access to a Cisco NX-OS device. LDAP allows a single access control server (the LDAP daemon) to provide authentication and authorization independently.

For more information, see the Configuring LDAP, on page 103 chapter.

SSH and Telnet

You can use the Secure Shell (SSH) server to enable an SSH client to make a secure, encrypted connection to a Cisco NX-OS device. SSH uses strong encryption for authentication. The SSH server in the Cisco NX-OS software can interoperate with publicly and commercially available SSH clients.

The SSH client in the Cisco NX-OS software works with publicly and commercially available SSH servers.

The Telnet protocol enables TCP/IP connections to a host. Telnet allows a user at one site to establish a TCP connection to a login server at another site and then passes the keystrokes from one device to the other. Telnet can accept either an IP address or a domain name as the remote device address.

For more information, see the Configuring SSH and Telnet, on page 119 chapter.

User Accounts and Roles

You can create and manage user accounts and assign roles that limit access to operations on the Cisco NX-OS device. Role-based access control (RBAC) allows you to define the rules for an assign role that restrict the authorization that the user has to access management operations.

For more information, see the Configuring User Accounts and RBAC, on page 145 chapter.

IP ACLs

IP ACLs are ordered sets of rules that you can use to filter traffic based on IPv4 information in the Layer 3 header of packets. Each rule specifies a set of conditions that a packet must satisfy to match the rule. When

the Cisco NX-OS software determines that an IP ACL applies to a packet, it tests the packet against the conditions of all rules. The first match determines whether a packet is permitted or denied, or if there is no match, the Cisco NX-OS software applies the applicable default rule. The Cisco NX-OS software continues processing packets that are permitted and drops packets that are denied.

For more information, see the Configuring IP ACLs, on page 189 chapter.

MAC ACLs

MAC ACLs are ACLs that filter traffic using the information in the Layer 2 header of each packet. Each rule specifies a set of conditions that a packet must satisfy to match the rule. When the Cisco NX-OS software determines that a MAC ACL applies to a packet, it tests the packet against the conditions of all rules. The first match determines whether a packet is permitted or denied, or if there is no match, the Cisco NX-OS software applies the applicable default rule. The Cisco NX-OS software continues processing packets that are permitted and drops packets that are denied.

VACLs

A VLAN ACL (VACL) is one application of an IP ACL or MAC ACL. You can configure VACLs to apply to all packets that are routed into or out of a VLAN or are bridged within a VLAN. VACLs are strictly for security packet filtering and for redirecting traffic to specific physical interfaces. VACLs are not defined by direction (ingress or egress).

For more information, see the Configuring VLAN ACLs, on page 269 chapter.

DHCP Snooping

DHCP snooping acts like a firewall between untrusted hosts and trusted DHCP servers. DHCP snooping performs the following activities:

- Validates DHCP messages received from untrusted sources and filters out invalid messages.
- Builds and maintains the DHCP snooping binding database, which contains information about untrusted hosts with leased IP addresses.
- Uses the DHCP snooping binding database to validate subsequent requests from untrusted hosts.

Dynamic ARP inspection (DAI) and IP Source Guard (IPSG) also use information stored in the DHCP snooping binding database.

Dynamic ARP Inspection

Dynamic ARP inspection (DAI) ensures that only valid ARP requests and responses are relayed. When DAI is enabled and properly configured, a Cisco NX-OS device performs these activities:

- Intercepts all ARP requests and responses on untrusted ports.
- Verifies that each of these intercepted packets has a valid IP-to-MAC address binding before updating the local ARP cache or before forwarding the packet to the appropriate destination.

• Drops invalid ARP packets.

DAI can determine the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a DHCP snooping binding database. This database can also contain static entries that you create. If the ARP packet is received on a trusted interface, the device forwards the packet without any checks. On untrusted interfaces, the device forwards the packet only if it is valid.

IP Source Guard

IP Source Guard is a per-interface traffic filter that permits IP traffic only when the IP address and MAC address of each packet matches one of two sources of IP and MAC address bindings:

- Entries in the DHCP snooping binding table.
- Static IP source entries that you configure.

Filtering on trusted IP and MAC address bindings helps prevent attacks that rely on spoofing the IP address of a valid host. To circumvent IP Source Guard, an attacker would have to spoof both the IP address and the MAC address of a valid host.

Password Encryption

The Advanced Encryption Standard (AES) password encryption feature stores all existing and newly created clear-text passwords for supported applications (currently RADIUS and TACACS+) in the strong and reversible type-6 encrypted format. A primary encryption key is used to encrypt and decrypt the passwords. You can also use this feature to convert all existing weakly encrypted passwords to type-6 encrypted passwords.

For more information, see the Configuring Password Encryption, on page 381 chapter.

Keychain Management

Keychain management allows you to create and maintain keychains, which are sequences of keys (sometimes called shared secrets). You can use keychains with features that secure communications with other devices by using key-based authentication. The device allows you to configure multiple keychains.

Some routing protocols that support key-based authentication can use a keychain to implement a hitless key rollover for authentication.

For more information, see the Keychain Management, on page 11 chapter.

Control Plane Policing

The Cisco NX-OS device provides control plane policing to prevent denial-of-service (DoS) attacks from impacting performance. The supervisor module of the Cisco NX-OS device has both the management plane and control plane and is critical to the operation of the network. Any disruption to the supervisor module would result in serious network outages. Excessive traffic to the supervisor module could overload it and slow down the performance of the entire Cisco NX-OS device. Attacks on the supervisor module can be of various types such as, denial-of-service (DoS) attacks that generate IP traffic streams to the control plane at a very

high rate. These attacks result in the control plane spending a large amount of time in handling these packets, which makes the control plane unable to process genuine traffic.

For more information, see the Configuring Control Plane Policing, on page 421 chapter.

Rate Limits

Rate limits can prevent redirected packets for egress exceptions from overwhelming the supervisor module on a Cisco NX-OS device.

For more information, see the Configuring Rate Limits, on page 455 chapter.

Software Image

The Cisco NX-OS software consists of one NXOS software image.

Virtual Device Contexts

Cisco NX-OS can segment operating system and hardware resources into virtual device contexts (VDCs) that emulate virtual devices. The Cisco Nexus 9000 Series switches currently do not support multiple VDCs. All switch resources are managed in the default VDC.

Configuring AAA

This chapter describes how to configure authentication, authorization, and accounting (AAA) on Cisco NX-OS devices.

This chapter includes the following sections:

- About AAA, on page 13
- Licensing Requirements for AAA, on page 17
- Prerequisites for AAA, on page 18
- Guidelines and Limitations for AAA, on page 18
- Default Settings for AAA, on page 18
- Configuring AAA, on page 19
- Monitoring and Clearing the Local AAA Accounting Log, on page 37
- Verifying the AAA Configuration, on page 37
- Configuration Examples for AAA, on page 38
- Configuration Examples for Login Parameters, on page 38
- Configuration Examples for the Password Prompt Feature, on page 39
- Additional References for AAA, on page 40

About AAA

This section includes information about AAA on Cisco NX-OS devices.

AAA Security Services

The AAA feature allows you to verify the identity of, grant access to, and track the actions of users managing a Cisco NX-OS device. Cisco NX-OS devices support Remote Access Dial-In User Service (RADIUS) or Terminal Access Controller Access Control System Plus (TACACS+) protocols.

Based on the user ID and password combination that you provide, Cisco NX-OS devices perform local authentication or authorization using the local database or remote authentication or authorization using one or more AAA servers. A preshared secret key provides security for communication between the Cisco NX-OS device and AAA servers. You can configure a common secret key for all AAA servers or for only a specific AAA server.

AAA security provides the following services:

Authentication

Identifies users, including login and password dialog, challenge and response, messaging support, and, depending on the security protocol that you select, encryption.

Authentication is the process of verifying the identity of the person or device accessing the Cisco NX-OS device, which is based on the user ID and password combination provided by the entity trying to access the Cisco NX-OS device. Cisco NX-OS devices allow you to perform local authentication (using the local lookup database) or remote authentication (using one or more RADIUS or TACACS+ servers).

Authorization

Provides access control.AAA authorization is the process of assembling a set of attributes that describe what the user is authorized to perform. Authorization in the Cisco NX-OS software is provided by attributes that are downloaded from AAA servers. Remote security servers, such as RADIUS and TACACS+, authorize users for specific rights by associating attribute-value (AV) pairs, which define those rights with the appropriate user.

Accounting

Provides the method for collecting information, logging the information locally, and sending the information to the AAA server for billing, auditing, and reporting.

The accounting feature tracks and maintains a log of every management session used to access the Cisco NX-OS device. You can use this information to generate reports for troubleshooting and auditing purposes. You can store accounting logs locally or send them to remote AAA servers.

Note

The Cisco NX-OS software supports authentication, authorization, and accounting independently. For example, you can configure authentication and authorization without configuring accounting.

Benefits of Using AAA

AAA provides the following benefits:

- Increased flexibility and control of access configuration
- Scalability
- Standardized authentication methods, such as RADIUS and TACACS+
- Multiple backup devices

Remote AAA Services

Remote AAA services provided through RADIUS and TACACS+ protocols have the following advantages over local AAA services:

- It is easier to manage user password lists for each Cisco NX-OS device in the fabric.
- AAA servers are already deployed widely across enterprises and can be easily used for AAA services.
- You can centrally manage the accounting log for all Cisco NX-OS devices in the fabric.
- It is easier to manage user attributes for each Cisco NX-OS device in the fabric than using the local databases on the Cisco NX-OS devices.

AAA Server Groups

You can specify remote AAA servers for authentication, authorization, and accounting using server groups. A server group is a set of remote AAA servers that implements the same AAA protocol. The purpose of a server group is to provide for failover servers in case a remote AAA server fails to respond. If the first remote server in the group fails to respond, the next remote server in the group is tried until one of the servers sends a response. If all the AAA servers in the server group fail to respond, then that server group option is considered a failure. If required, you can specify multiple server groups. If the Cisco NX-OS device encounters errors from the servers in the first group, it tries the servers in the next server group.

AAA Service Configuration Options

The AAA configuration in Cisco NX-OS devices is service based, which means that you can have separate AAA configurations for the following services:

- User Telnet or Secure Shell (SSH) login authentication
- Console login authentication
- User management session accounting

This table provides the related CLI command for each AAA service configuration option.

Table 2: AAA Service Configuration Commands

AAA Service Configuration Option	Related Command
Telnet or SSH login	aaa authentication login default
Console login	aaa authentication login console
User session accounting	aaa accounting default

You can specify the following authentication methods for the AAA services:

All RADIUS servers

Uses the global pool of RADIUS servers for authentication.

Specified server groups

Uses specified RADIUS, TACACS+, or LDAP server groups you have configured for authentication.

Local

Uses the local username or password database for authentication.

None

Specifies that no AAA authentication be used.

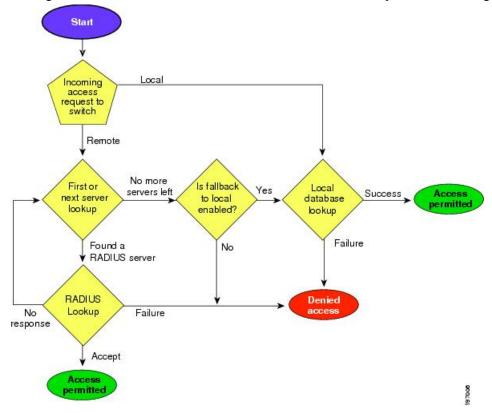
Note

If you specify the all RADIUS servers method, rather than a specified server group method, the Cisco NX-OS device chooses the RADIUS server from the global pool of configured RADIUS servers, in the order of configuration. Servers from this global pool are the servers that can be selectively configured in a RADIUS server group on the Cisco NX-OS device.

This table shows the AAA authentication methods that you can configure for the AAA services.

Table 3: AAA Authentication Methods for AAA Services

AAA Service	AAA Methods
Console login authentication	Server groups, local, and none
User login authentication	Server groups, local, and none
User management session accounting	Server groups and local


Note

For console login authentication, user login authentication, and user management session accounting, the Cisco NX-OS device tries each option in the order specified. The local option is the default method when other configured options fail. You can disable the local option for the console or default login by using the **no aaa authentication login** {console | default} fallback error local command.

Authentication and Authorization Process for User Login

Figure 1: Authorization and Authentication Flow for User Login

This figure shows a flow chart of the authentication and authorization process for user login.

The following list explains the process:

- When you log in to the required Cisco NX-OS device, you can use the Telnet, SSH, or console login
 options.
- When you have configured the AAA server groups using the server group authentication method, the Cisco NX-OS device sends an authentication request to the first AAA server in the group as follows:
 - If the AAA server fails to respond, the next AAA server is tried and so on until the remote server responds to the authentication request.
 - If all AAA servers in the server group fail to respond, the servers in the next server group are tried.
 - If all configured methods fail, the local database is used for authentication, unless fallback to local is disabled for the console login.
- If the Cisco NX-OS device successfully authenticates you through a remote AAA server, then the following possibilities apply:
 - If the AAA server protocol is RADIUS, then user roles specified in the cisco-av-pair attribute are downloaded with an authentication response.
 - If the AAA server protocol is TACACS+, then another request is sent to the same server to get the user roles specified as custom attributes for the shell.
- If your username and password are successfully authenticated locally, the Cisco NX-OS device logs you
 in and assigns you the roles configured in the local database.

Note

"No more server groups left" means that there is no response from any server in all server groups. "No more servers left" means that there is no response from any server within this server group.

AES Password Encryption and Primary Encryption Keys

You can enable strong, reversible 128-bit Advanced Encryption Standard (AES) password encryption, also known as type-6 encryption. To start using type-6 encryption, you must enable the AES password encryption feature and configure a primary encryption key, which is used to encrypt and decrypt passwords.

After you enable AES password encryption and configure a primary key, all existing and newly created clear-text passwords for supported applications (currently RADIUS and TACACS+) are stored in type-6 encrypted format, unless you disable type-6 password encryption. You can also configure Cisco NX-OS to convert all existing weakly encrypted passwords to type-6 encrypted passwords.

Licensing Requirements for AAA

The following table shows the licensing requirements for this feature:

Product	License Requirement	
	AAA requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.	

Prerequisites for AAA

Remote AAA servers have the following prerequisites:

- Ensure that at least one RADIUS, TACACS+, or LDAP server is reachable through IP.
- Ensure that the Cisco NX-OS device is configured as a client of the AAA servers.
- Ensure that the secret key is configured on the Cisco NX-OS device and the remote AAA servers.
- Ensure that the remote server responds to AAA requests from the Cisco NX-OS device.

Guidelines and Limitations for AAA

AAA has the following guidelines and limitations:

- If you have a user account that is configured on the local Cisco NX-OS device that has the same name as a remote user account on an AAA server, the Cisco NX-OS software applies the user roles for the local user account to the remote user, not the user roles configured on the AAA server.
- Cisco Nexus 9000 Series switches support the aaa authentication login ascii-authentication command only for TACACS+ (and not for RADIUS).
- If you modify the default login authentication method (without using the **local** keyword), the configuration overrides the console login authentication method. To explicitly configure the console authentication method, use the **aaa authentication login console** {**group** *group-list* [**none**] | **local** | **none**} command.
- Beginning with Cisco NX-OS release 7.0(3)I6(1), the **login block-for** and **login quiet-mode** configuration mode commands have been renamed to **system login block-for** and **system login quiet-mode**, respectively.
- When you use the **system login quiet-mode access-class QUIET_LIST** command, you must ensure that the access list is correctly defined to only block the specified traffic. For example, if you need to block only the user logins from untrusted hosts, then the access list should specify ports 22, 23, 80, and 443 corresponding to SSH, telnet, and HTTP-based access from those hosts.

Default Settings for AAA

This table lists the default settings for AAA parameters.

Table 4: Default AAA Parameter Settings

Parameters	Default
Console authentication method	local
Default authentication method	local
Login authentication failure messages	Disabled

Parameters	Default
CHAP authentication	Disabled
MSCHAP authentication	Disabled
Default accounting method	local
Accounting log display length	250 KB

Configuring AAA

This section describes the tasks for configuring AAA on Cisco NX-OS devices.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Note

Cisco Nexus 9K Series switches support the CLI command, and authentication login ascii-authentication, only for TACAAS+, but not for RADIUS. Ensure that you have disabled and authentication login ascii-authentication switch so that the default authentication, PAP, is enabled. Otherwise, you will see syslog errors.

Process for Configuring AAA

Follow these steps to configure AAA authentication and accounting:

- 1. If you want to use remote RADIUS, TACACS+, or LDAP servers for authentication, configure the hosts on your Cisco NX-OS device.
- **2.** Configure console login authentication methods.
- **3.** Configure default login authentication methods for user logins.
- 4. Configure default AAA accounting default methods.

Configuring Console Login Authentication Methods

This section describes how to configure the authentication methods for the console login.

The authentication methods include the following:

- Global pool of RADIUS servers
- Named subset of RADIUS, TACACS+, or LDAP servers
- · Local database on the Cisco NX-OS device
- Username only (none)

The default method is local, but you have the option to disable it.

Note

The **group radius** and **group** *server-name* forms of the **aaa authentication** command refer to a set of previously defined RADIUS servers. Use the **radius-server host** command to configure the host servers. Use the **aaa group server radius** command to create a named group of servers.

Note

If you perform a password recovery when remote authentication is enabled, local authentication becomes enabled for console login as soon as the password recovery is done. As a result, you can log into the Cisco NX-OS device through the console port using the new password. After login, you can continue to use local authentication, or you can enable remote authentication after resetting the admin password configured at the AAA servers. For more information about the password recovery process, see the *Cisco Nexus 9000 Series NX-OS Troubleshooting Guide*.

Before you begin

Configure RADIUS, TACACS+, or LDAP server groups, as needed.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa authentication login console {group group-list [none] local none}	Configures login authentication methods for the console.
	Example:	The group-list argument consists of a
		space-delimited list of group names. The group names are the following:
		radius Uses the global pool of RADIUS servers for authentication. named-group Uses a named subset of RADIUS, TACACS+, or LDAP servers for authentication.
		The local method uses the local database for authentication, and the none method specifies that no AAA authentication be used.
		The default console login method is local , which is used when no methods are configured or when all the configured methods fail to

	Command or Action	Purpose
		respond, unless fallback to local is disabled for the console login.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show aaa authentication	Displays the configuration of the console login
	Example:	authentication methods.
	switch# show aaa authentication	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch# copy running-config startup-config</pre>	

Configuring Default Login Authentication Methods

The authentication methods include the following:

- Global pool of RADIUS servers
- Named subset of RADIUS, TACACS+, or LDAP servers
- Local database on the Cisco NX-OS device
- Username only

The default method is local, but you have the option to disable it.

Before you begin

Configure RADIUS, TACACS+, or LDAP server groups, as needed.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa authentication login default {group group-list [none] local none} Example:	Configures the default authentication methods. The <i>group-list</i> argument consists of a space-delimited list of group names. The group names are the following:

	Command or Action	Purpose
	Command or Action switch (config) # aaa authentication login default group radius	•
		You can configure one of the following: • AAA authentication groups • AAA authentication groups with no authentication
		Local authentication
		No authentication
		Note The local keyword is not supported (and is not required) when configuring AAA authentication groups because local authentication is the default if remote servers are unreachable. For example, if you configure aaa authentication login default group g1, local authentication is tried if you are unable to authenticate using AAA group g1. In contrast, if you configure aaa authentication login default group g1 none, no authentication is performed if you are unable to authenticate using AAA group g1.
Step 3	exit	Exits configuration mode.
	<pre>Example: switch(config) # exit switch#</pre>	
Step 4	(Optional) show an authentication Example: switch# show and authentication	Displays the configuration of the default login authentication methods.

	Command or Action	Purpose
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch# copy running-config startup-config</pre>	

Disabling Fallback to Local Authentication

By default, if remote authentication is configured for console or default login and all AAA servers are unreachable (resulting in an authentication error), the Cisco NX-OS device falls back to local authentication to ensure that users aren't locked out of the device. However, you can disable fallback to local authentication in order to increase security.

Caution

Disabling fallback to local authentication can lock your Cisco NX-OS device, forcing you to perform a password recovery in order to gain access. To prevent being locked out of the device, we recommend that you disable fallback to local authentication for only the default login or the console login, not both.

Before you begin

Configure remote authentication for the console or default login.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no aaa authentication login {console default} fallback error local	Disables fallback to local authentication for the console or default login if remote authentication is configured and all AAA servers are
	Example:	unreachable.
	<pre>switch(config)# no aaa authentication login console fallback error local</pre>	The following message appears when you disable fallback to local authentication:
		"WARNING!!! Disabling fallback can lock your switch."
Step 3	(Optional) exit	Exits configuration mode.
	Example:	
	switch(config)# exit switch#	

	Command or Action	Purpose
Step 4	(Optional) show aaa authentication	Displays the configuration of the console and
	Example:	default login authentication methods.
	switch# show aaa authentication	
Step 5	(Optional) copy running-config	Copies the running configuration to the startup
	startup-config	configuration.
	Example:	
	<pre>switch# copy running-config startup-config</pre>	

Enabling the Default User Role for AAA Authentication

You can allow remote users who do not have a user role to log in to the Cisco NX-OS device through a RADIUS or TACACS+ remote authentication server using a default user role. When you disable the AAA default user role feature, remote users who do not have a user role cannot log in to the device.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa user default-role Example:	Enables the default user role for AAA authentication. The default is enabled.
	switch(config)# aaa user default-role	You can disable the default user role feature by using the no form of this command.
Step 3	exit	Exits configuration mode.
	<pre>Example: switch(config)# exit switch#</pre>	
Step 4	(Optional) show aaa user default-role Example: switch# show aaa user default-role	Displays the AAA default user role configuration.
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example: switch# copy running-config startup-config	

Enabling Login Authentication Failure Messages

When you log in, the login is processed by rolling over to the local user database if the remote AAA servers do not respond. In such cases, the following messages display on the user's terminal if you have enabled login failure messages:

Remote AAA servers unreachable; local authentication done.

Remote AAA servers unreachable; local authentication failed.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa authentication login error-enable	Enables login authentication failure messages.
	Example:	The default is disabled.
	<pre>switch(config)# aaa authentication login error-enable</pre>	
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show aaa authentication	Displays the login failure message
	Example:	configuration.
	switch# show aaa authentication	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	
		I.

Logging Successful and Failed Login Attempts

You can configure the switch to log all successful and failed login attempts to the configured syslog server.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	switch# configure terminal	

	Command or Action	Purpose	
Step 2	Required: [no] login on-failure log Example: switch(config) # login on-failure log	Logs all failed authentication messages to the configured syslog server only if the logging level is set to 6. With this configuration, the following syslog message appears after the failed login: AUTHPRIV-3-SYSTEM MSG:	
		pam_aaa:Authentication failed for user admin from 172.22.00.00	
		Note When logging level authpriv is 6, additional Linux kernel authentication messages appear along with the previous message. If these additional messages need to be ignored, the authpriv value should be set to 3.	
Step 3	Required: [no] login on-success log	Logs all successful authentication messages to	
	<pre>Example: switch(config) # login on-success log switch(config) # logging level authpriv 6</pre>	the configured syslog server only if the logging level is set to 6. With this configuration, the following syslog message appears after the successful login:	
	<pre>switch(config)# logging level daemon 6</pre>	AUTHPRIV-6-SYSTEM_MSG: pam_aaa:Authentication success for user admin from 172.22.00.00	
		Note When logging level authpriv is 6, additional Linux kernel authentication messages appear along with the previous message. If these additional messages need to be ignored, the authpriv value should be set to 3.	
Step 4	(Optional) show login on-failure log	Displays whether the switch is configured to	
	<pre>Example: switch(config) # show login on-failure log</pre>	log failed authentication messages to the syslo server.	
Step 5	(Optional) show login on-successful log	Displays whether the switch is configured to	
	<pre>Example: switch(config) # show login on-successful log</pre>	log successful authentication messages to the syslog server.	
Step 6	(Optional) copy running-config startup-config		
	Example:	configuration.	
	<pre>switch(config)# copy running-config startup-config</pre>		
		· ·	

Enabling CHAP Authentication

The Cisco NX-OS software supports the Challenge Handshake Authentication Protocol (CHAP), a challenge-response authentication protocol that uses the industry-standard Message Digest (MD5) hashing scheme to encrypt responses. You can use CHAP for user logins to a Cisco NX-OS device through a remote authentication server (RADIUS or TACACS+).

By default, the Cisco NX-OS device uses Password Authentication Protocol (PAP) authentication between the Cisco NX-OS device and the remote server. If you enable CHAP, you need to configure your RADIUS or TACACS+ server to recognize the CHAP vendor-specific attributes (VSAs).

Note

Cisco Nexus 9K Series switches support the CLI command, and authentication login ascii-authentication, only for TACAAS+, but not for RADIUS. Ensure that you have disabled and authentication login ascii-authentication switch so that the default authentication, PAP, is enabled. Otherwise, you will see syslog errors. For example:

2017 Jun 14 16:14:15 N9K-1 %RADIUS-2-RADIUS_NO_AUTHEN_INFO: ASCII authentication not supported 2017 Jun 14 16:14:16 N9K-1 %AUTHPRIV-3-SYSTEM_MSG: pam_aaa:Authentication failed from 192.168.12.34 - dcos_sshd[16804]

This table shows the RADIUS and TACACS+ VSAs required for CHAP.

Table 5: CHAP RADIUS and TACACS+ VSAs

Vendor-ID Number	Vendor-Type Number	VSA	Description
311	11	CHAP-Challenge	Contains the challenge sent by an AAA server to a CHAP user. It can be used in both Access-Request and Access-Challenge packets.
211	11	CHAP-Response	Contains the response value provided by a CHAP user in response to the challenge. It is used only in Access-Request packets.

Before you begin

Disable AAA ASCII authentication for logins.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no aaa authentication login ascii-authentication	Disables ASCII authentication.
	Example:	

	Command or Action	Purpose	
	<pre>switch(config)# no aaa authentication login ascii-authentication</pre>		
Step 3	<pre>aaa authentication login chap enable Example: switch(config) # aaa authentication login chap enable</pre>	Enables CHAP authentication. The default is disabled. Note You cannot enable both CHAP and MSCHAP or MSCHAP V2 on your Cisco NX-OS device.	
Step 4	(Optional) exit Example: switch(config) # exit switch#	Exits configuration mode.	
Step 5	(Optional) show and authentication login chap Example: switch# show and authentication login chap	Displays the CHAP configuration.	
Step 6	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.	

Enabling MSCHAP or MSCHAP V2 Authentication

Microsoft Challenge Handshake Authentication Protocol (MSCHAP) is the Microsoft version of CHAP. The Cisco NX-OS software also supports MSCHAP Version 2 (MSCHAP V2). You can use MSCHAP for user logins to a Cisco NX-OS device through a remote authentication server (RADIUS or TACACS+). MSCHAP V2 only supports user logins to a Cisco NX-OS device through remote authentication RADIUS servers. If you configure a TACACS+ group with MSCHAP V2, the AAA default login authentication uses the next configured method, or the local method, if no other server group is configured.

Note

The Cisco NX-OS software may display the following message:

"Warning: MSCHAP V2 is supported only with Radius."

This warning message is informational only and does not affect MSCHAP V2 operation with RADIUS.

By default, the Cisco NX-OS device uses Password Authentication Protocol (PAP) authentication between the Cisco NX-OS device and the remote server. If you enable MSCHAP or MSCHAP V2, you need to configure your RADIUS server to recognize the MSCHAP and MSCHAP V2 vendor-specific attributes (VSAs).

This table shows the RADIUS VSAs required for MSCHAP.

Table 6: MSCHAP and MSCHAP V2 RADIUS VSAs

Vendor-ID Number	Vendor-Type Number	VSA	Description
311	11	MSCHAP-Challenge	Contains the challenge sent by an AAA server to an MSCHAP or MSCHAP V2 user. It can be used in both Access-Request and Access-Challenge packets.
211	11	MSCHAP-Response	Contains the response value provided by an MSCHAP or MSCHAP V2 user in response to the challenge. It is only used in Access-Request packets.

Before you begin

Disable AAA ASCII authentication for logins.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no aaa authentication login ascii-authentication	Disables ASCII authentication.
	Example:	
	<pre>switch(config)# no aaa authentication login ascii-authentication</pre>	
Step 3	aaa authentication login {mschap mschapv2} enable	Enables MSCHAP or MSCHAP V2 authentication. The default is disabled.
	Example: switch(config) # aaa authentication login mschap enable	Note You cannot enable both MSCHAP and MSCHAP V2 on your Cisco NX-OS device.
Step 4	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 5	(Optional) show aaa authentication login {mschap mschapv2}	Displays the MSCHAP or MSCHAP V2 configuration.
	Example:	
	switch# show aaa authentication login mschap	

	Command or Action	Purpose
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	switch# copy running-config startup-config	

Configuring AAA Accounting Default Methods

Cisco NX-OS software supports TACACS+ and RADIUS methods for accounting. Cisco NX-OS devices report user activity to TACACS+ or RADIUS security servers in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the AAA server.

When you activate AAA accounting, the Cisco NX-OS device reports these attributes as accounting records, which are then stored in an accounting log on the security server.

You can create default method lists defining specific accounting methods, which include the following:

RADIUS server group

Uses the global pool of RADIUS servers for accounting.

Specified server group

Uses a specified RADIUS or TACACS+ server group for accounting.

Local

Uses the local username or password database for accounting.

Note

If you have configured server groups and the server groups do not respond, by default, the local database is used for authentication.

Before you begin

Configure RADIUS or TACACS+ server groups, as needed.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa accounting default {group group-list local}	Configures the default accounting method. The <i>group-list</i> argument consists of a
	Example: switch(config)# aaa accounting default	space-delimited list of group names. The group names are the following:
	group radius	• radius—Uses the global pool of RADIUS servers for accounting.

	Command or Action	Purpose
		• named-group—Uses a named subset of TACACS+ or RADIUS servers for accounting.
		The local method uses the local database for accounting.
		The default method is local , which is used when no server groups are configured or when all the configured server groups fail to respond.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show and accounting Example: switch# show and accounting	Displays the configuration AAA accounting default methods.
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example: switch# copy running-config startup-config	

Using AAA Server VSAs with Cisco NX-OS Devices

You can use vendor-specific attributes (VSAs) to specify Cisco NX-OS user roles and SNMPv3 parameters on AAA servers.

About VSAs

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating VSAs between the network access server and the RADIUS server. The IETF uses attribute 26. VSAs allow vendors to support their own extended attributes that are not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option using the format recommended in the specification. The Cisco vendor ID is 9, and the supported option is vendor type 1, which is named cisco-av-pair. The value is a string with the following format:

protocol : attribute separator value *

The protocol is a Cisco attribute for a particular type of authorization, the separator is = (equal sign) for mandatory attributes, and * (asterisk) indicates optional attributes.

When you use RADIUS servers for authentication on a Cisco NX-OS device, the RADIUS protocol directs the RADIUS server to return user attributes, such as authorization information, along with authentication results. This authorization information is specified through VSAs.

VSA Format

The following VSA protocol options are supported by the Cisco NX-OS software:

Shell

Protocol used in access-accept packets to provide user profile information.

Accounting

Protocol used in accounting-request packets. If a value contains any white spaces, put it within double quotation marks.

The following attributes are supported by the Cisco NX-OS software:

roles

Lists all the roles assigned to the user. The value field is a string that stores the list of group names delimited by white space. For example, if you belong to role network-operator and network-admin, the value field would be network-operator network-admin. This subattribute is sent in the VSA portion of the Access-Accept frames from the RADIUS server, and it can only be used with the shell protocol value. These examples use the roles attribute:

```
shell:roles=network-operator network-admin
shell:roles*network-operator network-admin
```

The following examples show the roles attribute as supported by FreeRADIUS:

```
Cisco-AVPair = shell:roles=\network-operator network-admin\
Cisco-AVPair = shell:roles*\network-operator network-admin\
```


Note

When you specify a VSA as shell:roles*"network-operator network-admin" or "shell:roles*\"network-operator network-admin\"", this VSA is flagged as an optional attribute and other Cisco devices ignore this attribute.

accountinginfo

Stores accounting information in addition to the attributes covered by a standard RADIUS accounting protocol. This attribute is sent only in the VSA portion of the Account-Request frames from the RADIUS client on the switch, and it can only be used with the accounting protocol-related PDUs.

Specifying Cisco NX-OS User Roles and SNMPv3 Parameters on AAA Servers

You can use the VSA cisco-av-pair on AAA servers to specify user role mapping for the Cisco NX-OS device using this format:

```
shell:roles="roleA roleB ..."
```

If you do not specify the role option in the cisco-av-pair attribute, the default user role is network-operator.

The SNMPv3 attributes should come together, either before the shell attributes or after. You can also specify your SNMPv3 authentication and privacy protocol attributes as follows:

```
snmpv3:auth="SHA" priv="AES-128" shell:roles="network-admin" shell:priv-lvl=15
shell:roles="network-admin" shell:priv-lvl=15 snmpv3:auth="SHA" priv="AES-128"
```

The SNMPv3 authentication protocol options are SHA and MD5. The privacy protocol options are AES-128 and DES. If you do not specify these options in the cisco-av-pair attribute, MD5 and DES are the default authentication protocols.

Configuring Secure Login Features

Configuring Login Parameters

You can configure login parameters to automatically block further login attempts when a possible denial-of-service (DoS) attack is detected and slow down dictionary attacks by enforcing a quiet period if multiple failed connection attempts are detected.

Note

This feature restarts if a system switchover occurs or the AAA process restarts.

Note

Beginning with NX-OS release 7.0(3)I6(1), the **login block-for** and **login quiet-mode** configuration mode commands have been renamed to **system login block-for** and **system login quiet-mode**, respectively.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	switch# configure terminal	
Step 2	[no] system login block-for seconds attempts tries within seconds	Configures the quiet mode time period. The range for all arguments is from 1 to 65535.
	Example: switch(config) # system login block-for 100 attempts 2 within 60	The example shows how to configure the switch to enter a 100-second quiet period if 2 failed login attempts are exceeded within 60 seconds.
		After you enter this command, all login attempts made through Telnet or SSH are denied during the quiet period. Access control lists (ACLs) are not exempt from the quiet period until the system command is entered.
		Note You must enter this command before any other login command can be used.
Step 3	(Optional) [no] system login quiet-mode access-class acl-name	Specifies an ACL that is to be applied to the switch when it changes to quiet mode. When
	Example: switch(config) # system login quiet-mode access-class myacl	the switch is in quiet mode, all login requests are denied, and the only available connection is through the console.

	Command or Action	Purpose
Step 4	(Optional) show system login [failures]	Displays the login parameters. The failures
	Example:	option displays information related only to failed login attempts.
	switch(config)# show system login	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Restricting User Login Sessions

You can restrict the maximum number of simultaneous login sessions per user. Doing so prevents users from having multiple unwanted sessions and solves the potential security issue of unauthorized users accessing a valid SSH or Telnet session.

Procedure

	Command or Action	Purpose
Step 1	<pre>configure terminal Example: switch# configure terminal</pre>	Enters global configuration mode.
Step 2	<pre>[no] user max-logins max-logins Example: switch(config) # user max-logins 1</pre>	Restricts the maximum number of simultaneous login sessions per user. The range is from 1 to 7. If you set the maximum login limit as 1, only one Telnet or SSH session is allowed per user.
		Note The configured login limit applies to all users. You cannot set a different limit for individual users.
Step 3	(Optional) show running-config all i max-login	Displays the maximum number of login sessions allowed per user.
	Example: switch(config) # show running-config all	
	i max-login	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	<pre>Example: switch(config) # copy running-config startup-config</pre>	Configuration.

Restricting the Password Length

You can restrict the minimum and maximum length of the user password. This feature enables you to increase system security by forcing the user to provide a strong password.

Before you begin

You must enable password strength checking using the **password strength-check** command. If you restrict the password length but do not enable password strength checking and the user enters a password that is not within the restricted length, an error appears, but a user account is created. To enforce the password length and prevent a user account from being created, you must enable password strength checking and restrict the password length.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	switch# configure terminal	
Step 2	[no] userpassphrase {min-length min-length max-length max-length}	Restricts the minimum and/or maximum length of the user password. The minimum password length is from 4 to 127 characters, and the
	Example:	length is from 4 to 127 characters, and the maximum password length is from 80 to 127 characters.
	<pre>switch(config) # userpassphrase min-length 8 max-length 80</pre>	
Step 3	(Optional) show userpassphrase {length max-length min-length}	Displays the minimum and maximum length of the user password.
	Example:	
	<pre>switch(config) # show userpassphrase length</pre>	
Step 4	(Optional) copy running-config startup-config	'
	Example:	configuration.
	<pre>switch(config) # copy running-config startup-config</pre>	

Enabling the Password Prompt for the Username

You can configure the switch to prompt the user to enter a password after entering the username.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example: switch# configure terminal	
Step 2	password prompt username Example: switch(config) # password prompt username Password prompt username is enabled. After providing the required options in	that the user enters will be hidden. You can use

	Command or Action	Purpose
	the username command, press enter. User will be prompted for the username password and password will be hidden. Note: Choosing password key in the same line while configuring user account, password will not be hidden.	the no form of this command to disable this feature.
Step 3	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config) # copy running-config startup-config</pre>	

Configuring the Shared Secret for RADIUS or TACACS+

The shared secret that you configure for remote authentication and accounting between the switch and the RADIUS or TACACS+ server should be hidden because it is sensitive information. You can use a separate command to generate an encrypted shared secret for the **radius-server** [host] key and tacacs-server [host] key commands. The SHA256 hashing method is used to store the encrypted shared secret.

	Command or Action	Purpose
Step 1	configure terminal Example: switch# configure terminal	Enters global configuration mode.
Step 2	generate type7_encrypted_secret Example: switch(config) # generate type7_encrypted_secret Type-7 (Vigenere) Encryption, Use this encrypted secret to configure radius and tacacs shared secret with key type 7. Copy complete secret with double quotes. Enter plain text secret: Confirm plain text secret: Type 7 Encrypted secret is : "fewhg"	equivalent of a plain-text secret
Step 3	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Monitoring and Clearing the Local AAA Accounting Log

The Cisco NX-OS device maintains a local log for the AAA accounting activity. You can monitor this log and clear it.

Procedure

	Command or Action	Purpose
Step 1	show accounting log [size last-index start-seqnum number start-time year month day hh:mm:ss] Example: switch# show accounting log	Displays the accounting log contents. By default, the command output contains up to 250,000 bytes of the accounting log. You can use the <i>size</i> argument to limit command output. The range is from 0 to 250000 bytes. You can also specify a starting sequence number or a starting time for the log output. The range of the starting index is from 1 to 1000000. Use the last-index keyword to display the value of the last index number in the accounting log file.
Step 2	(Optional) clear accounting log [logflash] Example: switch# clear aaa accounting log	Clears the accounting log contents. The logflash keyword clears the accounting log stored in the logflash.

Verifying the AAA Configuration

To display AAA configuration information, perform one of the following tasks:

Command	Purpose
show aaa accounting	Displays AAA accounting configuration.
show aaa authentication [login {ascii-authentication chap error-enable mschap mschapv2}]	Displays AAA authentication login configuration information.
show aaa groups	Displays the AAA server group configuration.
show login [failures]	Displays the login parameters. The failures option displays information related only to failed login attempts.
	Note The clear login failures command clears the login failures in the current watch period.

Command	Purpose
show login on-failure log	Displays whether the switch is configured to log failed authentication messages to the syslog server.
show login on-successful log	Displays whether the switch is configured to log successful authentication messages to the syslog server.
show running-config aaa [all]	Displays the AAA configuration in the running configuration.
show running-config all i max-login	Displays the maximum number of login sessions allowed per user.
show startup-config aaa	Displays the AAA configuration in the startup configuration.
show userpassphrase {length max-length min-length}	Displays the minimum and maximum length of the user password.

Configuration Examples for AAA

The following example shows how to configure AAA:

```
aaa authentication login default group radius
aaa authentication login console group radius
aaa accounting default group radius
```

Configuration Examples for Login Parameters

The following example shows how to configure the switch to enter a 100-second quiet period if 3 failed login attempts is exceeded within 60 seconds. This example shows no login failures.

```
switch# configure terminal
switch(config)# login block-for 100 attempts 3 within 60
switch(config)# show login

No Quiet-Mode access list has been configured, default ACL will be applied.

Switch is enabled to watch for login Attacks.

If more than 3 login failures occur in 60 seconds or less,
logins will be disabled for 100 seconds.

Switch presently in Normal-Mode.
Current Watch Window remaining time 45 seconds.
Present login failure count 0.
```

qweq

```
switch(config)# show login failures
*** No logged failed login attempts with the device.***
```

The following example shows how to configure a quiet-mode ACL. All login requests are denied during the quiet period except hosts from the myacl ACL. This example also shows a login failure.

```
switch# configure terminal
switch(config)# login block-for 100 attempts 3 within 60
switch(config)# login quiet-mode access-class myacl

switch(config)# show login

Switch is enabled to watch for login Attacks.
If more than 3 login failures occur in 60 seconds or less,
logins will be disabled for 100 seconds.

Switch presently in Quiet-Mode.
Will remain in Quiet-Mode for 98 seconds.
Denying logins from all sources.

switch(config)# show login failures
Information about last 20 login failure's with the device.

Username Line SourceIPAddr Appname TimeStamp
```

Configuration Examples for the Password Prompt Feature

The following example shows how to configure the switch to prompt the user to enter a password after she enters the **username** command and the error message that displays if she does not enter a password.

 /dev/pts/0
 171.70.55.158
 login
 Mon Aug
 3 18:18:54 2015

 /dev/pts/0
 171.70.55.158
 login
 Mon Aug
 3 18:19:02 2015

 /dev/pts/0
 171.70.55.158
 login
 Mon Aug
 3 18:19:08 2015

```
switch# configure terminal
switch(config)# password prompt username
Password prompt username is enabled.
After providing the required options in the username command, press enter.
User will be prompted for the username password and password will be hidden.
Note: Choosing password key in the same line while configuring user account, password will not be hidden.

switch(config)# username user1
Enter password:
Confirm password:
warning: password for user:user1 not set. S/he may not be able to login
```

The following example shows how to configure the switch to prompt the user to enter a password after she enters the **snmp-server user** command and the prompts that then display to the user.

```
switch# configure terminal
switch(config)# password prompt username
Password prompt username is enabled.
After providing the required options in the username command, press enter.
User will be prompted for the username password and password will be hidden.
Note: Choosing password key in the same line while configuring user account, password will
```

```
not be hidden.

N9K-1(config)# snmp-server user user1
Enter auth md5 password (Press Enter to Skip):
Enter auth sha password (Press Enter to Skip):
```

Additional References for AAA

This section includes additional information related to implementing AAA.

Related Documents

Related Topic	Document Title
Cisco NX-OS Licensing	Cisco NX-OS Licensing Guide

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link	
MIBs related to AAA	To locate and download supported MIBs, go to the following URL:	
	ftp://ftp.cisco.com/pub/mibs/supportlists/nexus9000/Nexus9000MIBSupportList.html	

Configuring RADIUS

This chapter describes how to configure the Remote Access Dial-In User Service (RADIUS) protocol on Cisco NX-OS devices.

This chapter includes the following sections:

- About RADIUS, on page 41
- Licensing Requirements for RADIUS, on page 44
- Prerequisites for RADIUS, on page 44
- Guidelines and Limitations for RADIUS, on page 44
- Default Settings for RADIUS, on page 45
- Configuring RADIUS Servers, on page 45
- Verifying the RADIUS Configuration, on page 61
- Monitoring RADIUS Servers, on page 62
- Clearing RADIUS Server Statistics, on page 62
- Configuration Example for RADIUS, on page 63
- Where to Go Next, on page 63
- Additional References for RADIUS, on page 63

About RADIUS

The RADIUS distributed client/server system allows you to secure networks against unauthorized access. In the Cisco implementation, RADIUS clients run on Cisco NX-OS devices and send authentication and accounting requests to a central RADIUS server that contains all user authentication and network service access information.

RADIUS Network Environments

RADIUS can be implemented in a variety of network environments that require high levels of security while maintaining network access for remote users.

You can use RADIUS in the following network environments that require access security:

- Networks with multiple-vendor network devices, each supporting RADIUS. For example, network devices from several vendors can use a single RADIUS server-based security database.
- Networks already using RADIUS. You can add a Cisco NX-OS device with RADIUS to the network. This action might be the first step when you make a transition to a AAA server.

- Networks that require resource accounting. You can use RADIUS accounting independent of RADIUS
 authentication or authorization. The RADIUS accounting functions allow data to be sent at the start and
 end of services, indicating the amount of resources (such as time, packets, bytes, and so on) used during
 the session. An Internet service provider (ISP) might use a freeware-based version of the RADIUS access
 control and accounting software to meet special security and billing needs.
- Networks that support authentication profiles. Using the RADIUS server in your network, you can
 configure AAA authentication and set up per-user profiles. Per-user profiles enable the Cisco NX-OS
 device to better manage ports using their existing RADIUS solutions and to efficiently manage shared
 resources to offer different service-level agreements.

RADIUS Operation

When a user attempts to log in and authenticate to a Cisco NX-OS device using RADIUS, the following process occurs:

- The user is prompted for and enters a username and password.
- The username and encrypted password are sent over the network to the RADIUS server.
- The user receives one of the following responses from the RADIUS server:

ACCEPT

The user is authenticated.

REJECT

The user is not authenticated and is prompted to reenter the username and password, or access is denied.

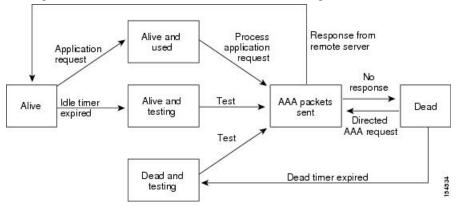
CHALLENCE

A challenge is issued by the RADIUS server. The challenge collects additional data from the user.

CHANGE PASSWORD

A request is issued by the RADIUS server, asking the user to select a new password.

The ACCEPT or REJECT response is bundled with additional data that is used for EXEC or network authorization. You must first complete RADIUS authentication before using RADIUS authorization. The additional data included with the ACCEPT or REJECT packets consists of the following:


- Services that the user can access, including Telnet, rlogin, or local-area transport (LAT) connections, and Point-to-Point Protocol (PPP), Serial Line Internet Protocol (SLIP), or EXEC services.
- Connection parameters, including the host or client IPv4 or IPv6 address, access list, and user timeouts.

RADIUS Server Monitoring

An unresponsive RADIUS server can cause a delay in processing AAA requests. You can configure the Cisco NX-OS device to periodically monitor a RADIUS server to check whether it is responding (or alive) to save time in processing AAA requests. The Cisco NX-OS device marks unresponsive RADIUS servers as dead and does not send AAA requests to any dead RADIUS servers. The Cisco NX-OS device periodically monitors the dead RADIUS servers and brings them to the alive state once they respond. This monitoring process verifies that a RADIUS server is in a working state before real AAA requests are sent its way. Whenever a RADIUS server changes to the dead or alive state, a Simple Network Management Protocol (SNMP) trap is generated and the Cisco NX-OS device displays an error message that a failure is taking place.

Figure 2: RADIUS Server States

This figure shows the states for RADIUS server monitoring.

Note

The monitoring interval for alive servers and dead servers are different and can be configured by the user. The RADIUS server monitoring is performed by sending a test authentication request to the RADIUS server.

Vendor-Specific Attributes

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating VSAs between the network access server and the RADIUS server. The IETF uses attribute 26. VSAs allow vendors to support their own extended attributes that are not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option using the format recommended in the specification. The Cisco vendor ID is 9, and the supported option is vendor type 1, which is named cisco-av-pair. The value is a string with the following format:

```
protocol : attribute separator value *
```

The protocol is a Cisco attribute for a particular type of authorization, the separator is = (equal sign) for mandatory attributes, and * (asterisk) indicates optional attributes.

When you use RADIUS servers for authentication on a Cisco NX-OS device, the RADIUS protocol directs the RADIUS server to return user attributes, such as authorization information, with authentication results. This authorization information is specified through VSAs.

The following VSA protocol options are supported by the Cisco NX-OS software:

Shell

Protocol used in access-accept packets to provide user profile information.

Accounting

Protocol used in accounting-request packets. If a value contains any white spaces, you should enclose the value within double quotation marks.

The Cisco NX-OS software supports the following attributes:

roles

Lists all the roles to which the user belongs. The value field is a string that lists the role names delimited by white space. For example, if the user belongs to roles network-operator and network-admin, the value field would be network-operator network-admin. This subattribute, which the RADIUS server sends in

the VSA portion of the Access-Accept frames, can only be used with the shell protocol value. The following examples show the roles attribute that is supported by the Cisco Access Control Server (ACS):

```
shell:roles=network-operator network-admin
shell:roles*"network-operator network-admin
```

The following examples show the roles attribute that is supported by FreeRADIUS:

```
Cisco-AVPair = shell:roles=\network-operator network-admin\
Cisco-AVPair = shell:roles*\network-operator network-admin\
```


Note

When you specify a VSA as shell:roles*"network-operator network-admin" or "shell:roles*\"network-operator network-admin\"", this VSA is flagged as an optional attribute and other Cisco devices ignore this attribute.

accountinginfo

Stores accounting information in addition to the attributes covered by a standard RADIUS accounting protocol. This attribute is sent only in the VSA portion of the Account-Request frames from the RADIUS client on the switch. It can be used only with the accounting protocol data units (PDUs).

Licensing Requirements for RADIUS

This table shows the licensing requirements for this feature.

Product	License Requirement	
	RADIUS requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .	

Prerequisites for RADIUS

RADIUS has the following prerequisites:

- Obtain IPv4 or IPv6 addresses or hostnames for the RADIUS servers.
- Obtain keys from the RADIUS servers.
- Ensure that the Cisco NX-OS device is configured as a RADIUS client of the AAA servers.

Guidelines and Limitations for RADIUS

RADIUS has the following guidelines and limitations:

- You can configure a maximum of 64 RADIUS servers on the Cisco NX-OS device.
- If you have a user account configured on the local Cisco NX-OS device that has the same name as a remote user account on an AAA server, the Cisco NX-OS software applies the user roles for the local user account to the remote user, not the user roles configured on the AAA server.
- Only the RADIUS protocol supports one-time passwords.
- For N9K-X9636C-R and N9K-X9636Q-R line cards and the N9K-C9508-FM-R fabric module, RADIUS authentication fails for usernames with special characters.
- Cisco Nexus 9K Series switches support the CLI command, aaa authentication login ascii-authentication, only for TACAAS+, but not for RADIUS. Ensure that you have disabled aaa authentication login ascii-authentication switch so that the default authentication, PAP, is enabled. Otherwise, you will see syslog errors.
- Disable Radius when FIPS mode is on. This is enforced due to OpenSSL in FIPS mode.

Default Settings for RADIUS

This table lists the default settings for RADIUS parameters.

Table 7: Default RADIUS Parameter Settings

Parameters	Default
Server roles	Authentication and accounting
Dead timer interval	0 minutes
Retransmission count	1
Retransmission timer interval	5 seconds
Authentication port	1812
Accounting port	1813
Idle timer interval	0 minutes
Periodic server monitoring username	test
Periodic server monitoring password	test

Configuring RADIUS Servers

This section describes how to configure RADIUS servers on a Cisco NX-OS device.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Note

Cisco Nexus 9K Series switches support the CLI command, and authentication login ascii-authentication, only for TACAAS+, but not for RADIUS. Ensure that you have disabled and authentication login ascii-authentication switch so that the default authentication, PAP, is enabled. Otherwise, you will see syslog errors.

RADIUS Server Configuration Process

- 1. Establish the RADIUS server connections to the Cisco NX-OS device.
- **2.** Configure the RADIUS secret keys for the RADIUS servers.
- **3.** If needed, configure RADIUS server groups with subsets of the RADIUS servers for AAA authentication methods.
- **4.** If needed, configure any of the following optional parameters:
 - Dead-time interval
 - RADIUS server specification allowed at user login
 - · Timeout interval
 - TCP port
- 5. (Optional) If RADIUS distribution is enabled, commit the RADIUS configuration to the fabric.

Related Topics

Configuring RADIUS Server Hosts, on page 46 Configuring Global RADIUS Keys, on page 47

Configuring RADIUS Server Hosts

To access a remote RADIUS server, you must configure the IP address or hostname of a RADIUS server. You can configure up to 64 RADIUS servers.

Note

By default, when you configure a RADIUS server IP address or hostname of the Cisco NX-OS device, the RADIUS server is added to the default RADIUS server group. You can also add the RADIUS server to another RADIUS server group.

Before you begin

Ensure that the server is already configured as a member of the server group.

Ensure that the server is configured to authenticate RADIUS traffic.

Ensure that the Cisco NX-OS device is configured as a RADIUS client of the AAA servers.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	radius-server host {ipv4-address ipv6-address hostname}	Specifies the IPv4 or IPv6 address or hostname for a RADIUS server to use for authentication.
	Example:	
	<pre>switch(config)# radius-server host 10.10.1.1</pre>	
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show radius-server	Displays the RADIUS server configuration.
	Example:	
	switch# show radius-server	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Related Topics

Configuring a Key for a Specific RADIUS Server, on page 49

Configuring Global RADIUS Keys

You can configure RADIUS keys for all servers used by the Cisco NX-OS device. A RADIUS key is a shared secret text string between the Cisco NX-OS device and the RADIUS server hosts.

Before you begin

Obtain the RADIUS key values for the remote RADIUS servers.

Configure the RADIUS key on the remote RADIUS servers.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	radius-server key [0 6 7] key-value	Specifies a RADIUS key for all RADIUS	
	Example: switch(config) # radius-server key 0 QsEfThUkO	servers. You can specify that the <i>key-value</i> is in clear text format (0), is type-6 encrypted (6),	
		or is type-7 encrypted (7). The Cisco NX-OS software encrypts a clear text key before saving	
	Example:	it to the running configuration. The default	
	<pre>switch(config)# radius-server key 7 "fewhg"</pre>	format is clear text. The maximum length is 63 characters.	
		By default, no RADIUS key is configured.	
		Note If you already configured a shared secret using the generate type7_encrypted_secret command, enter it in quotation marks, as shown in the second example. For more information, see Configuring the Shared Secret for RADIUS or TACACS+, on page 36.	
Step 3	exit	Exits configuration mode.	
	Example:		
	<pre>switch(config)# exit switch#</pre>		
Step 4	(Optional) show radius-server	Displays the RADIUS server configuration.	
	Example:	Note The RADIUS keys are saved in	
	switch# show radius-server	encrypted form in the running configuration. Use the show running-config command to display the encrypted RADIUS keys.	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	<pre>switch# copy running-config startup-config</pre>		

Related Topics

Configuring RADIUS Server Groups, on page 50

Configuring a Key for a Specific RADIUS Server

You can configure a key on the Cisco NX-OS device for a specific RADIUS server. A RADIUS key is a secret text string shared between the Cisco NX-OS device and a specific RADIUS server.

Before you begin

Configure one or more RADIUS server hosts.

Obtain the key value for the remote RADIUS server.

Configure the key on the RADIUS server.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	radius-server host {ipv4-address ipv6-address hostname} key [0 6 7] key-value Example: switch(config) # radius-server host 10.10.1.1 key 0 PlIjUhYg Example: switch(config) # radius-server host 10.10.1.1 key 7 "fewhg"	Specifies a RADIUS key for a specific RADIUS server. You can specify that the <i>key-value</i> is in clear text format (0), is type-6 encrypted (6), or is type-7 encrypted (7). The Cisco NX-OS software encrypts a clear text key before saving it to the running configuration. The default format is clear text. The maximum length is 63 characters. This RADIUS key is used instead of the global RADIUS key. Note If you already configured a shared secret using the generate type7_encrypted_secret command, enter it in quotation marks, as shown in the second example. For more information, see Configuring the Shared Secret for RADIUS or TACACS+, on page 36.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show radius-server	Displays the RADIUS server configuration.
	Example:	

	Command or Action	Purpose
	switch# show radius-server	Note The RADIUS keys are saved in encrypted form in the running configuration. Use the show running-config command to display the encrypted RADIUS keys.
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Configuring RADIUS Server Hosts, on page 46

Configuring RADIUS Server Groups

You can specify one or more remote AAA servers for authentication using server groups. All members of a group must belong to the RADIUS protocol. The servers are tried in the same order in which you configure them.

You can configure these server groups at any time but they only take effect when you apply them to an AAA service.

Before you begin

Ensure that all servers in the group are RADIUS servers.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa group server radius group-name	Creates a RADIUS server group and enters the
	<pre>Example: switch(config) # aaa group server radius RadServer switch(config-radius) #</pre>	RADIUS server group configuration submode for that group. The <i>group-name</i> argument is a case-sensitive alphanumeric string with a maximum length of 127 characters.
		To delete a RADIUS server group, use the no form of this command.
		Note You are not allowed to delete the default system generated default group (RADIUS).

	Command or Action	Purpose
Step 3	<pre>server {ipv4-address ipv6-address hostname} Example: switch(config-radius) # server 10.10.1.1</pre>	Configures the RADIUS server as a member of the RADIUS server group. If the specified RADIUS server is not found, configure it using the radius-server host command and retry this command.
Step 4	(Optional) deadtime minutes Example: switch(config-radius)# deadtime 30	Configures the monitoring dead time. The default is 0 minutes. The range is from 1 through 1440. Note If the dead-time interval for a RADIUS server group is greater than zero (0), that value takes precedence over the global dead-time value.
Step 5	(Optional) server {ipv4-address ipv6-address hostname} Example: switch(config-radius) # server 10.10.1.1	Configures the RADIUS server as a member of the RADIUS server group. Tip If the specified RADIUS server is not found, configure it using the radius-server host command and retry this command.
Step 6	(Optional) use-vrf vrf-name Example: switch(config-radius) # use-vrf vrf1	Specifies the VRF to use to contact the servers in the server group.
Step 7	<pre>exit Example: switch(config-radius)# exit switch(config)#</pre>	Exits configuration mode.
Step 8	(Optional) show radius-server groups [group-name] Example: switch(config) # show radius-server groups	Displays the RADIUS server group configuration.
Step 9	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring the RADIUS Dead-Time Interval, on page 59

Configuring the Global Source Interface for RADIUS Server Groups

You can configure a global source interface for RADIUS server groups to use when accessing RADIUS servers. You can also configure a different source interface for a specific RADIUS server group. By default, the Cisco NX-OS software uses any available interface.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)</pre>	
Step 2	ip radius source-interface interface	Configures the global source interface for all
	<pre>Example: switch(config)# ip radius source-interface mgmt 0</pre>	RADIUS server groups configured on the device.
Step 3	exit	Exits configuration mode.
	<pre>Example: switch(config)# exit switch#</pre>	
Step 4	(Optional) show radius-server Example: switch# show radius-server	Displays the RADIUS server configuration information.
Step 5	(Optional) copy running-config startup config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Related Topics

Configuring RADIUS Server Groups, on page 50

Allowing Users to Specify a RADIUS Server at Login

By default, the Cisco NX-OS device forwards an authentication request based on the default AAA authentication method. You can configure the Cisco NX-OS device to allow the user to specify a VRF and RADIUS server to send the authentication request by enabling the directed-request option. If you enable this option, the user can log in as *username@vrfname:hostname*, where *vrfname* is the VRF to use and **hostname** is the name of a configured RADIUS server.

Note

If you enable the directed-request option, the Cisco NX-OS device uses only the RADIUS method for authentication and not the default local method.

Note

User-specified logins are supported only for Telnet sessions.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	radius-server directed-request	Allows users to specify a RADIUS server to
	Example:	send the authentication request when logging in. The default is disabled
	<pre>switch(config)# radius-server directed-request</pre>	iii. The default is disabled.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show radius-server directed-request	Displays the directed request configuration.
	Example:	
	switch# show radius-server directed-request	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Configuring the Global RADIUS Transmission Retry Count and Timeout Interval

You can configure a global retransmission retry count and timeout interval for all RADIUS servers. By default, a Cisco NX-OS device retries transmission to a RADIUS server only once before reverting to local authentication. You can increase this number up to a maximum of five retries per server. The timeout interval determines how long the Cisco NX-OS device waits for responses from RADIUS servers before declaring a timeout failure.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	radius-server retransmit count Example: switch(config) # radius-server retransmit 3	Specifies the retransmission count for all RADIUS servers. The default retransmission count is 1 and the range is from 0 to 5.
Step 3	<pre>radius-server timeout seconds Example: switch(config) # radius-server timeout 10</pre>	Specifies the transmission timeout interval for RADIUS servers. The default timeout interval is 5 seconds and the range is from 1 to 60 seconds.
Step 4	<pre>exit Example: switch(config)# exit switch#</pre>	Exits configuration mode.
Step 5	(Optional) show radius-server Example: switch# show radius-server	Displays the RADIUS server configuration.
Step 6	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring the RADIUS Transmission Retry Count and Timeout Interval for a Server

By default, a Cisco NX-OS device retries a transmission to a RADIUS server only once before reverting to local authentication. You can increase this number up to a maximum of five retries per server. You can also set a timeout interval that the Cisco NX-OS device waits for responses from RADIUS servers before declaring a timeout failure.

Before you begin

Configure one or more RADIUS server hosts.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	radius-server host {ipv4-address ipv6-address hostname} retransmit count	Specifies the retransmission count for a specific server. The default is the global value.
	<pre>Example: switch(config) # radius-server host server1 retransmit 3</pre>	Note The retransmission count value specified for a RADIUS server overrides the count specified for all RADIUS servers.
Step 3	radius-server host {ipv4-address ipv6-address hostname} timeout seconds	Specifies the transmission timeout interval for a specific server. The default is the global value.
	<pre>Example: switch(config) # radius-server host server1 timeout 10</pre>	Note The timeout interval value specified for a RADIUS server overrides the interval value specified for all RADIUS servers.
Step 4	exit	Exits configuration mode.
	<pre>Example: switch(config)# exit switch#</pre>	
Step 5	(Optional) show radius-server	Displays the RADIUS server configuration.
	Example: switch# show radius-server	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch# copy running-config startup-config</pre>	

Configuring RADIUS Server Hosts, on page 46

Configuring Accounting and Authentication Attributes for RADIUS Servers

You can specify that a RADIUS server is to be used only for accounting purposes or only for authentication purposes. By default, RADIUS servers are used for both accounting and authentication. You can also specify the destination UDP port numbers where RADIUS accounting and authentication messages should be sent if there is a conflict with the default port.

Before you begin

Configure one or more RADIUS server hosts.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	(Optional) radius-server host {ipv4-address ipv6-address hostname} acct-port udp-port	Specifies a UDP port to use for RADIUS accounting messages. The default UDP port is
	Example:	1813. The range is from 0 to 65535.
	<pre>switch(config)# radius-server host 10.10.1.1 acct-port 2004</pre>	
Step 3	(Optional) radius-server host {ipv4-address ipv6-address hostname} accounting	Specifies to use the RADIUS server only for accounting purposes. The default is both
	Example:	accounting and authentication.
	<pre>switch(config)# radius-server host 10.10.1.1 accounting</pre>	
Step 4	(Optional) radius-server host { <i>ipv4-address</i> <i>ipv6-address</i> <i>hostname</i> } auth-port <i>udp-port</i>	Specifies a UDP port to use for RADIUS authentication messages. The default UDP port
	Example:	is 1812. The range is from 0 to 65535.
	<pre>switch(config)# radius-server host 10.10.2.2 auth-port 2005</pre>	
Step 5	(Optional) radius-server host { <i>ipv4-address</i> <i>ipv6-address</i> <i>hostname</i> } authentication	Specifies to use the RADIUS server only for authentication purposes. The default is both
	Example:	accounting and authentication.
	<pre>switch(config)# radius-server host 10.10.2.2 authentication</pre>	
Step 6	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 7	(Optional) show radius-server	Displays the RADIUS server configuration.
	Example:	
	switch# show radius-server	
Step 8	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Related Topics

Configuring RADIUS Server Hosts, on page 46

Configuring Global Periodic RADIUS Server Monitoring

You can monitor the availability of all RADIUS servers without having to configure the test parameters for each server individually. Any servers for which test parameters are not configured are monitored using the global level parameters.

Note

Test parameters that are configured for individual servers take precedence over global test parameters.

The global configuration parameters include the username and password to use for the servers and an idle timer. The idle timer specifies the interval in which a RADIUS server receives no requests before the Cisco NX-OS device sends out a test packet. You can configure this option to test servers periodically, or you can run a one-time only test.

Note

To protect network security, we recommend that you use a username that is not the same as an existing username in the RADIUS database.

Note

The default idle timer value is 0 minutes. When the idle time interval is 0 minutes, periodic RADIUS server monitoring is not performed.

Before you begin

Enable RADIUS.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	<pre>radius-server test {idle-time minutes password password [idle-time minutes] username name [password password [idle-time minutes]]} Example: switch(config) # radius-server test username user1 password Ur2Gd2BH idle-time 3</pre>	Specifies parameters for global server monitoring. The default username is test, and the default password is test. The default value for the idle timer is 0 minutes, and the valid range is from 0 to 1440 minutes. Note For periodic RADIUS server monitoring, the idle timer value must be greater than 0.
Step 3	radius-server deadtime minutes Example:	Specifies the number of minutes before the Cisco NX-OS device checks a RADIUS server that was previously unresponsive. The default

	Command or Action	Purpose
	<pre>switch(config)# radius-server deadtime 5</pre>	value is 0 minutes, and the valid range is from 0 to 1440 minutes.
Step 4	exit	Exits configuration mode.
	<pre>Example: switch(config)# exit switch#</pre>	
Step 5	(Optional) show radius-server Example: switch# show radius-server	Displays the RADIUS server configuration.
Step 6	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring Periodic RADIUS Server Monitoring on Individual Servers, on page 58

Configuring Periodic RADIUS Server Monitoring on Individual Servers

You can monitor the availability of individual RADIUS servers. The configuration parameters include the username and password to use for the server and an idle timer. The idle timer specifies the interval during which a RADIUS server receives no requests before the Cisco NX-OS device sends out a test packet. You can configure this option to test servers periodically, or you can run a one-time only test.

Note

Test parameters that are configured for individual servers take precedence over global test parameters.

Note

For security reasons, we recommend that you do not configure a test username that is the same as an existing user in the RADIUS database.

Note

The default idle timer value is 0 minutes. When the idle time interval is 0 minutes, the Cisco NX-OS device does not perform periodic RADIUS server monitoring.

Before you begin

Enable RADIUS.

Add one or more RADIUS server hosts.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	radius-server host {ipv4-address ipv6-address hostname} test {idle-time minutes password password [idle-time minutes] username name [password password [idle-time minutes]]}	Specifies parameters for individual server monitoring. The default username is test, and the default password is test. The default value for the idle timer is 0 minutes, and the valid range is from 0 to 1440 minutes.
	Example: switch(config) # radius-server host 10.10.1.1 test username user1 password Ur2Gd2BH idle-time 3	Note For periodic RADIUS server monitoring, you must set the idle timer to a value greater than 0.
Step 3	<pre>radius-server deadtime minutes Example: switch(config) # radius-server deadtime 5</pre>	Specifies the number of minutes before the Cisco NX-OS device checks a RADIUS server that was previously unresponsive. The default value is 0 minutes, and the valid range is from 1 to 1440 minutes.
Step 4	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 5	(Optional) show radius-server	Displays the RADIUS server configuration.
	Example:	
	switch# show radius-server	
Step 6	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch# copy running-config startup-config</pre>	

Related Topics

Configuring RADIUS Server Hosts, on page 46 Configuring Global Periodic RADIUS Server Monitoring, on page 57

Configuring the RADIUS Dead-Time Interval

You can configure the dead-time interval for all RADIUS servers. The dead-time interval specifies the time that the Cisco NX-OS device waits after declaring a RADIUS server is dead, before sending out a test packet to determine if the server is now alive. The default value is 0 minutes.

Note

When the dead-time interval is 0 minutes, RADIUS servers are not marked as dead even if they are not responding. You can configure the dead-time interval for a RADIUS server group.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	radius-server deadtime minutes	Configures the dead-time interval. The default
	Example:	value is 0 minutes. The range is from 1 to 1440
	<pre>switch(config) # radius-server deadtime 5</pre>	minutes.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show radius-server	Displays the RADIUS server configuration.
	Example:	
	switch# show radius-server	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	switch# copy running-config startup-config	

Related Topics

Configuring RADIUS Server Groups, on page 50

Configuring One-Time Passwords

One-time password (OTP) support is available for Cisco NX-OS devices through the use of RSA SecurID token servers. With this feature, users authenticate to a Cisco NX-OS device by entering both a personal identification number (or one-time password) and the token code being displayed at that moment on their RSA SecurID token.

Note

The token code used for logging into the Cisco NX-OS device changes every 60 seconds. To prevent problems with device discovery, we recommend using different usernames that are present on the Cisco Secure ACS internal database.

Before you begin

On the Cisco NX-OS device, configure a RADIUS server host and remote default login authentication. Ensure that the following are installed:

- Cisco Secure Access Control Server (ACS) version 4.2
- RSA Authentication Manager version 7.1 (the RSA SecurID token server)
- RSA ACE Agent/Client

No configuration (other than a RADIUS server host and remote authentication) is required on the Cisco NX-OS device to support one-time passwords. However, you must configure the Cisco Secure ACS as follows:

- 1. Enable RSA SecurID token server authentication.
- 2. Add the RSA SecurID token server to the Unknown User Policy database.

Manually Monitoring RADIUS Servers or Groups

You can manually issue a test message to a RADIUS server or to a server group.

Procedure

	Command or Action	Purpose
Step 1	test aaa server radius {ipv4-address ipv6-address hostname} [vrf vrf-name] username password	Sends a test message to a RADIUS server to confirm availability.
	Example:	
	switch# test aaa server radius 10.10.1.1 user1 Ur2Gd2BH	
Step 2	test aaa group group-name username password	Sends a test message to a RADIUS server group
	Example:	to confirm availability.
	switch# test aaa group RadGroup user2 As3He3CI	

Verifying the RADIUS Configuration

To display RADIUS configuration information, perform one of the following tasks:

Command	Purpose
show radius {status pending pending-diff}	Displays the RADIUS Cisco Fabric Services distribution status and other details.
show running-config radius [all]	Displays the RADIUS configuration in the running configuration.

Command	Purpose
show startup-config radius	Displays the RADIUS configuration in the startup configuration.
show radius-server [hostname ipv4-address ipv6-address] [directed-request groups sorted statistics]	Displays all configured RADIUS server parameters.

Monitoring RADIUS Servers

You can monitor the statistics that the Cisco NX-OS device maintains for RADIUS server activity.

Before you begin

Configure one or more RADIUS server hosts.

Procedure

	Command or Action	Purpose
Step 1	show radius-server statistics {hostname ipv4-address ipv6-address}	Displays the RADIUS statistics.
	Example:	
	switch# show radius-server statistics 10.10.1.1	

Related Topics

Configuring RADIUS Server Hosts, on page 46 Clearing RADIUS Server Statistics, on page 62

Clearing RADIUS Server Statistics

You can display the statistics that the Cisco NX-OS device maintains for RADIUS server activity.

Before you begin

Configure RADIUS servers on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	(Optional) show radius-server statistics {hostname ipv4-address ipv6-address}	Displays the RADIUS server statistics on the Cisco NX-OS device.
	Example:	
	switch# show radius-server statistics 10.10.1.1	

	Command or Action	Purpose
Step 2	clear radius-server statistics {hostname ipv4-address ipv6-address}	Clears the RADIUS server statistics.
	Example:	
	switch# clear radius-server statistics 10.10.1.1	

Configuring RADIUS Server Hosts, on page 46

Configuration Example for RADIUS

The following example shows how to configure RADIUS:

```
radius-server key 7 "ToIkLhPpG"
radius-server host 10.10.1.1 key 7 "ShMoMhTl" authentication accounting
aaa group server radius RadServer
    server 10.10.1.1
```

Where to Go Next

You can now configure AAA authentication methods to include the server groups.

Additional References for RADIUS

This section describes additional information related to implementing RADIUS.

Related Documents

Related Topic	Document Title
Cisco NX-OS Licensing	Cisco NX-OS Licensing Guide
VRF configuration	Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	_

MIBs

MIBs	MIBs Link	
MIBs related to RADIUS	To locate and download supported MIBs, go to the following URL:	
	ftp://ftp.cisco.com/pub/mibs/supportlists/nexus9000/ Nexus9000MIBSupportList.html	

Configuring TACACS+

This chapter describes how to configure the Terminal Access Controller Access Control System Plus (TACACS+) protocol on Cisco NX-OS devices.

This chapter includes the following sections:

- About TACACS+, on page 65
- Licensing Requirements for TACACS+, on page 69
- Prerequisites for TACACS+, on page 69
- Guidelines and Limitations for TACACS+, on page 69
- Default Settings for TACACS+, on page 70
- Configuring TACACS+, on page 70
- Monitoring TACACS+ Servers, on page 94
- Clearing TACACS+ Server Statistics, on page 95
- Verifying the TACACS+ Configuration, on page 95
- Configuration Examples for TACACS+, on page 96
- Where to Go Next, on page 98
- Additional References for TACACS+, on page 98

About TACACS+

The TACACS+ security protocol provides centralized validation of users attempting to gain access to a Cisco NX-OS device. TACACS+ services are maintained in a database on a TACACS+ daemon running, typically, on a UNIX or Windows NT workstation. You must have access to and must configure a TACACS+ server before the configured TACACS+ features on your Cisco NX-OS device are available.

TACACS+ provides for separate authentication, authorization, and accounting facilities. TACACS+ allows for a single access control server (the TACACS+ daemon) to provide each service—authentication, authorization, and accounting—independently. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.

The TACACS+ client/server protocol uses TCP (TCP port 49) for transport requirements. Cisco NX-OS devices provide centralized authentication using the TACACS+ protocol.

TACACS+ Advantages

TACACS+ has the following advantages over RADIUS authentication:

- Provides independent AAA facilities. For example, the Cisco NX-OS device can authorize access without authenticating.
- Uses the TCP transport protocol to send data between the AAA client and server, making reliable transfers
 with a connection-oriented protocol.
- Encrypts the entire protocol payload between the switch and the AAA server to ensure higher data confidentiality. The RADIUS protocol only encrypts passwords.

TACACS+ Operation for User Login

When a user attempts a Password Authentication Protocol (PAP) login to a Cisco NX-OS device using TACACS+, the following actions occur:

Note

TACACS+ allows an arbitrary conversation between the daemon and the user until the daemon receives enough information to authenticate the user. This action is usually done by prompting for a username and password combination, but may include prompts for other items, such as your mother's maiden name.

- 1. When the Cisco NX-OS device establishes a connection, it contacts the TACACS+ daemon to obtain the username and password.
- The Cisco NX-OS device will eventually receive one of the following responses from the TACACS+ daemon:

ACCEPT

User authentication succeeds and service begins. If the Cisco NX-OS device requires user authorization, authorization begins.

REJECT

User authentication failed. The TACACS+ daemon either denies further access to the user or prompts the user to retry the login sequence.

ERROR

An error occurred at some time during authentication either at the daemon or in the network connection between the daemon and the Cisco NX-OS device. If the Cisco NX-OS device receives an ERROR response, the Cisco NX-OS device tries to use an alternative method for authenticating the user.

After authentication, the user also undergoes an additional authorization phase if authorization has been enabled on the Cisco NX-OS device. Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

3. If TACACS+ authorization is required, the Cisco NX-OS device again contacts the TACACS+ daemon and it returns an ACCEPT or REJECT authorization response. An ACCEPT response contains attributes that are used to direct the EXEC or NETWORK session for that user and determines the services that the user can access.

Services include the following:

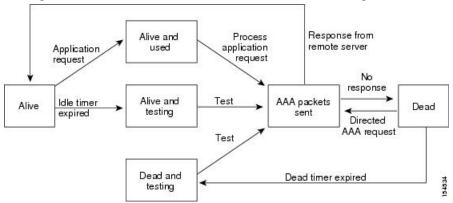
- Telnet, rlogin, Point-to-Point Protocol (PPP), Serial Line Internet Protocol (SLIP), or EXEC services
- Connection parameters, including the host or client IP address (IPv4 or IPv6), access list, and user timeouts

Default TACACS+ Server Encryption Type and Secret Key

You must configure the TACACS+ secret key to authenticate the switch to the TACACS+ server. A secret key is a secret text string shared between the Cisco NX-OS device and the TACACS+ server host. The length of the key is restricted to 63 characters and can include any printable ASCII characters (white spaces are not allowed). You can configure a global secret key for all TACACS+ server configurations on the Cisco NX-OS device to use.

You can override the global secret key assignment by explicitly using the **key** option when configuring an individual TACACS+ server.

Command Authorization Support for TACACS+ Servers


By default, command authorization is done against a local database in the Cisco NX-OS software when an authenticated user enters a command at the command-line interface (CLI). You can also verify authorized commands for authenticated users using TACACS+.

TACACS+ Server Monitoring

An unresponsive TACACS+ server can delay the processing of AAA requests. A Cisco NX-OS device can periodically monitor a TACACS+ server to check whether it is responding (or alive) to save time in processing AAA requests. The Cisco NX-OS device marks unresponsive TACACS+ servers as dead and does not send AAA requests to any dead TACACS+ servers. A Cisco NX-OS device periodically monitors dead TACACS+ servers and brings them to the alive state once they are responding. This process verifies that a TACACS+ server is in a working state before real AAA requests are sent its way. Whenever a TACACS+ server changes to the dead or alive state, a Simple Network Management Protocol (SNMP) trap is generated and the Cisco NX-OS device displays an error message that a failure is taking place before it can impact performance.

Figure 3: TACACS+ Server States

This figure shows the server states for TACACS+ server monitoring.

Note

The monitoring interval for alive servers and dead servers are different and can be configured by the user. The TACACS+ server monitoring is performed by sending a test authentication request to the TACACS+ server.

Vendor-Specific Attributes for TACACS+

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific attributes (VSAs) between the network access server and the TACACS+ server. The IETF uses attribute 26. VSAs allow vendors to support their own extended attributes that are not suitable for general use.

Cisco VSA Format for TACACS+

The Cisco TACACS+ implementation supports one vendor-specific option using the format recommended in the IETF specification. The Cisco vendor ID is 9, and the supported option is vendor type 1, which is named cisco-av-pair. The value is a string with the following format:

```
protocol : attribute separator value *
```

The protocol is a Cisco attribute for a particular type of authorization, the separator is = (equal sign) for mandatory attributes, and * (asterisk) indicates optional attributes.

When you use TACACS+ servers for authentication on a Cisco NX-OS device, the TACACS+ protocol directs the TACACS+ server to return user attributes, such as authorization information, along with authentication results. This authorization information is specified through VSAs.

The following VSA protocol options are supported by the Cisco NX-OS software:

Shell

Protocol used in access-accept packets to provide user profile information.

Accounting

Protocol used in accounting-request packets. If a value contains any white spaces, you should enclose the value within double quotation marks.

The Cisco NX-OS software supports the following attributes:

roles

Lists all the roles to which the user belongs. The value field is a string that lists the role names delimited by white space. For example, if the user belongs to roles network-operator and network-admin, the value field would be network-operator network-admin. This subattribute, which the TACACS+ server sends in the VSA portion of the Access-Accept frames, can only be used with the shell protocol value. The following examples show the roles attribute as supported by Cisco ACS:

```
shell:roles=network-operator network-admin
shell:roles*network-operator network-admin
```


Note

When you specify a VSA as shell:roles*"network-operator network-admin", this VSA is flagged as an optional attribute and other Cisco devices ignore this attribute.

accountinginfo

Stores accounting information in addition to the attributes covered by a standard TACACS+ accounting protocol. This attribute is sent only in the VSA portion of the Account-Request frames from the TACACS+ client on the switch. It can be used only with the accounting protocol data units (PDUs).

Licensing Requirements for TACACS+

The following table shows the licensing requirements for this feature:

Product	License Requirement	
Cisco NX-OS	TACACS+ requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.	

Prerequisites for TACACS+

TACACS+ has the following prerequisites:

- Obtain the IPv4 or IPv6 addresses or hostnames for the TACACS+ servers.
- Obtain the secret keys from the TACACS+ servers, if any.
- Ensure that the Cisco NX-OS device is configured as a TACACS+ client of the AAA servers.

Guidelines and Limitations for TACACS+

TACACS+ has the following guidelines and limitations:

- You can configure a maximum of 64 TACACS+ servers on the Cisco NX-OS device.
- If you have a user account configured on the local Cisco NX-OS device that has the same name as a remote user account on an AAA server, the Cisco NX-OS software applies the user roles for the local user account to the remote user, not the user roles configured on the AAA server.
- Cisco recommends that you configure the dead-time interval if more than six servers are configured in a group. If you must configure more than six servers, make sure to set the dead-time interval to a value greater than 0 and enable dead server monitoring by configuring the test username and test password.
- Command authorization on TACACS+ servers is available only for non-console sessions. If you use a console to login to the server, command authorization is disabled.
- For N9K-X9636C-R and N9K-X9636Q-R line cards and the N9K-C9508-FM-R fabric module, TACACS+ authentication fails for usernames with special characters.
- Disable TACACS when FIPS mode is on. This is enforced due to OpenSSL in FIPS mode.

Default Settings for TACACS+

This table lists the default settings for TACACS+ parameters.

Table 8: Default TACACS+ Parameters Settings

Parameters	Default
TACACS+	Disabled
Dead timer interval	0 minutes
Timeout interval	5 seconds
Idle timer interval	0 minutes
Periodic server monitoring username	test
Periodic server monitoring password	test
Privilege level support for TACACS+ authorization	Disabled

Configuring TACACS+

This section describes how to configure TACACS+ on a Cisco NX-OS device.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

TACACS+ Server Configuration Process

- **Step 1** Enable TACACS+.
- **Step 2** Establish the TACACS+ server connections to the Cisco NX-OS device.
- **Step 3** Configure the secret keys for the TACACS+ servers.
- **Step 4** If needed, configure TACACS+ server groups with subsets of the TACACS+ servers for AAA authentication methods.
- **Step 5** (Optional) Configure the TCP port.
- **Step 6** (Optional) If needed, configure periodic TACACS+ server monitoring.

Step 7 (Optional) If TACACS+ distribution is enabled, commit the TACACS+ configuration to the fabric.

Related Topics

Enabling TACACS+, on page 71

Enabling TACACS+

By default, the TACACS+ feature is disabled on the Cisco NX-OS device. You must explicitly enable the TACACS+ feature to access the configuration and verification commands for authentication.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	feature tacacs+	Enables TACACS+.
	Example:	
	switch(config)# feature tacacs+	
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config) # exit switch#</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch# copy running-config startup-config</pre>	

Configuring TACACS+ Server Hosts

To access a remote TACACS+ server, you must configure the IP address or the hostname for the TACACS+ server on the Cisco NX-OS device. You can configure up to 64 TACACS+ servers.

Note

By default, when you configure a TACACS+ server IP address or hostname on the Cisco NX-OS device, the TACACS+ server is added to the default TACACS+ server group. You can also add the TACACS+ server to another TACACS+ server group.

Before you begin

Enable TACACS+.

Obtain the IPv4 or IPv6 addresses or the hostnames for the remote TACACS+ servers.

Procedure

Command or Action	Purpose
configure terminal	Enters global configuration mode.
Example:	
<pre>switch# configure terminal switch(config)#</pre>	
tacacs-server host {ipv4-address ipv6-address hostname}	Specifies the IPv4 or IPv6 address or hostname for a TACACS+ server.
Example:	
<pre>switch(config)# tacacs-server host 10.10.2.2</pre>	
(Optional) show tacacs+ {pending pending-diff}	Displays the TACACS+ configuration pending for distribution.
Example:	
switch(config)# show tacacs+ pending	
(Optional) tacacs+ commit	Applies the TACACS+ configuration changes
Example:	in the temporary database to the running configuration.
switch(config)# tacacs+ commit	configuration.
exit	Exits configuration mode.
Example:	
<pre>switch(config)# exit switch#</pre>	
(Optional) show tacacs-server	Displays the TACACS+ server configuration.
Example:	
switch# show tacacs-server	
(Optional) copy running-config startup-config	
Example:	configuration.
switch# copy running-config startup-config	
	configure terminal Example: switch# configure terminal switch (config)# tacacs-server host {ipv4-address ipv6-address hostname} Example: switch (config)# tacacs-server host 10.10.2.2 (Optional) show tacacs+ {pending pending-diff} Example: switch (config)# show tacacs+ pending (Optional) tacacs+ commit Example: switch (config)# tacacs+ commit exit Example: switch (config)# exit switch# (Optional) show tacacs-server Example: switch# show tacacs-server (Optional) copy running-config startup-config Example: switch# copy running-config

Related Topics

Enabling TACACS+, on page 71 Configuring TACACS+ Server Groups, on page 75

Configuring Global TACACS+ Keys

You can configure secret TACACS+ keys at the global level for all servers used by the Cisco NX-OS device. A secret key is a shared secret text string between the Cisco NX-OS device and the TACACS+ server hosts.

Before you begin

Enable TACACS+.

Obtain the secret key values for the remote TACACS+ servers.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	tacacs-server key [0 6 7] key-value	Specifies a TACACS+ key for all TACACS+	
	Example:	server. You can specify that the <i>key-value</i> is in clear text format (0), is type-6 encrypted (6), or is type-7 encrypted (7). The Cisco NX-OS software encrypts a clear text key before saving	
	<pre>switch(config)# tacacs-server key 0 QsEfThUkO</pre>		
	Example:	it to the running configuration. The default	
	<pre>switch(config)# tacacs-server key 7 "fewhg"</pre>	format is clear text. The maximum length is 63 characters.	
		By default, no secret key is configured.	
		Note If you already configured a shared secret using the generate type7_encrypted_secret command, enter it in quotation marks, as shown in the second example. For more information, see Configuring the Shared Secret for RADIUS or TACACS+, on page 36.	
Step 3	exit	Exits configuration mode.	
	Example:		
	<pre>switch(config)# exit switch#</pre>		
Step 4	(Optional) show tacacs-server	Displays the TACACS+ server configuration.	
	Example:	Note The secret keys are saved in encrypted	
	switch# show tacacs-server	form in the running configuration. Use the show running-config command to display the encrypted secret keys.	
Step 5	(Optional) copy running-config startup-config		
	Example:	configuration.	
	<pre>switch# copy running-config startup-config</pre>		

Enabling TACACS+, on page 71

Configuring a Key for a Specific TACACS+ Server

You can configure secret keys for a TACACS+ server. A secret key is a shared secret text string between the Cisco NX-OS device and the TACACS+ server host.

Before you begin

Enable TACACS+.

Obtain the secret key values for the remote TACACS+ servers.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	tacacs-server host {ipv4-address ipv6-address host-name} key [0 6 7] key-value	server. You can specify that the <i>key-value</i> is in clear text format (0), is type-6 encrypted (6), o is type-7 encrypted (7). The Cisco NX-OS software encrypts a clear text key before saving it to the running configuration. The default format is clear text. The maximum length is 60
	Example:	
	<pre>switch(config)# tacacs-server host 10.10.1.1 key 0 PlIjUhYg</pre>	
	Example:	
	<pre>switch(config)# tacacs-server host 10.10.1.1 key 7 "fewhg"</pre>	characters.
		This secret key is used instead of the global secret key.
		Note If you already configured a shared secret using the generate type7_encrypted_secret command, enter it in quotation marks, as shown in the second example. For more information, see Configuring the Shared Secret for RADIUS or TACACS+, on page 36.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show tacacs-server	Displays the TACACS+ server configuration.
	Example:	

	Command or Action	Purpose
	switch# show tacacs-server	Note The secret keys are saved in encrypted form in the running configuration. Use the show running-config command to display the encrypted secret keys.
Step 5	(Optional) copy running-config startup-config	1 2 2 1
	Example:	configuration.
	switch# copy running-config startup-config	

Configuring TACACS+ Server Groups

You can specify one or more remote AAA servers to authenticate users using server groups. All members of a group must belong to the TACACS+ protocol. The servers are tried in the same order in which you configure them.

You can configure these server groups at any time but they only take effect when you apply them to an AAA service.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa group server tacacs+ group-name	Creates a TACACS+ server group and enters the TACACS+ server group configuration mode
	Example:	for that group.
	<pre>switch(config)# aaa group server tacacs+ TacServer switch(config-tacacs+)#</pre>	
Step 3	server {ipv4-address ipv6-address hostname}	Configures the TACACS+ server as a member
	Example:	of the TACACS+ server group.
	<pre>switch(config-tacacs+)# server 10.10.2.2</pre>	If the specified TACACS+ server is not found, configure it using the tacacs-server host command and retry this command.
Step 4	exit	Exits TACACS+ server group configuration
	Example:	mode.
	<pre>switch(config-tacacs+)# exit switch(config)#</pre>	

	Command or Action	Purpose
Step 5	(Optional) show tacacs-server groups	Displays the TACACS+ server group
	Example:	configuration.
	switch(config)# show tacacs-server groups	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling TACACS+, on page 71
Remote AAA Services, on page 14
Configuring TACACS+ Server Hosts, on page 71
Configuring the TACACS+ Dead-Time Interval, on page 83

Configuring the Global Source Interface for TACACS+ Server Groups

You can configure a global source interface for TACACS+ server groups to use when accessing TACACS+ servers. You can also configure a different source interface for a specific TACACS+ server group. By default, the Cisco NX-OS software uses any available interface.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)</pre>	
Step 2	ip tacacs source-interface interface	Configures the global source interface for all
	Example:	TACACS+ server groups configured on the device.
	switch(config)# ip tacacs	device.
	source-interface mgmt 0	
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show tacacs-server	Displays the TACACS+ server configuration
	Example:	information.
	switch# show tacacs-server	

	Command or Action	Purpose
Step 5	(Optional) copy running-config startup config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch# copy running-config startup-config</pre>	

Enabling TACACS+, on page 71 Configuring TACACS+ Server Groups, on page 75

Allowing Users to Specify a TACACS+ Server at Login

You can configure the switch to allow the user to specify which TACACS+ server to send the authentication request by enabling the directed-request option. By default, a Cisco NX-OS device forwards an authentication request based on the default AAA authentication method. If you enable this option, the user can log in as <code>username@vrfname:hostname</code>, where <code>vrfname</code> is the VRF to use and <code>hostname</code> is the name of a configured TACACS+ server.

Note

If you enable the directed-request option, the Cisco NX-OS device uses only the TACACS+ method for authentication and not the default local method.

Note

User-specified logins are supported only for Telnet sessions.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	tacacs-server directed-request	Allows users to specify a TACACS+ server to
	Example:	send the authentication request when logging in The default is disabled
	<pre>switch(config)# tacacs-server directed-request</pre>	iii. The detault is disubled.
Step 3	(Optional) show tacacs+ {pending pending-diff}	Displays the pending TACACS+ configuration.

	Command or Action	Purpose
	Example:	
	<pre>switch(config)# show tacacs+ pending</pre>	
Step 4	(Optional) tacacs+ commit	Applies the TACACS+ configuration changes in the temporary database to the running configuration.
	Example:	
	<pre>switch(config)# tacacs+ commit</pre>	configuration.
Step 5	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 6	(Optional) show tacacs-server	Displays the TACACS+ directed request
	directed-request	configuration.
	Example:	
	switch# show tacacs-server directed-request	
Step 7	(Optional) copy running-config startup-config	
	Example:	configuration.
	switch# copy running-config startup-config	

Enabling TACACS+, on page 71

Configuring the Timeout Interval for a TACACS+ Server

You can set a timeout interval that the Cisco NX-OS device waits for responses from a TACACS+ server before declaring a timeout failure. The timeout interval determines how long the Cisco NX-OS device waits for responses from a TACACS+ server before declaring a timeout failure.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	tacacs-server host {ipv4-address ipv6-address hostname} timeout seconds	Specifies the timeout interval for a specific server. The default is the global value.

	Command or Action	Purpose
	Example: switch(config)# tacacs-server host server1 timeout 10	Note The timeout interval value specified for a TACACS+ server overrides the global timeout interval value specified for all TACACS+ servers.
Step 3	(Optional) show tacacs+ {pending pending-diff}	Displays the TACACS+ configuration pending for distribution.
	<pre>Example: switch(config)# show tacacs+ pending</pre>	
Step 4	(Optional) tacacs+ commit Example: switch(config)# tacacs+ commit	Applies the TACACS+ configuration changes in the temporary database to the running configuration.
Step 5	exit Example: switch(config)# exit switch#	Exits configuration mode.
Step 6	(Optional) show tacacs-server Example: switch# show tacacs-server	Displays the TACACS+ server configuration.
Step 7	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Enabling TACACS+ , on page 71

Configuring TCP Ports

You can configure another TCP port for the TACACS+ servers if there are conflicts with another application. By default, Cisco NX-OS devices use port 49 for all TACACS+ requests.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>tacacs-server host {ipv4-address ipv6-address hostname} port tcp-port Example: switch(config) # tacacs-server host 10.10.1.1 port 2</pre>	Specifies the TCP port to use for TACACS+ messages to the server. The default TCP port is 49. The range is from 1 to 65535.
Step 3	(Optional) show tacacs+ {pending pending-diff}	Displays the TACACS+ configuration pending for distribution.
	<pre>Example: switch(config) # show tacacs+ distribution pending</pre>	
Step 4	(Optional) tacacs+ commit	Applies the TACACS+ configuration changes in the temporary database to the running
Example: switch(config)# tacacs+ commit	•	configuration.
Step 5	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 6	(Optional) show tacacs-server	Displays the TACACS+ server configuration.
	Example:	
	switch# show tacacs-server	
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch# copy running-config startup-config</pre>	

Enabling TACACS+, on page 71

Configuring Global Periodic TACACS+ Server Monitoring

You can monitor the availability of all TACACS+ servers without having to configure the test parameters for each server individually. Any servers for which test parameters are not configured are monitored using the global level parameters.

Note

Test parameters that are configured for individual servers take precedence over global test parameters.

The global configuration parameters include the username and password to use for the servers and an idle timer. The idle timer specifies the interval in which a TACACS+ server receives no requests before the Cisco NX-OS device sends out a test packet. You can configure this option to test servers periodically, or you can run a one-time only test.

Note

The test parameters are distributed across switches. If even one switch in the fabric is running an older release, the test parameters are not distributed to any switch in the fabric.

Note

To protect network security, we recommend that you use a username that is not the same as an existing username in the TACACS+ database.

Note

The default idle timer value is 0 minutes. When the idle time interval is 0 minutes, periodic TACACS+ server monitoring is not performed.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	tacacs-server test {idle-time minutes password password [idle-time minutes] username name [password password [idle-time minutes]]} Example: switch(config) # tacacs-server test username user1 password Ur2Gd2BH idle-time 3	Specifies parameters for global server monitoring. The default username is test, and the default password is test. The default value for the idle timer is 0 minutes, and the valid range is from 0 to 1440 minutes. Note For periodic TACACS+ server monitoring, the idle timer value must be greater than 0.
Step 3	<pre>tacacs-server dead-time minutes Example: switch(config) # tacacs-server dead-time 5</pre>	Specifies the number of minutes before the Cisco NX-OS device checks a TACACS+ server that was previously unresponsive. The default value is 0 minutes, and the valid range is from 0 to 1440 minutes.
Step 4	exit	Exits configuration mode.
	Example:	

	Command or Action	Purpose
	<pre>switch(config)# exit switch#</pre>	
Step 5	(Optional) show tacacs-server	Displays the TACACS+ server configuration.
	Example:	
	switch# show tacacs-server	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch# copy running-config startup-config</pre>	

Configuring Periodic TACACS+ Server Monitoring on Individual Servers, on page 82

Configuring Periodic TACACS+ Server Monitoring on Individual Servers

You can monitor the availability of individual TACACS+ servers. The configuration parameters include the username and password to use for the server and an idle timer. The idle timer specifies the interval in which a TACACS+ server receives no requests before the Cisco NX-OS device sends out a test packet. You can configure this option to test servers periodically, or you can run a one-time only test.

Note

Test parameters that are configured for individual servers take precedence over global test parameters.

Note

To protect network security, we recommend that you use a username that is not the same as an existing username in the TACACS+ database.

Note

The default idle timer value is 0 minutes. When the idle time interval is 0 minutes, periodic TACACS+ server monitoring is not performed.

Note

The test parameters are distributed across switches. The test parameters are not distributed to any switch in the fabric.

Before you begin

Enable TACACS+.

Add one or more TACACS+ server hosts.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	tacacs-server host {ipv4-address ipv6-address hostname} test {idle-time minutes password password [idle-time minutes] username name [password password [idle-time minutes]]}	Specifies parameters for individual server monitoring. The default username is test, and the default password is test. The default value for the idle timer is 0 minutes, and the valid range is from 0 to 1440 minutes.
	Example: switch(config) # tacacs-server host 10.10.1.1 test username user1 password Ur2Gd2BH idle-time 3	Note For periodic TACACS+ server monitoring, the idle timer value must be greater than 0.
Step 3	<pre>tacacs-server dead-time minutes Example: switch(config) # tacacs-server dead-time 5</pre>	Specifies the number of minutes before the Cisco NX-OS device checks a TACACS+ server that was previously unresponsive. The default value is 0 minutes, and the valid range is from 0 to 1440 minutes.
Step 4	exit	Exits configuration mode.
	Example:	
	switch(config)# exit switch#	
Step 5	(Optional) show tacacs-server	Displays the TACACS+ server configuration.
	Example:	
	switch# show tacacs-server	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Related Topics

Configuring TACACS+ Server Hosts, on page 71 Configuring Global Periodic TACACS+ Server Monitoring, on page 80

Configuring the TACACS+ Dead-Time Interval

You can configure the dead-time interval for all TACACS+ servers. The dead-time interval specifies the time that the Cisco NX-OS device waits, after declaring a TACACS+ server is dead, before sending out a test packet to determine if the server is now alive.

Note

When the dead-timer interval is 0 minutes, TACACS+ servers are not marked as dead even if they are not responding. You can configure the dead-timer per group.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	tacacs-server deadtime minutes	Configures the global dead-time interval. The
	Example:	default value is 0 minutes. The range is from 1 to 1440 minutes.
	<pre>switch(config)# tacacs-server deadtime 5</pre>	to 1440 minutes.
Step 3	(Optional) show tacacs+ {pending pending-diff}	Displays the pending TACACS+ configuration.
	Example:	
	switch(config)# show tacacs+ pending	
Step 4	(Optional) tacacs+ commit	Applies the TACACS+ configuration changes in the temporary database to the running configuration.
	Example:	
	switch(config)# tacacs+ commit	
Step 5	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 6	(Optional) show tacacs-server	Displays the TACACS+ server configuration.
	Example:	
	switch# show tacacs-server	
Step 7	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch# copy running-config startup-config</pre>	

Configuring ASCII Authentication

You can enable ASCII authentication on the TACACS+ server.

Before you begin

Enable TACACS+.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	aaa authentication login ascii-authentication		
	Example:	disabled.	
	<pre>switch(config) # aaa authentication login ascii-authentication</pre>		
Step 3	(Optional) show tacacs+ {pending pending-diff}	Displays the pending TACACS+ configuration.	
	Example:		
	switch(config)# show tacacs+ pending		
Step 4	(Optional) tacacs+ commit	Applies the TACACS+ configuration changes	
	Example:	in the temporary database to the running configuration.	
	switch(config)# tacacs+ commit		
Step 5	exit	Exits configuration mode.	
	Example:		
	<pre>switch(config)# exit switch#</pre>		
Step 6	(Optional) show tacacs-server	Displays the TACACS+ server configuration.	
	Example:		
	switch# show tacacs-server		
Step 7	(Optional) copy running-config startup-config		
	Example:	configuration.	
	switch# copy running-config startup-config		

Configuring AAA Authorization on LDAP Servers

You can configure the default AAA authorization method for LDAP servers.

Before you begin

Enable LDAP.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa authorization ssh-certificate default {group group-list [none] local none}	Configures the default AAA authorization method for the LDAP servers.
	Example: switch(config) # aaa authorization ssh-certificate default group ldap1 ldap2	The ssh-certificate keyword configures LDAP or local authorization with certificate authentication. The default authorization is local authorization, which is the list of authorized commands for the user's assigned role.
		The <i>group-list</i> argument consists of a space-delimited list of LDAP server group names. Servers belonging to this group are contacted for AAA authorization. The local method uses the local database for authorization, and the none method specifies that no AAA authorization be used.
Step 3	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show aaa authorization [all]	Displays the AAA authorization configuration.
	Example:	The all keyword displays the default values.
	switch# show aaa authorization	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	switch# copy running-config startup-config	

Related Topics

Enabling TACACS+, on page 71

Configuring Command Authorization on TACACS+ Servers

You can configure authorization for commands on TACACS+ servers.

Caution

Command authorization disables user role-based authorization control (RBAC), including the default roles.

Note

If you use a console to login to the server, command authorization is disabled. Authorization is available for both non-console and console sessions. By default, command authorization is disabled for console sessions even if it is configured for default (non-console) sessions. You must explicitly configure a AAA group for the console to enable command authorization for console sessions.

Note

By default, context sensitive help and command tab completion show only the commands supported for a user as defined by the assigned roles. When you enable command authorization, the Cisco NX-OS software displays all commands in the context sensitive help and in tab completion, regardless of the role assigned to the user.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa authorization {commands config-commands} {console default} {group group-list [local] local} Example: switch (config) # aaa authorization commands default group TacGroup Per command authorization will disable RBAC for all users. Proceed (y/n)?	Configures the command authorization method for specific roles on a TACACS+ server. The commands keyword configures authorization sources for all EXEC commands, and the config-commands keyword configures authorization sources for all configuration commands. The console keyword configures command authorization for a console session, and the default keyword configures command authorization for a non-console session. The <i>group-list</i> argument consists of a space-delimited list of TACACS+ server group names. Servers belonging to this group are contacted for command authorization. The local method uses the local role-based database for authorization.

	Command or Action	Purpose
		The local method is used only if all the configured server groups fail to respond and you have configured local as the fallback method. The default method is local .
		If you have not configured a fallback method after the TACACS+ server group method, authorization fails if all server groups fail to respond.
		If you press Enter at the confirmation prompt, the default action is n .
Step 3	(Optional) show tacacs+ {pending pending-diff}	Displays the pending TACACS+ configuration.
	Example:	
	switch(config)# show tacacs+ pending	
Step 4	(Optional) tacacs+ commit	Applies the TACACS+ configuration changes in the temporary database to the running
	Example:	
	switch(config)# tacacs+ commit	configuration.
Step 5	exit	Exits global configuration mode.
	Example:	
	switch(config)# exit switch#	
Step 6	(Optional) show aaa authorization [all]	Displays the AAA authorization configuration.
	Example:	The all keyword displays the default values.
	switch(config)# show aaa authorization	
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling TACACS+, on page 71

Testing Command Authorization on TACACS+ Servers, on page 88

Testing Command Authorization on TACACS+ Servers

You can test the command authorization for a user on the TACACS+ servers.

Note

You must send correct commands for authorization or else the results may not be reliable.

Note

The test command uses the default (non-console) method for authorization, not the console method.

Before you begin

Enable TACACS+.

Ensure that you have configured command authorization for the TACACS+ servers.

Procedure

Purpose
Tests a user's authorization for a command on the TACACS+ servers. The commands keyword specifies only EXEC commands and the config-commands keyword specifies only configuration commands. Note Put double quotes (") before and after the <i>command-string</i> argument if it contains spaces.

Related Topics

Enabling TACACS+, on page 71

Configuring Command Authorization on TACACS+ Servers, on page 86

Configuring User Accounts and RBAC, on page 145

Enabling and Disabling Command Authorization Verification

You can enable and disable command authorization verification on the command-line interface (CLI) for the default user session or for another username.

Note

The commands do no execute when you enable authorization verification.

	Command or Action	Purpose
Step 1	1	Enables command authorization verification.
	Example:	After you enter this command, the Cisco

	Command or Action	Purpose
	switch# terminal verify-only	NX-OS software indicates whether the commands you enter are authorized or not.
Step 2	terminal no verify-only [username username]	Disables command authorization verification.
	Example:	
	switch# terminal no verify-only	

Configuring Privilege Level Support for Authorization on TACACS+ Servers

You can configure privilege level support for authorization on TACACS+ servers.

Unlike Cisco IOS devices, which use privilege levels to determine authorization, Cisco NX-OS devices use role-based access control (RBAC). To enable both types of devices to be administered by the same TACACS+ servers, you can map the privilege levels configured on TACACS+ servers to user roles configured on Cisco NX-OS devices.

When a user authenticates with a TACACS+ server, the privilege level is obtained and used to form a local user role name of the format "priv-n," where n is the privilege level. The user assumes the permissions of this local role. Sixteen privilege levels, which map directly to corresponding user roles, are available. The following table shows the user role permissions that correspond to each privilege level.

Warning

Do not use the **enable secret** command. This command is not supported and is being deprecated. It will not be available in future releases. As an alternative, use RBAC rules, which provide more granular security control. For more information on RBAC, see "Configuring User Accounts and RBAC" in the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

Privilege Level	User Role Permissions
15	network-admin permissions
13 - 1	NX-OS role permissions, if the feature privilege command is disabled.
	 Same permissions as privilege level 0 with cumulative privileges for roles, if the feature privilege command is enabled.
0	Permission to execute show commands and exec commands (such as ping , trace , and ssh).

Important

Only the network administrator can escalate privileges to the root. As per the new security measures, a network operator (priv-1 user) is not allowed to collect show tech. Therefore, the enable command does not help to escalate the privileges.

Note

- When the **feature privilege** command is enabled, privilege roles inherit the permissions of lower level privilege roles.
- You must also configure the privilege level for the Cisco NX-OS device on the Cisco Secure Access Control Server (ACS).

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	<pre>[no] feature privilege Example: switch(config)# feature privilege</pre>	Enables or disables the cumulative privilege of roles. Users can see the enable command only if this feature is enabled. The default is disabled.
Step 3	<pre>[no] enable secret [0 5] password [priv-lvl priv-lvl all] Example: switch(config) # enable secret 5 def456 priv-lvl 15</pre>	Enables or disables a secret password for a specific privilege level. Users are prompted to enter the correct password upon each privilege level escalation. The default is disabled. You can enter 0 to specify that the password is in clear text or 5 to specify that the password is in encrypted format. The <i>password</i> argument can be up to 64 alphanumeric characters. The <i>priv-lvl</i> argument is from 1 to 15. Note To enable the secret password, you must have enabled the cumulative privilege of roles by entering the feature privilege command.
Step 4	<pre>[no] username username priv-lvl n Example: switch(config) # username user2 priv-lvl 15</pre>	Enables or disables a user to use privilege levels for authorization. The default is disabled. The priv-lvl keyword specifies the privilege level to which the user is assigned. There is no default privilege level. Privilege levels 0 to 15 (priv-lvl 0 to priv-lvl 15) map to user roles priv-0 to priv-15.
Step 5	(Optional) show privilege Example: switch(config) # show privilege	Displays the username, current privilege level, and status of cumulative privilege support.

	Command or Action	Purpose
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	
Step 7	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 8	enable level	Enables a user to move to a higher privilege
	Example:	level. This command prompts for the secret
	switch# enable 15	password. The <i>level</i> argument specifies the privilege level to which the user is granted access. The only available level is 15.

Permitting or Denying Commands for Users of Privilege Roles, on page 92 Creating User Roles and Rules, on page 152

Permitting or Denying Commands for Users of Privilege Roles

As a network administrator, you can modify the privilege roles to permit users to execute specific commands or to prevent users from running those commands.

You must follow these guidelines when changing the rules of privilege roles:

- You cannot modify the priv-14 and priv-15 roles.
- You can add deny rules only to the priv-0 role.
- These commands are always permitted for the priv-0 role: **configure**, **copy**, **dir**, **enable**, **ping**, **show**, **ssh**, **telnet**, **terminal**, **traceroute**, **end**, and **exit**.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] role name priv-n	Enables or disables a privilege role and enters
	Example:	role configuration mode. The <i>n</i> argument specifies the privilege level and is a number
	<pre>switch(config)# role name priv-5 switch(config-role)#</pre>	between 0 and 13.

	Command or Action	Purpose	
Step 3	<pre>rule number {deny permit} command command-string</pre>	Configures a command rule for users of privilege roles. These rules permit or deny users	
	Example:	to execute specific commands. You can configure up to 256 rules for each role. The rule	
	<pre>switch(config-role)# rule 2 permit command pwd</pre>	number determines the order in which the rules are applied. Rules are applied in descending order. For example, if a role has three rules, rule 3 is applied before rule 2, which is applied before rule 1.	
		The <i>command-string</i> argument can contain spaces.	
		Note Repeat this command for as many rules as needed.	
Step 4	exit	Exits role configuration mode.	
	Example:		
	<pre>switch(config-role)# exit switch(config)#</pre>		
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	<pre>switch(config)# copy running-config startup-config</pre>		

Configuring Privilege Level Support for Authorization on TACACS+ Servers, on page 90 Creating User Roles and Rules, on page 152

Manually Monitoring TACACS+ Servers or Groups

You can manually issue a test message to a TACACS+ server or to a server group.

Before you begin

Enable TACACS+.

	Command or Action	Purpose
•		Sends a test message to a TACACS+ server to confirm availability.
	Example:	
	switch# test aaa server tacacs+ 10.10.1.1 user1 Ur2Gd2BH	

	Command or Action	Purpose
Step 2	test aaa group group-name username password Example:	Sends a test message to a TACACS+ server group to confirm availability.
	switch# test aaa group TacGroup user2 As3He3CI	

Configuring TACACS+ Server Hosts, on page 71 Configuring TACACS+ Server Groups, on page 75

Disabling TACACS+

You can disable TACACS+.

Caution

When you disable TACACS+, all related configurations are automatically discarded.

Procedure

Command or Action	Purpose
configure terminal	Enters global configuration mode.
Example:	
<pre>switch# configure terminal switch(config)#</pre>	
no feature tacacs+	Disables TACACS+.
Example:	
switch(config)# no feature tacacs+	
exit	Exits configuration mode.
Example:	
<pre>switch(config)# exit switch#</pre>	
(Optional) copy running-config startup-config	Copies the running configuration to the startup
Example:	configuration.
switch# copy running-config startup-config	
	configure terminal Example: switch# configure terminal switch(config)# no feature tacacs+ Example: switch(config)# no feature tacacs+ exit Example: switch(config)# exit switch# (Optional) copy running-config startup-config Example: switch# copy running-config

Monitoring TACACS+ Servers

You can monitor the statistics that the Cisco NX-OS device maintains for TACACS+ server activity.

Before you begin

Configure TACACS+ servers on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose	
Step 1	show tacacs-server statistics {hostname ipv4-address ipv6-address}	Displays the TACACS+ statistics.	
	Example:		
	switch# show tacacs-server statistics 10.10.1.1		

Related Topics

Configuring TACACS+ Server Hosts, on page 71 Clearing TACACS+ Server Statistics, on page 95

Clearing TACACS+ Server Statistics

You can display the statistics that the Cisco NX-OS device maintains for TACACS+ server activity.

Before you begin

Configure TACACS+ servers on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	(Optional) show tacacs-server statistics {hostname ipv4-address ipv6-address}	Displays the TACACS+ server statistics on the Cisco NX-OS device.
	Example:	
	<pre>switch# show tacacs-server statistics 10.10.1.1</pre>	
Step 2	clear tacacs-server statistics {hostname ipv4-address ipv6-address}	Clears the TACACS+ server statistics.
	Example:	
	<pre>switch# clear tacacs-server statistics 10.10.1.1</pre>	

Related Topics

Configuring TACACS+ Server Hosts, on page 71

Verifying the TACACS+ Configuration

To display the TACACS+ configuration, perform one of the following tasks:

Command	Purpose
show tacacs+ { status pending pending-diff}	Displays the TACACS+ Cisco Fabric Services distribution status and other details.
show running-config tacacs [all]	Displays the TACACS+ configuration in the running configuration.
show startup-config tacacs	Displays the TACACS+ configuration in the startup configuration.
show tacacs-server [host-name ipv4-address ipv6-address] [directed-request groups sorted statistics]	Displays all configured TACACS+ server parameters.
show privilege	Displays the current privilege level, username, and status of cumulative privilege support.

Configuration Examples for TACACS+

The following example shows how to configure a TACACS+ server host and server group:

```
feature tacacs+
tacacs-server key 7 "ToIkLhPpG"
tacacs-server host 10.10.2.2 key 7 "ShMoMhTl"
aaa group server tacacs+ TacServer
    server 10.10.2.2
```

The following example shows how to configure and use command authorization verification:

```
switch# terminal verify-only
switch# show interface ethernet 7/2 brief
%Success
switch# terminal no verify-only
switch# show interface ethernet 7/2 brief

Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
Eth7/2 1 eth access down SFP not inserted auto(D) --
```

The following example shows how to enable the cumulative privilege of roles, configure a secret password for privilege level 2, and configure user3 for privilege level 2 authorization:

```
switch# configure terminal
switch(config)# feature privilege
switch(config)# enable secret def456 priv-lvl 2
switch(config)# username user3 priv-lvl 2
switch(config)# show privilege
User name: user3
Current privilege level: -2
```

```
Feature privilege: Enabled
switch(config)# copy running-config startup-config
switch(config)# exit
```

The following example shows how to change user3 from the priv-2 role to the priv-15 role. After entering the **enable 15** command, the user is prompted to enter the password that was configured by the administrator using the **enable secret** command. Privilege level 15 gives this user network-admin privileges under the enable mode.

```
User Access Verification
login: user3
Password: *****
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright ©) 2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php
switch#
switch# enable 15
Password: def456
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright ©) 2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php
switch-enable#
```

The following example shows how to permit all users with roles priv-5 and above to execute the **pwd** command:

```
switch# configure terminal
switch(config)# role name priv-5
switch(config-role)# rule 1 permit command pwd
```

The following example shows how to deny the **show running-config** command to all users with roles below priv-5. First, you must remove the permission to execute this command from the priv-0 role; then you must permit the command at role priv-5 so that users with roles priv-5 and above have permission to run the command.

```
switch# configure terminal
switch(config)# role name priv-0
switch(config-role)# rule 2 deny command show running-config
switch(config-role)# exit
switch(config)# role name priv-5
```

```
switch(config-role)# rule 3 permit command show running-config
switch(config-role)# exit
```

Where to Go Next

You can now configure AAA authentication methods to include the server groups.

Additional References for TACACS+

This section includes additional information related to implementing TACACS+.

Related Documents

Related Topic	Document Title
Cisco NX-OS licensing	Cisco NX-OS Licensing Guide
VRF configuration	Cisco NX-OS 9000 Series NX-OS Unicast Routing Configuration Guide

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
MIBs related to TACACS+	To locate and download supported MIBs, go to the following URL:
	ftp://ftp.cisco.com/pub/mibs/supportlists/nexus9000/ Nexus9000MIBSupportList.html

Configuring LDAP

This chapter describes how to configure the Lightweight Directory Access Protocol (LDAP) on Cisco NX-OS devices.

This chapter includes the following sections:

- About LDAP, on page 99
- Licensing Requirements for LDAP, on page 102
- Prerequisites for LDAP, on page 102
- Guidelines and Limitations for LDAP, on page 102
- Default Settings for LDAP, on page 103
- Configuring LDAP, on page 103
- Monitoring LDAP Servers, on page 115
- Clearing LDAP Server Statistics, on page 116
- Verifying the LDAP Configuration, on page 116
- Configuration Examples for LDAP, on page 117
- Where to Go Next, on page 117
- Additional References for LDAP, on page 118

About LDAP

The Lightweight Directory Access Protocol (LDAP) provides centralized validation of users attempting to gain access to a Cisco NX-OS device. LDAP services are maintained in a database on an LDAP daemon running typically on a UNIX or Windows NT workstation. You must have access to and must configure an LDAP server before the configured LDAP features on your Cisco NX-OS device are available.

LDAP provides for separate authentication and authorization facilities. LDAP allows for a single access control server (the LDAP daemon) to provide each service authentication and authorization independently. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.

The LDAP client/server protocol uses TCP (port 389) for transport requirements. Cisco NX-OS devices provide centralized authentication using the LDAP protocol.

LDAP Authentication and Authorization

Clients establish a TCP connection and authentication session with an LDAP server through a simple bind (username and password). As part of the authorization process, the LDAP server searches its database to retrieve the user profile and other information.

You can configure the bind operation to first bind and then search, where authentication is performed first and authorization next, or to first search and then bind. The default method is to first search and then bind.

The advantage of searching first and binding later is that the distinguished name (DN) received in the search result can be used as the user DN during binding rather than forming a DN by prepending the username (cn attribute) with the baseDN. This method is especially helpful when the user DN is different from the username plus the baseDN. For the user bind, the bindDN is constructed as baseDN + append-with-baseDN, where append-with-baseDN has a default value of cn=\$userid.

Note

As an alternative to the bind method, you can establish LDAP authentication using the compare method, which compares the attribute values of a user entry at the server. For example, the user password attribute can be compared for authentication. The default password attribute type is userPassword.

LDAP Operation for User Login

When a user attempts a Password Authentication Protocol (PAP) login to a Cisco NX-OS device using LDAP, the following actions occur:

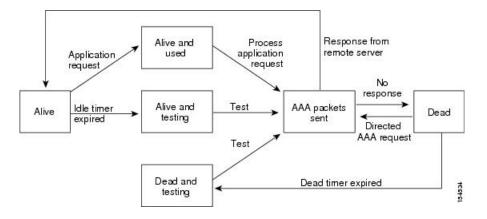
- 1. When the Cisco NX-OS device establishes a connection, it contacts the LDAP daemon to obtain the username and password.
- 2. The Cisco NX-OS device eventually receives one of the following responses from the LDAP daemon:
 - ACCEPT—User authentication succeeds and service begins. If the Cisco NX-OS device requires user authorization, authorization begins.
 - REJECT—User authentication fails. The LDAP daemon either denies further access to the user or prompts the user to retry the login sequence.
 - ERROR—An error occurs at some time during authentication either at the daemon or in the network connection between the daemon and the Cisco NX-OS device. If the Cisco NX-OS device receives an ERROR response, the Cisco NX-OS device tries to use an alternative method for authenticating the user.

After authentication, the user also undergoes an additional authorization phase if authorization has been enabled on the Cisco NX-OS device. Users must first successfully complete LDAP authentication before proceeding to LDAP authorization.

- 3. If LDAP authorization is required, the Cisco NX-OS device again contacts the LDAP daemon, and it returns an ACCEPT or REJECT authorization response. An ACCEPT response contains attributes that are used to direct the EXEC or NETWORK session for that user and determines the services that the user can access. Services include the following:
 - Telnet, rlogin, Point-to-Point Protocol (PPP), Serial Line Internet Protocol (SLIP), or EXEC services
 - Connection parameters, including the host or client IP address (IPv4 or IPv6), access list, and user timeouts

Note

LDAP allows an arbitrary conversation between the daemon and the user until the daemon receives enough information to authenticate the user. This action is usually done by prompting for a username and password combination but may include prompts for other items.


Note

In LDAP, authorization can occur before authentication.

LDAP Server Monitoring

An unresponsive LDAP server can delay the processing of AAA requests. A Cisco NX-OS device can periodically monitor an LDAP server to check whether it is responding (or alive) to save time in processing AAA requests. The Cisco NX-OS device marks unresponsive LDAP servers as dead and does not send AAA requests to any dead LDAP servers. A Cisco NX-OS device periodically monitors dead LDAP servers and brings them to the alive state once they are responding. This process verifies that an LDAP server is in a working state before real AAA requests are sent its way. Whenever an LDAP server changes to the dead or alive state, a Simple Network Management Protocol (SNMP) trap is generated, and the Cisco NX-OS device displays an error message that a failure is taking place before it can impact performance. The following figure shows the server states for LDAP server monitoring.

Figure 4: LDAP Server States

Note

The monitoring interval for alive servers and dead servers is different and can be configured by the user. The LDAP server monitoring is performed by sending a test authentication request to the LDAP server.

Vendor-Specific Attributes for LDAP

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific attributes (VSAs) between the network access server and the LDAP server. The IETF uses attribute 26. VSAs allow vendors to support their own extended attributes that are not suitable for general use.

Cisco VSA Format for LDAP

The Cisco LDAP implementation supports one vendor-specific option using the format recommended in the IETF specification. The Cisco vendor ID is 9, and the supported option is vendor type 1, which is named cisco-av-pair. The value is a string with the following format:

```
protocol : attribute separator value *
```

The protocol is a Cisco attribute for a particular type of authorization, the separator is an = (equal sign) for mandatory attributes, and an * (asterisk) indicates optional attributes. When you use LDAP servers for authentication on a Cisco NX-OS device, LDAP directs the LDAP server to return user attributes, such as authorization information, along with authentication results. This authorization information is specified through VSAs. The following VSA protocol option is supported by the Cisco NX-OS software:

• Shell—Protocol used in access-accept packets to provide user profile information.

The Cisco NX-OS software supports the following attribute:

• roles—Lists all the roles to which the user belongs. The value field is a string that lists the role names delimited by white space.

Virtualization Support for LDAP

The Cisco NX-OS device uses virtual routing and forwarding instances (VRFs) to access the LDAP servers. For more information on VRFs, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Licensing Requirements for LDAP

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	For a complete explanation of Cisco NX-OS licensing recommendations and how to obtain and apply see the Cisco NX-OS Licensing Guide.
	Unless specified, Essentials licenses are mandatory.

Prerequisites for LDAP

LDAP has the following prerequisites:

- Obtain the IPv4 or IPv6 addresses or hostnames for the LDAP servers.
- Ensure that the Cisco NX-OS device is configured as an LDAP client of the AAA servers.

Guidelines and Limitations for LDAP

LDAP has the following guidelines and limitations:

• You can configure a maximum of 64 LDAP servers on the Cisco NX-OS device.

- Cisco NX-OS supports only LDAP version 3.
- Cisco NX-OS supports only these LDAP servers:
 - OpenLDAP
 - Microsoft Active Directory
- LDAP over Secure Sockets Layer (SSL) supports only SSL version 3 and Transport Layer Security (TLS) version 1.
- If you have a user account configured on the local Cisco NX-OS device that has the same name as a remote user account on a AAA server, the Cisco NX-OS software applies the user roles for the local user account to the remote user, not the user roles configured on the AAA server.

Default Settings for LDAP

This table lists the default settings for LDAP parameters.

Parameters	Default
LDAP	Disabled
LDAP authentication method	First search and then bind
LDAP authentication mechanism	Plain
Dead-time interval	0 minutes
Timeout interval	5 seconds
Idle timer interval	60 minutes
Periodic server monitoring username	test
Periodic server monitoring password	Cisco

Configuring LDAP

This section describes how to configure LDAP on a Cisco NX-OS device.

LDAP Server Configuration Process

You can configure LDAP servers by following this configuration process.

- 1. Enable LDAP.
- 2. Establish the LDAP server connections to the Cisco NX-OS device.
- **3.** If needed, configure LDAP server groups with subsets of the LDAP servers for AAA authentication methods.
- **4.** (Optional) Configure the TCP port.

- 5. (Optional) Configure the default AAA authorization method for the LDAP server.
- **6.** (Optional) Configure an LDAP search map.
- 7. (Optional) If needed, configure periodic LDAP server monitoring.

Enabling or Disabling LDAP, on page 104

Configuring LDAP Server Hosts, on page 105

Configuring the RootDN for an LDAP Server, on page 106

Configuring LDAP Server Groups, on page 107

Configuring TCP Ports, on page 110

Configuring LDAP Search Maps, on page 111

Configuring Periodic LDAP Server Monitoring, on page 112

Enabling or Disabling LDAP

By default, the LDAP feature is disabled on the Cisco NX-OS device. You must explicitly enable the LDAP feature to access the configuration and verification commands for authentication.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	Required: [no] feature ldap Example: switch(config) # feature ldap	Enables LDAP. Use the no form of this command to disable LDAP. Note When you disable LDAP, all related configurations are automatically discarded.
Step 3	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Related Topics

LDAP Server Configuration Process, on page 103

Configuring LDAP Server Hosts, on page 105

Configuring the RootDN for an LDAP Server, on page 106

Configuring LDAP Server Groups, on page 107

Configuring the Global LDAP Timeout Interval, on page 108

Configuring the Timeout Interval for an LDAP Server, on page 109

Configuring TCP Ports, on page 110

Configuring LDAP Search Maps, on page 111

Configuring Periodic LDAP Server Monitoring, on page 112 Configuring the LDAP Dead-Time Interval, on page 113 Configuring AAA Authorization on LDAP Servers, on page 114

Configuring LDAP Server Hosts

To access a remote LDAP server, you must configure the IP address or the hostname for the LDAP server on the Cisco NX-OS device. You can configure up to 64 LDAP servers.

Note

By default, when you configure an LDAP server IP address or hostname on the Cisco NX-OS device, the LDAP server is added to the default LDAP server group. You can also add the LDAP server to another LDAP server group.

Before you begin

Enable LDAP.

Obtain the IPv4 or IPv6 addresses or the hostnames for the remote LDAP servers.

If you plan to enable the Secure Sockets Layer (SSL) protocol, make sure that the LDAP server certificate is manually configured on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ldap-server host {ipv4-address ipv6-address host-name} [enable-ssl]	Specifies the IPv4 or IPv6 address or hostname for an LDAP server.
	[referral-disable] Example:	The enable-ssl keyword ensures the integrity and confidentiality of the transferred data by
	switch(config)# ldap-server host 10.10.2.2 enable-ssl	causing the LDAP client to establish an SSL session prior to sending the bind or search request.
		The referral-disable keyword disables the unwanted referral links.
Step 3	(Optional) show ldap-server	Displays the LDAP server configuration.
	Example:	
	switch(config)# show ldap-server	
Step 4	(Optional) copy running-config startup-config	
	Example:	configuration.

Command or Action	Purpose
<pre>switch(config)# copy running-config startup-config</pre>	

LDAP Server Configuration Process, on page 103

Enabling or Disabling LDAP, on page 104

Configuring LDAP Server Groups, on page 107

Configuring the RootDN for an LDAP Server, on page 106

Configuring LDAP Server Groups, on page 107

Configuring Periodic LDAP Server Monitoring, on page 112

Monitoring LDAP Servers, on page 115

Clearing LDAP Server Statistics, on page 116

Configuring the RootDN for an LDAP Server

You can configure the root designated name (DN) for the LDAP server database. The rootDN is used to bind to the LDAP server to verify its state.

Before you begin

Enable LDAP.

Obtain the IPv4 or IPv6 addresses or the hostnames for the remote LDAP servers.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>[no] ldap-server host {ipv4-address ipv6-address hostname} rootDN root-name [password password [port tcp-port [timeout seconds] timeout seconds]] Example: switch(config) # ldap-server host 10.10.1.1 rootDN cn=manager,dc=acme,dc=com password Ur2Gd2BH timeout 60</pre>	Specifies the rootDN for the LDAP server database and the bind password for the root. Optionally specifies the TCP port to use for LDAP messages to the server. The range is from 1 to 65535, and the default TCP port is the global value or 389 if a global value is not configured. Also specifies the timeout interval for the server. The range is from 1 to 60 seconds, and the default timeout is the global value or 5 seconds if a global value is not configured.
Step 3	(Optional) show ldap-server	Displays the LDAP server configuration.
	Example:	
	switch(config)# show ldap-server	

	Command or Action	Purpose
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

LDAP Server Configuration Process, on page 103 Enabling or Disabling LDAP, on page 104 Configuring LDAP Server Hosts, on page 105

Configuring LDAP Server Groups

You can specify one or more remote AAA servers to authenticate users using server groups. All members of a group must be configured to use LDAP. The servers are tried in the same order in which you configure them.

You can configure these server groups at any time, but they take effect only when you apply them to an AAA service.

Before you begin

Enable LDAP.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] aaa group server ldap group-name	Creates an LDAP server group and enters the
	Example:	LDAP server group configuration mode for that group.
	<pre>switch(config)# aaa group server ldap LDAPServer1 switch(config-ldap)#</pre>	mat group.
Step 3	[no] server {ipv4-address ipv6-address host-name}	Configures the LDAP server as a member of the LDAP server group.
	<pre>Example: switch(config-ldap)# server 10.10.2.2</pre>	If the specified LDAP server is not found, configure it using the ldap-server host command and retry this command.
Step 4	(Optional) [no] authentication {bind-first [append-with-baseDN DNstring] compare [password-attribute password]} Example:	Performs LDAP authentication using the bind or compare method. The default LDAP authentication method is the bind method using first search and then bind.

	Command or Action	Purpose
	switch(config-ldap)# authentication compare password-attribute TyuL8r	
Step 5	(Optional) [no] enable user-server-group Example: switch(config-ldap)# enable user-server-group	Enables group validation. The group name should be configured in the LDAP server. Users can login through public-key authentication only if the username is listed as a member of this configured group in the LDAP server.
Step 6	(Optional) [no] enable Cert-DN-match Example: switch (config-ldap) # enable Cert-DN-match	Enables users to login only if the user profile lists the subject-DN of the user certificate as authorized for login.
Step 7	(Optional) [no] use-vrf vrf-name Example: switch(config-ldap)# use-vrf vrf1	Specifies the VRF to use to contact the servers in the server group.
Step 8	<pre>exit Example: switch(config-ldap)# exit switch(config)#</pre>	Exits LDAP server group configuration mode.
Step 9	(Optional) show ldap-server groups Example: switch(config) # show ldap-server groups	Displays the LDAP server group configuration.
Step 10	(Optional) copy running-config startup-config Example:	Copies the running configuration to the startup configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

LDAP Server Configuration Process, on page 103 Configuring LDAP Server Hosts, on page 105 Enabling or Disabling LDAP, on page 104 Configuring LDAP Server Hosts, on page 105

Configuring the Global LDAP Timeout Interval

You can set a global timeout interval that determines how long the Cisco NX-OS device waits for responses from all LDAP servers before declaring a timeout failure.

Before you begin

Enable LDAP.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ldap-server timeout seconds	Specifies the timeout interval for LDAP servers.
Fxamnle:	Example:	The default timeout interval is 5 seconds. The range is from 1 to 60 seconds.
	lange is from 1 to 00 seconds.	
Step 3	(Optional) show ldap-server	Displays the LDAP server configuration.
	Example:	
	switch(config)# show ldap-server	
Step 4	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Related Topics

Enabling or Disabling LDAP, on page 104 Configuring the Timeout Interval for an LDAP Server, on page 109 Configuring the Timeout Interval for an LDAP Server, on page 109

Configuring the Timeout Interval for an LDAP Server

You can set a timeout interval that determines how long the Cisco NX-OS device waits for responses from an LDAP server before declaring a timeout failure.

Before you begin

Enable LDAP.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	[no] ldap-server host {ipv4-address ipv6-address hostname} timeout seconds	Specifies the timeout interval for a specific server. The default is the global value.
	<pre>Example: switch(config) # ldap-server host server1 timeout 10</pre>	Note The timeout interval value specified for an LDAP server overrides the global timeout interval value specified for all LDAP servers.
Step 3	(Optional) show ldap-server Example: switch(config)# show ldap-server	Displays the LDAP server configuration.
Step 4	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring the Global LDAP Timeout Interval, on page 108 Enabling or Disabling LDAP, on page 104 Configuring the Global LDAP Timeout Interval, on page 108

Configuring TCP Ports

You can configure another TCP port for the LDAP servers if there are conflicts with another application. By default, Cisco NX-OS devices use port 389 for all LDAP requests.

Before you begin

Enable LDAP.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ldap-server host {ipv4-address ipv6-address hostname} port tcp-port [timeout seconds]	Specifies the TCP port to use for LDAP messages to the server. The default TCP port is 389. The range is from 1 to 65535.
	Example:	Optionally specifies the timeout interval for the
	<pre>switch(config)# ldap-server host 10.10.1.1 port 200 timeout 5</pre>	server. The range is from 1 to 60 seconds, and the default timeout is the global value or 5 seconds if a global value is not configured.

	Command or Action	Purpose
		Note The timeout interval value specified for an LDAP server overrides the global timeout interval value specified for all LDAP servers.
Step 3	(Optional) show ldap-server	Displays the LDAP server configuration.
	<pre>Example: switch(config)# show ldap-server</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

LDAP Server Configuration Process, on page 103 Enabling or Disabling LDAP, on page 104

Configuring LDAP Search Maps

You can configure LDAP search maps to send a search query to the LDAP server. The server searches its database for data meeting the criteria specified in the search map.

Before you begin

Enable LDAP.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	ldap search-map map-name	Configures an LDAP search map.
	Example:	
	<pre>switch(config)# ldap search-map map1 switch(config-ldap-search-map)#</pre>	
Step 3	(Optional) [userprofile trustedCert	Configures the attribute name, search filter, and
	CRLLookup user-certdn-match user-pubkey-match user-switch-bind	base-DN for the user profile, trusted certificate, CRL, certificate DN match, public key match,
	attribute-name attribute-name search-filter	or user-switchgroup lookup search operation.
	filter base-DN base-DN-name	These values are used to send a search query to
	Example:	the LDAP server.

Command or Action	Purpose
<pre>switch(config-ldap-search-map) # userprofile attribute-name att-name search-filter (&(objectClass=inetOrgPerson)(cn=\$userid)) base-DN dc=acme,dc=com</pre>	The <i>attribute-name</i> argument is the name of the attribute in the LDAP server that contains the Nexus role definition.
(Optional) exit	Exits LDAP search map configuration mode.
Example:	
<pre>switch(config-ldap-search-map)# exit switch(config)#</pre>	
(Optional) show ldap-search-map	Displays the configured LDAP search maps.
Example:	
switch(config)# show ldap-search-map	
(Optional) copy running-config startup-config	Copies the running configuration to the startup
Example:	configuration.
switch(config)# copy running-config startup-config	
	<pre>switch (config-ldap-search-map) # userprofile attribute-name att-name search-filter (&(objectClass=inetOrgPerson) (cn=\$userid)) base-DN dc=acme, dc=com (Optional) exit Example: switch (config-ldap-search-map) # exit switch (config) # (Optional) show ldap-search-map Example: switch (config) # show ldap-search-map (Optional) copy running-config startup-config Example: switch (config) # copy running-config</pre>

LDAP Server Configuration Process, on page 103 Enabling or Disabling LDAP, on page 104

Configuring Periodic LDAP Server Monitoring

You can monitor the availability of LDAP servers. The configuration parameters include the username and password to use for the server, the rootDN to bind to the server to verify its state, and an idle timer. The idle timer specifies the interval in which an LDAP server receives no requests before the Cisco NX-OS device sends out a test packet. You can configure this option to test servers periodically, or you can run a one-time only test.

Note

To protect network security, we recommend that you use a username that is not the same as an existing username in the LDAP database.

Before you begin

Enable LDAP.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Required: [no] ldap-server host {ipv4-address ipv6-address hostname} test rootDN root-name [idle-time minutes password password [idle-time minutes] username name [password password [idle-time minutes]]]	Specifies the parameters for server monitoring. The default username is test, and the default password is Cisco. The default value for the idle timer is 60 minutes, and the valid range is from 1 to 1440 minutes.
	Example:	Note We recommend that the user not be an
switch(config) # ldap-server host existing user in 10.10.1.1 test rootDN root1 username user1 password Ur2Gd2BH idle-time 3	existing user in the LDAP server database.	
Step 3	<pre>[no] ldap-server deadtime minutes Example: switch(config) # ldap-server deadtime 5</pre>	Specifies the number of minutes before the Cisco NX-OS device checks an LDAP server that was previously unresponsive. The default value is 0 minutes, and the valid range is from 1 to 60 minutes.
Step 4	(Optional) show ldap-server	Displays the LDAP server configuration.
	<pre>Example: switch(config)# show ldap-server</pre>	
Step 5	(Optional) copy running-config startup-config Example: switch (config) # copy running-config	Copies the running configuration to the startup configuration.
	switch(config)# copy running-config startup-config	

LDAP Server Configuration Process, on page 103 Enabling or Disabling LDAP, on page 104 Configuring LDAP Server Hosts, on page 105

Configuring the LDAP Dead-Time Interval

You can configure the dead-time interval for all LDAP servers. The dead-time interval specifies the time that the Cisco NX-OS device waits, after declaring that an LDAP server is dead, before sending out a test packet to determine if the server is now alive.

Note

When the dead-time interval is 0 minutes, LDAP servers are not marked as dead even if they are not responding. You can configure the dead-time interval per group.

Before you begin

Enable LDAP.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ldap-server deadtime minutes	Configures the global dead-time interval. The
	Example:	default value is 0 minutes. The range is from 1 to 60 minutes.
	<pre>switch(config)# ldap-server deadtime 5</pre>	to oo minutes.
Step 3	(Optional) show ldap-server	Displays the LDAP server configuration.
	Example:	
	switch(config)# show ldap-server	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch(config)# copy running-config startup-config	

Related Topics

Enabling or Disabling LDAP, on page 104

Configuring AAA Authorization on LDAP Servers

You can configure the default AAA authorization method for LDAP servers.

Before you begin

Enable LDAP.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa authorization {ssh-certificate ssh-publickey} default {group group-list	Configures the default AAA authorization method for the LDAP servers.
	local}	The ssh-certificate keyword configures LDAP
	Example:	or local authorization with certificate authentication, and the ssh-publickey keyword configures LDAP or local authorization with the SSH public key. The default authorization
	<pre>switch(config)# aaa authorization ssh-certificate default group LDAPServer1 LDAPServer2</pre>	

	Command or Action	Purpose
		is local authorization, which is the list of authorized commands for the user's assigned role.
		The <i>group-list</i> argument consists of a space-delimited list of LDAP server group names. Servers that belong to this group are contacted for AAA authorization. The local method uses the local database for authorization.
Step 3	(Optional) show aaa authorization [all]	Displays the AAA authorization configuration.
	Example:	The all keyword displays the default values.
	switch(config) # show aaa authorization	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling LDAP, on page 104

Monitoring LDAP Servers

You can monitor the statistics that the Cisco NX-OS device maintains for LDAP server activity.

Before you begin

Configure LDAP servers on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	show ldap-server statistics {hostname ipv4-address ipv6-address}	Displays the LDAP server statistics.
	Example:	
	switch# show ldap-server statistics 10.10.1.1	

Related Topics

Configuring LDAP Server Hosts, on page 105 Clearing LDAP Server Statistics, on page 116

Clearing LDAP Server Statistics, on page 116

Clearing LDAP Server Statistics

You can display the statistics that the Cisco NX-OS device maintains for LDAP server activity.

Before you begin

Configure LDAP servers on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	(Optional) show ldap-server statistics {hostname ipv4-address ipv6-address}	Displays the LDAP server statistics.
	Example:	
	switch# show ldap-server statistics 10.10.1.1	
Step 2	clear ldap-server statistics {hostname ipv4-address ipv6-address}	Clears the LDAP server statistics.
	Example:	
	switch# clear ldap-server statistics 10.10.1.1	

Related Topics

Monitoring LDAP Servers, on page 115 Configuring LDAP Server Hosts, on page 105 Monitoring LDAP Servers, on page 115

Verifying the LDAP Configuration

To display LDAP configuration information, perform one of the following tasks.

Command	Purpose
show running-config ldap [all]	Displays the LDAP configuration in the running configuration.
show startup-config ldap	Displays the LDAP configuration in the startup configuration.
show ldap-server	Displays LDAP configuration information.
show ldap-server groups	Displays LDAP server group configuration information.
show ldap-server statistics {hostname ipv4-address ipv6-address}	Displays LDAP statistics.

Command	Purpose
show ldap-search-map	Displays information about the configured LDAP attribute maps.

Configuration Examples for LDAP

The following example shows how to configure an LDAP server host and server group:

```
feature ldap
ldap-server host 10.10.2.2 enable-ssl
aaa group server ldap LdapServer
server 10.10.2.2
exit
show ldap-server
show ldap-server groups
```

The following example shows how to configure an LDAP search map:

```
ldap search-map s0
userprofile attribute-name att-name search-filter "
(&(objectClass=Person) (sAMAccountName=$userid))" base-DN dc=acme,dc=comexit
show ldap-search-map
```

The following example shows how to configure AAA authorization with certificate authentication for an LDAP server:

```
aaa authorization ssh-certificate default group LDAPServer1 LDAPServer2 exit show aaa authorization \,
```

The following example shows how you can validate the authentication:

```
failing
test aaa group LdapServer user <user-password>
user has failed authentication
! working
test aaa group LdapServer user <user-password>
user has been authenticated
```

Where to Go Next

You can now configure AAA authentication methods to include the server groups.

Additional References for LDAP

Related Documents

Related Topic	Document Title
Cisco NX-OS licensing	Cisco NX-OS Licensing Guide
VRF configuration	Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
MIBs related to LDAP	To locate and download the supported MIBs, go to the following URL:
	ftp://ftp.cisco.com/pub/mibs/supportlists/nexus9000/Nexus9000MIBSupportList.html

Configuring SSH and Telnet

This chapter describes how to configure Secure Shell Protocol (SSH) and Telnet on Cisco NX-OS devices.

This chapter includes the following sections:

- About SSH and Telnet, on page 119
- Licensing Requirements for SSH and Telnet, on page 121
- Prerequisites for SSH and Telnet, on page 121
- Guidelines and Limitations for SSH and Telnet, on page 121
- Default Settings for SSH and Telnet, on page 122
- Configuring SSH, on page 122
- Configuring Telnet, on page 136
- Verifying the SSH and Telnet Configuration, on page 138
- Configuration Example for SSH, on page 139
- Configuration Example for SSH Passwordless File Copy, on page 140
- Configuration Example for X.509v3 Certificate-Based SSH Authentication, on page 142
- Additional References for SSH and Telnet, on page 142

About SSH and Telnet

This section includes information about SSH and Telnet.

SSH Server

You can use the SSH server to enable an SSH client to make a secure, encrypted connection to a Cisco NX-OS device. SSH uses strong encryption for authentication. The SSH server in the Cisco NX-OS software can interoperate with publicly and commercially available SSH clients.

The user authentication mechanisms supported for SSH are RADIUS, TACACS+, LDAP, and the use of locally stored usernames and passwords.

SSH Client

The SSH client feature is an application that runs over the SSH protocol to provide device authentication and encryption. The SSH client enables a Cisco NX-OS device to make a secure, encrypted connection to another Cisco NX-OS device or to any other device that runs the SSH server. This connection provides an outbound

connection that is encrypted. With authentication and encryption, the SSH client allows for a secure communication over an insecure network.

The SSH client in the Cisco NX-OS software works with publicly and commercially available SSH servers.

SSH Server Keys

SSH requires server keys for secure communications to the Cisco NX-OS device. You can use SSH server keys for the following SSH options:

- SSH version 2 using Rivest, Shamir, and Adelman (RSA) public-key cryptography
- SSH version 2 using the Digital System Algrorithm (DSA)

Be sure to have an SSH server key-pair with the appropriate version before enabling the SSH service. You can generate the SSH server key-pair according to the SSH client version used. The SSH service accepts the following types of key-pairs for use by SSH version 2:

- The **dsa** option generates the DSA key-pair for the SSH version 2 protocol.
- The **rsa** option generates the RSA key-pair for the SSH version 2 protocol.

By default, the Cisco NX-OS software generates an RSA key using 1024 bits.

SSH supports the following public key formats:

- OpenSSH
- IETF Secure Shell (SECSH)
- Public Key Certificate in Privacy-Enhanced Mail (PEM)

Caution

If you delete all of the SSH keys, you cannot start the SSH services.

SSH Authentication Using Digital Certificates

SSH authentication on Cisco NX-OS devices provide X.509 digital certificate support for host authentication. An X.509 digital certificate is a data item that ensures the origin and integrity of a message. It contains encryption keys for secured communications and is signed by a trusted certification authority (CA) to verify the identity of the presenter. The X.509 digital certificate support provides either DSA or RSA algorithms for authentication.

The certificate infrastructure uses the first certificate that supports the Secure Socket Layer (SSL) and is returned by the security infrastructure, either through a query or a notification. Verification of certificates is successful if the certificates are from any of the trusted CAs configured and if not revoked or expired.

You can configure your device for SSH authentication using an X.509 certificate. If the authentication fails, you are prompted for a password.

Beginning with Cisco NX-OS Release 7.0(3)I5(1), you can configure SSH authentication using X.509v3 certificates (RFC 6187). X.509v3 certificate-based SSH authentication uses certificates combined with a smartcard to enable two-factor authentication for Cisco device access. The SSH client is provided by Cisco partner Pragma Systems.

Telnet Server

The Telnet protocol enables TCP/IP connections to a host. Telnet allows a user at one site to establish a TCP connection to a login server at another site and then passes the keystrokes from one device to the other. Telnet can accept either an IP address or a domain name as the remote device address.

The Telnet server is disabled by default on the Cisco NX-OS device.

Licensing Requirements for SSH and Telnet

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	SSH and Telnet require no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Prerequisites for SSH and Telnet

Make sure that you have configured IP on a Layer 3 interface, out-of-band on the mgmt 0 interface, or inband on an Ethernet interface.

Guidelines and Limitations for SSH and Telnet

SSH and Telnet have the following configuration guidelines and limitations:

- The Cisco NX-OS software supports only SSH version 2 (SSHv2).
- Cisco NX-OS does not support remote TACACS authentication.
- Due to a Poodle vulnerability, SSLv3 is no longer supported.
- Prior to Cisco NX-OS Release 7.0(3)I7(6), the **no feature ssh** command would disable port 22. For all later Cisco NX-OS releases, when you use the **no feature ssh** feature command, port 22 is not disabled and remains open and a deny rule is pushed to deny all incoming external connections.
- IPSG is not supported on the following:
 - The last six 40-Gb physical ports on the Cisco Nexus 9372PX, 9372TX, and 9332PQ switches
 - All 40G physical ports on the Cisco Nexus 9396PX, 9396TX, and 93128TX switches
- You can configure your device for SSH authentication using an X.509 certificate. If the authentication fails, you are prompted for a password.
- The SFTP server feature does not support the regular SFTP **chown** and **chgrp** commands.
- When the SFTP server is enabled, only the admin user can use SFTP to access the device.

- SSH public and private keys imported into user accounts that are remotely authenticated through a AAA protocol (such as RADIUS or TACACS+) for the purpose of SSH Passwordless File Copy will not persist when the Nexus device is reloaded unless a local user account with the same name as the remote user account is configured on the device before the SSH keys are imported.
- SSH timeout period must be longer than the time of the tac-pac generation time. Otherwise, the VSH log might show %VSHD-2-VSHD_SYSLOG_EOL_ERR error. Ideally, set to 0 (infinity) before collecting tac-pac or showtech.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Default Settings for SSH and Telnet

This table lists the default settings for SSH and Telnet parameters.

Table 9: Default SSH and Telnet Parameters

Parameters	Default
SSH server	Enabled
SSH server key	RSA key generated with 1024 bits
RSA key bits for generation	1024
Telnet server	Disabled
Telnet port number	23
Maximum number of SSH login attempts	3
SCP server	Disabled
SFTP server	Disabled

Configuring SSH

This section describes how to configure SSH.

Generating SSH Server Keys

You can generate an SSH server key based on your security requirements. The default SSH server key is an RSA key that is generated using 1024 bits.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no feature ssh	Disables SSH.
	Example:	
	switch(config)# no feature ssh	
Step 3	ssh key {dsa [force] rsa [bits[force]]}	Generates the SSH server key.
	Example: switch(config) # ssh key rsa 2048	The <i>bits</i> argument is the number of bits used to generate the RSA key. The range is from 768 to 2048. The default value is 1024.
		You cannot specify the size of the DSA key. It is always set to 1024 bits.
		Use the force keyword to replace an existing key.
Step 4	feature ssh	Enables SSH.
	Example:	
	switch(config)# feature ssh	
Step 5	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 6	(Optional) show ssh key [dsa rsa] [md5]	Displays the SSH server keys.
	Example: switch# show ssh key	For Cisco NX-OS Release 7.0(3)I4(6) and 7.0(3)I6(1) and later releases, this command displays the fingerprint in SHA256 format by default. SHA256 is more secure than the old default format of MD5. However, the md5 option has been added, if you want to see the fingerprint in MD5 format for backward compatibility.
Step 7	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Specifying the SSH Public Keys for User Accounts

You can configure an SSH public key to log in using an SSH client without being prompted for a password. You can specify the SSH public key in one of these formats:

- OpenSSH format
- IETF SECSH format

Specifying the SSH Public Keys in IETF SECSH Format

You can specify the SSH public keys in IETF SECSH format for user accounts.

Before you begin

Generate an SSH public key in IETF SCHSH format.

	Command or Action	Purpose
Step 1	<pre>copy server-file bootflash:filename Example: switch# copy tftp://10.10.1.1/secsh_file.pub bootflash:secsh_file.pub</pre>	Downloads the file containing the SSH key in IETF SECSH format from a server. The server can be FTP, secure copy (SCP), secure FTP (SFTP), or TFTP.
Step 2	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 3	username username sshkey file bootflash:filename	Configures the SSH public key in IETF SECSH format.
	Example:	
	<pre>switch(config)# username User1 sshkey file bootflash:secsh_file.pub</pre>	
Step 4	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 5	(Optional) show user-account	Displays the user account configuration.
	Example:	
	switch# show user-account	
Step 6	(Optional) copy running-config startup-config	
	Example:	configuration.
	switch# copy running-config startup-config	

Specifying the SSH Public Keys in OpenSSH Format

You can specify the SSH public keys in OpenSSH format for user accounts.

Before you begin

Generate an SSH public key in OpenSSH format.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	username username sshkey ssh-key	Configures the SSH public key in OpenSSH
	Example:	format.
	switch (config) # username User1 sshkey ssh-rsa AMMENVaClycEPMMHWAMIEWISERGEOSHEGEOWHWYWAEDWYGEP MEMBIGARWIINIF/IDnwHlMqP/ELODDHOHWWY/GH.NIQMGSCGG XWhNjnI1B7ihwpWh7cldMMWWCMHYSYWGHBUD/WYziEh5S4Tplx8=	
Step 3	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show user-account	Displays the user account configuration.
	Example:	
	switch# show user-account	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Configuring a Maximum Number of SSH Login Attempts

You can configure the maximum number of SSH login attempts. If the user exceeds the maximum number of permitted attempts, the session disconnects.

Note

The total number of login attempts includes attempts through public-key authentication, certificate-based authentication, and password-based authentication. If public-key authentication is enabled, it takes priority. If only certificate-based and password-based authentication are enabled, certificate-based authentication takes priority. If you exceed the configured number of login attempts through all of these methods, a message appears indicating that too many authentication failures have occurred.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	<pre>ssh login-attempts number Example: switch(config) # ssh login-attempts 5</pre>	Configures the maximum number of times that a user can attempt to log into an SSH session. The default maximum number of login attempts is 3. The range is from 1 to 10. Note The no form of this command removes the previous login attempts value and sets the maximum number of login attempts to the default value of 3.
Step 3	(Optional) show running-config security all Example: switch(config) # show running-config security all	Displays the configured maximum number of SSH login attempts.
Step 4	(Optional) copy running-config startup-config Example: switch (config) # copy running-config startup-config	(Optional) Copies the running configuration to the startup configuration.

Starting SSH Sessions

You can start SSH sessions using IPv4 or IPv6 to connect to remote devices from the Cisco NX-OS device.

Before you begin

Obtain the hostname for the remote device and, if needed, the username on the remote device.

Enable the SSH server on the remote device.

Procedure

	Command or Action	Purpose
Step 1	<pre>ssh [username@]{ipv4-address hostname} [vrf vrf-name]</pre>	Creates an SSH IPv4 session to a remote device using IPv4. The default VRF is the default VRF.
	Example:	
	switch# ssh 10.10.1.1	
Step 2	<pre>ssh6 [username@]{ipv6-address hostname} [vrf vrf-name]</pre>	Creates an SSH IPv6 session to a remote device using IPv6.
	Example:	
	switch# ssh6 HostA	

Starting SSH Sessions from Boot Mode

You can start SSH sessions from the boot mode of the Cisco NX-OS device to connect to remote devices.

Before you begin

Obtain the hostname for the remote device and, if needed, the username on the remote device.

Enable the SSH server on the remote device.

Procedure

	Command or Action	Purpose
Step 1	<pre>ssh [username@]hostname Example: switch(boot) # ssh user1@10.10.1.1</pre>	Creates an SSH session to a remote device from the boot mode of the Cisco NX-OS device. The default VRF is always used.
Step 2	<pre>exit Example: switch(boot) # exit</pre>	Exits boot mode.
Step 3	<pre>copy scp://[username@]hostname/filepath directory Example: switch# copy scp://user1@10.10.1.1/users abc</pre>	Copies a file from the Cisco NX-OS device to a remote device using the Secure Copy Protocol (SCP). The default VRF is always used.

Configuring SSH Passwordless File Copy

You can copy files from a Cisco NX-OS device to a secure copy (SCP) or secure FTP (SFTP) server without a password. To do so, you must create an RSA or DSA identity that consists of public and private keys for authentication with SSH.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] username username keypair generate {rsa [bits [force]] dsa [force]}	Generates the SSH public and private keys and stores them in the home directory
	Example:	(\$HOME/.ssh) of the Cisco NX-OS device for the specified user. The Cisco NX-OS device
	<pre>switch(config)# username user1 keypair generate rsa 2048 force</pre>	uses the keys to communicate with the SSH server on the remote machine.
		The <i>bits</i> argument is the number of bits used to generate the key. The range is from 768 to 2048. The default value is 1024.
		Use the force keyword to replace an existing key. The SSH keys are not generated if the force keyword is omitted and SSH keys are already present.
Step 3	(Optional) show username username keypair	Displays the public key for the specified user.
	<pre>Example: switch(config) # show username user1 keypair</pre>	Note For security reasons, this command does not show the private key.
Step 4	Required: username username keypair export {bootflash:filename volatile:filename} {rsa dsa} [force]	Exports the public and private keys from the home directory of the Cisco NX-OS device to the specified bootflash or volatile directory.
	Example:	Use the force keyword to replace an existing
	<pre>switch(config)# username user1 keypair export bootflash:key_rsa rsa</pre>	key. The SSH keys are not exported if the force keyword is omitted and SSH keys are already present.
		To export the generated key pair, you are prompted to enter a passphrase that encrypts the private key. The private key is exported as the file that you specify, and the public key is exported with the same filename followed by a .pub extension. You can now copy this key pair to any Cisco NX-OS device and use SCP or SFTP to copy the public key file (*.pub) to the home directory of the server.
		Note For security reasons, this command can be executed only from global configuration mode.

	Command or Action	Purpose
Step 5	Required: username username keypair import {bootflash:filename volatile:filename} {rsa dsa} [force] Example:	Imports the exported public and private keys from the specified bootflash or volatile directory to the home directory of the Cisco NX-OS device.
	switch(config) # username user1 keypair import bootflash:key_rsa rsa	Use the force keyword to replace an existing key. The SSH keys are not imported if the force keyword is omitted and SSH keys are already present.
		To import the generated key pair, you are prompted to enter a passphrase that decrypts the private key. The private key is imported as the file that you specify, and the public key is imported with the same filename followed by a .pub extension.
		Note For security reasons, this command can be executed only from global configuration mode.
		Note Only the users whose keys are configured on the server are able to access the server without a password.

What to do next

On the SCP or SFTP server, use the following command to append the public key stored in the *.pub file (for example, key_rsa.pub) to the authorized_keys file:

\$ cat key_rsa.pub >> \$HOME/.ssh/ authorized_keys

You can now copy files from the Cisco NX-OS device to the server without a password using standard SSH and SCP commands.

Configuring SCP and SFTP Servers

You can configure an SCP or SFTP server on the Cisco NX-OS device in order to copy files to and from a remote device. After you enable the SCP or SFTP server, you can execute an SCP or SFTP command on the remote device to copy the files to or from the Cisco NX-OS device.

Note

The arcfour and blowfish cipher options are not supported for the SCP server.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] feature scp-server	Enables or disables the SCP server on the Cisco
	Example:	NX-OS device.
	switch(config)# feature scp-server	
Step 3	Required: [no] feature sftp-server	Enables or disables the SFTP server on the
	Example:	Cisco NX-OS device.
	switch(config)# feature sftp-server	
Step 4	Required: exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 5	(Optional) show running-config security	Displays the configuration status of the SCP
	Example:	and SFTP servers.
	switch# show running-config security	
Step 6	(Optional) copy running-config startup-config	
	Example:	configuration.
	switch# copy running-config startup-config	

Configuring X.509v3 Certificate-Based SSH Authentication

You can configure SSH authentication using X.509v3 certificates. Cisco NX-OS does not support remote TACACS authentication.

Before you begin

Enable the SSH server on the remote device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose	
Step 2	<pre>username user-id [password [0 5] password] Example: switch(config) # username jsmith password 4Ty18Rnt</pre>	Configures a user account. The <i>user-id</i> argument is a case-sensitive, alphanumeric character string with a maximum length of 32 characters for both local and remote users. Valid characters are uppercase letters A through Z, lowercase letters a through z, numbers 0 through 9, hyphen (-), period (.), underscore (_), plus sign (+), and equal sign (=). The at symbol (@) is supported in remote usernames but not in local usernames.	
		Usernames must begin with an underscore (_), which is supported starting with Cisco NX-OS Release 7.0(3)I2(2), or an alphanumeric character.	
		The default password is undefined. The $\bf 0$ option indicates that the password is clear text, and the $\bf 5$ option indicates that the password is encrypted. The default is $\bf 0$ (clear text).	
		Note If you do not specify a password, the user might not be able to log in to the Cisco NX-OS device.	
		Note If you create a user account with the encrypted password option, the corresponding SNMP user will not be created.	
Step 3	<pre>username user-id ssh-cert-dn dn-name {dsa rsa } Example: switch(config) # username jsmith ssh-cert-dn "/O = ABCCompany, OU = ABC1, emailAddress = jsmith@ABCcompany.com, L = Metropolis, ST = New York, C = US, CN = jsmith" rsa</pre>	distinguished name and DSA or RSA algorithm to use for authentication for an existing user account. The distinguished nam can be up to 512 characters and must follow the format shown in the examples. Make sur	
Step 4	[no] crypto ca trustpoint trustpoint	Configures a trustpoint.	
	<pre>Example: switch(config)# crypto ca trustpoint winca switch(config-trustpoint)#</pre>	Note Before you delete a trustpoint using the no form of this command, you must first delete the CRL and CA certificate, using the delete crl and delete ca-certificate commands.	
Step 5	crypto ca authenticate trustpoint	Configures a CA certificate for the trustpoint.	
	<pre>Example: switch(config-trustpoint)# crypto ca authenticate winca</pre>	Note To delete a CA certificate, enter the delete ca-certificate command in the trustpoint configuration mode.	

	Command or Action	Purpose
Step 6	(Optional) crypto ca crl request trustpoint bootflash:static-crl.crl Example: switch(config-trustpoint)# crypto ca crl request winca bootflash:crllist.crl	This command is optional but highly recommended. Configures the certificate revocation list (CRL) for the trustpoint. The CRL file is a snapshot of the list of revoked certificates by the trustpoint. This static CRL list is manually copied to the device from the Certification Authority (CA). Note Static CRL is the only supported revocation check method. Note To delete the CRL, enter the delete crl command.
Step 7	(Optional) show crypto ca certificates Example: switch(config-trustpoint) # show crypto ca certificates	Displays the configured certificate chain and associated trustpoint.
Step 8	(Optional) show crypto ca crl trustpoint Example: switch(config-trustpoint) # show crypto ca crl winca	Displays the contents of the CRL list of the specified trustpoint.
Step 9	(Optional) show user-account Example: switch(config-trustpoint) # show user-account	Displays configured user account details.
Step 10	(Optional) show users Example: switch(config-trustpoint) # show users	Displays the users logged into the device.
Step 11	(Optional) copy running-config startup-config Example: switch(config-trustpoint) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring Legacy SSH Algorithm Support

You can configure support for legacy SSH security algorithms, message authentication codes (MACs), key types, and ciphers.

	Command or Action	Purpose
Step 1	configure terminal	Enters the global configuration mode.
	Example:	
	switch# configure terminal	
Step 2	(Optional) ssh kexalgos [all ecdh-sha2-nistp384]	Use the all keyword to enable all supported KexAlgorithms which are the key exchange methods that are used to generate
	<pre>Example: switch(config) # ssh kexalgos all</pre>	per-connection keys.
	Switch(config) # 35h kekaigos air	Supported KexAlgorithmns are:
		• curve25519-sha256
		diffie-hellman-group-exchange-sha256
		• diffie-hellman-group1-sha1
		diffie-hellman-group14-sha1
		• diffie-hellman-group1-sha1
		• ecdh-sha2-nistp256
		• ecdh-sha2-nistp384
Step 3	(Optional) ssh macs all	Enables all supported MACs which are the
	<pre>Example: switch(config) # ssh macs all</pre>	message authentication codes used to detect traffic modification.
		Supported MACs are:
		• hmac-sha1
Step 4	(Optional) ssh ciphers [all aes256-gcm]	Use the all keyword to enable all supported
	<pre>Example: switch(config) # ssh ciphers all</pre>	ciphers to encrypt the connection.
		Supported ciphers are:
		• aes128-cbc
		• aes192-cbc
		• aes256-cbc
		• aes128-ctr
		• aes192-ctr
		• aes256-ctr
		• aes256-gcm@openssh.com
		• aes128-gcm@openssh.com

	Command or Action	Purpose
		To enable only the aes256-gcm cipher, use the aes256-gcm keyword.
Fyample: PubkeyAcceptedI	Enables all supported	
	Example:	PubkeyAcceptedKeyTypes which are the pukey algorithms that the server can use to
	switch(config)# ssh keytypes all	authenticate itself to the client.
		Supported key types are:
		• ssh-dss
		• ssh-rsa

Clearing SSH Hosts

When you download a file from a server using SCP or SFTP, or when you start an SSH session from this device to a remote host, you establish a trusted SSH relationship with that server. You can clear the list of trusted SSH servers for your user account.

Procedure

	Command or Action	Purpose
Step 1	clear ssh hosts	Clears the SSH host sessions and the known
	Example:	host file.
	switch# clear ssh hosts	

Disabling the SSH Server

By default, the SSH server is enabled on the Cisco NX-OS device. You can disable the SSH server to prevent SSH access to the switch.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no feature ssh	Disables SSH.
	Example:	
	switch(config)# no feature ssh	

	Command or Action	Purpose
Step 3	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show ssh server	Displays the SSH server configuration.
	Example:	
	switch# show ssh server	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Deleting SSH Server Keys

You can delete SSH server keys on the Cisco NX-OS device after you disable the SSH server.

Note

To reenable SSH, you must first generate an SSH server key.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no feature ssh	Disables SSH.
	Example:	
	switch(config)# no feature ssh	
Step 3	no ssh key [dsa rsa]	Deletes the SSH server key.
	Example:	The default is to delete all the SSH keys.
	switch(config)# no ssh key rsa	
Step 4	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	

	Command or Action	Purpose
Step 5	(Optional) show ssh key	Displays the SSH server key configuration.
	Example:	
	switch# show ssh key	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Related Topics

Generating SSH Server Keys, on page 122

Clearing SSH Sessions

You can clear SSH sessions from the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	show users	Displays user session information.
	Example: switch# show users	
Step 2	clear line vty-line	Clears a user SSH session.
	<pre>Example: switch(config)# clear line pts/12</pre>	

Configuring Telnet

This section describes how to configure Telnet on the Cisco NX-OS device.

Enabling the Telnet Server

You can enable the Telnet server on the Cisco NX-OS device. By default, the Telnet server is disabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

Command or Action	Purpose
feature telnet	Enables the Telnet server. The default is disabled.
Example:	
switch(config)# feature telnet	
exit	Exits global configuration mode.
Example:	
<pre>switch(config)# exit switch#</pre>	
(Optional) show telnet server	Displays the Telnet server configuration.
Example:	
switch# show telnet server	
(Optional) copy running-config startup-config	Copies the running configuration to the startup
Example:	configuration.
switch# copy running-config startup-config	
	feature telnet Example: switch(config) # feature telnet exit Example: switch(config) # exit switch# (Optional) show telnet server Example: switch# show telnet server (Optional) copy running-config startup-config Example: switch# copy running-config

Starting Telnet Sessions to Remote Devices

You can start Telnet sessions to connect to remote devices from the Cisco NX-OS device. You can start Telnet sessions using either IPv4 or IPv6.

Before you begin

Obtain the hostname or IP address for the remote device and, if needed, the username on the remote device. Enable the Telnet server on the Cisco NX-OS device.

Enable the Telnet server on the remote device.

	Command or Action	Purpose
Step 1	<pre>telnet {ipv4-address host-name} [port-number] [vrf vrf-name] Example: switch# telnet 10.10.1.1</pre>	Starts a Telnet session to a remote device using IPv4. The default port number is 23. The range is from 1 to 65535. The default VRF is the default VRF.
Step 2	<pre>telnet6 {ipv6-address host-name} [port-number] [vrf vrf-name] Example: switch# telnet6 2001:0DB8::ABCD:1 vrf management</pre>	Starts a Telnet session to a remote device using IPv6. The default port number is 23. The range is from 1 to 65535. The default VRF is the default VRF.

Related Topics

Enabling the Telnet Server, on page 136

Clearing Telnet Sessions

You can clear Telnet sessions from the Cisco NX-OS device.

Before you begin

Enable the Telnet server on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	show users	Displays user session information.
	Example:	
	switch# show users	
Step 2	clear line vty-line	Clears a user Telnet session.
	Example:	
	switch(config)# clear line pts/12	

Verifying the SSH and Telnet Configuration

To display the SSH and Telnet configuration information, perform one of the following tasks:

Command	Purpose		
show ssh key [dsa rsa] [md5]	Displays the SSH server keys.		
	For Cisco NX-OS Release 7.0(3)I4(6) and 7.0(3)I6(1) and any later releases, this command displays the fingerprint in SHA256 format by default. SHA256 is more secure than the old default format of MD5. However, the md5 option has been added, if you want to see the fingerprint in MD5 format for backward compatibility.		
show running-config security [all]	Displays the SSH and user account configuration in the running configuration. The all keyword displays the default values for the SSH and user accounts.		
show ssh server Displays the SSH server configuration.			
show telnet server	Displays the Telnet server configuration.		
show username username keypair	Displays the public key for the specified user.		
show user-account	Displays configured user account details.		
show users	Displays the users logged into the device.		

Command	Purpose
show crypto ca certificates	Displays the configured CA certificate and associated trustpoint for X.509v3 certificate-based SSH authentication.
show crypto ca crl trustpoint	Displays the contents of the CRL list of the specified trustpoint for X.509v3 certificate-based SSH authentication.

Configuration Example for SSH

The following example shows how to configure SSH with an OpenSSH key:

Procedure

Step 1 Disable the SSH server.

Example:

```
switch# configure terminal
switch(config)# no feature ssh
```

Step 2 Generate an SSH server key.

Example:

```
switch(config)# ssh key rsa
generating rsa key(1024 bits).....
generated rsa key
```

Step 3 Enable the SSH server.

Example:

```
switch(config)# feature ssh
```

Step 4 Display the SSH server key.

Example:

SHA256:V6KAeLAiKRRUPBZm1Yq3r16JW7Eo7vhLi6CXYxnD/+Y

Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 7.x

Step 5 Specify the SSH public key in OpenSSH format.

Example:

switch(config)# username User1 sshkey ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAy19oF6QaZ19G+3f1XswK3OiW4H7YyUyuA50r
v7gsEPjhOBYmsi6PAVKui1nIf/DQhum+lJNqJP/eLowb7ubO+lVKRXFY/G+lJNIQ
W3g9igG30c6k6+XVn+NjnI1B7ihvpVh7dLddMOXwOnXHYshXmSiH3UD/vKyziEh5
4Tplx8=

Step 6 Save the configuration.

Example:

switch(config)# copy running-config startup-config

Configuration Example for SSH Passwordless File Copy

The following example shows how to copy files from a Cisco NX-OS device to a secure copy (SCP) or secure FTP (SFTP) server without a password:

Procedure

Step 1 Generate the SSH public and private keys and store them in the home directory of the Cisco NX-OS device for the specified user.

Example:

```
switch# configure terminal
switch(config)# username admin keypair generate rsa
generating rsa key(1024 bits).....
generated rsa key
```

Step 2 Display the public key for the specified user.

Example:

Step 3 Export the public and private keys from the home directory of the Cisco NX-OS device to the specified bootflash directory.

Example:

Step 4 After copying these two files to another Cisco NX-OS device using the **copy scp** or **copy sftp** command, import them to the home directory of the Cisco NX-OS device.

Example:

Step 5 On the SCP or SFTP server, append the public key stored in key_rsa.pub to the authorized_keys file.

Example:

```
$ cat key_rsa.pub >> $HOME/.ssh/ authorized_keys
```

You can now copy files from the Cisco NX-OS device to the server without a password using standard SSH and SCP commands.

Step 6 (Optional) Repeat this procedure for the DSA keys.

Configuration Example for X.509v3 Certificate-Based SSH Authentication

The following example shows how to configure SSH authentication using X.509v3 certificates:

Note

Remote TACACS authentication is not supported. Only SSH v509v3 certificate based authentication is supported.

```
configure terminal
username jsmith password 4Ty18Rnt
username jsmith ssh-cert-dn "/O = ABCcompany, OU = ABC1,
emailAddress = jsmith@ABCcompany.com, L = Metropolis, ST = New York, C = US, CN = jsmith"
crypto ca trustpoint tp1
crypto ca authenticate tp1
crypto ca crl request tpl bootflash:crl1.crl
show crypto ca certificates
Trustpoint: tp1
CA certificate 0:
subject= /CN=SecDevCA
issuer= /CN=SecDevCA
serial=01AB02CD03EF04GH05IJ06KL07MN
notBefore=Jun 29 12:36:26 2016 GMT
notAfter=Jun 29 12:46:23 2021 GMT
SHA1 Fingerprint=47:29:E3:00:C1:C1:47:F2:56:8B:AC:B2:1C:64:48:FC:F4:8D:53:AF
purposes: sslserver sslclient
show crypto ca crl tp1
Trustpoint: tp1 CRL: Certificate Revocation List (CRL):
   Version 2 (0x1)
   Signature Algorithm: shalWithRSAEncryption
   Issuer: /CN=SecDevCA
   Last Update: Aug 8 20:03:15 2016 GMT
   Next Update: Aug 16 08:23:15 2016 GMT
    CRL extensions:
       X509v3 Authority Key Identifier:
           keyid:30:43:AA:80:10:FE:72:00:DE:2F:A2:17:E4:61:61:44:CE:78:FF:2A
show user-account
user:user1
       this user account has no expiry date
       roles:network-operator
       ssh cert DN : /C = US, ST = New York, L = Metropolis, O = cisco , OU = csg, CN =
user1; Algo: x509v3-sign-rsa
show users
NAME LINE
                    TIME
                                             PID
                                                         COMMENT
                                   IDLE
user1
       pts/1
                     Jul 27 18:43 00:03
                                             18796
                                                        (10.10.10.1) session=ssh
```

Additional References for SSH and Telnet

This section describes additional information related to implementing SSH and Telnet.

Related Documents

Related Topic	Document Title	
Cisco NX-OS licensing	Cisco NX-OS Licensing Guide	
VRF configuration	Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide	

RFCs

RFCs	Title
RFC 6187	X.509v3 Certificates for Secure Shell Authentication

MIBs

MIBs	MIBs Link	
MIBs related to SSH and Telnet	To locate and download supported MIBs, go to the following URL:	
	ftp://ftp.cisco.com/pub/mibs/supportlists/nexus9000/ Nexus9000MIBSupportList.html	

Additional References for SSH and Telnet

Configuring User Accounts and RBAC

This chapter describes how to configure user accounts and role-based access control (RBAC) on Cisco NX-OS devices.

This chapter includes the following sections:

- About User Accounts and RBAC, on page 145
- Licensing Requirements for User Accounts and RBAC, on page 148
- Guidelines and Limitations for User Accounts and RBAC, on page 148
- Default Settings for User Accounts and RBAC, on page 149
- Enabling Password-Strength Checking, on page 149
- Configuring User Accounts, on page 150
- Configuring Roles, on page 152
- Verifying User Accounts and RBAC Configuration, on page 160
- Configuration Examples for User Accounts and RBAC, on page 160
- Additional References for User Accounts and RBAC, on page 162

About User Accounts and RBAC

You can create and manage users accounts and assign roles that limit access to operations on the Cisco NX-OS device. RBAC allows you to define the rules for an assign role that restrict the authorization that the user has to access management operations.

User Accounts

You can configure up to a maximum of 256 user accounts. By default, the user account does not expire unless you explicitly configure it to expire. The expire option determines the date when the user account is disabled.

The following words are reserved and cannot be used to configure users: bin, daemon, adm, lp, sync, shutdown, halt, mail, news, uucp, operator, games, gopher, ftp, nobody, nscd, mailnull, root, rpc, rpcuser, xfs, gdm, mtsuser, ftpuser, man, and sys.

Note

User passwords are not displayed in the configuration files.

Caution

Usernames must begin with an alphanumeric character or an underscore (_), which is supported starting with Cisco NX-OS Release 7.0(3)I2(2), and can contain only these special characters: ($+ = . _)$. The # and ! symbols are not supported. If the username contains characters that are not allowed, the specified user is unable to log in.

Characteristics of Strong Passwords

A strong password has the following characteristics:

Note

Special characters, such as the dollar sign (\$) or the percent sign (%), can be used in Cisco Nexus device passwords.

- Is at least eight characters long
- Does not contain many consecutive characters (such as abcd)
- Does not contain many repeating characters (such as aaabbb)
- Does not contain dictionary words
- Does not contain proper names
- Contains both uppercase and lowercase characters
- Contains numbers

The following are examples of strong passwords:

- If2CoM18
- · 2004AsdfLkj30
- · Cb1955S21

Note

Clear text passwords cannot include these special characters at the beginning of the password: quotation marks (" or '), vertical bars (|), or right angle brackets (>). If a password is trivial (such as a short, easy-to-decipher password), the Cisco NX-OS software will reject your password configuration if password-strength checking is enabled. Be sure to configure a strong password as shown in the sample configuration. Passwords are case-sensitive.

Note

All printable ASCII characters are supported in the password string if they are enclosed in quotation marks.

Related Topics

Enabling Password-Strength Checking, on page 149

User Roles

User roles contain rules that define the operations allowed for the user who is assigned the role. Each user role can contain multiple rules, and each user can have multiple roles. For example, if role1 allows access only to configuration operations, and role2 allows access only to debug operations, then users who belong to both role1 and role2 can access configuration and debug operations. You can also limit access to specific virtual routing and forwarding instances (VRFs), VLANs, and interfaces.

The Cisco NX-OS software provides the following user roles:

- network-admin—Complete read-and-write access to the entire Cisco NX-OS device
- network-operator or vdc-operator—Complete read access to the entire Cisco NX-OS device

Note

- The Cisco Nexus 9000 Series switches do not support multiple VDCs; however, the vdc-operator role is available and has the same privileges and limitations as the network-operator role.
- The Cisco Nexus 9000 Series switches support a single VDC due to which the vdc-admin has the same privileges and limitations as the network-admin.

Note

You cannot change the user roles.

Note

Some **show** commands may be hidden from network-operator users. In addition, some non-**show** commands (such as **telnet**) may be available for this user role.

By default, the user accounts without an administrator role can access only the **show**, **exit**, **end**, and **configure terminal** commands. You can add rules to allow users to configure features.

Note

If you belong to multiple roles, you can execute a combination of all the commands permitted by these roles. Access to a command takes priority over being denied access to a command. For example, suppose a user has RoleA, which denied access to the configuration commands. However, the user also has RoleB, which has access to the configuration commands. In this case, the user has access to the configuration commands.

User Role Rules

The rule is the basic element of a role. A rule defines what operations the role allows the user to perform. You can apply rules for the following parameters:

Command

A command or group of commands defined in a regular expression.

Feature

A command or group of commands defined in a regular expression.

Feature group

Default or user-defined group of features.

OID

An SNMP object identifier (OID).

The command, feature, and feature group parameters create a hierarchical relationship. The most basic control parameter is the command. The next control parameter is the feature, which represents all commands associated with the feature. The last control parameter is the feature group. The feature group combines related features and allows you to easily manage the rules. The Cisco NX-OS software also supports the predefined feature group L3 that you can use.

SNMP OID is supported for RBAC. You can configure a read-only or read-and-write rule for an SNMP OID.

You can configure up to 256 rules for each role. The user-specified rule number determines the order in which the rules are applied. Rules are applied in descending order. For example, if a role has three rules, rule 3 is applied before rule 2, which is applied before rule 1.

Licensing Requirements for User Accounts and RBAC

The following table shows the licensing requirements for this feature:

Product	License Requirement	
Cisco NX-O	User accounts and RBAC require no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .	

Guidelines and Limitations for User Accounts and RBAC

User accounts and RBAC have the following configuration guidelines and limitations:

- You can add up to 256 rules to a user role.
- You can add up to 64 user-defined feature groups in addition to the default feature group, L3.
- You can configure up to 256 users.
- You can assign a maximum of 64 user roles to a user account.
- If you have a user account configured on the local Cisco NX-OS device that has the same name as a
 remote user account on an AAA server, the Cisco NX-OS software applies the user roles for the local
 user account to the remote user, not the user roles configured on the AAA server.
- You cannot delete the default admin and SNMP user accounts.
- You cannot remove the default user roles from the default admin user accounts.
- The network-operator role cannot run the show running-config and show startup-config commands.
- The Cisco Nexus 9000 Series switches support a single VDC due to which the vdc-admin has the same privileges and limitations as the network-admin.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Default Settings for User Accounts and RBAC

This table lists the default settings for user accounts and RBAC parameters.

Table 10: Default User Accounts and RBAC Parameters

Parameters	Default
User account password	Undefined
User account expiry date	None
User account role	Network-operator if the creating user has the network-admin role
Default user role	Network-operator
Interface policy	All interfaces are accessible
VLAN policy	All VLANs are accessible
VRF policy	All VRFs are accessible
Feature group	L3

Enabling Password-Strength Checking

You can enable password-strength checking which prevents you from creating weak passwords for user accounts.

Note

When you enable password-strength checking, the Cisco NX-OS software does not check the strength of existing passwords.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	<pre>password strength-check Example: switch(config) # password strength-check</pre>	Enables password-strength checking. The default is enabled. You can disable password-strength checking by using the no form of this command.
Step 3	<pre>exit Example: switch(config) # exit switch#</pre>	Exits global configuration mode.
Step 4	(Optional) show password strength-check Example: switch# show password strength-check	Displays the password-strength check configuration.
Step 5	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Related Topics

Characteristics of Strong Passwords, on page 146

Configuring User Accounts

You can create a maximum of 256 user accounts on a Cisco NX-OS device. User accounts have the following attributes:

- Username
- · Password
- · Expiry date
- · User roles

You can enter the password in clear text format or encrypted format. The Cisco NX-OS password encrypts clear text passwords before saving them to the running configuration. Encrypted format passwords are saved to the running configuration without further encryption. Beginning with Cisco NX-OS Release 7.0(3)I2(1), the SHA256 hashing method, which is stronger than MD5 hashing, is used to encrypt user passwords. As a part of the encryption, a 5000 iteration of 64-bit SALT is added to the password.

User accounts can have a maximum of 64 user roles. The user can determine what commands are available by using the command-line interface (CLI) context sensitive help utility.

Note

Changes to user account attributes do not take effect until the user logs in and creates a new session.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	(Optional) show role		lys the user roles available. You can
	Example:	config	gure other user roles, if necessary.
	switch(config)# show role		
Step 3	username user-id [password [0 5] password] [expire date] [role role-name]	Configures a user account. The <i>user-id</i> argument is a case-sensitive, alphanumeric	
	Example:		eter string with a maximum length of 32
	switch(config)# username NewUser password 4Ty18Rnt	characters for both local and remote users. Valid characters are uppercase letters A through Z, lowercase letters a through z, numbers 0 through 9, hyphen (-), period (.), underscore (_), plus sign (+), and equal sign (=). The at symbol (@) is supported in usernames.	
		which	ames must begin with an underscore (_), is supported starting with Cisco NX-OS se 7.0(3)I2(2), or an alphanumeric eter.
		The default password is undefined. The 0 option indicates that the password is clear text, and the 5 option indicates that the password is SHA-256 hashed. The default is 0 (clear text).	
		Note	If you do not specify a password, the user might not be able to log in to the Cisco NX-OS device.
		Note	If you create a user account with the encrypted password option, the corresponding SNMP user will not be created.
		ı	xpire <i>date</i> option format is Y-MM-DD. The default is no expiry date.
		User a roles.	accounts can have a maximum of 64 user
Step 4	username user-id ssh-cert-dn dn-name {dsa rsa}	Specifies an SSH X.509 certificate distinguished name and DSA or RSA algorithm to use for authentication for an existing user account. The distinguished name can be up to 512 characters	
	Example:		

Command or Action	Purpose
<pre>switch(config) # username NewUser ssh-cert-dn "/CN = NewUser, OU = Cisco Demo, O = Cisco, C = US" rsa Example:</pre>	and must follow the format shown in the examples. Make sure the email address and state are configured as emailAddress and ST, respectively.
<pre>switch(config)# username jsmith ssh-cert-dn "/O = ABCcompany, OU = ABC1, emailAddress = jsmith@ABCcompany.com, L = Metropolis, ST = New York, C = US, CN = jsmith" rsa</pre>	
exit	Exits global configuration mode.
<pre>Example: switch(config)# exit switch#</pre>	
(Optional) show user-account	Displays the role configuration.
Example: switch# show user-account	
(Optional) copy running-config startup-config Example: switch# copy running-config	Copies the running configuration to the startup configuration.
	switch (config) # username NewUser ssh-cert-dn "/CN = NewUser, OU = Cisco Demo, O = Cisco, C = US" rsa Example: switch (config) # username jsmith ssh-cert-dn "/O = ABCcompany, OU = ABC1, emailAddress = jsmith@ABCcompany.com, L = Metropolis, ST = New York, C = US, CN = jsmith" rsa exit Example: switch (config) # exit switch# (Optional) show user-account Example: switch# show user-account (Optional) copy running-config startup-config Example:

Related Topics

Configuring Roles, on page 152

Creating User Roles and Rules, on page 152

Configuring Roles

This section describes how to configure user roles.

Creating User Roles and Rules

You can configure up to 64 user roles. Each user role can have up to 256 rules. You can assign a user role to more than one user account.

The rule number that you specify determines the order in which the rules are applied. Rules are applied in descending order. For example, if a role has three rules, rule 3 is applied before rule 2, which is applied before rule 1.

When processing an RBACL for a match, a partial match does not stop the evaluation process. Evaluation continues through each rule until an exact match is found. If no exact match is found, the most precise rule in the list will be chosen for the result. Also, if a permit and deny rule exists for the same match logic, the higher numbered rule (evaluated first) will be chosen for the result.

Note

Regardless of the read-write rule configured for a user role, some commands can be executed only through the predefined network-admin role.

Before you begin

If you want to distribute the user role configuration, enable user role configuration distribution on all Cisco NX-OS devices to which you want the configuration distributed.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	role name role-name	Specifies a user role and enters role
	Example:	configuration mode. The <i>role-name</i> argument is a case-sensitive, alphanumeric character
	<pre>switch(config)# role name UserA switch(config-role)#</pre>	string with a maximum length of 16 characters.
Step 3	rule number {deny permit} command	Configures a command rule.
	command-string	The command-string argument can contain
	Example:	spaces and regular expressions. For example, interface ethernet includes all Ethernet
	<pre>switch(config-role)# rule 1 deny command clear users</pre>	interfaces.
		Repeat this command for as many rules as needed.
Step 4	rule number {deny permit} {read read-write}	Configures a read-only or read-and-write rule for all operations.
	Example:	
	<pre>switch(config-role)# rule 2 deny read-write</pre>	
Step 5	rule number {deny permit} {read read-write} feature feature-name	Configures a read-only or read-and-write rule for a feature.
	Example:	Use the show role feature command to display
	switch(config-role) # rule 3 permit read	a list of features.
	feature router-bgp	Repeat this command for as many rules as needed.
Step 6	rule number {deny permit} {read	Configures a read-only or read-and-write rule
	read-write} feature-group group-name	for a feature group.
	Example:	

	Command or Action	Purpose
	switch(config-role)# rule 4 deny read-write feature-group L3	Use the show role feature-group command to display a list of feature groups.
		Repeat this command for as many rules as needed.
Step 7	<pre>rule number {deny permit} {read read-write} oid snmp_oid_name Example: switch (config-role) # rule 5 deny read-write oid 1.3.6.1.2.1.1.9</pre>	Configures a read-only or read-and-write rule for an SNMP object identifier (OID). You can enter up to 32 elements for the OID. This command can be used to allow SNMP-based performance monitoring tools to poll devices but restrict their access to system-intensive branches such as the IP routing table, MAC address tables, specific MIBs, and so on. Note The deepest OID can be at the scalar level or at the table root level. Repeat this command for as many rules as needed.
Step 8	(Optional) description text Example: switch (config-role) # description This role does not allow users to use clear commands	Configures the role description. You can include spaces in the description.
Step 9	<pre>exit Example: switch(config-role) # exit switch(config) #</pre>	Exits role configuration mode.
Step 10	(Optional) show role Example: switch(config) # show role	Displays the user role configuration.
Step 11	(Optional) show role {pending pending-diff} Example: switch(config) # show role pending	Displays the user role configuration pending for distribution.
Step 12	(Optional) role commit Example: switch(config) # role commit	Applies the user role configuration changes in the temporary database to the running configuration.
Step 13	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	

Command or Action	Purpose
<pre>switch(config)# copy running-config startup-config</pre>	

Creating Feature Groups

You can create custom feature groups to add to the default list of features provided by the Cisco NX-OS software. These groups contain one or more of the features. You can create up to 64 feature groups.

Note

You cannot change the default feature group L3.

Before you begin

If you want to distribute the user role configuration, enable user role configuration distribution on all Cisco NX-OS devices to which you want the configuration distributed.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	role feature-group name group-name Example:	Specifies a user role feature group and enters role feature group configuration mode.
	<pre>switch(config)# role feature-group name GroupA switch(config-role-featuregrp)#</pre>	The <i>group-name</i> argument is a case-sensitive, alphanumeric character string with a maximum length of 32 characters.
Step 3	feature feature-name	Specifies a feature for the feature group.
	<pre>Example: switch(config-role-featuregrp) # feature</pre>	Repeat this command for as many features as needed.
	radius	Note Use the show role component command to display a list of features.
Step 4	exit	Exits role feature group configuration mode.
	Example:	
	<pre>switch(config-role-featuregrp)# exit switch(config)#</pre>	
Step 5	(Optional) show role feature-group	Displays the role feature group configuration.
	Example:	
	switch(config)# show role feature-group	

	Command or Action	Purpose
Step 6	<pre>(Optional) show role {pending pending-diff} Example: switch(config) # show role pending</pre>	Displays the user role configuration pending for distribution.
Step 7	(Optional) role commit Example: switch(config) # role commit	Applies the user role configuration changes in the temporary database to the running configuration.
Step 8	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Changing User Role Interface Policies

You can change a user role interface policy to limit the interfaces that the user can access. By default, a user role allows access to all interfaces.

Before you begin

Create one or more user roles.

If you want to distribute the user role configuration, enable user role configuration distribution on all Cisco NX-OS devices to which you want the configuration distributed.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	role name role-name	Specifies a user role and enters role
	Example:	configuration mode.
	<pre>switch(config)# role name UserA switch(config-role)#</pre>	
Step 3	interface policy deny	Enters role interface policy configuration mode.
	Example:	
	<pre>switch(config-role)# interface policy deny switch(config-role-interface)#</pre>	
Step 4	permit interface interface-list	Specifies a list of interfaces that the role can
	Example:	access.

	Command or Action	Purpose
	<pre>switch(config-role-interface)# permit interface ethernet 2/1-4</pre>	Repeat this command for as many interfaces as needed.
Step 5	exit	Exits role interface policy configuration mode.
	<pre>Example: switch(config-role-interface)# exit switch(config-role)#</pre>	
Step 6	(Optional) show role	Displays the role configuration.
	<pre>Example: switch(config-role) # show role</pre>	
Step 7	<pre>(Optional) show role {pending pending-diff} Example: switch(config-role) # show role pending</pre>	Displays the user role configuration pending for distribution.
Step 8	(Optional) role commit Example: switch(config-role) # role commit	Applies the user role configuration changes in the temporary database to the running configuration.
Step 9	(Optional) copy running-config startup-config Example: switch(config-role) # copy running-config startup-config	configuration.

Related Topics

Creating User Roles and Rules, on page 152

Changing User Role VLAN Policies

You can change a user role VLAN policy to limit the VLANs that the user can access. By default, a user role allows access to all VLANs.

Before you begin

Create one or more user roles.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	role name role-name	Specifies a user role and enters role
	Example:	configuration mode.
	<pre>switch(config)# role name UserA switch(config-role)#</pre>	
Step 3	vlan policy deny	Enters role VLAN policy configuration mode.
	Example:	
	<pre>switch(config-role)# vlan policy deny switch(config-role-vlan)#</pre>	
Step 4	permit vlan vlan-list	Specifies a range of VLANs that the role can
	Example:	access.
	<pre>switch(config-role-vlan)# permit vlan 1-4</pre>	Repeat this command for as many VLANs as needed.
Step 5	exit	Exits role VLAN policy configuration mode.
	Example:	
	<pre>switch(config-role-vlan)# exit switch(config-role)#</pre>	
Step 6	(Optional) show role	Displays the role configuration.
	Example:	
	switch(config)# show role	
Step 7	(Optional) show role {pending pending-diff}	Displays the user role configuration pending
	Example:	for distribution.
	switch(config-role)# show role pending	
Step 8	(Optional) role commit	Applies the user role configuration changes in
	Example:	the temporary database to the running
	switch(config-role)# role commit	configuration.
Step 9	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch(config-role)# copy running-config startup-config	

Related Topics

Creating User Roles and Rules, on page 152

Changing User Role VRF Policies

You can change a user role VRF policy to limit the VRFs that the user can access. By default, a user role allows access to all VRFs.

Before you begin

Create one or more user roles.

If you want to distribute the user role configuration, enable user role configuration distribution on all Cisco NX-OS devices to which you want the configuration distributed.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	role name role-name	Specifies a user role and enters role
	Example:	configuration mode.
	<pre>switch(config) # role name UserA switch(config-role) #</pre>	
Step 3	vrf policy deny	Enters role VRF policy configuration mode.
	Example:	
	<pre>switch(config-role)# vrf policy deny switch(config-role-vrf)#</pre>	
Step 4	permit vrf vrf-name	Specifies the VRF that the role can access.
	Example:	Repeat this command for as many VRFs as
	switch(config-role-vrf)# permit vrf vrf1	needed.
Step 5	exit	Exits role VRF policy configuration mode.
	Example:	
	<pre>switch(config-role-vrf)# exit switch(config-role)#</pre>	
Step 6	(Optional) show role	Displays the role configuration.
	Example:	
	switch(config-role)# show role	
Step 7	(Optional) show role {pending pending-diff}	Displays the user role configuration pending
	Example:	for distribution.
	switch(config-role)# show role pending	
Step 8	(Optional) role commit	Applies the user role configuration changes in
	Example:	the temporary database to the running configuration.
	switch(config-role)# role commit	3
Step 9	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.

Command or Action	Purpose
<pre>switch(config-role)# copy running-config startup-config</pre>	

Related Topics

Creating User Roles and Rules, on page 152

Verifying User Accounts and RBAC Configuration

To display user account and RBAC configuration information, perform one of the following tasks:

Command	Purpose
show cli syntax roles network-admin	Displays the syntax of the commands that the network-admin role can use.
show cli syntax roles network-operator	Displays the syntax of the commands that the network-operator role can use.
show role	Displays the user role configuration.
show role feature	Displays the feature list.
show role feature-group	Displays the feature group configuration.
show startup-config security	Displays the user account configuration in the startup configuration.
show running-config security [all]	Displays the user account configuration in the running configuration. The all keyword displays the default values for the user accounts.
show user-account	Displays user account information.

Configuration Examples for User Accounts and RBAC

The following example shows how to configure a user role:

```
role name User-role-A
  rule 2 permit read-write feature bgp
  rule 1 deny command clear *
```

The following example shows how to create a user role that can configure an interface to enable and show BGP and show EIGRP:

```
role name iftest
  rule 1 permit command config t; interface *; bgp *
  rule 2 permit read-write feature bgp
  rule 3 permit read feature eigrp
```

In the above example, rule 1 allows you to configure BGP on an interface, rule 2 allows you to configure the **config bgp** command and enable the exec-level **show** and **debug** commands for BGP, and rule 3 allows you to enable the exec-level **show** and **debug eigrp** commands.

The following example shows how to configure a user role that can configure only a specific interface:

```
role name Int_Eth2-3_only
  rule 1 permit command configure terminal; interface *
  interface policy deny
    permit interface Ethernet2/3
```

The following example shows how to configure a user role feature group:

```
role feature-group name Security-features
  feature radius
  feature tacacs
  feature aaa
  feature acl
  feature access-list
```

The following example shows how to configure a user account:

```
username user1 password A1s2D4f5 role User-role-A
```

The following example shows how to add an OID rule to restrict access to part of the OID subtree:

```
role name User1
  rule 1 permit read feature snmp
  rule 2 deny read oid 1.3.6.1.2.1.1.9
  show role name User1

Role: User1
  Description: new role
  Vlan policy: permit (default)
  Interface policy: permit (default)
  Vrf policy: permit (default)

Rule Perm Type Scope Entity

2 deny read oid 1.3.6.1.2.1.1.9
  1 permit read feature snmp
```

The following example shows how to give write permission to a specified OID subtree:

```
role name User1
rule 3 permit read-write oid 1.3.6.1.2.1.1.5
show role name User1
Role: User1
   Description: new role
```

Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

3 permit read-write oid 1.3.6.1.2.1.1.5
2 deny read oid 1.3.6.1.2.1.1.9
1 permit read feature snmp

Additional References for User Accounts and RBAC

This section includes additional information related to implementing user accounts and RBAC.

Related Documents

Related Topic	Document Title
Cisco NX-OS Licensing	Cisco NX-OS Licensing Guide
VRF configuration	Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	_

MIBs

MIBs	MIBs Link
RBAC	To locate and download supported MIBs, go to the following URL: ftp://ftp.cisco.com/pub/mibs/supportlists/nexus9000/Nexus9000MIBSupportList.html

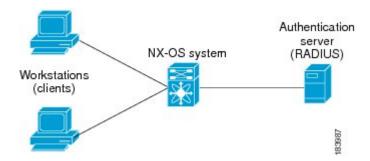
Configuring 802.1X

This chapter describes how to configure IEEE 802.1X port-based authentication on Cisco NX-OS devices.

This chapter includes the following sections:

- About 802.1X, on page 163
- Prerequisites for 802.1X, on page 167
- 802.1X Guidelines and Limitations, on page 167
- Default Settings for 802.1X, on page 169
- Configuring 802.1X, on page 170
- Verifying the 802.1X Configuration, on page 186
- Monitoring 802.1X, on page 187
- Configuration Example for 802.1X, on page 187
- Additional References for 802.1X, on page 188

About 802.1X


802.1X defines a client-server based access control and authentication protocol that restricts unauthorized clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates each client connected to a Cisco NX-OS device port.

Until the client is authenticated, 802.1X access control allows only Extensible Authentication Protocol over LAN (EAPOL) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

Device Roles

With 802.1X port-based authentication, the devices in the network have specific roles.

Figure 5: 802.1X Device Roles

The specific roles are as follows:

Supplicant

The client device that requests access to the LAN and Cisco NX-OS device services and responds to requests from the Cisco NX-OS device. The workstation must be running 802.1X-compliant client software such as that offered in the Microsoft Windows XP operating device.

Authentication server

The authentication server performs the actual authentication of the supplicant. The authentication server validates the identity of the supplicant and notifies the Cisco NX-OS device regarding whether the supplicant is authorized to access the LAN and Cisco NX-OS device services. Because the Cisco NX-OS device acts as the proxy, the authentication service is transparent to the supplicant. The Remote Authentication Dial-In User Service (RADIUS) security device with Extensible Authentication Protocol (EAP) extensions is the only supported authentication server; it is available in Cisco Secure Access Control Server, version 3.0. RADIUS uses a supplicant-server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients.

Authenticator

The authenticator controls the physical access to the network based on the authentication status of the supplicant. The authenticator acts as an intermediary (proxy) between the supplicant and the authentication server, requesting identity information from the supplicant, verifying the requested identity information with the authentication server, and relaying a response to the supplicant. The authenticator includes the RADIUS client, which is responsible for encapsulating and decapsulating the EAP frames and interacting with the authentication server.

When the authenticator receives EAPOL frames and relays them to the authentication server, the authenticator strips off the Ethernet header and encapsulates the remaining EAP frame in the RADIUS format. This encapsulation process does not modify or examine the EAP frames, and the authentication server must support EAP within the native frame format. When the authenticator receives frames from the authentication server, the authenticator removes the server's frame header, leaving the EAP frame, which the authenticator then encapsulates for Ethernet and sends to the supplicant.

Note

The Cisco NX-OS device can only be an 802.1X authenticator.

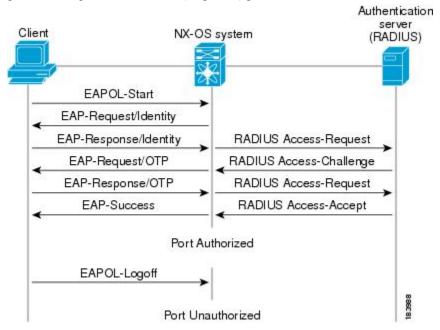
Authentication Initiation and Message Exchange

Either the authenticator (Cisco NX-OS device) or the supplicant (client) can initiate authentication. If you enable authentication on a port, the authenticator must initiate authentication when it determines that the port link state transitions from down to up. The authenticator then sends an EAP-request/identity frame to the

supplicant to request its identity (typically, the authenticator sends an initial identity/request frame followed by one or more requests for authentication information). When the supplicant receives the frame, it responds with an EAP-response/identity frame.

If the supplicant does not receive an EAP-request/identity frame from the authenticator during bootup, the supplicant can initiate authentication by sending an EAPOL-start frame, which prompts the authenticator to request the supplicant's identity.

Note


If 802.1X is not enabled or supported on the network access device, the Cisco NX-OS device drops any EAPOL frames from the supplicant. If the supplicant does not receive an EAP-request/identity frame after three attempts to start authentication, the supplicant transmits data as if the port is in the authorized state. A port in the authorized state means that the supplicant has been successfully authenticated.

When the supplicant supplies its identity, the authenticator begins its role as the intermediary, passing EAP frames between the supplicant and the authentication server until authentication succeeds or fails. If the authentication succeeds, the authenticator port becomes authorized.

The specific exchange of EAP frames depends on the authentication method being used.

Figure 6: Message Exchange

This figure shows a message exchange initiated by the supplicant using the One-Time-Password (OTP) authentication method with a RADIUS server. The OTP authentication device uses a secret pass-phrase to generate a sequence of one-time (single use) passwords.

The user's secret pass-phrase never crosses the network at any time such as during authentication or during pass-phrase changes.

Authenticator PAE Status for Interfaces

When you enable 802.1X on an interface, the Cisco NX-OS software creates an authenticator port access entity (PAE) instance. An authenticator PAE is a protocol entity that supports authentication on the interface. When you disable 802.1X on the interface, the Cisco NX-OS software does not automatically clear the authenticator PAE instances. You can explicitly remove the authenticator PAE from the interface and then reapply it, as needed.

Ports in Authorized and Unauthorized States

The authenticator port state determines if the supplicant is granted access to the network. The port starts in the unauthorized state. In this state, the port disallows all ingress and egress traffic except for 802.1X protocol packets. When a supplicant is successfully authenticated, the port transitions to the authorized state, allowing all traffic for the supplicant to flow normally.

If a client that does not support 802.1X is connected to an unauthorized 802.1X port, the authenticator requests the client's identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1X-enabled client connects to a port that is not running the 802.1X protocol, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

Ports can have the following authorization states:

Force authorized

Disables 802.1X port-based authentication and transitions to the authorized state without requiring any authentication exchange. The port transmits and receives normal traffic without 802.1X-based authentication of the client. This authorization state is the default.

Force unauthorized

Causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The authenticator cannot provide authentication services to the client through the interface.

Auto

Enables 802.1X port-based authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port transitions from down to up or when an EAPOL-start frame is received from the supplicant. The authenticator requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each supplicant that attempts to access the network is uniquely identified by the authenticator by using the supplicant's MAC address.

If the supplicant is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated supplicant are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the authenticator can retransmit the request. If no response is received from the server after the specified number of attempts, authentication fails, and the supplicant is not granted network access.

When a supplicant logs off, it sends an EAPOL-logoff message, which causes the authenticator port to transition to the unauthorized state.

If the link state of a port transitions from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.

Single Host and Multiple Hosts Support

The 802.1X feature can restrict traffic on a port to only one endpoint device (single-host mode) or allow traffic from multiple endpoint devices on a port (multi-host mode).

Single-host mode allows traffic from only one endpoint device on the 802.1X port. Once the endpoint device is authenticated, the Cisco NX-OS device puts the port in the authorized state. When the endpoint device leaves the port, the Cisco NX-OS device put the port back into the unauthorized state. A security violation in 802.1X is defined as a detection of frames sourced from any MAC address other than the single MAC address authorized as a result of successful authentication. In this case, the interface on which this security association violation is detected (EAPOL frame from the other MAC address) will be disabled. Single host mode is applicable only for host-to-switch topology and when a single host is connected to the Layer 2 (Ethernet access port) or Layer 3 port (routed port) of the Cisco NX-OS device.

Only the first host has to be authenticated on the 802.1X port configured with multiple host mode. The port is moved to the authorized state after the successful authorization of the first host. Subsequent hosts are not required to be authorized to gain network access once the port is in the authorized state. If the port becomes unauthorized when reauthentication fails or an EAPOL logoff message is received, all attached hosts are denied access to the network. The capability of the interface to shut down upon security association violation is disabled in multiple host mode. This mode is applicable for both switch-to-switch and host-to-switch topologies.

Supported Topology

The 802.1X port-based authentication supports point-to-point topology.

In this configuration, only one supplicant (client) can connect to the 802.1X-enabled authenticator (Cisco NX-OS device) port. The authenticator detects the supplicant when the port link state changes to the up state. If a supplicant leaves or is replaced with another supplicant, the authenticator changes the port link state to down, and the port returns to the unauthorized state.

Prerequisites for 802.1X

• Cisco Nexus Release 7.0(3)I7(1) software.

802.1X Guidelines and Limitations

802.1X port-based authentication has the following guidelines and limitations:

- Cisco Nexus 7.0(3)I7(1) series switches do not support 802.1X on the following:
 - Transit topology set UPS
 - FEX ports
 - vPC ports
 - PVLAN ports
 - L3 (routed) ports

- Port security
- · Ports enabled with CTS and MACsec.
- Dot1x with LACP port-channels.

Note

Dot1x supports static port-channels.

Note

You must disable 802.1X on FEX and vPC ports, and the unsupported features.

- The Cisco NX-OS software supports 802.1X authentication only on physical ports.
- The Cisco NX-OS software does not support 802.1X authentication on port channels or subinterfaces.
- The Cisco NX-OS software supports 802.1X authentication on member ports of a port channel but not on the port channel itself.
- When the members are configured for 802.1X, Cisco NX-OS software does not support configuring single-host mode on port channel members. Only multi-host mode is supported on the member ports.
- Member ports with and without 802.1X configuration can coexist in a port channel. However, you must ensure the identical 802.1X configuration on all the member ports in order for channeling to operate with 802.1X.
- When you enable 802.1X authentication, supplicants are authenticated before any other Layer 2 or Layer 3 features are enabled on an Ethernet interface.
- The Cisco NX-OS software supports 802.1X authentication only on Ethernet interfaces that are in a port channel, a trunk, or an access port.
- The Cisco NX-OS software supports 802.1X authentication only on Ethernet interfaces that are in a port channel or a trunk or an access port.
- The Cisco NX-OS software does not support single host mode on trunk interfaces or member interfaces in a port channel.
- The Cisco NX-OS software does not support MAC address authentication bypass on trunk interfaces.
- The Cisco NX-OS software does not support MAC address authentication bypass on a port channel.
- The Cisco NX-OS software does not support Dot1x on vPC ports and MCT.
- During a switch reload, Dot1x does not generate RADIUS accounting stops.
- The Cisco NX-OS software does not support the following 802.1X protocol enhancements:
 - One-to-many logical VLAN name to ID mapping
 - Web authorization
 - Dynamic domain bridge assignment
 - IP telephony

• Guest VLANs

Default Settings for 802.1X

This table lists the default settings for 802.1X parameters.

Table 11: Default 802.1X Parameters

Parameters	Default
802.1X feature	Disabled
AAA 802.1X authentication method	Not configured
Per-interface 802.1X protocol enable state	Note The port transmits and receives normal traffic without 802.1X-based authentication of the supplicant.
Periodic reauthentication	Disabled
Number of seconds between reauthentication attempts	3600 seconds
Quiet timeout period	60 seconds (number of seconds that the Cisco NX-OS device remains in the quiet state following a failed authentication exchange with the supplicant)
Retransmission timeout period	30 seconds (number of seconds that the Cisco NX-OS device should wait for a response to an EAP request/identity frame from the supplicant before retransmitting the request)
Maximum retransmission number	2 times (number of times that the Cisco NX-OS device will send an EAP-request/identity frame before restarting the authentication process)
Host mode	Single host
Supplicant timeout period	30 seconds (when relaying a request from the authentication server to the supplicant, the amount of time that the Cisco NX-OS device waits for a response before retransmitting the request to the supplicant)
Authentication server timeout period	30 seconds (when relaying a response from the supplicant to the authentication server, the amount of time that the Cisco NX-OS device waits for a reply before retransmitting the response to the server)

Configuring 802.1X

This section describes how to configure the 802.1X feature.

Process for Configuring 802.1X

This section describes the process for configuring 802.1X.

Procedure

- **Step 1** Enable the 802.1X feature.
- **Step 2** Configure the connection to the remote RADIUS server.
- **Step 3** Enable 802.1X feature on the Ethernet interfaces.

Enabling the 802.1X Feature

You must enable the 802.1X feature on the Cisco NX-OS device before authenticating any supplicant devices.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	feature dot1x	Enables the 802.1X feature. The default is
	Example:	disabled.
	<pre>switch(config)# feature dot1x</pre>	
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show dot1x	Displays the 802.1X feature status.
	Example:	
	switch# show dot1x	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startul configuration.
	Example:	
	<pre>switch# copy running-config startup-config</pre>	

Configuring AAA Authentication Methods for 802.1X

You can use remote RADIUS servers for 802.1X authentication. You must configure RADIUS servers and RADIUS server groups and specify the default AAA authentication method before the Cisco NX-OS device can perform 802.1X authentication.

Before you begin

Obtain the names or addresses for the remote RADIUS server groups.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	aaa authentication dot1x default group group-list	Specifies the RADIUS server groups to use for 802.1X authentication.
	Example:	The group-list argument consists of a
	<pre>switch(config)# aaa authentication dot1x default group rad2</pre>	space-delimited list of group names. The group names are the following:
		• radius—Uses the global pool of RADIUS servers for authentication.
		• named-group —Uses the global pool of RADIUS servers for authentication.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show radius-server	Displays the RADIUS server configuration.
	Example:	
	switch# show radius-server	
Step 5	(Optional) show radius-server group [group-name]	Displays the RADIUS server group configuration.
	Example:	
	switch# show radius-server group rad2	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Controlling 802.1X Authentication on an Interface

You can control the 802.1X authentication performed on an interface. An interface can have the following 802.1X authentication states:

Auto

Enables 802.1X authentication on the interface.

Force-authorized

Disables 802.1X authentication on the interface and allows all traffic on the interface without authentication. This state is the default.

Force-unauthorized

Disallows all traffic on the interface.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface ethernet slot / port	Selects the interface to configure and enters interface configuration mode.
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	dot1x port-control {auto force-authorized forced-unauthorized}	Changes the 802.1X authentication state on the interface. The default is force-authorized.
	Example:	
	<pre>switch(config-if)# dot1x port-control auto</pre>	
Step 4	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 5	(Optional) show dot1x all	Displays all 802.1X feature status and
	Example:	configuration information.
	switch# show dot1x all	
Step 6	(Optional) show dot1x interface ethernet slot / port	Displays 802.1X feature status and configuration information for an interface.
	Example:	

	Command or Action	Purpose
	switch# show dot1x interface ethernet 2/1	
Step 7	Step 7 (Optional) copy running-config startup-config Copies the running	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Creating or Removing an Authenticator PAE on an Interface

You can create or remove the 802.1X authenticator port access entity (PAE) instance on an interface.

Note

By default, the Cisco NX-OS software creates the authenticator PAE instance on the interface when you enable 802.1X on an interface.

Before you begin

Enable the 802.1X feature.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	(Optional) show dot1x interface ethernet slot/port	Displays the 802.1X configuration on the interface.
	Example:	
	switch# show dolx interface ethernet 2/1	
Step 3	interface ethernet slot/port	Selects the interface to configure and enters
	Example:	interface configuration mode.
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 4	[no] dot1x pae authenticator	Creates an authenticator PAE instance on the
	Example:	interface. Use the no form to remove the PA
	switch(config-if)# dot1x pae	instance from the interface.
	authenticator	Note If an authenticator PAE already exists on the interface the dot1x pae authentication command does not change the configuration on the interface.

	Command or Action	Purpose
Step 5	(Optional) copy running-config startup-config	-
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling Periodic Reauthentication for an Interface

You can enable periodic 802.1X reauthentication on an interface and specify how often it occurs. If you do not specify a time period before enabling reauthentication, the number of seconds between reauthentication defaults to the global value.

Note

During the reauthentication process, the status of an already authenticated supplicant is not disrupted.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface ethernet slot/port	Selects the interface to configure and enters
	Example:	interface configuration mode.
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	dot1x re-authentication	Enables periodic reauthentication of the
	Example:	supplicants connected to the interface. By
switch(config-if)# dot1x re-authentication	default, periodic authentication is disabled.	
Step 4	(Optional) dot1x timeout re-authperiod seconds	Sets the number of seconds between reauthentication attempts. The default is 3600
switch(config-if)# dot1x timeout re-authperiod 3300	seconds. The range is from 1 to 65535.	
		Note This command affects the behavior the Cisco NX-OS device only if yo enable periodic reauthentication on interface.

	Command or Action	Purpose
Step 5	exit	Exits configuration mode.
	Example:	
	<pre>switch(config-if)# exit switch(config)#</pre>	
Step 6	(Optional) show dot1x all	Displays all 802.1X feature status and
	Example:	configuration information.
	switch(config)# show dot1x all	
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch(config) # copy running-config startup-config	

Manually Reauthenticating Supplicants

You can manually reauthenticate the supplicants for the entire Cisco NX-OS device or for an interface.

Note

During the reauthentication process, the status of an already authenticated supplicant is not disrupted.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	dot1x re-authenticate [interface slot/port]	Reauthenticates the supplicants on the Cisco
	Example:	NX-OS device or on an interface.
	<pre>switch# dot1x re-authenticate interface 2/1</pre>	

Changing 802.1X Authentication Timers for an Interface

You can change the following 802.1X authentication timers on the Cisco NX-OS device interfaces:

Quiet-period timer

When the Cisco NX-OS device cannot authenticate the supplicant, the switch remains idle for a set period of time and then tries again. The quiet-period timer value determines the idle period. An authentication failure might occur because the supplicant provided an invalid password. You can provide a faster response time to the user by entering a smaller number than the default. The default is the value of the global quiet period timer. The range is from 1 to 65535 seconds.

Rate-limit timer

The rate-limit period throttles EAPOL-Start packets from supplicants that are sending too many EAPOL-Start packets. The authenticator ignores EAPOL-Start packets from supplicants that have successfully authenticated for the rate-limit period duration. The default value is 0 seconds and the authenticator processes all EAPOL-Start packets. The range is from 1 to 65535 seconds.

Switch-to-authentication-server retransmission timer for Layer 4 packets

The authentication server notifies the switch each time that it receives a Layer 4 packet. If the switch does not receive a notification after sending a packet, the Cisco NX-OS device waits a set period of time and then retransmits the packet. The default is 30 seconds. The range is from 1 to 65535 seconds.

Switch-to-supplicant retransmission timer for EAP response frames

The supplicant responds to the EAP-request/identity frame from the Cisco NX-OS device with an EAP-response/identity frame. If the Cisco NX-OS device does not receive this response, it waits a set period of time (known as the retransmission time) and then retransmits the frame. The default is 30 seconds. The range is from 1 to 65535 seconds.

Switch-to-supplicant retransmission timer for EAP request frames

The supplicant notifies the Cisco NX-OS device it that received the EAP request frame. If the authenticator does not receive this notification, it waits a set period of time and then retransmits the frame. The default is the value of the global retransmission period timer. The range is from 1 to 65535 seconds.

Note

You should change the default values only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain supplicants and authentication servers.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface ethernet slot/port	Selects the interface to configure and enters
	Example:	interface configuration mode.
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)</pre>	
Step 3	(Optional) dot1x timeout quiet-period	Sets the number of seconds that the
	seconds	authenticator waits for a response to an
	Example:	EAP-request/identity frame from the supplicant before retransmitting the request. The default
	<pre>switch(config-if)# dot1x timeout quiet-period 25</pre>	is the global number of seconds set for all interfaces. The range is from 1 to 65535 seconds.

	Command or Action	Purpose
Step 4	(Optional) dot1x timeout ratelimit-period seconds Example: switch(config-if) # dot1x timeout ratelimit-period 10	Sets the number of seconds that the authenticator ignores EAPOL-Start packets from supplicants that have successfully authenticated. The default value is 0 seconds. The range is from 1 to 65535 seconds.
Step 5	(Optional) dot1x timeout server-timeout seconds Example: switch(config-if) # dot1x timeout server-timeout 60	Sets the number of seconds that the Cisco NX-OS device waits before retransmitting a packet to the authentication server. The default is 30 seconds. The range is from 1 to 65535 seconds.
Step 6	(Optional) dot1x timeout supp-timeout seconds Example: switch(config-if) # dot1x timeout supp-timeout 20	Sets the number of seconds that the Cisco NX-OS device waits for the supplicant to respond to an EAP request frame before the Cisco NX-OS device retransmits the frame. The default is 30 seconds. The range is from 1 to 65535 seconds.
Step 7	(Optional) dot1x timeout tx-period seconds Example: switch(config-if) # dot1x timeout tx-period 40	Sets the number of seconds between the retransmission of EAP request frames when the supplicant does not send notification that it received the request. The default is the global number of seconds set for all interfaces. The range is from 1 to 65535 seconds.
Step 8	(Optional) dot1x timeout inactivity-period seconds Example: switch(config-if) # dot1x timeout inactivity-period 1800	Sets the number of seconds the switch can remain inactive. The recommended minimum value is 1800 seconds.
Step 9	<pre>exit Example: switch(config) # exit switch#</pre>	Exits configuration mode.
Step 10	(Optional) show dot1x all Example: switch# show dot1x all	Displays the 802.1X configuration.
Step 11	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Enabling Single Host or Multiple Hosts Mode

You can enable single host or multiple hosts mode on an interface.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface ethernet slot/port	Selects the interface to configure and enters
	Example:	interface configuration mode.
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)</pre>	
Step 3	dot1x host-mode {multi-host single-host}	Configures the host mode. The default is
	Example:	single-host.
	<pre>switch(config-if)# dot1x host-mode multi-host</pre>	Make sure that the dot1x port-control interface configuration command is set to auto for the specified interface.
Step 4	dot1x host-mode multi-auth	Configures the multiple authentication mode.
	Example:	The port is authorized only on a successful authentication of either EAP or MAB or a
	<pre>switch(config-if)# dot1x host-mode multi-auth</pre>	combination of either EAP or MAB or a combination of both. Failure to authenticate w restrict network access.
		authentication either EAP or MAB
Step 5	exit	Exits configuration mode.
	Example:	
	<pre>switch(config-if)# exit switch(config)#</pre>	
Step 6	(Optional) show dot1x all	Displays all 802.1X feature status and
	Example:	configuration information.
	switch# show dot1x all	
Step 7	(Optional) copy running-config startup-config	
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Disabling 802.1X Authentication on the Cisco NX-OS Device

You can disable 802.1X authentication on the Cisco NX-OS device. By default, the Cisco NX-OS software enables 802.1X authentication after you enable the 802.1X feature. However, when you disable the 802.1X feature, the configuration is removed from the Cisco NX-OS device. The Cisco NX-OS software allows you to disable 802.1X authentication without losing the 802.1X configuration.

Note

When you disable 802.1X authentication, the port mode for all interfaces defaults to force-authorized regardless of the configured port mode. When you reenable 802.1X authentication, the Cisco NX-OS software restores the configured port mode on the interfaces.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no dot1x system-auth-control	Disables 802.1X authentication on the Cisco NX-OS device. The default is enabled.
	Example: switch(config) # no dot1x system-auth-control	Note Use the dot1x system-auth-control command to enable 802.1X authentication on the Cisco NX-OS device.
Step 3	exit	Exits configuration mode.
	<pre>Example: switch(config) # exit switch#</pre>	
Step 4	(Optional) show dot1x	Displays the 802.1X feature status.
	Example: switch# show dot1x	
Step 5	(Optional) copy running-config startup-config Example: switch# copy running-config startup-config	Copies the running configuration to the startup configuration.

Disabling the 802.1X Feature

You can disable the 802.1X feature on the Cisco NX-OS device.

When you disable 802.1X, all related configurations are automatically discarded. The Cisco NX-OS software creates an automatic checkpoint that you can use if you reenable 802.1X and want to recover the configuration. For more information, see the *Cisco NX-OS System Management Configuration Guide* for your platform.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no feature dot1x	Disables 802.1X.
	Example:	Caution Disabling the 802.1X feature removes
	<pre>switch(config)# no feature dot1x</pre>	all 802.1X configuration.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Resetting the 802.1X Global Configuration to the Default Values

You can set the 802.1X global configuration to the default values.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	dot1x default	Reverts to the 802.1X global configuration
	Example:	default values.
	switch(config)# dot1x default	
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show dot1x all	Displays all 802.1X feature status and
	Example:	configuration information.
	switch# show dot1x all	
Step 5	(Optional) copy running-config startup-config	
	Example:	configuration.
	switch# copy running-config startup-config	

Resetting the 802.1X Interface Configuration to the Default Values

You can reset the 802.1X configuration for an interface to the default values.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2 interface ether Example:	interface ethernet slot/port	Selects the interface to configure and enters interface configuration mode.
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)</pre>	
Step 3	dot1x default	Reverts to the 802.1X configuration default
	Example:	values for the interface.
	switch(config-if)# dot1x default	

	Command or Action	Purpose
Step 4	exit	Exits configuration mode.
	Example:	
	<pre>switch(config-if)# exit switch(config)#</pre>	
Step 5	(Optional) show dot1x all	Displays all 802.1X feature status and configuration information.
	Example:	
	switch(config)# show dot1x all	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Setting the Global Maximum Authenticator-to-Supplicant Frame

In addition to changing the authenticator-to-supplicant retransmission time, you can set the number of times that the Cisco NX-OS device sends an EAP-request/identity frame (assuming no response is received) to the supplicant before restarting the authentication process.

Note

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain supplicants and authentication servers.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	<pre>dot1x max-req retry-count Example: switch(config) # dot1x max-req 3</pre>	Changes the maximum request retry count before restarting the 802.1X authentication process. The default is 2 and the range is from 1 to 10.
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	

	Command or Action	Purpose
Step 4 (Optional) show dot1x all	(Optional) show dot1x all	Displays all 802.1X feature status and
	Example:	configuration information.
	switch(config)# show dot1x all	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Setting the Maximum Authenticator-to-Supplicant Frame for an Interface

You can set the maximum number of times that the Cisco NX-OS device retransmits authentication requests to the supplicant on an interface before the session times out. The default is 2 times and the range is from 1 to 10.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface ethernet slot/port	Selects the interface to configure and enters
	Example:	interface configuration mode.
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	dot1x max-req count	Changes the maximum authorization request
	Example:	retry count. The default is 2 times and the range is from 1 to 10.
	switch(config-if)# dot1x max-req 3	Note Make sure that the dot1x port-control interface configuration command is set to auto for the specified interface.
Step 4	exit	Exits interface configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	

	Command or Action	Purpose
Step 5 (C	(Optional) show dot1x all	Displays all 802.1X feature status and
	Example:	configuration information.
	switch# show dot1x all	
Step 6 (Optional) copy running-config startup-config Copies the runni	Copies the running configuration to the startup	
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling RADIUS Accounting for 802.1X Authentication

You can enable RADIUS accounting for the 802.1X authentication activity.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	dot1x radius-accounting	Enables RADIUS accounting for 802.1X. The
	Example:	default is disabled.
	switch(config)# dot1x radius-accounting	
Step 3	exit	Exits configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 4	(Optional) show dot1x	Displays the 802.1X configuration.
	Example:	
	switch# show dot1x	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	switch# copy running-config startup-config	

Configuring AAA Accounting Methods for 802.1X

You can enable AAA accounting methods for the 802.1X feature.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	aaa accounting dot1x default group group-list	Configures AAA accounting for 802.1X. The default is disabled.
		The <i>group-list</i> argument consists of a space-delimited list of group names. The group names are the following:
		• radius—For all configured RADIUS servers.
		• named-group—Any configured RADIUS server group name.
Step 3	exit	Exits configuration mode.
Step 4	(Optional) show aaa accounting	Displays the AAA accounting configuration.
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.

Example

This example shows how to enable the 802.1x feature:

```
switch# configure terminal
switch(config)# aaa accounting dot1x default group radius
switch(config)# exit
switch# show aaa accounting
switch# copy running-config startup-config
```

Setting the Maximum Reauthentication Retry Count on an Interface

You can set the maximum number of times that the Cisco NX-OS device retransmits reauthentication requests to the supplicant on an interface before the session times out. The default is 2 times and the range is from 1 to 10.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface ethernet slot/port	Selects the interface to configure and enters
	Example:	interface configuration mode.
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	dot1x max-reauth-req retry-count	Changes the maximum reauthentication request
	Example:	retry count. The default is 2 times and the range is from 1 to 10.
	<pre>switch(config-if)# dot1x max-reauth-req 3</pre>	
Step 4	exit	Exits interface configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 5	(Optional) show dot1x all	Displays all 802.1X feature status and
	Example:	configuration information.
	switch# show dot1x all	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Verifying the 802.1X Configuration

To display 802.1X information, perform one of the following tasks:

Command	Purpose
show dot1x	Displays the 802.1X feature status.
show dot1x all [details statistics summary]	Displays all 802.1X feature status and configuration information.
show dot1x interface ethernet slot/port [details statistics summary]	Displays the 802.1X feature status and configuration information for an Ethernet interface.
show running-config dot1x [all]	Displays the 802.1X feature configuration in the running configuration.

Command	Purpose
show startup-config dot1x	Displays the 802.1X feature configuration in the startup configuration.

For detailed information about the fields in the output from these commands, see the *Cisco NX-OS Security Command Reference* for your platform.

Monitoring 802.1X

You can display the statistics that the Cisco NX-OS device maintains for the 802.1X activity.

Before you begin

Enable the 802.1X feature on the Cisco NX-OS device.

Procedure

	Command or Action	Purpose
Step 1	show dot1x {all interface ethernet slot/port} statistics	Displays the 802.1X statistics.
	Example:	
	switch# show dot1x all statistics	

Configuration Example for 802.1X

The following example shows how to configure 802.1X for an access port:

feature dot1x
aaa authentication dot1x default group rad2
interface Ethernet2/1
dot1x pae-authenticator
dot1x port-control auto

The following example shows how to configure 802.1X for a trunk port:

feature dot1x
aaa authentication dot1x default group rad2
interface Ethernet2/1
dot1x pae-authenticator
dot1x port-control auto
dot1x host-mode multi-host

Note

Repeat the **dot1x pae authenticator** and **dot1x port-control auto** commands for all interfaces that require 802.1X authentication.

Additional References for 802.1X

This section includes additional information related to implementing 802.1X.

Related Documents

Related Topic	Document Title
Cisco NX-OS Licensing	Cisco NX-OS Licensing Guide
Command reference	
VRF configuration	

Standards

Standards	Title
IEEE Std 802.1X- 2004 (Revision of IEEE Std 802.1X-2001)	802.1X IEEE Standard for Local and Metropolitan Area Networks Port-Based Network Access Control
RFC 2284	PPP Extensible Authentication Protocol (EAP)
RFC 3580	IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines

Configuring IP ACLs

This chapter describes how to configure IP access control lists (ACLs) on Cisco NX-OS devices.

Unless otherwise specified, the term IP ACL refers to IPv4 and IPv6 ACLs.

This chapter includes the following sections:

- About ACLs, on page 189
- Licensing Requirements for IP ACLs, on page 204
- Prerequisites for IP ACLs, on page 204
- Guidelines and Limitations for IP ACLs, on page 204
- Default Settings for IP ACLs, on page 208
- Configuring IP ACLs, on page 208
- Verifying the IP ACL Configuration, on page 241
- Monitoring and Clearing IP ACL Statistics, on page 242
- Configuration Examples for IP ACLs, on page 243
- About System ACLs, on page 244
- Configuring Object Groups, on page 247
- Verifying the Object-Group Configuration, on page 252
- Configuring Time-Ranges, on page 252
- Verifying the Time-Range Configuration, on page 257
- Additional References for IP ACLs, on page 257

About ACLs

An ACL is an ordered set of rules that you can use to filter traffic. Each rule specifies a set of conditions that a packet must satisfy to match the rule. When the device determines that an ACL applies to a packet, it tests the packet against the conditions of all rules. The first matching rule determines whether the packet is permitted or denied. If there is no match, the device applies the applicable implicit rule. The device continues processing packets that are permitted and drops packets that are denied.

You can use ACLs to protect networks and specific hosts from unnecessary or unwanted traffic. For example, you could use ACLs to disallow HTTP traffic from a high-security network to the Internet. You could also use ACLs to allow HTTP traffic but only to specific sites, using the IP address of the site to identify it in an IP ACL.

ACL Types and Applications

The device supports the following types of ACLs for security traffic filtering:

IPv4 ACLs

The device applies IPv4 ACLs only to IPv4 traffic.

IPv6 ACLs

The device applies IPv6 ACLs only to IPv6 traffic.

MAC ACLs

The device applies MAC ACLs only to non-IP traffic.

IP and MAC ACLs have the following types of applications:

Port ACL

Filters Layer 2 traffic

Router ACL

Filters Layer 3 traffic

VLAN ACL

Filters VLAN traffic

VTY ACL

Filters virtual teletype (VTY) traffic

This table summarizes the applications for security ACLs.

Table 12: Security ACL Applications

Application	Supported Interfaces	Types of ACLs Supported
Port ACL	• Layer 2 interfaces	• IPv4 ACLs
	• Layer 2 Ethernet port-channel interfaces	• IPv4 ACLs with UDF-based match
	When a port ACL is applied to a trunk port, the ACL filters traffic on all VLANs on the trunk	• IPv6 ACLs
		• IPv6 ACLs with UDF-based match
	port.	• MAC ACLs
Router	VLAN interfaces	• IPv4 ACLs
ACL	Physical Layer 3 interfaces	• IPv6 ACLs
	Layer 3 Ethernet subinterfaces	Note MAC ACLs are supported on Layer
	• Layer 3 Ethernet port-channel interfaces	3 interfaces only if you enable MAC packet classification.
	Management interfaces	-
	Note You must enable VLAN interfaces globally before you can configure a VLAN interface.	Note Egress router ACLs are not supported on Cisco Nexus 9300 Series switch uplink ports.
VLAN	• VLANs	• IPv4 ACLs
ACL		• IPv6 ACLs
		• MAC ACLs

Application	Supported Interfaces	Types of ACLs Supported
VTY ACL	• VTYs	• IPv4 ACLs
		• IPv6 ACLs

Related Topics

About VLAN ACLs, on page 269 About MAC ACLs, on page 259

Order of ACL Application

When the device processes a packet, it determines the forwarding path of the packet. The path determines which ACLs that the device applies to the traffic. The device applies the ACLs in the following order:

- 1. Port ACL
- 2. Ingress VACL
- **3.** Ingress router ACL
- 4. Ingress VTY ACL
- 5. Egress VTY ACL
- **6.** Egress router ACL
- 7. Egress VACL

If the packet is bridged within the ingress VLAN, the device does not apply router ACLs.

Figure 7: Order of ACL Application

The following figure shows the order in which the device applies ACLs.

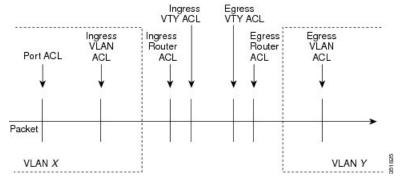
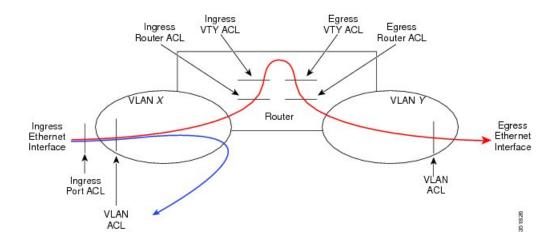



Figure 8: ACLs and Packet Flow

The following figure shows where the device applies ACLs, depending upon the type of ACL. The red path indicates a packet sent to a destination on a different interface than its source. The blue path indicates a packet that is bridged within its VLAN.

The device applies only the applicable ACLs. For example, if the ingress port is a Layer 2 port and the traffic is on a VLAN that is a VLAN interface, a port ACL and a router ACL both can apply. In addition, if a VACL is applied to the VLAN, the device applies that ACL too.

About Rules

Rules are what you create, modify, and remove when you configure how an ACL filters network traffic. Rules appear in the running configuration. When you apply an ACL to an interface or change a rule within an ACL that is already applied to an interface, the supervisor module creates ACL entries from the rules in the running configuration and sends those ACL entries to the applicable I/O module. Depending upon how you configure the ACL, there may be more ACL entries than rules, especially if you implement policy-based ACLs by using object groups when you configure rules.

You can create rules in access-list configuration mode by using the **permit** or **deny** command. The device allows traffic that matches the criteria in a permit rule and blocks traffic that matches the criteria in a deny rule. You have many options for configuring the criteria that traffic must meet in order to match the rule.

This section describes some of the options that you can use when you configure a rule.

Protocols for IP ACLs and MAC ACLs

IPv4, IPv6, and MAC ACLs allow you to identify traffic by protocol. For your convenience, you can specify some protocols by name. For example, in an IPv4 or IPv6 ACL, you can specify ICMP by name.

You can specify any protocol by number. In MAC ACLs, you can specify protocols by the EtherType number of the protocol, which is a hexadecimal number. For example, you can use 0x0800 to specify IP traffic in a MAC ACL rule.

In IPv4 and IPv6 ACLs, you can specify protocols by the integer that represents the Internet protocol number.

Source and Destination

In each rule, you specify the source and the destination of the traffic that matches the rule. You can specify both the source and destination as a specific host, a network or group of hosts, or any host. How you specify the source and destination depends on whether you are configuring IPv4 ACLs, IPv6 ACLs, or MAC ACLs.

Implicit Rules for IP and MAC ACLs

IP and MAC ACLs have implicit rules, which means that although these rules do not appear in the running configuration, the device applies them to traffic when no other rules in an ACL match. When you configure the device to maintain per-rule statistics for an ACL, the device does not maintain statistics for implicit rules.

All IPv4 ACLs include the following implicit rule:

deny ip any any

This implicit rule ensures that the device denies unmatched IP traffic.

All IPv6 ACLs include the following implicit rule:

deny ipv6 any any

This implicit rule ensures that the device denies unmatched IPv6 traffic.

Note

- IPv6 Neighbor Discovery packets (Router Solicitation, and Router Advertisement) will not be permitted due to the implicit **deny ipv6 any any** rule of an IPv6 ACL.
- You must add the following rules explicitly to allow IPv6 Neighbor Discovery packets in the Cisco Nexus 93180YC-EX, Nexus 93180YC-FX, Nexus 93240YC-FX2, Nexus 93360YC-FX2, Nexus 9336C-FX2, Nexus 9336C-FX2-E, Nexus 93180YC-FX3, N9K-C9316D-GX, N9K-C93600CD-GX, Nexus 9364C-GX, N9K-C9332D-GX2B, Nexus 9364C and Nexus 9332C platform switches:
 - permit icmp any any router-advertisement
 - · permit icmp any any router-solicitation
- Neighbor Solicitation (NS) and Neighbor Advertisement (NA) messages do not match under the implicit rule. The following commands are required to match the NS or NA IPv6 traffic.
 - permit/deny icmp any any nd-na
 - permit/deny icmp any any nd-ns

All MAC ACLs include the following implicit rule:

deny any any protocol

This implicit rule ensures that the device denies the unmatched traffic, regardless of the protocol specified in the Layer 2 header of the traffic.

Additional Filtering Options

You can identify traffic by using additional options. These options differ by ACL type. The following list includes most but not all additional filtering options:

- IPv4 ACLs support the following additional filtering options:
 - · Layer 4 protocol
 - TCP and UDP ports
 - ICMP types and codes
 - IGMP types
 - · Precedence level
 - Differentiated Services Code Point (DSCP) value
 - TCP packets with the ACK, FIN, PSH, RST, SYN, or URG bit set
 - Established TCP connections

- · Packet length
- IPv6 ACLs support the following additional filtering options:
 - Layer 4 protocol
 - · Encapsulating Security Payload
 - Payload Compression Protocol
 - Stream Control Transmission Protocol (SCTP)
 - SCTP, TCP, and UDP ports
 - ICMP types and codes
 - DSCP value
 - TCP packets with the ACK, FIN, PSH, RST, SYN, or URG bit set
 - Established TCP connections
 - · Packet length
- MAC ACLs support the following additional filtering options:
 - Layer 3 protocol (Ethertype)
 - VLAN ID
 - Class of Service (CoS)

Sequence Numbers

The device supports sequence numbers for rules. Every rule that you enter receives a sequence number, either assigned by you or assigned automatically by the device. Sequence numbers simplify the following ACL tasks:

Adding new rules between existing rules

By specifying the sequence number, you specify where in the ACL a new rule should be positioned. For example, if you need to insert a rule between rules numbered 100 and 110, you could assign a sequence number of 105 to the new rule.

Removing a rule

Without using a sequence number, removing a rule requires that you enter the whole rule, as follows:

```
switch(config-acl) # no permit tcp 10.0.0.0/8 any
```

However, if the same rule had a sequence number of 101, removing the rule requires only the following command:

```
switch(config-acl) # no 101
```

Moving a rule

With sequence numbers, if you need to move a rule to a different position within an ACL, you can add a second instance of the rule using the sequence number that positions it correctly, and then you can

remove the original instance of the rule. This action allows you to move the rule without disrupting traffic.

If you enter a rule without a sequence number, the device adds the rule to the end of the ACL and assigns a sequence number that is 10 greater than the sequence number of the preceding rule to the rule. For example, if the last rule in an ACL has a sequence number of 225 and you add a rule without a sequence number, the device assigns the sequence number 235 to the new rule.

In addition, Cisco NX-OS allows you to reassign sequence numbers to rules in an ACL. Resequencing is useful when an ACL has rules numbered contiguously, such as 100 and 101, and you need to insert one or more rules between those rules.

Logical Operators and Logical Operation Units

IP ACL rules for TCP and UDP traffic can use logical operators to filter traffic based on port numbers. Cisco NX-OS supports logical operators in only the ingress direction.

The device stores operator-operand couples in registers called logical operator units (LOUs). The LOU usage for each type of operator is as follows:

```
eq
Is never stored in an LOU
gt
Uses 1 LOU
lt
Uses 1 LOU
neq
Uses 1 LOU
range
Uses 1 LOU
```

ACL Logging

The ACL logging feature monitors ACL flows and logs statistics.

A flow is defined by the source interface, protocol, source IP address, source port, destination IP address, and destination port values. The statistics maintained for a flow include the number of forwarded packets (for each flow that matches the permit conditions of the ACL entry) and dropped packets (for each flow that matches the deny conditions of the ACL entry).

Time Ranges

You can use time ranges to control when an ACL rule is in effect. For example, if the device determines that a particular ACL applies to traffic arriving on an interface, and a rule in the ACL uses a time range that is not in effect, the device does not compare the traffic to that rule. The device evaluates time ranges based on its clock

When you apply an ACL that uses time ranges, the device updates the affected I/O module whenever a time range referenced in the ACL starts or ends. Updates that are initiated by time ranges occur on a best-effort priority. If the device is especially busy when a time range causes an update, the device may delay the update by up to a few seconds.

IPv4, IPv6, and MAC ACLs support time ranges. When the device applies an ACL to traffic, the rules in effect are as follows:

- All rules without a time range specified
- Rules with a time range that includes the second when the device applies the ACL to traffic

The device supports named, reusable time ranges, which allows you to configure a time range once and specify it by name when you configure many ACL rules. Time range names have a maximum length of 64 alphanumeric characters.

A time range contains one or more rules. The two types of rules are as follows:

Absolute

A rule with a specific start date and time, specific end date and time, both, or neither. The following items describe how the presence or absence of a start or end date and time affect whether an absolute time range rule is active:

- Start and end date and time both specified—The time range rule is active when the current time is later than the start date and time and earlier than the end date and time.
- Start date and time specified with no end date and time—The time range rule is active when the current time is later than the start date and time.
- No start date and time with end date and time specified—The time range rule is active when the current time is earlier than the end date and time.
- No start or end date and time specified—The time range rule is always active.

For example, you could prepare your network to allow access to a new subnet by specifying a time range that allows access beginning at midnight of the day that you plan to place the subnet online. You can use that time range in ACL rules that apply to the subnet. After the start time and date have passed, the device automatically begins applying the rules that use this time range when it applies the ACLs that contain the rules.

Periodic

A rule that is active one or more times per week. For example, you could use a periodic time range to allow access to a lab subnet only during work hours on weekdays. The device automatically applies ACL rules that use this time range only when the range is active and when it applies the ACLs that contain the rules.

Note

The order of rules in a time range does not affect how a device evaluates whether a time range is active. Cisco NX-OS includes sequence numbers in time ranges to make editing the time range easier.

Time ranges also allow you to include remarks, which you can use to insert comments into a time range. Remarks have a maximum length of 100 alphanumeric characters.

The device determines whether a time range is active as follows:

- The time range contains one or more absolute rules—The time range is active if the current time is within one or more absolute rules.
- The time range contains one or more periodic rules—The time range is active if the current time is within one or more periodic rules.
- The time range contains both absolute and periodic rules—The time range is active if the current time is within one or more absolute rules and within one or more periodic rules.

When a time range contains both absolute and periodic rules, the periodic rules can only be active when at least one absolute rule is active.

Policy-Based ACLs

The device supports policy-based ACLs (PBACLs), which allow you to apply access control policies across object groups. An object group is a group of IP addresses or a group of TCP or UDP ports. When you create a rule, you specify the object groups rather than specifying IP addresses or ports.

Using object groups when you configure IPv4 or IPv6 ACLs can help reduce the complexity of updating ACLs when you need to add or remove addresses or ports from the source or destination of rules. For example, if three rules reference the same IP address group object, you can add an IP address to the object instead of changing all three rules.

PBACLs do not reduce the resources required by an ACL when you apply it to an interface. When you apply a PBACL or update a PBACL that is already applied, the device expands each rule that refers to object groups into one ACL entry per object within the group. If a rule specifies the source and destination both with object groups, the number of ACL entries created on the I/O module when you apply the PBACL is equal to the number of objects in the source group multiplied by the number of objects in the destination group.

The following object group types apply to port, router, policy-based routing (PBR), and VLAN ACLs:

IPv4 Address Object Groups

Can be used with IPv4 ACL rules to specify source or destination addresses. When you use the **permit** or **deny** command to configure a rule, the **addrgroup** keyword allows you to specify an object group for the source or destination.

IPv6 Address Object Groups

Can be used with IPv6 ACL rules to specify source or destination addresses. When you use the **permit** or **deny** command to configure a rule, the **addrgroup** keyword allows you to specify an object group for the source or destination.

Protocol Port Object Groups

Can be used with IPv4 and IPv6 TCP and UDP rules to specify source or destination ports. When you use the **permit** or **deny** command to configure a rule, the **portgroup** keyword allows you to specify an object group for the source or destination.

Note

Policy-based routing (PBR) ACLs do not support deny access control entries (ACEs) or **deny** commands to configure a rule.

Statistics and ACLs

The device can maintain global statistics for each rule that you configure in IPv4, IPv6, and MAC ACLs. If an ACL is applied to multiple interfaces, the maintained rule statistics are the sum of packet matches (hits) on all the interfaces on which that ACL is applied.

Note

The device does not support interface-level ACL statistics.

For each ACL that you configure, you can specify whether the device maintains statistics for that ACL, which allows you to turn ACL statistics on or off as needed to monitor traffic filtered by an ACL or to help troubleshoot the configuration of an ACL.

The device does not maintain statistics for implicit rules in an ACL. For example, the device does not maintain a count of packets that match the implicit **deny ip any any** rule at the end of all IPv4 ACLs. If you want to maintain statistics for implicit rules, you must explicitly configure the ACL with rules that are identical to the implicit rules.

Related Topics

Monitoring and Clearing IP ACL Statistics, on page 242 Implicit Rules for IP and MAC ACLs, on page 192

Atomic ACL Updates

By default, when a supervisor module of a Cisco Nexus 9000 Series device updates an I/O module with changes to an ACL, it performs an atomic ACL update. An atomic update does not disrupt traffic that the updated ACL applies to; however, an atomic update requires that an I/O module that receives an ACL update has enough available resources to store each updated ACL entry in addition to all pre-existing entries in the affected ACL. After the update occurs, the additional resources used for the update are freed. If the I/O module lacks the required resources, the device generates an error message and the ACL update to the I/O module fails.

If an I/O module lacks the resources required for an atomic update, you can disable atomic updates by using the **no hardware access-list update atomic** command; however, during the brief time required for the device to remove the preexisting ACL and implement the updated ACL, traffic that the ACL applies to is dropped by default.

If you want to permit all traffic that an ACL applies to while it receives a nonatomic update, use the **hardware** access-list update default-result permit command.

This example shows how to disable atomic updates to ACLs:

```
switch# config t
switch(config)# no hardware access-list update atomic
```

This example shows how to permit affected traffic during a nonatomic ACL update:

```
switch# config t
switch(config)# hardware access-list update default-result permit
```

This example shows how to revert to the atomic update method:

```
switch# config t
switch(config)# no hardware access-list update default-result permit
switch(config)# hardware access-list update atomic
```

Session Manager Support for IP ACLs

Session Manager supports the configuration of IP and MAC ACLs. This feature allows you to verify ACL configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration.

ACL TCAM Regions

You can change the size of the ACL ternary content addressable memory (TCAM) regions in the hardware.

On Cisco Nexus 9300 and 9500 Series switches and Cisco Nexus 3164Q, 31128PQ, 3232C, and 3264Q switches, the egress TCAM size is 1K, divided into four 256 entries. On Cisco Nexus NFE2-enabled devices (such as the Cisco Nexus 3232C and 3264Q switches), the ingress TCAM size is 6K, divided into twelve 512 slices. Three slices are in one group. On other Cisco Nexus 9300 and 9500 Series switches and the 3164Q and 31128PQ switches, the ingress TCAM size is 4K, divided into eight 256 slices and four 512 slices. A slice is the unit of allocation. A slice can be allocated to one region only. For example, a 512-size slice cannot be used to configure two features of size 256 each. Similarly, a 256-size slice cannot be used to configure two features of size 128 each. The IPv4 TCAM regions are single wide. The IPv6, QoS, MAC, CoPP, and system TCAM regions are double wide and consume double the physical TCAM entries. For example, a logical region size of 256 entries actually consumes 512 physical TCAM entries.

You can create IPv6, port ACLs, VLAN ACLs, and router ACLs, and you can match IPv6 and MAC addresses for QoS. However, Cisco NX-OS cannot support all of them simultaneously. You must remove or reduce the size of the existing TCAM regions (TCAM carving) to enable the IPv6, MAC, or other desired TCAM regions. For every TCAM region configuration command, the system evaluates if the new change can be fit in the TCAM. If not, it reports an error, and the command is rejected. You must remove or reduce the size of existing TCAM regions to make room for new requirements.

On Cisco Nexus 9200 Series switches, the egress TCAM size is 2K, and the ingress TCAM size is 4K. The concepts of TCAM slices and single- and double-wide regions do not apply to these switches. For example, the ing-ifacl region can host IPv4, IPv6, or MAC type entries. IPv4 and MAC types occupy one TCAM entry whereas IPv6 types occupy two TCAM entries.

For N9K-X9636C-RX, when PACL uses external TCAM region, the internal TCAM needs to take 2K for ifacl and the ingress RACL-IPv4 can take upto 2044. Additional four entries are required when egress PACL external TCAM region is used.

ACL TCAM region sizes have the following guidelines and limitations:

- To enable RACL or PACL on existing TCAM regions, you must carve the TCAM region beyond 12, 288.
- On Cisco Nexus 9300 Series switches, the X9536PQ, X9564PX, and X9564TX line cards are used to enforce the QoS classification policies applied on 40G ports. It has 768 TCAM entries available for carving in 256-entry granularity. These region names are prefixed with "ns-".
- For the X9536PQ, X9564PX, and X9564TX line cards, only the IPv6 TCAM regions consume double-wide entries. The rest of the TCAM regions consume single-wide entries.
- When a VACL region is configured, it is configured with the same size in both the ingress and egress directions. If the region size cannot fit in either direction, the configuration is rejected.
- On Cisco Nexus 9200 Series switches, the ing-sup region occupies a minimum size of 512 entries, and the egr-sup region occupies a minimum size of 256 entries. These regions cannot be configured to lesser values. Any region size can be carved with a value only in multiples of 256 entries (with the exception of the span region, which can be carved only in multiples of 512 entries).
- RACL v6, CoPP, and multicast have default TCAM sizes and these TCAM sizes must be non-zero on the following Cisco Nexus 9504 and Cisco Nexus 9508 line cards to avoid line card failure during reload:
 - N9K-X96136YC-R
 - N9K-X9636C-RX

- N9K-X9636Q-R
- N9K-X9636C-R
- The N9K-X96136YC-R and N9K-X9636C-R line cards support egress RACL of 2K.

The following table summarizes the regions that need to be configured for a given feature to work. The region sizes should be selected based on the scale requirements of a given feature.

Table 13: Features per ACL TCAM Region

Feature Name	Region Name
Port ACL	ifacl: For IPv4 port ACLs
	ifacl-udf: For UDFs on IPv4 port ACLs
	ing-ifacl: For ingress IPv4, IPv6, and MAC port ACLs
	ipv6-ifacl: For IPv6 port ACLs
	mac-ifacl: For MAC port ACLs
Port QoS (QoS classification policy applied on Layer 2 ports or port channels)	qos, qos-lite, rp-qos, rp-qos-lite, ns-qos, e-qos, or e-qos-lite: For classifying IPv4 packets
	ing-l2-qos: For classifying ingress Layer 2 packets
	ipv6-qos, rp-ipv6-qos, ns-ipv6-qos, or e-ipv6-qos: For classifying IPv6 packets
	mac-qos, rp-mac-qos, ns-mac-qos, or e-mac-qos: For classifying non-IP packets
	Note For traffic that needs to be classified on 40G ports on Cisco Nexus 9300 Series switches, you must carve the qos regions and the corresponding ns-*qos regions.
VACL	vacl: For IPv4 packets
	ipv6-vacl: For IPv6 packets
	mac-vacl: For non-IP packets

Feature Name	Region Name
VLAN QoS (QoS classification policy applied on a VLAN)	vqos or ns-vqos: For classifying IPv4 packets
	ipv6-vqos or ns-ipv6-vqos: For classifying IPv6 packets
	ing-l3-vlan-qos: For classifying ingress Layer 3, VLAN, and SVI QoS packets
	mac-vqos or ns-mac-vqos: For classifying non-IP packets
	Note For traffic that needs to be classified on 40G ports on Cisco Nexus 9300 Series switches, you must carve the qos regions and the corresponding ns-*qos regions.
RACL	egr-racl: For egress IPv4 and IPv6 RACLs
	e-racl: For egress IPv4 RACLs
	e-ipv6-racl: For egress IPv6 RACLs
	ing-racl: For ingress IPv4 and IPv6 RACLs
	racl: For IPv4 RACLs
	racl-lite: For IPv4 RACLs
	racl-udf: For UDFs on IPv4 RACLs
	ipv6-racl: For IPv6 RACLs
Layer 3 QoS (QoS classification policy applied on Layer 3 ports or port channels)	l3qos, l3qos-lite, or ns-l3qos: For classifying IPv4 packets
	ipv6-l3qos or ns-ipv6-l3qos: For classifying IPv6 packets
	Note For traffic that needs to be classified on 40G ports on Cisco Nexus 9300 Series switches, you must carve qos regions and the corresponding ns-*qos regions.
VLAN source or VLAN filter SPAN (for Cisco Nexus 9500 or 9300 Series switches)	span
Rx SPAN on 40G ports (for Cisco Nexus 9300 Series switches only)	

Feature Name	Regio	n Name
SPAN filters	1	For filtering IPv4 traffic on Layer 2 h port) source interfaces.
	ifacl-u	df: For UDFs on IPv4 port ACLs
	1 *	facl: For filtering IPv6 traffic on 2 (switch port) source interfaces.
	1	facl: For filtering Layer 2 traffic on 2 (switch port) source interfaces.
	racl-u	df: For UDFs on IPv4 RACLs
	vacl: I	For filtering IPv4 traffic on VLAN es.
	_	vacl: For filtering IPv6 traffic on N sources.
	1	acl: For filtering Layer 2 traffic on N sources.
	racl: F	For filtering IPv4 traffic on Layer 3 aces.
		acl: For filtering IPv6 traffic on 3 interfaces.
		-span-filter: For filtering ingress 2 SPAN traffic
	_	-span-filter: For filtering ingress 3 and VLAN SPAN traffic
SVI counters	svi	
Note This region enables the packet counters for Layer 3 SVI interfaces.		
BFD, DHCP relay, or DHCPv6 relay	redire	et
	Note	BFD uses the ing-sup region while DHCPv4 relay, DHCPv4 snooping, and DHCPv4 client use the ing-redirect region.
СоРР	copp	
	Note	The region size cannot be 0.
System-managed ACLs	systen	n
	Note	The region size cannot be changed.

Feature Name		Region Name		
vPC o	convergence	vpc-c	onvergence	
Note	This region boosts the convergence times when a vPC link goes down and traffic needs to be redirected to the peer link.	Note	Setting this region size to 0 might affect the convergence times of vPC link failures.	
		fex-ifacl, fex-ipv6-ifacl, fex-ipv6-qos, fex-mac-ifacl, fex-mac-qos, fex-qos, fex-qos-lite		
Dyna	mic ARP inspection (DAI)	arp-et	her	
IP so	urce guard (IPSG)	ipsg		
Multi	cast PIM Bidir	mcast	_bidir	
Static MPLS		mpls		
Netw	ork address translation (NAT)	nat		
NetFl	ow	ing-ne	etflow	
Open	Flow	openf	low	
sFlow	I .	sflow		
Super	visor modules	"	up: Egress supervisor	

Related Topics

Configuring ACL TCAM Region Sizes, on page 214
Configuring TCAM Carving - For Cisco NX-OS Release 6.1(2)I2(1) and Later Releases, on page 225

Maximum Label Sizes Supported for ACL Types

Cisco NX-OS switches support the following label sizes for the corresponding ACL types:

Table 14: ACL Types and Maximum Label Sizes

ACL Types	Direction	Label	Label Type
RACL/PBR/VACL/ L3-VLAN QoS/L3-VLAN SPAN ACL	Ingress	62	BD
PACL/L2 QoS/L2 SPAN ACL	Ingress	30	IF
RACL/VACL/L3-VLAN QoS	Egress	254	BD
L2 QoS	Egress	31	IF

Licensing Requirements for IP ACLs

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	No license is required to use IP ACLs. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Prerequisites for IP ACLs

IP ACLs have the following prerequisites:

- You must be familiar with IP addressing and protocols to configure IP ACLs.
- You must be familiar with the interface types that you want to configure with ACLs.

Guidelines and Limitations for IP ACLs

IP ACLs have the following configuration guidelines and limitations:

- We recommend that you perform ACL configuration using the Session Manager. This feature allows you to verify ACL configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration. This is especially useful for ACLs that include more than 1000 rules. For more information about Session Manager, see the *Cisco Nexus 9000 Series NX-OS System Management Configuration Guide*.
- Duplicate ACL entries with different sequence numbers are allowed in the configuration. However, these duplicate entries are not programmed in the hardware access-list.
- Only 62 unique ACLs can be configured. Each ACL takes one label. If the same ACL is configured on multiple interfaces, the same label is shared. If each ACL has unique entries, the ACL labels are not shared, and the label limit is 62.
- In most cases, ACL processing for IP packets occurs on the I/O modules, which use hardware that accelerates ACL processing. In some circumstances, processing occurs on the supervisor module, which can result in slower ACL processing, especially during processing that involves an ACL with a large number of rules. Management interface traffic is always processed on the supervisor module. If IP packets in any of the following categories are exiting a Layer 3 interface, they are sent to the supervisor module for processing:
 - Packets that fail the Layer 3 maximum transmission unit check and therefore require fragmenting.
 - IPv4 packets that have IP options (additional IP packet header fields following the destination address field).
 - IPv6 packets that have extended IPv6 header fields.

Rate limiters prevent redirected packets from overwhelming the supervisor module.

- When you apply an ACL that uses time ranges, the device updates the ACL entries whenever a time
 range referenced in an ACL entry starts or ends. Updates that are initiated by time ranges occur on a
 best-effort priority. If the device is especially busy when a time range causes an update, the device may
 delay the update by up to a few seconds.
- To apply an IP ACL to a VLAN interface, you must have enabled VLAN interfaces globally. For more information about VLAN interfaces, see the *Cisco Nexus 9000 Series NX-OS Interfaces Configuration Guide*.
- The VTY ACL feature restricts all traffic for all VTY lines. You cannot specify different traffic restrictions for different VTY lines. Any router ACL can be configured as a VTY ACL.
- An egress VTY ACL (an IP ACL applied to the VTY line in the outbound direction) prevents the switch
 from copying files using a file transfer protocol (TFTP, FTP, SCP, SFTP, etc.) unless the file transfer
 protocol is explicitly permitted within the egress VTY ACL.
- When you apply an undefined ACL to an interface, the system treats the ACL as empty and permits all traffic.
- IP tunnels do not support ACLs or QoS policies.
- The following guidelines apply to ACLs for VXLANs:
 - Ingress port ACLs applied on a Layer 2 port for traffic in the access to network direction (Layer 2 to Layer 3 encapsulation path) are supported on the inner payload.
 - We recommend using port ACLs on the access side to filter out traffic entering the overlay network.
 - Ingress router ACLs applied on an uplink Layer 3 interface matching on the inner or outer payload in the network to access direction (Layer 3 to Layer 2 decapsulation path) are not supported.
 - Egress router ACLs applied on an uplink Layer 3 interface matching on the inner or outer payload in the access to network direction (encapsulation path) are not supported.
- Beginning Cisco Nexus Release 7.0(3)I6.(1), Cisco Nexus 9300 and 9500 Series switches, and Cisco Nexus 9200 and 9300-EX Series switches have the following limitations for ACL options that can be used on VXLAN traffic:
 - Does not support egress port ACLs applied on a Layer 2 port for traffic in the network to access direction (decapsulation path).
 - Supports ingress VACLs applied on a VLAN for traffic in the access to network direction (encapsulation path).
 - Supports egress VACLs applied on a VLAN for traffic in the network to access direction (decapsulation path).
 - Supports ingress RACLs applied on a tenant or server facing SVI for traffic in the access to network direction (encapsulation path).
 - Supports egress RACLs applied on a tenant or server facing SVI for traffic in the network to access direction (decapsulation path).
- IPv6 ACL logging is not supported.
- IPv4 ACL logging in the egress direction is not supported.
- ACL logging for VACLs is not supported.

- ACL logging applies to port ACLs configured by the **ip port access-group** command and to router ACLs configured by the **ip access-group** command only.
- The total number of IPv4 ACL flows is limited to a user-defined maximum value to prevent DoS attacks. If this limit is reached, no new logs are created until an existing flow finishes.
- The number of syslog entries generated by IPv4 ACL logging is limited by the configured logging level of the ACL logging process. If the number of syslog entries exceeds this limit, the logging facility might drop some logging messages. Therefore, IPv4 ACL logging should not be used as a billing tool or as an accurate source of the number of matches to an ACL.
- Egress router ACLs are not supported on subinterfaces and on Cisco Nexus 9300 Series switch uplink ports.
- Egress ACLs are not supported for Cisco Nexus 9508 switches with the N9K-X9636C-R, N9K-X9636C-RX, and N9K-X9636Q-R line cards.
- An RACL applied on a Layer 3 physical or logical interface does not match multicast traffic. If multicast traffic must be blocked, use a PACL instead. This behavior applies to Cisco Nexus 9200, 9300, 9300-EX, and 9500 Series switches and Cisco Nexus 3164Q, 31128PQ, 3232C, and 3264Q switches.
- For Network Forwarding Engine (NFE)-enabled switches, ingress RACLs matching the tunnel interface's outer header are not supported.
- If the same QoS policy and ACL are applied to multiple interfaces, the label will be shared only when the QoS policy is applied with the no-stats option.
- The switch hardware does not support range checks (Layer 4 operations) in the egress TCAM. Therefore, ACL and QoS policies with a Layer 4 operations-based classification need to be expanded to multiple entries in the egress TCAM. Make sure to consider this limitation for egress TCAM space planning.
- TCAM resources are shared in the following scenarios:
 - When a routed ACL is applied to multiple switched virtual interfaces (SVIs) in the ingress direction
 - When a routed ACL is applied to multiple physical Layer 3 interfaces in the ingress or egress direction
- TCAM resources are not shared in the following scenarios:
 - VACL (VLAN ACL) is applied to multiple VLANs.
 - Routed ACL is applied to multiple SVIs in the egress direction.
- TCAM resources are not shared when a routed ACL is applied to multiple SVIs in the egress direction.
- Access-lists based on HTTP methods are not supported on the Cisco Nexus 9200, 9300-EX, and 9300-FX/FX2/FXP platform switches and the Cisco Nexus 9500 switches with the N9K-X9700-EX and N9K-X9700-FX line cards. For all these switches, you must use UDF-based ACLs.
- HTTP methods are not supported on FEX ports.
- The **mode tap aggregation** command is not required for TAP aggregation unless it is used with MPLS stripping. However, HTTP methods are not supported after MPLS packets have been stripped.
- Cisco Nexus 9504 and Cisco Nexus 9508 platform switches with -R line cards does not support the following TCAM:

- · All FEX related TCAM
- All xxx-lite related TCAM region
- Ranger related TCAM
- · All FCoE related TCAM
- TCAM carving configuration of the ing-netflow region can be performed on -FX line cards. -EX line cards have a default ing-netflow region TCAM carving of 1024 and cannot be configured otherwise. For ports on the -EX and -FX line cards, the suggested maximum for the ing-netflow region is 1024.
- The following guidelines and limitations apply to Cisco Nexus 9200 and 9300-EX Series switches:
 - Egress MAC ACLs are not supported.
 - Egress RACLs are not supported on an interface if the packet matches the tunnel interface's outer header on the device where the tunnel is originating the traffic.
 - Ingress RACLs matching the tunnel interface's outer header are not supported.
 - IP length-based matches are not supported.
 - All ACL-based features cannot be enabled at the same time.
 - 16 Layer 4 operations are supported.
 - Layer 4 operations are not supported on egress TCAM regions.
 - The MAC compression table size is 4096 + 512 overflow TCAM.
 - An overlap of MAC addresses and MAC masks will be rejected.
 - The ACL log rate limiter does not have any hardware counters for transmitted or dropped packets.
 - The ACL log rate limiter is implemented at the per-TCAM entry level (instead of using aggregated rate limiting), and the default is 1 pps.
 - The network address translation (NAT) exception counters are zero.
 - Only PACL redirects are supported for TAP aggregation. VACL redirects are not supported.
 - Only three of the following four features can be supported at a time: DHCPv4 snooping/relay, DHCPv6 relay, ARP snooping, VXLAN. The first three configured features will take effect, but the fourth one will fail because all three bridge domain label bits are already in use.
 - RACLs cannot match on packets with multicast MAC destination addresses.
- In the Cisco Nexus 9200 and 9300-EX Series switches, RACL with ACL log option will not take into effect as the sup-redirect ACLs will have higher priority for the traffic destined to SUP.
- For traffic destined to the FHRP VIP and ingressing on FHRP standby which matches an ACL log enabled ACE designed to permit the traffic, the Cisco Nexus 9000 Series switch will drop this packet.
- A RACL and PACL cannot co-exist in the external TCAM. While, the RACL IPv4 and IPv6 can both exist in external TCAM at the same time, the PACL IPv4 cannot co-exist with either RACL IPv4 or IPv6 and vice versa. This behavior applies to Cisco Nexus 9508 switch with N9K-X9636C-RX line card.

- For Broadcom-based Cisco Nexus 9000 series switches, when there is a SVI and subinterface matching the same VLAN tag, the traffic that gets routed out through a subinterface gets dropped if the access-list is configured on that SVI. This is due to an ASIC limitation and egress RACL on L3 subinterfaces is not supported due to this limitation.
- When a new ACL is applied or an existing ACL is re-configured on a Layer 3 interface which is BFD enabled, the BFD on that interface flaps momentarily.
- Egress ACL does not support traffic that is destined to the IP address of the second VLAN in a inter-VLAN routing flow.
- Deny ACE in MAC ACL or PACL (Port ACL) with redirect option is not supported on Cisco Nexus 9000 Series switches.

Default Settings for IP ACLs

This table lists the default settings for IP ACL parameters.

Table 15: Default IP ACL Parameters

Parameters	Default
IP ACLs	No IP ACLs exist by default
IP ACL entries	1024
ACL rules	Implicit rules apply to all ACLs
Object groups	No object groups exist by default
Time ranges	No time ranges exist by default

Related Topics

Implicit Rules for IP and MAC ACLs, on page 192

Configuring IP ACLs

Creating an IP ACL

You can create an IPv4 ACL or IPv6 ACL on the device and add rules to it.

Before you begin

We recommend that you perform the ACL configuration using the Session Manager. This feature allows you to verify the ACL configuration and confirm that the resources that are required by the configuration are available before committing them to the running configuration. This feature is especially useful for ACLs that include more than about 1000 rules.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example: switch# configure terminal switch(config)#	
Step 2	Enter one of the following commands: • ip access-list name • ipv6 access-list name Example:	Creates the IP ACL and enters IP ACL configuration mode. The <i>name</i> argument can be up to 64 characters.
	<pre>switch(config)# ip access-list acl-01 switch(config-acl)#</pre>	
Step 3	(Optional) fragments {permit-all deny-all} Example: switch(config-acl) # fragments permit-all	Optimizes fragment handling for noninitial fragments. When a device applies to traffic an ACL that contains the fragments command, the fragments command only matches noninitial fragments that do not match any explicit permit or deny commands in the ACL.
Step 4	[sequence-number] {permit deny} protocol {source-ip-prefix source-ip-mask} {destination-ip-prefix destination-ip-mask} Example:	Creates a rule in the IP ACL. You can create many rules. The <i>sequence-number</i> argument can be a whole number between 1 and 4294967295.
	<pre>switch(config-acl)# 10 permit ipv6 1::1 2::2 3::3 4::4</pre>	The permit and deny commands support many ways of identifying traffic.
		For IPv4 and IPv6 access lists, you can specify a source and destination IPv4 or IPv6 prefix, which matches only on the first contiguous bits, or you can specify a source and destination IPv4 or IPv6 wildcard mask, which matches on any bit in the address. IPv6 wildcard masks are supported beginning with Cisco NX-OS Release 7.0(3)I7(3) for Cisco Nexus 9200, 9300-EX, and 9300-FX/FX2/FXP switches and the Cisco Nexus 9364C switch.
Step 5	(Optional) statistics per-entry Example: switch(config-acl) # statistics per-entry	Specifies that the device maintains global statistics for packets that match the rules in the ACL.
Step 6	(Optional) Enter one of the following commands: • show ip access-lists name	Displays the IP ACL configuration.

	Command or Action	Purpose
	• show ipv6 access-lists name	
	Example:	
	<pre>switch(config-acl)# show ip access-lists acl-01</pre>	
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-acl)# copy running-config startup-config</pre>	

Changing an IP ACL

You can add and remove rules in an existing IPv4 or IPv6 ACL, but you cannot change existing rules. Instead, to change a rule, you can remove it and recreate it with the desired changes.

If you need to add more rules between existing rules than the current sequence numbering allows, you can use the **resequence** command to reassign sequence numbers.

Before you begin

We recommend that you perform ACL configuration using the Session Manager. This feature allows you to verify ACL configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration. This feature is especially useful for ACLs that include more than about 1000 rules.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands:	Enters IP ACL configuration mode for the ACL
	• ip access-list name	that you specify by name.
	• ipv6 access-list name	
	Example:	
	<pre>switch(config)# ip access-list acl-01 switch(config-acl)#</pre>	
Step 3	(Optional) [sequence-number] {permit deny}	Creates a rule in the IP ACL. Using a sequence
	protocol source destination	number allows you to specify a position for the
	Example:	rule in the ACL. Without a sequence number, the rule is added to the end of the rules. The
	switch(config-acl)# 100 permit ip 192.168.2.0/24 any	sequence-number argument can be a whole number between 1 and 4294967295.

	Command or Action	Purpose
		The permit and deny commands support many ways of identifying traffic.
Step 4	(Optional) [no] fragments {permit-all deny-all} Example: switch(config-acl)# fragments permit-all	Optimizes fragment handling for noninitial fragments. When a device applies to traffic an ACL that contains the fragments command, the fragments command only matches noninitial fragments that do not match any explicit permit or deny commands in the ACL. The no option removes fragment-handling
		optimization.
Step 5	(Optional) no {sequence-number { permit deny } protocol source destination}	Removes the rule that you specified from the IP ACL.
	Example: switch(config-acl) # no 80	The permit and deny commands support many ways of identifying traffic.
Step 6	(Optional) [no] statistics per-entry Example: switch(config-acl) # statistics per-entry	Specifies that the device maintains global statistics for packets that match the rules in the ACL.
	Switch (config aci) # Statistics per entry	The no option stops the device from maintaining global statistics for the ACL.
Step 7	(Optional) Enter one of the following commands:	Displays the IP ACL configuration.
	 show ip access-lists name show ipv6 access-lists name	
	Example:	
	<pre>switch(config-acl)# show ip access-lists acl-01</pre>	
Step 8	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-acl)# copy running-config startup-config</pre>	

Related Topics

Changing Sequence Numbers in an IP ACL, on page 213

Creating a VTY ACL

You can configure a VTY ACL to control access to all IPv4 or IPv6 traffic over all VTY lines in the ingress or egress direction.

Before you begin

Set identical restrictions on all the virtual terminal lines because a user can connect to any of them.

We recommend that you perform ACL configuration using the Session Manager. This feature allows you to verify ACL configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration, which is especially useful for ACLs that include more than about 1000 rules.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	{ip ipv6} access-list name	Creates an ACL and enters IP access list	
	Example:	configuration mode for that ACL. The maximum length for the <i>name</i> argument is 64	
	switch(config)# ip access-list vtyacl	characters.	
Step 3	{permit deny} protocol source destination [log] [time-range time]	Creates an ACL rule that permits TCP traffic from and to the specified sources.	
	Example:		
	<pre>switch(config-ip-acl)# permit tcp any any</pre>		
Step 4	exit	Exits IP access list configuration mode.	
	Example:		
	<pre>switch(config-ip-acl)# exit switch(config)#</pre>		
Step 5	line vty	Specifies the virtual terminal and enters line	
	Example:	configuration mode.	
	<pre>switch(config)# line vty switch(config-line)#</pre>		
Step 6	{ip ipv6} access-class name {in out}	Restricts incoming or outgoing connections to	
	Example:	and from all VTY lines using the specified ACL. The maximum length for the <i>name</i>	
<pre>switch(config-line)# i vtyacl out</pre>	<pre>switch(config-line)# ip access-class vtyacl out</pre>	argument is 64 characters.	
Step 7	(Optional) show {ip ipv6} access-lists	Displays the configured ACLs, including any	
	Example:	VTY ACLs.	
	switch# show ip access-lists		
Step 8	(Optional) copy running-config	Copies the running configuration to the startup	
	startup-config	configuration.	
	Example:		

Command or Action	Purpose
switch# copy running-config startup-config	

Changing Sequence Numbers in an IP ACL

You can change all the sequence numbers assigned to the rules in an IP ACL.

Before you begin

We recommend that you perform ACL configuration using the Session Manager. This feature allows you to verify ACL configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration. This feature is especially useful for ACLs that include more than about 1000 rules.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	resequence {ip ipv6} access-list name starting-sequence-number increment	Assigns sequence numbers to the rules contained in the ACL, where the first rule
	Example:	receives the starting sequence number that you
	switch(config) # resequence access-list ip acl-01 100 10	specify. Each subsequent rule receives a number larger than the preceding rule. The difference in numbers is determined by the increment that you specify. The <i>starting-sequence-number</i> argument and the <i>increment</i> argument can be a whole number between 1 and 4294967295.
Step 3	(Optional) show ip access-lists name	Displays the IP ACL configuration.
	<pre>Example: switch(config) # show ip access-lists acl-01</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	<pre>Example: switch(config) # copy running-config startup-config</pre>	

Removing an IP ACL

You can remove an IP ACL from the device.

Before you begin

Ensure that you know whether the ACL is applied to an interface. The device allows you to remove ACLs that are currently applied. Removing an ACL does not affect the configuration of interfaces where you have applied the ACL. Instead, the device considers the removed ACL to be empty. Use the **show ip access-lists** command or the **show ipv6 access-lists** command with the summary keyword to find the interfaces that an IP ACL is configured on.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	Enter one of the following commands:	Removes the IP ACL that you specified by	
	• no ip access-list name	name from the running configuration.	
	• no ipv6 access-list name		
	Example:		
	switch(config) # no ip access-list acl-01		
Step 3	(Optional) Enter one of the following commands:	Displays the IP ACL configuration. If the AC remains applied to an interface, the comman	
	 show ip access-lists name summary show ipv6 access-lists name summary	lists the interfaces.	
	Example:		
	switch(config)# show ip access-lists acl-01 summary		
Step 4	(Optional) copy running-config	Copies the running configuration to the startup	
	startup-config	configuration.	
	Example:		
	<pre>switch(config)# copy running-config startup-config</pre>		

Configuring ACL TCAM Region Sizes

You can change the size of the ACL ternary content addressable memory (TCAM) regions in the hardware.

You can use this procedure for all Cisco Nexus 9200, 9300, and 9500 Series switches and the Cisco Nexus 3164Q, 31128PQ, 3232C, and 3264Q switches, except for NFE2-enabled devices (such as the X9432C-S 100G line card and the C9508-FM-S fabric module), which must use TCAM templates to configure ACL TCAM region sizes. For more information on using TCAM templates, see "Using Templates to Configure ACL TCAM Region Sizes."

Note

- Once you apply a template (using Using Templates to Configure ACL TCAM Region Sizes, on page 223), the **hardware access-list tcam region** command in this section will not work. You must uncommit the template in order to use the command.
- The **hardware access-list team region** command for the Multicast PIM Bidir feature is applicable only to the Broadcom-based Cisco Nexus 9000 Series switches.
- For information on configuring QoS TCAM carving, see the *Cisco Nexus 9000 Series NX-OS Quality of Service Configuration Guide*.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] hardware access-list tcam region region tcam-size	Changes the ACL TCAM region size. These are the available regions:
	<pre>Example: switch(config) # hardware access-list tcam region mpls 256</pre>	• n9k-arp-acl—Configures the rate limit for arp packets entering an interface on their way to the CPU. You will have to set this rate limit per interface to ensure that arp packets conform to the configured rate.
		• arp-ether—Configures the size of the ARP/Layer 2 Ethertype TCAM region.
		• copp —Configures the size of the CoPP TCAM region.
		• e-flow—Configures the size of the egress flow counters TCAM region.
		• egr-racl—Configures the size of the egress IPv4 or IPv6 router ACL (RACL) TCAM region.
		egr-sup—Configures the size of the egress supervisor TCAM region.
		• e-ipv6-qos—Configures the size of the IPv6 egress QoS TCAM region.
		• e-ipv6-racl—Configures the size of the IPv6 egress router ACL (ERACL) TCAM region.

Command or Action	Purpose
	• e-mac-qos—Configures the size of the egress MAC QoS TCAM region.
	• e-qos—Configures the size of the IPv4 egress QoS TCAM region.
	• e-qos-lite—Configures the size of the IPv4 egress QoS lite TCAM region.
	• e-racl—Configures the size of the IPv4 egress router ACL (ERACL) TCAM region.
	• fex-ifacl —Configures the size of the FEX IPv4 port ACL TCAM region.
	• fex-ipv6-ifacl —Configures the size of the FEX IPv6 port ACL TCAM region.
	• fex-ipv6-qos —Configures the size of the FEX IPv6 port QoS TCAM region.
	• fex-mac-ifacl—Configures the size of the FEX MAC port ACL TCAM region.
	• fex-mac-qos —Configures the size of the FEX MAC port QoS TCAM region.
	• fex-qos —Configures the size of the FEX IPv4 port QoS TCAM region.
	• fex-qos-lite —Configures the size of the FEX IPv4 port QoS lite TCAM region.
	• fhs—Configures the size of the fhs TCAM region. Beginning with Cisco NX-OS Release 7.0(3)I6(1), you can configure TCAM for the fhs region on the Cisco Nexus 9300 and 9500 Series switches.
	• flow—Configures the size of the ingress flow counters TCAM region.
	• ifacl—Configures the size of the IPv4 port ACL TCAM region.
	• ifacl-udf—Configures the size of the IPv4 port ACL user-defined field (UDF) TCAM region.
	• ing-ifacl—Configures the size of the ingress IPv4, IPv6, or MAC port ACL TCAM region.

Command or Action	Purpose
	Note You can attach user-defined fields (UDFs) to the ing-ifacl TCAM region to configure UDF-based IPv4 or IPv6 port ACLs. UDF-based IPv6 port ACLs. For more information and configuration instructions, see Configuring UDF-Based Port ACLs, on page 231.
	• ing-l2qos—Configures the size of the ingress Layer 2 QoS TCAM region.
	• ing-l2-span-filter—Configures the size of the ingress Layer 2 SPAN filter TCAM region.
	• ing-l3-span-filter—Configures the size of the ingress Layer 3 and VLAN SPAN filter TCAM region.
	• ing-l3-vlan-qos—Configures the size of the ingress Layer 3, VLAN, and SVI QoS TCAM region.
	• ing-netflow—Configures the size of the NetFlow TCAM region.
	• ing-racl—Configures the size of the IPv4 or IPv6 ingress router ACL (RACL) TCAM region.
	• ing-redirect—Configures the size of the redirect TCAM region for DHCPv4 relay, DHCPv4 snooping, and DHCPv4 client.
	• ing-sup—Configures the size of the ingress supervisor TCAM region.
	• ipsg—Configures the size of the IP source guard SMAC-IP binding TCAM region.
	• ipv6-ifacl—Configures the size of the IPv6 port ACL TCAM region.
	• ipv6-l3qos —Configures the size of the IPv6 Layer 3 QoS TCAM region.
	• ipv6-qos—Configures the size of the IPv6 port QoS TCAM region.
	• ipv6-racl—Configures the size of the IPv6 RACL TCAM region.

Command or Action	Purpose
	• ipv6-vacl—Configures the size of the IPv6 VACL TCAM region.
	• ipv6-vqos—Configures the size of the IPv6 VLAN QoS TCAM region.
	• 13qos—Configures the size of the IPv4 Layer 3 QoS TCAM region.
	• 13qos-lite—Configures the size of the IPv4 Layer 3 QoS lite TCAM region.
	• mac-ifacl—Configures the size of the MAC port ACL TCAM region.
	• mac-l3qos—Configures the size of the MAC Layer 3 QoS TCAM region.
	• mac-qos—Configures the size of the MAC port QoS TCAM region.
	• mac-vacl—Configures the size of the MAC VACL TCAM region.
	• mac-vqos—Configures the size of the MAC VLAN QoS TCAM region.
	• mcast_bidir—Configures the size of the multicast PIM Bidir TCAM region.
	• mpls—Configures the size of the static MPLS TCAM region.
	• nat—Configures the size of the network address translation (NAT) TCAM region.
	• ns-ipv6-l3qos—Configures the size of the IPv6 Layer 3 QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• ns-ipv6-qos—Configures the size of the IPv6 port QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• ns-ipv6-vqos—Configures the size of the IPv6 VLAN QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).

Command or Action	Purpose
	• ns-l3qos—Configures the size of the IPv4 Layer 3 QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• ns-mac-l3qos—Configures the size of the MAC Layer 3 QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• ns-mac-qos—Configures the size of the MAC port QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• ns-mac-vqos—Configures the size of the MAC VLAN QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• ns-qos—Configures the size of the IPv4 port QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• ns-vqos—Configures the size of the IPv4 VLAN QoS TCAM region for the X9536PQ, X9564PX, and X9564TX line cards and the M12PQ generic expansion module (GEM).
	• openflow—Configures the size of the OpenFlow TCAM region.
	• qos—Configures the size of the IPv4 port QoS TCAM region.
	• qos-lite—Configures the size of the IPv4 port QoS lite TCAM region.
	• racl—Configures the size of the IPv4 router ACL (RACL) TCAM region.
	• racl-lite—Configures the size of the IPv4 router ACL (RACL) lite TCAM region.
	• racl-udf—Configures the size of the IPv4 router ACL (RACL) user-defined field (UDF) TCAM region.

Command or Action	Purpose
	• redirect—Configures the size of the redirect TCAM region.
	• redirect-tunnel—Configures the size of the redirect-tunnel TCAM region, which is used for BFD over VXLAN.
	Note This command is supported only if the TP_SERVICES_PKG license is installed.
	• rp-ipv6-qos—Configures the size of the IPv6 port QoS TCAM region for the 100G 9408PC line card and the 100G M4PC generic expansion module (GEM).
	• rp-mac-qos—Configures the size of the MAC port QoS TCAM region for the 100G 9408PC line card and the 100G M4PC generic expansion module (GEM).
	• rp-qos—Configures the size of the IPv4 port QoS TCAM region for the 100G 9408PC line card and the 100G M4PC generic expansion module (GEM).
	• rp-qos-lite—Configures the size of the IPv4 port QoS lite TCAM region for the 100G 9408PC line card and the 100G M4PC generic expansion module (GEM).
	• sflow—Configures the size of the sFlow TCAM region.
	• span—Configures the size of the SPAN TCAM region.
	• svi—Configures the size of the ingress SVI counters TCAM region.
	• vacl—Configures the size of the IPv4 VACL TCAM region.
	• vpc-convergence—Configures the size of the vPC convergence TCAM region.
	• vqos—Configures the size of the IPv4 VLAN QoS TCAM region.
	• vqos-lite—Configures the size of the IPv4 VLAN QoS lite TCAM region.
	• tcam-size—TCAM size. The size has to a multiple of 256. If the size is more than

	Command or Action F	Purpose	
		1	256, it has to be multiple of 512. For FHS, he range is from 0-4096.
			an use the no form of this command to to the default TCAM region size.
		Note	You can attach IPv4 user-defined fields (UDFs) to the racl, ifacl, and vacl TCAM regions using the hardware access-list tcam region {racl ifacl vacl} qualify udf udf-names command to configure IPv4 UDF-based SPAN or ERSPAN. Beginning with Cisco NX-OS Release 7.0(3)I6(1), you can attach IPv6 UDFs to the ing-l2-span-filter and ing-l3-span-filter TCAM regions using the hardware access-list tcam region {ing-ifacl ing-l2-span-filter ing-l3-span-filter} qualify v6udf v6udf-names commands to configure IPv6 UDF-based ERSPAN. For more information and configuration instructions, see the latest Cisco Nexus 9000 Series NX-OS System Management Configuration Guide.
Step 3	copy running-config startup-config		es the running configuration to the startup
	Example:	config	guration.
	<pre>switch(config)# copy running-config startup-config</pre>		
Step 4	(Optional) show hardware access-list tcam region		ays the TCAM sizes that will be applicable e next reload of the device.
	Example:		
	<pre>switch(config)# show hardware access-list tcam region</pre>		
Step 5	reload	Reloa	ds the device.
	Example:	Note	The new size values are effective only
	switch(config)# reload		after you enter copy running-config startup-config + reload or reload all line card modules.

Example

The following example shows how to change the size of the n9k-arp-acl TCAM region on a Cisco Nexus NFE-enabled device:

```
switch(config) #hardware access-list tcam region n9k-arp-acl 256switch(config) #copy r s
switch(config) # reload
Configuring storm-control-cpu:
switch (config) # interface ethernet 1/10switch
switch (config-if) # storm-control-cpu arp rate 150
switch (config) # show access-list storm-control-cpu arp-stats interface ethernet 1/10
slot. 1
```

The following example shows how to change the size of the RACL TCAM region on a Cisco Nexus 9500 Series switch:

```
switch(config)# hardware access-list tcam region racl 256
[SUCCESS] New tcam size will be applicable only at boot time.
You need to 'copy run start' and 'reload'
switch(config)# copy running-config startup-config
switch(config)# reload
WARNING: This command will reboot the system
Do you want to continue? (y/n) [n] y
```

This example shows how to display the TCAM region sizes to verify your changes:

```
IPV4 PACL [ifacl] size =
                                               512
               IPV6 PACL [ipv6-ifacl] size =
                MAC PACL [mac-ifacl] size =
                                                Ω
                 IPV4 Port QoS [qos] size =
                                               2.56
             IPV6 Port QoS [ipv6-qos] size =
              MAC Port QoS [mac-qos] size =
                                               Ω
            FEX IPV4 PACL [fex-ifacl] size =
                                               Ω
       FEX IPV6 PACL [fex-ipv6-ifacl] size =
        FEX MAC PACL [fex-mac-ifacl] size =
         FEX IPV4 Port OoS [fex-gos] size =
     FEX IPV6 Port QoS [fex-ipv6-qos] size =
       FEX MAC Port QoS [fex-mac-qos] size =
                                               Ω
                    IPV4 VACL [vacl] size =
                                               512
               IPV6 VACL [ipv6-vacl] size =
                                               0
                 MAC VACL [mac-vacl] size =
                                               0
                IPV4 VLAN QoS [vqos] size =
            IPV6 VLAN QoS [ipv6-vqos] size =
                                               Ω
             MAC VLAN QoS [mac-vqos] size =
                                               0
                    IPV4 RACL [racl] size =
                                                512
               IPV6 RACL [ipv6-racl] size =
       IPV4 Port QoS Lite [gos-lite] size =
FEX IPV4 Port QoS Lite [fex-qos-lite] size =
                                               0
       IPV4 VLAN QoS Lite [vqos-lite] size =
        IPV4 L3 QoS Lite [13qos-lite] size =
             Egress IPV4 QoS [e-qos] size =
        Egress IPV6 QoS [e-ipv6-qos] size =
          Egress MAC QoS [e-mac-qos] size =
             Egress IPV4 VACL [vacl] size =
                                               512
        Egress IPV6 VACL [ipv6-vacl] size =
                                               0
          Egress MAC VACL [mac-vacl] size =
           Egress IPV4 RACL [e-racl] size =
                                               256
       Egress IPV6 RACL [e-ipv6-racl] size =
   Egress IPV4 QoS Lite [e-qos-lite] size =
                                                0
                                               0
                 IPV4 L3 QoS [13qos] size =
             IPV6 L3 QoS [ipv6-l3qos] size =
              MAC L3 QoS [mac-13qos] size =
                      Ingress System size = 256
                       Egress System size = 256
                         SPAN [span] size = 256
```

```
Ingress COPP [copp] size = 256
      Ingress Flow Counters [flow] size =
        Egress Flow Counters [e-flow] size = 0
        Ingress SVI Counters [svi] size =
              Redirect [redirect] size = 512
         NS IPV4 Port QoS [ns-qos] size =
    NS IPV6 Port QoS [ns-ipv6-qos] size =
      NS MAC Port QoS [ns-mac-qos] size =
                                             0
        NS IPV4 VLAN QoS [ns-vqos] size =
   NS IPV6 VLAN QoS [ns-ipv6-vqos] size =
     NS MAC VLAN QoS [ns-mac-vqos] size =
                                             0
         NS IPV4 L3 QoS [ns-13qos] size =
    NS IPV6 L3 QoS [ns-ipv6-l3qos] size =
      NS MAC L3 QoS [ns-mac-l3qos] size =
 VPC Convergence [vpc-convergence] size =
    IPSG SMAC-IP bind table [ipsg] size =
 Ingress ARP-Ether ACL [arp-ether] size =
                                             0
ranger+ IPV4 QoS Lite [rp-qos-lite] size =
         ranger+ IPV4 QoS [rp-qos] size =
    ranger+ IPV6 QoS [rp-ipv6-gos] size =
      ranger+ MAC QoS [rp-mac-qos] size =
                      NAT ACL[nat] size =
                                             0
                          Mpls ACL size =
              Ingress IPv4 N3K QoS size =
              Ingress IPv6 N3K QoS size =
                          MOD RSVD size =
                 sFlow ACL [sflow] size =
                                             Ω
                   mcast bidir ACL size =
                                             0
                          Openflow size =
```

This example shows how to revert to the default RACL TCAM region size:

```
switch(config)# no hardware profile tcam region racl 512
[SUCCESS] New tcam size will be applicable only at boot time.
You need to 'copy run start' and 'reload'
switch(config)# copy running-config startup-config
switch(config)# reload
WARNING: This command will reboot the system
Do you want to continue? (y/n) [n] y
```

Using Templates to Configure ACL TCAM Region Sizes

Beginning with Cisco NX-OS Release 7.0(3)I3(1), you can use create and apply custom templates to configure ACL TCAM region sizes.

For all Cisco Nexus 9200, 9300, and 9500 Series switches, you can use this procedure or the Configuring ACL TCAM Region Sizes procedure to configure ACL TCAM region sizes. However, NFE2-enabled devices (such as the X9432C-S 100G line card and the C9508-FM-S fabric module) do not support the **hardware access-list tcam region** command and must use a template to configure the ACL TCAM region size.

Note

- Once you apply a TCAM template, the **hardware access-list tcam region** command will not work. You must uncommit the template in order to use the command.
- For information on configuring QoS TCAM carving, see the *Cisco Nexus 9000 Series NX-OS Quality of Service Configuration Guide*.
- The TCAM profile template is not supported on the C9508-FM-S fabric module.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2		Creates a template for configuring ACL TCAM region sizes.
	13}}	nfe —The default TCAM template for Network
	Example: switch(config) # hardware profile tcam resource template SR_MPLS_CARVE ref-template nfe2 switch(config-tcam-temp) #	Forwarding Engine (NFE)-enabled Cisco Nexus 9300 and 9500 Series.
		nfe2 —The default TCAM template for NFE2-enabled Cisco Nexus 9500 Series devices.
		12-13—The default TCAM template for Layer 2 and Layer 3 configurations.
		13—The default TCAM template for Layer 3 configurations.
Step 3	(Optional) region tcam-size	Adds any desired TCAM regions and their sizes
	Example:	to the template. Enter this command for each region you want to add to the template. For the
	switch(config-tcam-temp)# mpls 256	list of available regions, see Configuring ACL TCAM Region Sizes.
Step 4	exit	Exits the TCAM template configuration mode.
	Example:	
	<pre>switch(config-tcam-temp)# exit switch(config#)</pre>	
Step 5	[no] hardware profile tcam resource service-template template-name	Applies the custom template to all line cards and fabric modules.
	Example:	
	<pre>switch(config)# hardware profile tcam resource service-template SR_MPLS_CARVE</pre>	

	Command or Action	Purpose	
Step 6	(Optional) show hardware access-list tcam template {all nfe nfe2 12-13 13 template-name}	Displays the configuration for all TCAM templates or for a specific template.	
	Example:		
	<pre>switch(config)# show hardware access-list tcam template SR_MPLS_CARVE</pre>		
Step 7	(Optional) copy running-config startup-config		
	Example:	configuration.	
	<pre>switch(config)# copy running-config startup-config</pre>		
Step 8	reload	Reloads the device.	
	Example:	Note The configuration is effective only after	
	switch(config)# reload	you enter copy running-config startup-config + reload.	

Configuring TCAM Carving - For Cisco NX-OS Release 6.1(2)I2(1) and Later Releases

The default TCAM region configuration varies by platform and does not accommodate all TCAM regions. To enable any desired regions, you must decrease the TCAM size of one region and then increase the TCAM size for the desired region.

Note

For information on configuring QoS TCAM carving, see the *Cisco Nexus 9000 Series NX-OS Quality of Service Configuration Guide*.

The following tables list the default sizes for the ingress and egress TCAM regions on different platforms.

Table 16: Default TCAM Region Configuration (Ingress) - For Cisco Nexus 9500 Series Switches

Region Name	Size	Width	Total Size
IPv4 RACL	1536	1	1536
IPv4 Layer 3 QoS	256	2	512
SPAN	256	1	256
СоРР	256	2	512
System	256	2	512
Redirect	256	1	256
vPC convergence	512	1	512
			4K

Table 17: Default TCAM Region Configuration (Egress) - For Cisco Nexus 9500 Series Switches

Region Name	Size	Width	Total Size
IPv4 RACL	768	1	768
System	256	1	256
	1K		

Table 18: Default TCAM Region Configuration (Ingress) - For Cisco Nexus 9300-FX Series Switches

Region Name	Size	Width	Total Size
IPv4 RACL	2304	1	2304
Layer 2 QoS	256	1	256
Layer 3/VLAN QoS	512	1	512
System	512	1	512
Layer 2 SPAN filter	256	1	256
Layer 3 SPAN filter	256	1	256
SPAN	512	1	512
NetFlow/Analytics filter	512	1	512
			5K

Table 19: Default TCAM Region Configuration (Egress) - For Cisco Nexus 9300-FX Series Switches

Region Name	Size	Width	Total Size
IPv4 RACL	1792	1	1792
System	256	1	256
			2K

Table 20: Default TCAM Region Configuration (Ingress) - For Cisco Nexus 9300-EX Series Switches

Region Name	Size	Width	Total Size
IPv4 RACL	1792	1	1792
Layer 2 QoS	256	1	256
Layer 3/VLAN QoS	512	1	512
System	512	1	512
Layer 2 SPAN ACL	256	1	256
Layer 3/VLAN SPAN ACL	256	1	256
SPAN	512	1	512
	•		4K

Table 21: Default TCAM Region Configuration (Egress) - For Cisco Nexus 9300-EX Series Switches

Region Name	Size	Width	Total Size
IPv4 RACL	1792	1	1792
System	256	1	256
	2K		

Table 22: Default TCAM Region Configuration (Ingress) - For Cisco Nexus 9300 Series Switches

Region Name	Size	Width	Total Size
IPv4 port ACL	512	1	512
IPv4 port QoS	256	2	512
IPv4 VACL	512	1	512
IPv4 RACL	512	1	512
SPAN	256	1	256
СоРР	256	2	512
IPv4 port QoS for ACI leaf line card	256	1	256
IPv4 VLAN QoS for ACI leaf line card	256	1	256
IPv4 Layer 3 QoS for ACI leaf line card	256	1	256
System	256	2	512
Redirect	512	1	512
vPC convergence	256	1	256
			4K

Table 23: Default TCAM Region Configuration (Egress) - For Cisco Nexus 9300 Series Switches

Region Name	Size	Width	Total Size
IPv4 VACL	512	1	512
IPv4 RACL	256	1	256
System	256	1	256
	1K		

Table 24: Default TCAM Region Configuration (Ingress) - For Layer 2-to-Layer 3 Configurations on Cisco Nexus 9200 Series Switches

Region Name	Size	Width	Total Size
Ingress NAT	0	1	0

Region Name	Size	Width	Total Size
Ingress port ACL	256	1	256
Ingress VACL	256	1	256
Ingress RACL	1536	1	1536
Ingress Layer 2 QoS	256	1	256
Ingress Layer 3 VLAN QoS	256	1	256
Ingress supervisor	512	1	512
Ingress Layer 2 ACL SPAN	256	1	256
Ingress Layer 3 ACL SPAN	256	1	256
Port-based SPAN	512	1	512
		,	4096

Table 25: Default TCAM Region Configuration (Egress) - For Layer 2-to-Layer 3 Configurations on Cisco Nexus 9200 Series Switches

Region Name	Size	Width	Total Size
Egress VACL	256	1	256
Egress RACL	1536	1	1536
Egress supervisor	256	1	256
	2048		

Table 26: Default TCAM Region Configuration (Ingress) - For Layer 3 Configurations on Cisco Nexus 9200 Series Switches

Region Name	Size	Width	Total Size
Ingress NAT	0	1	0
Ingress port ACL	0	1	0
Ingress VACL	0	1	0
Ingress RACL	1792	1	1792
Ingress Layer 2 QoS	256	1	256
Ingress Layer 3 VLAN QoS	512	1	512
Ingress supervisor	512	1	512
Ingress Layer 2 ACL SPAN	256	1	256
Ingress Layer 3 ACL SPAN	256	1	256

Region Name	Size	Width	Total Size
Port-based SPAN	512	1	512
			4096

Table 27: Default TCAM Region Configuration (Egress) - For Layer 3 Configurations on Cisco Nexus 9200 Series Switches

Region Name	Size	Width	Total Size
Egress VACL	0	1	0
Egress RACL	1792	1	1792
Egress supervisor	256	1	256
	2048		

The following example sets the IPv6 RACL TCAM size to 256 on a Cisco Nexus 9500 Series switch. An IPv6 RACL of size 256 takes 512 entries because IPv6 is double wide.

Note

Follow a similar procedure to modify the TCAM settings for a different region or to modify the TCAM settings on a different device.

To set the size of the ingress IPv6 RACL TCAM region on a Cisco Nexus 9500 Series switch, perform one of two options.

Option #1

Reduce the ingress IPv4 RACL by 1024 entries (1536 - 1024 = 512) and add an ingress IPv6 RACL with 512 entries—This option is preferred.

```
switch(config)# hardware access-list tcam region racl 512
Warning: Please reload the linecard for the configuration to take effect
switch(config)# hardware access-list tcam region ipv6-racl 256
Warning: Please reload the linecard for the configuration to take effect
```

Table 28: Updated TCAM Region Configuration After Reducing the IPv4 RACL (Ingress)

Region Name	Size	Width	Total Size
IPv4 RACL	1024	1	1024
IPv6 RACL	256	2	1024 ¹
IPv4 Layer 3 QoS	256	2	512
SPAN	256	1	256
СоРР	256	2	512
System	256	2	512
Redirect	256	1	256
vPC convergence	512	1	512
	,	1	4K

¹ 2 x 512 entry slices are allocated due to the non-availability of 256 entry slices.

Option #2

Remove IPv4 Layer 3 QoS by reducing its size to 0 and add an ingress IPv6 RACL—This option is available if you are not using IPv4 Layer 3 QoS.

```
switch(config)# hardware access-list tcam region 13qos 0
Warning: Please reload the linecard for the configuration to take effect
switch(config)# hardware access-list tcam region ipv6-racl 256
Warning: Please reload the linecard for the configuration to take effect
```

Table 29: Updated TCAM Region Configuration After Removing Layer 3 QoS (Ingress)

Region Name	Size	Width	Total Size
IPv4 RACL	1536	1	1536
IPv6 RACL	256	2	512
IPv4 Layer 3 QoS	0	2	0
SPAN	256	1	256
СоРР	256	2	512
System	256	2	512
Redirect	256	1	256
vPC convergence	512	1	512
	•		4K

To enable an egress IPv6 RACL of size 256, reduce the egress IPv4 RACL to 256 and add the egress IPv6 RACL:

```
switch(config)# hardware access-list tcam region e-racl 256
Warning: Please reload the linecard for the configuration to take effect
switch(config)# hardware access-list tcam region e-ipv6-racl 256
Warning: Please reload the linecard for the configuration to take effect
```

Table 30: Default TCAM Region Configuration After Reducing the IPv4 RACL (Egress)

Region Name	Size	Width	Total Size
IPv4 RACL	256	1	256
IPv6 RACL	256	2	512
System	256	1	256
			1K

Note

Each IPv6 ACL is limited to 1,000 ACEs. This applies to all IPv6 ACLs (RACL, QoS or SPAN filter). No such limitation applies for IPv4 ACL.

After you adjust the TCAM region sizes, enter the **show hardware access-list tcam region** command to display the TCAM sizes that will be applicable on the next reload of the device.

Attention

To keep all modules synchronized, you must reload all line card modules or enter **copy running-config startup-config** + **reload** to reload the device. Multiple TCAM region configurations require only a single reload. You can wait until you complete all of your TCAM region configurations before you reload the device.

Depending on the configuration, you might exceed the TCAM size or run out of slices.

If you exceed the 4K ingress limit for all TCAM regions when you configure a TCAM region, the following message appears:

ERROR: Aggregate TCAM region configuration exceeded the available Ingress TCAM space. Please re-configure.

If you exceed the number of slices, the following message appears:

 $\tt ERROR:$ Aggregate TCAM region configuration exceeded the available Ingress TCAM slices. Please re-configure.

If you exceed the 1K egress limit for all TCAM regions when you configure a TCAM region, the following message appears:

 $\tt ERROR:$ Aggregate TCAM region configuration exceeded the available Egress TCAM space. Please re-configure.

If TCAM for a particular feature is not configured and you try to apply a feature that requires TCAM carving, the following message appears:

ERROR: Module x returned status: TCAM region is not configured. Please configure TCAM region and retry the command.

Note

The default redirect TCAM region size of 256 might not be sufficient if you are running many BFD or DHCP relay sessions. To accommodate more BFD or DHCP relay sessions, you might need to increase the TCAM size to 512 or greater.

Note

"e-racl" team region size can be maximum of 16K when we have at least one "N9K-X9624D-R2" line card on a N9K-C9508 (Fretta) system.

Related Topics

Configuring ACL TCAM Region Sizes, on page 214

Configuring UDF-Based Port ACLs

Beginning with Cisco NX-OS Release 7.0(3)I5(2), you can configure UDF-based port ACLs for Cisco Nexus 9200, 9300, and 9300-EX Series switches. This feature enables the device to match on user-defined fields (UDFs) and to apply the matching packets to an IPv4 port ACL.

Beginning with Cisco NX-OS Release 7.0(3)I6(1), you can configure UDF-based port IPv6 ACLs for Cisco Nexus 9300-EX switches. This feature enables the device to match on the new UDFs and to apply the matching packets to an IPv6 port ACL.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	udf udf-name offset-base offset length	Defines the UDF as follows:
	<pre>Example: switch(config) # udf pktoff10 packet-start 10 2</pre>	• <i>udf-name</i> —Specifies the name of the UDF. You can enter up to 16 alphanumeric characters for the name.
	Example: switch(config) # udf pktoff10 header outer 13 20 2	• offset-base—Specifies the UDF offset base as follows, where header is the packet header to consider for the offset: {packet-start header {outer inner {13 14}}}.
		• offset—Specifies the number of bytes offset from the offset base. To match the first byte from the offset base (Layer 3/Layer 4 header), configure the offset as 0.
		• <i>length</i> —Specifies the number of bytes from the offset. Only 1 or 2 bytes are supported. To match additional bytes, you must define multiple UDFs.
		You can define multiple UDFs, but Cisco recommends defining only required UDFs.
Step 3	hardware access-list tcam region ing-ifacl qualify {udf udf-name v6udf v6udf-name}	Attaches the UDFs to the ing-ifacl TCAM region, which applies to IPv4 or IPv6 port
	Example:	ACLs.
	<pre>switch(config)# hardware access-list tcam region ing-ifacl qualify udf pktoff10</pre>	The number of UDFs that can be attached to a TCAM region varies by platform. You can attach up to 2 UDFs for Cisco Nexus 9200 switches, up to 8 UDFs for Cisco Nexus 9300 switches, and up to 18 UDFs for IPv4 port ACLs or 7 UDFs for IPv6 port ACLs for Cisco Nexus 9300-EX switches.

	Command or Action	Purpos	se
		Note	When the UDF qualifier is added, the TCAM region goes from single wide to double wide. Make sure enough free space is available; otherwise, this command will be rejected. If necessary, you can reduce the TCAM space from unused regions and then re-enter this command. For more information, see Configuring ACL TCAM Region Sizes.
		Note	The no form of this command detaches the UDFs from the TCAM region and returns the region to single wide.
Step 4	Required: copy running-config startup-config		
	Example:		starts by copying the running uration to the startup configuration.
	<pre>switch(config)# copy running-config startup-config</pre>		1 0
Step 5	Required: reload	Reload	ds the device.
	Example:	Note	Your UDF configuration is effective
	switch(config)# reload		only after you enter copy running-config startup-config + reload .
Step 6	ip access-list udf-acl		s an IPv4 access control list (ACL) and IP access list configuration mode.
	<pre>Example: switch(config) # ip access-list udfacl switch(config-acl) #</pre>		Ç
Step 7	Enter one of the following commands:		gures the ACL to match only on UDFs
	 permit udf udf-name value mask permit ip source destination udf udf-name value mask Example:	(example 1) or to match on UDFs along the current access control entries (ACEs the outer packet fields (example 2). The for the <i>value</i> and <i>mask</i> arguments is from to 0xffff.	
	switch(config-acl)# permit udf pktoff10 0x1234 0xffff	_	le ACL can have ACEs with and without together. Each ACE can have different
	Example:	UDF f	ields to match, or all ACEs can match for
	<pre>switch(config-acl)# permit ip any any udf pktoff10 0x1234 0xffff</pre>	the sar	me list of UDFs.
Step 8	(Optional) copy running-config startup-config		s the running configuration to the startup
	Example:	config	uration.
	<pre>switch(config)# copy running-config startup-config</pre>		

Applying an IP ACL as a Router ACL

You can apply an IPv4 or IPv6 ACL to any of the following types of interfaces:

- Physical Layer 3 interfaces and subinterfaces
- Layer 3 Ethernet port-channel interfaces
- VLAN interfaces
- Management interfaces

ACLs applied to these interface types are considered router ACLs.

Note

Egress router ACLs are not supported on Cisco Nexus 9300 Series switch uplink ports.

Before you begin

Ensure that the ACL you want to apply exists and that it is configured to filter traffic in the manner that you need for this application.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands:	Enters configuration mode for the interface type
	• interface ethernet slot/port[. number]	that you specified.
	• interface port-channel channel-number	
	• interface vlan vlan-id	
	• interface mgmt port	
	Example:	
	<pre>switch(config)# interface ethernet 2/3 switch(config-if)#</pre>	
Step 3	Enter one of the following commands:	Applies an IPv4 or IPv6 ACL to the Layer 3
	 ip access-group access-list {in out} ipv6 traffic-filter access-list {in out} 	interface for traffic flowing in the direction specified. You can apply one router ACL per direction.
	Example:	
	<pre>switch(config-if)# ip access-group acl1 in</pre>	

	Command or Action	Purpose
Step 4	ip access-list match-local-traffic	Lists the matching traffic which is generated
	Example:	locally. It does not affect transit traffic through
	<pre>switch(config-if)# ip access-list match-local-traffic</pre>	the switch.
Step 5	(Optional) show running-config aclmgr	Displays the ACL configuration.
	Example:	
	<pre>switch(config-if)# show running-config aclmgr</pre>	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Related Topics

Creating an IP ACL, on page 208

Applying an IP ACL as a Port ACL

You can apply an IPv4 or IPv6 ACL to a Layer 2 interface, which can be a physical port or a port channel. ACLs applied to these interface types are considered port ACLs.

Note

If the interface is configured with the **mac packet-classify** command, you cannot apply an IP port ACL to the interface until you remove the **mac packet-classify** command from the interface configuration.

Before you begin

Ensure that the ACL you want to apply exists and that it is configured to filter traffic in the manner that you need for this application.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands: • interface ethernet slot/port • interface port-channel channel-number	Enters configuration mode for the interface type that you specified.

	Command or Action	Purpose
-	Example:	
	<pre>switch(config)# interface ethernet 2/3 switch(config-if)#</pre>	
Step 3	Enter one of the following commands:	Applies an IPv4 or IPv6 ACL to the interface
	 ip port access-group access-list in ipv6 port traffic-filter access-list in 	or port channel. Only inbound filtering is supported with port ACLs. You can apply one port ACL to an interface.
	Example:	
	<pre>switch(config-if)# ip port access-group acl-12-marketing-group in</pre>	
Step 4	(Optional) show running-config aclmgr	Displays the ACL configuration.
	Example:	
	<pre>switch(config-if)# show running-config aclmgr</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Related Topics

Creating an IP ACL, on page 208

Enabling or Disabling MAC Packet Classification, on page 265

Applying an IP ACL as a VACL

You can apply an IP ACL as a VACL.

Related Topics

Configuring VACLs, on page 272

Configuring ACL Logging

To configure the ACL logging process, you first create the access list, then enable filtering of traffic on an interface using the specified ACL, and finally configure the ACL logging process parameters.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	<pre>ip access-list name Example: switch(config) # ip access-list logging-test switch(config-acl) #</pre>	Creates an IPv4 ACL and enters IP ACL configuration mode. The <i>name</i> argument can be up to 64 characters.
Step 3	{permit deny} ip source-address destination-address log Example: switch(config-acl) # permit ip any 10.30.30.0/24 log	Creates an ACL rule that permits or denies IPv4 traffic matching its conditions. To enable the system to generate an informational logging message about each packet that matches the rule, you must include the log keyword.
		The <i>source-address</i> and <i>destination-address</i> arguments can be the IP address with a network wildcard, the IP address and variable-length subnet mask, the host address, or any to designate any address.
Step 4	exit	Updates the configuration and exits IP ACL configuration mode.
	<pre>Example: switch(config-acl) # exit switch(config) #</pre>	
Step 5	interface ethernet slot/port	Enters interface configuration mode.
	<pre>Example: switch(config) # interface ethernet 1/1 switch(config-if) #</pre>	
Step 6	<pre>ip access-group name in Example: switch(config-if) # ip access-group logging-test in</pre>	Enables the filtering of IPv4 traffic on an interface using the specified ACL. You can apply an ACL to inbound traffic.
Step 7	<pre>exit Example: switch(config-if) # exit switch(config) #</pre>	Updates the configuration and exits interface configuration mode.
Step 8	logging ip access-list cache interval interval Example: switch(config) # logging ip access-list cache interval 490	Configures the log-update interval (in seconds) for the ACL logging process. The default value is 300 seconds. The range is from 5 to 86400 seconds.
Step 9	<pre>logging ip access-list cache entries number-of-flows Example: switch(config) # logging ip access-list cache entries 8001</pre>	Specifies the maximum number of flows to be monitored by the ACL logging process. The default value is 8000. The range of values supported is from 0 to 1048576.

	Command or Action	Purpose
Step 10	<pre>logging ip access-list cache threshold threshold Example: switch(config) # logging ip access-list cache threshold 490</pre>	If the specified number of packets is logged before the expiry of the alert interval, the system generates a syslog message.
Step 11	<pre>logging ip access-list detailed Example: switch(config) # logging ip access-list detailed</pre>	Enables the following information to be displayed in the output of the show logging ip access-list cache command: the access control entry (ACE) sequence number, ACE action, ACL name, ACL direction, ACL filter type, and ACL applied interface.
Step 12	hardware rate-limiter access-list-log packets Example: switch(config) # hardware rate-limiter access-list-log 200	Configures rate limits in packets per second for packets copied to the supervisor module for ACL logging. The range is from 0 to 30000.
Step 13	<pre>acllog match-log-level severity-level Example: switch(config) # acllog match-log-level 5</pre>	Specifies the minimum severity level to log ACL matches. The default is 6 (informational). The range is from 0 (emergency) to 7 (debugging).
Step 14	(Optional) show logging ip access-list cache [detail] Example: switch(config) # show logging ip access-list cache	flows, such as source IP and destination IP addresses, source port and destination port information, source interfaces. No other information of active flows will be displayed specifically all the unsupported options.
		If you entered the logging ip access-list detailed command, the output also includes the following information: the access control entry (ACE) sequence number, ACE action, ACL name, ACL direction, ACL filter type, and ACL applied interface.

Configuring ACLs Using HTTP Methods to Redirect Requests

You can configure ACLs to intercept and redirect specific HTTP methods to a server that is connected to a specific port.

The following HTTP methods can be redirected:

- connect
- delete
- get

- head
- post
- put
- trace

Before you begin

Enable the double-wide TCAM for the IFACL region using the **hardware access-list tcam region ifacl 512 double-wide** command. This command applies to the global configuration. Reload the switch for this configuration to take into effect.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2 Step 3	Example: switch# configure terminal switch(config)# ip access-list name Example: switch(config)# ip access-list acl-01 switch(config-acl)# [sequence-number] permit protocol source destination http-method method [tcp-option-length length] [redirect interface] Example:	Creates the IP ACL and enters IP ACL configuration mode. The <i>name</i> argument can be up to 64 characters. Configures the ACL to redirect specific HTTP methods to a server. The following HTTP methods are supported: • connect—Matches HTTP packets with the
	<pre>switch(config-acl)# permit tcp 1.1.1.1/32 any http-method get</pre>	

	Command or Action	Purpose
		The tcp-option-length option specifies the length of the TCP options header in the packets. You can configure up to four TCP option lengths (in multiples of four bytes) in the access control entries (ACEs). The <i>length</i> range is from 0 to 40. If you do not configure this option, the length is specified as 0, and only packets without the TCP options header can match the ACE. This option allows the HTTP method to be matched even on packets that have a variable-length TCP options header. The redirect option redirects an HTTP method to a server that is connected to a specific port. The HTTP redirect feature does not work on Layer 3 ports.
Step 4	(Optional) show ip access-lists name	Displays the IP ACL configuration.
осер 4	Example: switch(config-acl) # show ip access-lists acl-01	
Step 5	(Optional) show run interface interface slot/port	Displays the interface configuration.
	<pre>Example: switch(config-acl) # show run interface ethernet 2/2</pre>	

Example

The following example specifies a length for the TCP options header in the packets and redirects the post HTTP method to a server that is connected to port channel 4001:

```
switch(config) # ip access-list http-redirect-acl
switch(config-acl) # 10 permit tcp any any http-method get tcp-option-length 4 redirect
port-channel4001
switch(config-acl) # 20 permit tcp any any http-method post redirect port-channel4001
switch(config-acl) # statistics per-entry
switch(config) # interface Ethernet 1/33
switch(config-if) # ip port access-group http-redirect-acl in
```

Verifying the IP ACL Configuration

To display IP ACL configuration information, perform one of the following tasks.

Command	Purpose
show hardware access-list tcam region	Displays the TCAM sizes that will be applicable on the next reload of the device.
show hardware access-list tcam template {all nfe nfe2 12-13 13 template-name}	Displays the configuration for all TCAM templates or for a specific template.
	nfe—The default TCAM template for Network Forwarding Engine (NFE)-enabled Cisco Nexus 9300 and 9500 Series devices.
	nfe2 —The default TCAM template for NFE2-enabled Cisco Nexus 9500 devices.
	12-13—The default TCAM template for Layer 2 and Layer 3 configurations.
	13—The default TCAM template for Layer 3 configurations.
show ip access-lists	Displays the IPv4 ACL configuration.
show ipv6 access-lists	Displays the IPv6 ACL configuration.
show logging ip access-list cache [detail]	Displays information on the active logged flows, such as source IP and destination IP addresses, source port and destination port information, and source interfaces. No other information of active flows will be displayed specifically all the unsupported options.
	If you entered the logging ip access-list detailed command, the output also includes the following information: the access control entry (ACE) sequence number, ACE action, ACL name, ACL direction, ACL filter type, and ACL applied interface.

Command	Purpose
show logging ip access-list status	Displays the deny maximum flow count, the current effective log interval, and the current effective threshold value.
show running-config acllog	Displays the ACL log running configuration.
show running-config aclmgr [all]	Displays the ACL running configuration, including the IP ACL configuration and the interfaces to which IP ACLs are applied.
	Note This command displays the user-configured ACLs in the running configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the running configuration.
show startup-config acllog	Displays the ACL log startup configuration.
show startup-config aclmgr [all]	Displays the ACL startup configuration. Note This command displays the user-configured ACLs in the startup configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the startup configuration.

Monitoring and Clearing IP ACL Statistics

To monitor or clear IP ACL statistics, use one of the commands in this table.

Command	Purpose
show ip access-lists	Displays the IPv4 ACL configuration. If the IPv4 ACL includes the statistics per-entry command, the show ip access-lists command output includes the number of packets that have matched each rule.

Command	Purpose
show ipv6 access-lists	Displays IPv6 ACL configuration. If the IPv6 ACL includes the statistics per-entry command, then the show ipv6 access-lists command output includes the number of packets that have matched each rule.
clear ip access-list counters	Clears statistics for all IPv4 ACLs or for a specific IPv4 ACL.
clear ipv6 access-list counters	Clears statistics for all IPv6 ACLs or for a specific IPv6 ACL.

Configuration Examples for IP ACLs

The following example shows how to create an IPv4 ACL named acl-01 and apply it as a port ACL to Ethernet interface 2/1, which is a Layer 2 interface:

```
ip access-list acl-01
  permit ip 192.168.2.0/24 any
interface ethernet 2/1
  ip port access-group acl-01 in
```

The following example shows how to create an IPv6 ACL named acl-120 and apply it as a router ACL to Ethernet interface 2/3, which is a Layer 3 interface:

```
ipv6 access-list acl-120
  permit tcp 2001:0db8:85a3::/48 2001:0db8:be03:2112::/64
  permit udp 2001:0db8:85a3::/48 2001:0db8:be03:2112::/64
  permit tcp 2001:0db8:69f2::/48 2001:0db8:be03:2112::/64
  permit udp 2001:0db8:69f2::/48 2001:0db8:be03:2112::/64
interface ethernet 2/3
  ipv6 traffic-filter acl-120 in
```

The following example shows how to create a VTY ACL named single-source and apply it on input IP traffic over the VTY line. This ACL allows all TCP traffic through and drops all other IP traffic:

```
ip access-list single-source
  permit tcp 192.168.7.5/24 any
  exit
  line vty
  ip access-class single-source in
  show ip access-lists
```

The following example shows how to configure IPv4 ACL logging:

```
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ip access-list logging-test
switch(config-acl)# permit ip any 2001:DB8:1::1/64 log
switch(config-acl)# exit
switch(config)# interface ethernet 1/1
switch(config-if)# ip access-group logging-test in
switch(config-if)# exit
switch(config)# logging ip access-list cache interval 400
switch(config)# logging ip access-list cache entries 100
switch(config)# logging ip access-list cache threshold 900
switch(config)# hardware rate-limiter access-list-log 200
switch(config)# acllog match-log-level 5
```

The following example shows how to configure a UDF-based port ACL:

```
switch# configure terminal
switch(config)# hardware access-list tcam region ing-ifacl 256
switch(config)# udf pktoff10 packet-start 10 2
switch(config)# udf pktoff20 packet-start 10 1
switch(config)# hardware access-list tcam region ing-ifacl qualify udf pktoff10 pktoff20

switch# configure terminal
switch(config)# ip access-list udfacl
switch(config-acl)# statistics per-entry
switch(config-acl)# 10 permit ip any any udf pktoff10 0x1234 0xffff

switch# configure terminal
switch(config)# interface Ethernet1/1
switch(config-if)# ip port access-group udfacl in
switch(config-if)# switchport
switch(config-if)# no shutdown
```

About System ACLs

Beginning with Cisco NX-OS Release 7.0(3)F3(4) or a later release, you can configure system ACLs on Cisco Nexus 9500 Series switches with -R and -RX line cards. With system ACLs, you can now configure a Layer 2 port ACL (PACL) on all the ports with the same access-list in the switch. Configuring system ACLs reduces the TCAM usage and also brings down the time and memory usage while the policy is being applied or modified.

See the following guidelines and limitations for configuring system ACLs:

- The system PACL is supported for Layer 2 interface only.
- Beginning with Cisco NX-OS Release 7.0(3)F3(4) or a later release, up to 10K ACEs are supported with all other basic features for the switch to come up on Cisco Nexus 9500 Series switches with -R line cards. The hardware capacity on Cisco Nexus 9500 Series switches with -RX line cards is 64K ACEs.
- Beginning with Cisco NX-OS Release 7.0(3)F3(4) or a later release, you can also configure system ACLs on Cisco Nexus 3600 platform switches with N3K-C3636C-R and N3K-C36180YC-R line cards.
- Configuring IPv4 PACL TCAM region (ifacl) with anything more than the total physical TCAM capacity of -R line cards of 12k results in the power down of -R line cards only.
- ACE statistics are not yet supported for the system ACLs.
- IPv6 is not yet supported in the system ACLs.
- System ACLs are not supported on the breakout port.
- For quality of service, ACL, or TCAM carving configuration on Cisco Nexus Series switches with -R series line cards, see the Cisco Nexus 3600 NX-OS Quality of Service Configuration Guide, Release 7.x for more information.
- Beginning with Cisco NX-OS Release 7.0(3)F3(4) or a later release, the non-atomic update either drops or permits all the traffic. By default, the non-atomic update drops all the traffic until the ACL update completes. The non-atomic ACL update behavior can be controlled using the hardware access-list update default-result permit CLI command. This CLI works only for physical ports. See the following example:

```
hardware access-list update default-result permit => #Allows all the traffic during ACL updates. There may be < 10secs traffic drop.

no hardware access-list update default-result permit => #This is the default behavior.

It denies all the traffic during ACL updates.
```

• The atomic ACL update is not supported on Cisco Nexus -R series line cards, but the non-atomic update **hardware access-list update default-result** is supported on Cisco Nexus -R series line cards beginning with Cisco NX-OS Release 7.0(3)F3(4) or a later release.

Carving a TCAM Region

Before configuring the system ACLs, carve the TCAM region first. Note that for configuring the ACLs less than 1k, you do not need to carve the TCAM region. See the Configuring ACL TCAM Region Sizes, on page 214 section for more information.

Note

Beginning with Cisco NX-OS Release 7.0(3)F3(4) or a later release, you can configure PACL IPv4, RACL IPv4, and RACL IPv6 beyond 12k.

Configuring System ACLs

After an IPv4 ACL is created, configure the system ACL.

Before you begin

Create an IPv4 ACL on the device. See Creating an IP ACL, on page 208 for more information.

Procedure

	Command or Action	Purpose
Step 1	config t	Enters the configuration mode.
Step 2	system acl	Configures the system ACL.
Step 3	ip port access-group <pacl name=""> in</pacl>	Applies a Layer 2 PACL to the interface. Only inbound filtering is supported with port ACLs. You can apply one port ACL to an interface.

Configuration and Show Command Examples for the System ACLs

See the following configuration examples for the system ACL show commands.

Configuring system PACL with 1K scale [using default TCAM]

See the following example for configuring system PACL with 1K scale [Using default TCAM].

Step 1: Create PACL.

config t

```
ip access-list PACL-DNA
    10 permit ip 1.1.1.1/32 any
    20 permit tcp 3.0.0.0/8 255.0.0.0 eq 1500
    25 deny udp any any eq 500
    26 deny tcp any eq 490 any
    .... ....

1000 deny any any
```

Step 2: Apply PACL into system level.

```
configuration terminal
system acl
    ip port access-group PACL-DNA in
```

To validate the system ACLs that are configured on the switch, use the **sh run aclmgr | sec system** command:

```
switch# sh run aclmgr | sec system
system acl
  ip port access-group test in
switch#
```

To validate the PACLs that are configured on the switch, use the **sh ip access-lists <name> [summary]** command:

```
switch# sh ip access-lists test
IP access list test
        10 deny udp any any eq 27
        20 permit ip 1.1.1.1/32 100.100.100.100/32
        30 permit ip 1.2.1.1/32 100.100.100.100/32
        40 permit ip 1.3.1.1/32 100.100.100.100/32
        50 permit ip 1.4.1.1/32 100.100.100.100/32
        60 permit ip 1.5.1.1/32 100.100.100.100/32
        70 permit ip 1.6.1.1/32 100.100.100.100/32
        80 permit ip 1.7.1.1/32 100.100.100.100/32
        90 permit ip 1.8.1.1/32 100.100.100.100/32
switch# sh ip access-lists test summary
IPV4 ACL test
       Total ACEs Configured: 12279
        Configured on interfaces:
        Active on interfaces:
                 - ingress
                 - ingress
switch#
```

To validate PACL IPv4 (ifacl) TCAM region size, use the **show hardware access-list tcam region** command:

```
IPV4 Port QoS [qos] size = 640
             IPV6 Port QoS [ipv6-qos] size =
              MAC Port QoS [mac-qos] size =
           FEX IPV4 PACL [fex-ifacl] size =
       FEX IPV6 PACL [fex-ipv6-ifacl] size =
         FEX MAC PACL [fex-mac-ifacl] size =
         FEX IPV4 Port QoS [fex-qos] size =
     FEX IPV6 Port OoS [fex-ipv6-gos] size =
       FEX MAC Port QoS [fex-mac-qos] size =
                    IPV4 VACL [vacl] size =
                IPV6 VACL [ipv6-vacl] size =
                 MAC VACL [mac-vacl] size =
                IPV4 VLAN QoS [vqos] size =
            IPV6 VLAN QoS [ipv6-vqos] size =
             MAC VLAN QoS [mac-vqos] size =
                                               0
                    IPV4 RACL [racl] size =
               IPV6 RACL [ipv6-racl] size =
       IPV4 Port QoS Lite [qos-lite] size =
FEX IPV4 Port QoS Lite [fex-qos-lite] size =
       IPV4 VLAN QoS Lite [vqos-lite] size =
       IPV4 L3 QoS Lite [13qos-lite] size =
             Egress IPV4 QoS [e-gos] size =
        Egress IPV6 QoS [e-ipv6-qos] size =
          Egress MAC QoS [e-mac-qos] size =
             Egress IPV4 VACL [vacl] size =
        Egress IPV6 VACL [ipv6-vacl] size =
          Egress MAC VACL [mac-vacl] size =
                                               Ω
           Egress IPV4 RACL [e-racl] size =
       Egress IPV6 RACL [e-ipv6-racl] size =
   Egress IPV4 QoS Lite [e-gos-lite] size =
                 IPV4 L3 QoS [13qos] size = 640
             IPV6 L3 QoS [ipv6-13qos] size =
              MAC L3 QoS [mac-13qos] size =
                      Ingress System size =
                       Egress System size =
                         SPAN [span] size =
                  Ingress COPP [copp] size = 128
         Ingress Flow Counters [flow] size =
```

To view ACL related tech support information, use the **show tech-support aclmgr** and **show tech-support aclmgr** and **show tech-support aclmgr** and **show tech-support** aclmgr and show tech-support aclmgr aclmgr and show tech-support aclmgr and show tech-support aclmgr aclmgr and show tech-support aclmgr aclmgr

```
show tech-support aclmgr show tech-support aclqos
```

Configuring Object Groups

switch#

You can use object groups to specify source and destination addresses and protocol ports in IPv4 ACL and IPv6 ACL rules.

Session Manager Support for Object Groups

Session Manager supports the configuration of object groups. This feature allows you to create a configuration session and verify your object group configuration changes prior to committing them to the running

configuration. For more information about Session Manager, see the *Cisco Nexus 9000 Series NX-OS System Management Configuration Guide*.

Creating and Changing an IPv4 Address Object Group

You can create and change an IPv4 address group object.

Note

Beginning Cisco Nexus Release 7.0(3)15(2), the **no host IPv4-address** command is not supported. With the DME support, deletion without the no sequence command is not supported.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	object-group ip address name	Creates the IPv4 address object group and enters
	Example:	IPv4 address object-group configuration mode.
	<pre>switch(config) # object-group ip address ipv4-addr-group-13 switch(config-ipaddr-ogroup) #</pre>	
Step 3	Enter one of the following commands:	Creates an entry in the object group. For each
	• [sequence-number] host IPv4-address	entry that you want to create, use the host command and specify a single host, or omit the
	• [sequence-number] IPv4-address/prefix-len	host command to specify a network of hosts.
	• [sequence-number] IPv4-address	You can specify a prefix length for an IPv4
	network-wildcard	object group, which matches only on the first contiguous bits, or you can specify a wildcard
	Example:	mask, which matches on any bit in the address.
	<pre>switch(config-ipaddr-ogroup)# host 10.99.32.6</pre>	
Step 4	Enter one of the following commands:	Removes an entry in the object group. For each
	• no [sequence-number]	entry that you want to remove from the object group, use the no form of the host command.
	• no host IPv4-address	group, use the no form of the nost command.
	• no IPv4-address/prefix-len • no IPv4-address network-wildcard	
	<pre>Example: switch(config-ipaddr-ogroup) # no host</pre>	
	10.99.32.6	
Step 5	(Optional) show object-group name	Displays the object group configuration.
	Example:	

	Command or Action	Purpose
	<pre>switch(config-ipaddr-ogroup) # show object-group ipv4-addr-group-13</pre>	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-ipaddr-ogroup)# copy running-config startup-config</pre>	

Creating and Changing an IPv6 Address Object Group

You can create and change an IPv6 address group object.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	object-group ipv6 address name	Creates the IPv6 address object group and enters
	Example:	IPv6 address object-group configuration mode.
	<pre>switch(config)# object-group ipv6 address ipv6-addr-group-A7 switch(config-ipv6addr-ogroup)#</pre>	
Step 3	Enter one of the following commands: • [sequence-number] host IPv6-address • [sequence-number]	Creates an entry in the object group. For each entry that you want to create, use the host command and specify a single host, or omit the host command to specify a network of hosts.
	IPv6-address/prefix-len • [sequence-number] IPv6-address network-wildcard	You can specify a prefix length for an IPv6 object group, which matches only on the first contiguous bits, or you can specify a wildcar mask, which matches on any bit in the address IPv6 wildcard masks are supported beginning with Cisco NX-OS Release 7.0(3)I7(3) for Cisco Nexus 9200, 9300-EX, and
	Example:	
	<pre>switch(config-ipv6addr-ogroup) # host 2001:db8:0:3ab0::1</pre>	
	Example:	
	<pre>switch(config-ipv6addr-ogroup)# 10 1::1 2::2</pre>	9300-FX/FX2/FXP switches and the Cisco Nexus 9364C switch., or you can specify a wildcard mask, which matches on any bit in the address. IPv6 wildcard masks are supported for Cisco Nexus 9200, 9300-EX, and 9300-FX/FX2/FXP switches and the Cisco Nexus 9364C switch.

	Command or Action	Purpose
Step 4	Enter one of the following commands: • no sequence-number • no host IPv6-address • no IPv6-address/prefix-len • no IPv6-address network-wildcard Example:	Removes an entry from the object group. For each entry that you want to remove from the object group, use the no form of the host command.
	<pre>switch(config-ipv6addr-ogroup)# no host 2001:db8:0:3ab0::1</pre>	
Step 5	(Optional) show object-group name	Displays the object group configuration.
	Example: switch(config-ipv6addr-ogroup)# show object-group ipv6-addr-group-A7	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example: switch(config-ipv6addr-ogroup)# copy running-config startup-config	

Creating and Changing a Protocol Port Object Group

You can create and change a protocol port object group.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	object-group ip port name	Creates the protocol port object group and
	Example:	enters port object-group configuration mode.
	<pre>switch(config)# object-group ip port NYC-datacenter-ports switch(config-port-ogroup)#</pre>	
[port-number] Example:	[sequence-number] operator port-number [port-number]	Creates an entry in the object group. For each entry that you want to create, use one of the
	Example:	following operator commands:
	switch(config-port-ogroup)# eq 80	• eq—Matches only the port number th you specify.

	Command or Action	Purpose
		• gt—Matches port numbers that are greater than (and not equal to) the port number that you specify.
		• lt—Matches port numbers that are less than (and not equal to) the port number that you specify.
		• neq—Matches all port numbers except for the port number that you specify.
		• range—Matches the range of port numbers between and including the two port numbers that you specify.
		Note The range command is the only operator command that requires two <i>port-number</i> arguments.
Step 4	no {sequence-number operator port-number [port-number]}	Removes an entry from the object group. For each entry that you want to remove, use the notion of the applicable operator command.
	Example:	
	switch(config-port-ogroup)# no eq 80	
Step 5	(Optional) show object-group name	Displays the object group configuration.
	Example:	
	switch(config-port-ogroup)# show object-group NYC-datacenter-ports	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	switch(config-port-ogroup)# copy running-config startup-config	

Removing an Object Group

You can remove an IPv4 address object group, an IPv6 address object group, or a protocol port object group.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	no object-group {ip address ipv6 address ip port} name	Removes the specified object group.
	Example:	
	<pre>switch(config)# no object-group ip address ipv4-addr-group-A7</pre>	
Step 3	(Optional) show object-group	Displays all object groups. The removed object
	Example:	group should not appear.
	switch(config)# show object-group	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Verifying the Object-Group Configuration

To display object-group configuration information, enter one of the following commands:

Command	Purpose
show object-group	Displays the object-group configuration.
show {ip ipv6} access-lists name [expanded]	Displays expanded statistics for the ACL configuration.
show running-config aclmgr	Displays the ACL configuration, including object groups.

Configuring Time-Ranges

Session Manager Support for Time-Ranges

Session Manager supports the configuration of time ranges. This feature allows you to create a configuration session and verify your time-range configuration changes prior to committing them to the running configuration. For more information about Session Manager, see the *Cisco Nexus 9000 Series NX-OS System Management Configuration Guide*.

Creating a Time-Range

You can create a time range on the device and add rules to it.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	time-range name	Creates the time range and enters time-range
	Example:	configuration mode.
	<pre>switch(config)# time-range workday-daytime switch(config-time-range)#</pre>	
Step 3	(Optional) [sequence-number] periodic	Creates a periodic rule that is in effect for one
	weekday time to [weekday] time	or more contiguous days between and including the specified start and end days and times.
	Example:	the specified start and end days and times.
	switch(config-time-range)# periodic monday 00:00:00 to friday 23:59:59	
Step 4	(Optional) [sequence-number] periodic	Creates a periodic rule that is in effect on the
	list-of-weekdays time to time	days specified by the <i>list-of-weekdays</i> argument between and including the specified
	Example:	start and end times. The following keywords
	switch(config-time-range)# periodic weekdays 06:00:00 to 20:00:00	are also valid values for the <i>list-of-weekdays</i> argument:
		• daily —All days of the week.
		• weekdays — Monday through Friday.
		• weekend —Saturday through Sunday.
Step 5	(Optional) [sequence-number] absolute start time date [end_time_date]	Creates an absolute rule that is in effect
		beginning at the time and date specified after the start keyword. If you omit the end
	<pre>Example: switch(config-time-range)# absolute start</pre>	keyword, the rule is always in effect after the
	1:00 15 march 2013	start time and date have passed.
Step 6	(Optional) [sequence-number] absolute [start time date] end time date	Creates an absolute rule that is in effect until the time and date specified after the end
	Example:	keyword. If you omit the start keyword, the rule is always in effect until the end time and
	switch(config-time-range)# absolute end 23:59:59 31 may 2013	
Step 7	(Optional) show time-range name	Displays the time-range configuration.
	Example:	
	<pre>switch(config-time-range)# show time-range workday-daytime</pre>	

	Command or Action	Purpose
Step 8 (Optional) copy running-config startup-config		Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-time-range)# copy running-config startup-config</pre>	

Changing a Time-Range

You can add and remove rules in an existing time range. You cannot change existing rules. Instead, to change a rule, you can remove it and recreate it with the desired changes.

If you need to add more rules between existing rules than the current sequence numbering allows, you can use the **resequence** command to reassign sequence numbers.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	time-range name	Enters time-range configuration mode for the
	Example:	specified time range.
	<pre>switch(config)# time-range workday-daytime</pre>	
	switch(config-time-range)#	
Step 3	(Optional) [sequence-number] periodic	Creates a periodic rule that is in effect for one
	weekday time to [weekday] time	or more contiguous days between and including the specified start and end days and times.
	Example:	and opposition source und only of und controls.
	switch(config-time-range)# periodic monday 00:00:00 to friday 23:59:59	
Step 4	(Optional) [sequence-number] periodic list-of-weekdays time to time	Creates a periodic rule that is in effect on the days specified by the <i>list-of-weekdays</i>
	Example:	argument between and including the specified
	switch (config-time-range) # 100 periodic	start and end times. The following keywords
	weekdays 05:00:00 to 22:00:00	are also valid values for the <i>list-of-weekdays</i> argument:
		• daily —All days of the week.
		• weekdays — Monday through Friday.
		• weekend —Saturday through Sunday.

	Command or Action	Purpose
Step 5	(Optional) [sequence-number] absolute start time date [end time date]	Creates an absolute rule that is in effect beginning at the time and date specified after
	Example:	the start keyword. If you omit the end keyword, the rule is always in effect after the
	<pre>switch(config-time-range)# absolute start 1:00 15 march 2013</pre>	
Step 6	(Optional) [sequence-number] absolute [start time date] end time date	Creates an absolute rule that is in effect until the time and date specified after the end
keyword. If you omit the	keyword. If you omit the start keyword, the rule is always in effect until the end time and date have passed.	
Step 7	(Optional) no {sequence-number periodic arguments}	Removes the specified rule from the time range.
	Example:	
	switch(config-time-range)# no 80	
Step 8	(Optional) show time-range name	Displays the time-range configuration.
	Example:	
	<pre>switch(config-time-range) # show time-range workday-daytime</pre>	
Step 9	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	switch(config-time-range)# copy running-config startup-config	

Related Topics

Changing Sequence Numbers in a Time Range, on page 256

Removing a Time-Range

You can remove a time range from the device.

Before you begin

Ensure that you know whether the time range is used in any ACL rules. The device allows you to remove time ranges that are used in ACL rules. Removing a time range that is in use in an ACL rule does not affect the configuration of interfaces where you have applied the ACL. Instead, the device considers the ACL rule using the removed time range to be empty.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no time-range name	Removes the time range that you specified by
	Example:	name.
	<pre>switch(config)# no time-range daily-workhours</pre>	
Step 3	(Optional) show time-range	Displays the configuration for all time ranges.
	Example:	The removed time range should not appear.
	<pre>switch(config-time-range)# show time-range</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	switch# copy running-config startup-config	

Changing Sequence Numbers in a Time Range

You can change all the sequence numbers assigned to rules in a time range.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>resequence time-range name starting-sequence-number increment Example: switch(config) # resequence time-range daily-workhours 100 10 switch(config) #</pre>	Assigns sequence numbers to the rules contained in the time range, where the first rule receives the starting sequence number that you specify. Each subsequent rule receives a number larger than the preceding rule. The difference in numbers is determined by the increment that you specify.
Step 3	(Optional) show time-range name Example: switch (config) # show time-range daily-workhours	Displays the time-range configuration.

	Command or Action	Purpose
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Verifying the Time-Range Configuration

To display time-range configuration information, perform one of the following tasks.

Command	Purpose
show time-range	Displays the time-range configuration.
show running-config aclmgr	Displays ACL configuration, including all time ranges.

Additional References for IP ACLs

Related Documents

Related Topic	Document Title
TAP aggregation	Configuring TAP Aggregation and MPLS Stripping

Additional References for IP ACLs

Configuring MAC ACLs

This chapter describes how to configure MAC access lists (ACLs) on Cisco NX-OS devices.

This chapter contains the following sections:

- About MAC ACLs, on page 259
- Licensing Requirements for MAC ACLs, on page 260
- Guidelines and Limitations for MAC ACLs, on page 260
- Default Settings for MAC ACLs, on page 260
- Configuring MAC ACLs, on page 261
- Verifying the MAC ACL Configuration, on page 266
- Monitoring and Clearing MAC ACL Statistics, on page 267
- Configuration Example for MAC ACLs, on page 267
- Additional References for MAC ACLs, on page 267

About MAC ACLs

MAC ACLs are ACLs that use information in the Layer 2 header of packets to filter traffic. MAC ACLs share many fundamental concepts with IP ACLs, including support for virtualization.

MAC Packet Classification

MAC packet classification allows you to control whether a MAC ACL that is on a Layer 2 interface applies to all traffic entering the interface, including IP traffic, or to non-IP traffic only.

MAC Packet Classification State	Effect on Interface
Enabled	 A MAC ACL that is on the interface applies to all traffic entering the interface, including IP traffic. You cannot apply an IP port ACL on the interface.
Disabled	 A MAC ACL that is on the interface applies only to non-IP traffic entering the interface. You can apply an IP port ACL on the interface

Licensing Requirements for MAC ACLs

This table shows the licensing requirements for this feature.

Product	License Requirement
Cisco NX-OS	MAC ACLs require no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Guidelines and Limitations for MAC ACLs

MAC ACLs have the following configuration guidelines and limitations:

- MAC ACLs apply to ingress traffic only.
- If you try to apply too many ACL entries, the configuration might be rejected.
- MAC packet classification is not supported when a MAC ACL is applied as part of a VACL.
- MAC packet classification is not supported when MAC ACLs are used as match criteria for QoS policies on Cisco Nexus 9300 Series switch 40G uplink ports.
- When you define a MAC ACL on the non EX/FX Cisco Nexus 9000 Series switches, you must define the ethertype for the traffic to be appropriately matched.
- Mac-packet classify knob is partially supported on the Cisco Nexus 9300-EX platform switches. In the absence of a direct field for marking the packet as an L2 packet, the switches match all packets with certain fields, such as src_mac, dst_mac, and vlan in the key field. However, they cannot match on the eth_type field. Therefore, if you install two rules with identical fields, except the MAC protocol number field, then the match conditions will remain identical in the hardware. Hence, although the first entry in the rule sequence will hit for all the packets for all the protocol numbers, the MAC protocol number will be a no-op when the mac-packet classify is configured.

Default Settings for MAC ACLs

This table lists the default settings for MAC ACL parameters.

Table 31: Default MAC ACLs Parameters

Parameters	Default
MAC ACLs	No MAC ACLs exist by default
ACL rules	Implicit rules apply to all ACLs

Configuring MAC ACLs

Creating a MAC ACL

You can create a MAC ACL and add rules to it.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	mac access-list name	Creates the MAC ACL and enters ACL configuration mode.
	Example:	
	<pre>switch(config) # mac access-list acl-mac-01 switch(config-mac-acl) #</pre>	
Step 3	{permit deny} source destination-protocol	Creates a rule in the MAC ACL.
·	<pre>Example: switch(config-mac-acl) # 100 permit mac</pre>	The permit and deny commands support many ways of identifying traffic.
	00c0.4f00.0000 0000.00ff.ffff any 0x0806	
Step 4	(Optional) statistics per-entry	Specifies that the device maintains global statistics for packets that match the rules in the ACL.
	Example:	
	<pre>switch(config-mac-acl)# statistics per-entry</pre>	ACL.
Step 5	(Optional) show mac access-lists name	Displays the MAC ACL configuration.
	Example:	
	<pre>switch(config-mac-acl)# show mac access-lists acl-mac-01</pre>	
Step 6	(Optional) copy running-config	Copies the running configuration to the startup
	startup-config	configuration.
	Example:	
	<pre>switch(config-mac-acl)# copy running-config startup-config</pre>	

Changing a MAC ACL

You can remove a MAC ACL from the device.

Before you begin

Use the **show mac access-lists** command with the **summary** keyword to find the interfaces on which a MAC ACL is configured.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	mac access-list name	Enters ACL configuration mode for the ACL	
	Example:	that you specify by name.	
	<pre>switch(config)# mac access-list acl-mac-01 switch(config-mac-acl)#</pre>		
Step 3	(Optional) [sequence-number] {permit deny}	Creates a rule in the MAC ACL. Using a	
	source destination-protocol	sequence number allows you to specify a position for the rule in the ACL. Without a	
	Example:	sequence number, the rule is added to the end	
	switch(config-mac-acl)# 100 permit mac 00c0.4f00.0000 0000.00ff.ffff any 0x0806	of the rules.	
		The permit and deny commands support many ways of identifying traffic.	
Step 4	(Optional) no {sequence-number { permit deny } source destination-protocol}	Removes the rule that you specify from the MAC ACL.	
	Example:	The permit and deny commands support many	
	switch(config-mac-acl)# no 80	ways of identifying traffic.	
Step 5	(Optional) [no] statistics per-entry	Specifies that the device maintains global statistics for packets that match the rules in the ACL.	
	Example:		
	<pre>switch(config-mac-acl)# statistics per-entry</pre>	The no option stops the device from	
	F-0	maintaining global statistics for the ACL.	
Step 6	(Optional) show mac access-lists name	Displays the MAC ACL configuration.	
·	Example:		
	<pre>switch(config-mac-acl)# show mac access-lists acl-mac-01</pre>		
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	switch(config-mac-acl)# copy running-config startup-config		

Changing Sequence Numbers in a MAC ACL

You can change all the sequence numbers assigned to rules in a MAC ACL. Resequencing is useful when you need to insert rules into an ACL and there are not enough available sequence numbers.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	resequence mac access-list name starting-sequence-number increment	Assigns sequence numbers to the rules contained in the ACL, where the first rule
	Example:	receives the number specified by the
	switch(config)# resequence mac access-list acl-mac-01 100 10	starting-sequence number that you specify. Each subsequent rule receives a number larger than the preceding rule. The difference in numbers is determined by the increment number that you specify.
Step 3	(Optional) show mac access-lists name	Displays the MAC ACL configuration.
	Example:	
	<pre>switch(config)# show mac access-lists acl-mac-01</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Removing a MAC ACL

You can remove a MAC ACL from the device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no mac access-list name	Removes the MAC ACL that you specify by
	Example:	name from the running configuration.

	Command or Action	Purpose
	<pre>switch(config)# no mac access-list acl-mac-01 switch(config)#</pre>	
Step 3	(Optional) show mac access-lists name summary	Displays the MAC ACL configuration. If the ACL remains applied to an interface, the
	Example:	command lists the interfaces.
	<pre>switch(config)# show mac access-lists acl-mac-01 summary</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Applying a MAC ACL as a Port ACL

You can apply a MAC ACL as a port ACL to any of the following interface types:

- Layer 2 Ethernet interfaces
- Layer 2 port-channel interfaces

Before you begin

Ensure that the ACL that you want to apply exists and is configured to filter traffic in the manner that you need for this application.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands: • interface ethernet slot/port	• Enters interface configuration mode for a Layer 2 or Layer 3 interface.
	• interface port-channel channel-number	• Enters interface configuration mode for a
	Example:	Layer 2 or Layer 3 port-channel interface.
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
	Example:	
	<pre>switch(config)# interface port-channel 5 switch(config-if)#</pre>	

	Command or Action	Purpose	
Step 3	mac port access-group access-list	Applies a MAC ACL to the interface.	
	Example:		
	<pre>switch(config-if)# mac port access-group acl-01</pre>		
Step 4	(Optional) show running-config aclmgr	Displays the ACL configuration.	
	Example:		
	<pre>switch(config-if)# show running-config aclmgr</pre>		
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	<pre>switch(config-if)# copy running-config startup-config</pre>		

Applying a MAC ACL as a VACL

You can apply a MAC ACL as a VACL.

Enabling or Disabling MAC Packet Classification

You can enable or disable MAC packet classification on a Layer 2 interface.

Before you begin

The interface must be configured as a Layer 2 interface.

Note

If the interface is configured with the **ip port access-group** command or the **ipv6 port traffic-filter** command, you cannot enable MAC packet classification until you remove the **ip port access-group** and **ipv6 port traffic-filter** commands from the interface configuration.

	Command or Action	Purpose	
Step 1 configure terminal		Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	Enter one of the following commands:	Enters interface configuration mode for an	
	• interface ethernet slot/port	Ethernet interface.	

	Command or Action	Purpose	
	• interface port-channel channel-number	Enters interface configuration mode for a	
	Example:	port-channel interface.	
	<pre>switch(config) # interface ethernet 2/1 switch(config-if) #</pre>		
	Example:		
	<pre>switch(config)# interface port-channel 5 switch(config-if)#</pre>		
Step 3	[no] mac packet-classify	Enables MAC packet classification on the	
	Example:	interface. The no option disables MAC packet	
	switch(config-if)# mac packet-classify	classification on the interface.	
Step 4	(Optional) Enter one of the following commands:	Displays the running configuration of the Ethernet interface.	
	 show running-config interface ethernet slot/port show running-config interface port-channel channel-number 	Displays the running configuration of the port-channel interface.	
	Example:		
	switch(config-if)# show running-config interface ethernet 2/1		
	Example:		
	<pre>switch(config-if)# show running-config interface port-channel 5</pre>		
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startur	
	Example:	configuration.	
	<pre>switch(config-if)# copy running-config startup-config</pre>		
		ļ	

Verifying the MAC ACL Configuration

To display MAC ACL configuration information, perform one of the following tasks:

Command	Purpose	
show mac access-lists	Displays the MAC ACL configuration.	
show running-config aclmgr [all]	Displays the ACL configuration, including MAC ACLs and the interfaces to which MAC ACLs are applied.	
	Note	This command displays the user-configured ACLs in the running configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the running configuration.

Command	Purpose	
show startup-config aclmgr [all]	Display Note	ys the ACL startup configuration. This command displays the user-configured ACLs in the startup configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the startup configuration.

Monitoring and Clearing MAC ACL Statistics

To monitor or clear MAC ACL statistics, use one of the commands in this table.

Command	Purpose
show mac access-lists	Displays the MAC ACL configuration. If the MAC ACL includes the statistics per-entry command, the show mac access-lists command output includes the number of packets that have matched each rule.
clear mac access-list counters	Clears statistics for MAC ACLs.

Configuration Example for MAC ACLs

The following example shows how to create a MAC ACL named acl-mac-01 and apply it to Ethernet interface 2/1, which is a Layer 2 interface in this example:

```
mac access-list acl-mac-01
  permit 00c0.4f00.0000 0000.00ff.ffff any 0x0806
interface ethernet 2/1
  mac port access-group acl-mac-01
```

Additional References for MAC ACLs

Related Documents

Related Topic	Document Title
TAP aggregation	Configuring TAP Aggregation and MPLS Stripping

Additional References for MAC ACLs

Configuring VLAN ACLs

This chapter describes how to configure VLAN access lists (ACLs) on Cisco NX-OS devices.

This chapter includes the following sections:

- About VLAN ACLs, on page 269
- Licensing Requirements for VACLs, on page 270
- Prerequisites for VACLs, on page 270
- Guidelines and Limitations for VACLs, on page 271
- Default Settings for VACLs, on page 271
- Configuring VACLs, on page 272
- Verifying the VACL Configuration, on page 275
- Monitoring and Clearing VACL Statistics, on page 275
- Configuration Example for VACLs, on page 275
- Additional References for VACLs, on page 276

About VLAN ACLs

A VLAN ACL (VACL) is one application of an IP ACL or a MAC ACL. You can configure VACLs to apply to all packets that are routed into or out of a VLAN or are bridged within a VLAN. VACLs are strictly for security packet filtering and for redirecting traffic to specific physical interfaces. VACLs are not defined by direction (ingress or egress).

VLAN Access Maps and Entries

VACLs use access maps to contain an ordered list of one or more map entries. Each map entry associates IP or MAC ACLs to an action. Each entry has a sequence number, which allows you to control the precedence of entries.

When the device applies a VACL to a packet, it applies the action that is configured in the first access map entry that contains an ACL that permits the packet.

VACLs and Actions

In access map configuration mode, you use the **action** command to specify one of the following actions:

Forward

Sends the traffic to the destination determined by the normal operation of the device.

Redirect

Redirects the traffic to one or more specified interfaces.

Drop

Drops the traffic. If you specify drop as the action, you can also specify that the device logs the dropped packets.

VACL Statistics

The device can maintain global statistics for each rule in a VACL. If a VACL is applied to multiple VLANs, the maintained rule statistics are the sum of packet matches (hits) on all the interfaces on which that VACL is applied.

Note

The device does not support interface-level VACL statistics.

For each VLAN access map that you configure, you can specify whether the device maintains statistics for that VACL. This feature allows you to turn VACL statistics on or off as needed to monitor traffic filtered by a VACL or to help troubleshoot VLAN access-map configuration.

Session Manager Support for VACLs

Session Manager supports the configuration of VACLs. This feature allows you to verify the ACL configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration. For more information about Session Manager, see the *Cisco Nexus 9000 Series NX-OS System Management Configuration Guide*.

Licensing Requirements for VACLs

This table shows the licensing requirements for this feature.

Product	License Requirement
Cisco NX-OS	VACLs require no license. Any feature not included in a license package is bundled with the image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Prerequisites for VACLs

VACLs have the following prerequisite:

• Ensure that the IP ACL or MAC ACL that you want to use in the VACL exists and is configured to filter traffic in the manner that you need for this application.

Guidelines and Limitations for VACLs

VACLs have the following configuration guidelines:

- Cisco recommends using the Session Manager to configure ACLs. This feature allows you to verify the ACL configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration. For more information about Session Manager, see the Cisco Nexus 9000 Series NX-OS System Management Configuration Guide.
- If you try to apply too many ACL entries, the configuration might be rejected.
- VACL redirects to SPAN destination ports are not supported.
- VACL logging is not supported.
- TCAM resources are not shared when a VACL is applied to multiple VLANs.
- Beginning with Cisco NX-OS Release 7.0(3)I6(1), Cisco Nexus 9200 and 9300-EX Series switches support the VACL redirect option. The redirect is permitted to one physical or port-channel interface.
- Deny statements are not supported on VACLs. Alternatively, you can use permit statements with the action 'drop' to achieve a similar outcome.
- When configuring a VACL with the "redirect" option, the interface that you define as the redirect interface, must be configured as a member of the VLAN which you apply this VACL to. This VLAN must also be in the forwarding state on this interface for the redirection to work. If these conditions are not met, then the switch will drop the packets which are matched by the VACL.
- VACLs are not supported on Cisco Nexus 9500 Series switches with N9K-X9636C-R, N9K-X9636C-RX, and N9K-X9636Q-R line cards.

The following guidelines apply to VACLs for VXLANs:

- VACLs applied on a VXLAN VLAN in the access to network direction (Layer 2 to Layer 3 encapsulation path) are supported on the inner payload.
- We recommend using VACLs on the access side to filter out traffic entering the overlay network.
- Egress VACLs for decapsulated VXLAN traffic are not supported.

Default Settings for VACLs

This table lists the default settings for VACL parameters.

Table 32: Default VACL Parameters

Parameters	Default
VACLs	No IP ACLs exist by default
ACL rules	Implicit rules apply to all ACLs

Configuring VACLs

Creating a VACL or Adding a VACL Entry

You can create a VACL or add entries to an existing VACL. In both cases, you create a VACL entry, which is a VLAN access-map entry that associates one or more ACLs with an action to be applied to the matching traffic.

Before you begin

Ensure that the ACLs that you want to use in the VACL exist and are configured to filter traffic in the manner that you need for this application.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	vlan access-map map-name [sequence-number]	Enters VLAN access-map configuration mode	
	Example:	for the VLAN access map specified. If the VLAN access map does not exist, the device	
	<pre>switch(config)# vlan access-map acl-mac-map</pre>	creates it.	
	switch(config-access-map)#	If you do not specify a sequence number, the device creates a new entry whose sequence number is 10 greater than the last sequence number in the access map.	
Step 3	Enter one of the following commands:	Specifies an ACL for the access-map entry.	
	 match {ip ipv6} address ip-access-list match mac address mac-access-list 		
	Example:		
	<pre>switch(config-access-map)# match mac address acl-ip-lab</pre>		
	Example:		
	<pre>switch(config-access-map)# match mac address acl-mac-01</pre>		
Step 4	action {drop forward redirect}	Specifies the action that the device applies to	
	Example:	traffic that matches the ACL.	
	switch(config-access-map)# action forward		
	Example:	forward , and redirect options.	

	Command or Action	Purpose
	<pre>switch(config-access-map) # vlan access-map vacl1 switch(config-access-map) # action redirect e1/1 switch(config-access-map) # action redirect po100</pre>	
Step 5	(Optional) [no] statistics per-entry Example: switch (config-access-map) # statistics per-entry	Specifies that the device maintains global statistics for packets that match the rules in the VACL. The no option stops the device from maintaining global statistics for the VACL.
Step 6	(Optional) show running-config aclmgr Example: switch(config-access-map) # show running-config aclmgr	Displays the ACL configuration.
Step 7	(Optional) copy running-config startup-config Example: switch(config-access-map) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Removing a VACL or a VACL Entry

You can remove a VACL, which means that you will delete the VLAN access map.

You can also remove a single VLAN access-map entry from a VACL.

Before you begin

Ensure that you know whether the VACL is applied to a VLAN. The device allows you to remove VACLs that are currently applied. Removing a VACL does not affect the configuration of VLANs where you have applied the VACL. Instead, the device considers the removed VACL to be empty.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no vlan access-map map-name [sequence-number] Example:	Removes the VLAN access map configuration for the specified access map. If you specify the <i>sequence-number</i> argument and the VACL contains more than one entry, the command removes only the entry specified.

	Command or Action	Purpose
	<pre>switch(config)# no vlan access-map acl-mac-map 10</pre>	
Step 3	(Optional) show running-config aclmgr	Displays the ACL configuration.
	<pre>Example: switch(config) # show running-config aclmgr</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Applying a VACL to a VLAN

You can apply a VACL to a VLAN.

Before you begin

If you are applying a VACL, ensure that the VACL exists and is configured to filter traffic in the manner that you need for this application.

Command or Action	Purpose	
configure terminal	Enters global configuration mode.	
Example:		
<pre>switch# configure terminal switch(config)#</pre>		
[no] vlan filter map-name vlan-list list	Applies the VACL to the VLANs by the list	
Example:	that you specified. The no option unapplies the VACL.	
<pre>switch(config) # vlan filter acl-mac-map vlan-list 1-20,26-30 switch(config) #</pre>	VACL.	
(Optional) show running-config aclmgr	Displays the ACL configuration.	
Example:		
<pre>switch(config)# show running-config aclmgr</pre>		
(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
Example:		
switch(config) # copy running-config startup-config		
	configure terminal Example: switch# configure terminal switch(config)# [no] vlan filter map-name vlan-list list Example: switch(config)# vlan filter acl-mac-map vlan-list 1-20,26-30 switch(config)# (Optional) show running-config aclmgr Example: switch(config)# show running-config aclmgr (Optional) copy running-config startup-config Example: switch(config)# copy running-config	

Verifying the VACL Configuration

To display VACL configuration information, perform one of the following tasks:

Command	Purpose
show running-config aclmgr [all]	Displays the ACL configuration, including the VACL-related configuration. Note This command displays the user-configured ACLs in the running configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the running configuration.
show startup-config aclmgr [all]	Displays the ACL startup configuration. Note This command displays the user-configured ACLs in the startup configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the startup configuration.
show vlan filter	Displays information about VACLs that are applied to a VLAN.
show vlan access-map	Displays information about VLAN access maps.

Monitoring and Clearing VACL Statistics

To monitor or clear VACL statistics, use one of the commands in this table.

Command	Purpose
show vlan access-list	Displays the VACL configuration. If the VLAN access-map includes the statistics per-entry command, the show vlan access-list command output includes the number of packets that have matched each rule.
clear vlan access-list counters	Clears statistics for VACLs.

Configuration Example for VACLs

The following example shows how to configure a VACL to forward traffic permitted by a MAC ACL named acl-mac-01 and how to apply the VACL to VLANs 50 through 82:

```
conf t
vlan access-map acl-mac-map
  match mac address acl-mac-01
  action forward
vlan filter acl-mac-map vlan-list 50-82
```

Additional References for VACLs

Related Documents

Related Topic	Document Title
QoS configuration	Cisco Nexus 9000 Series NX-OS Quality of Service Configuration Guide

Configuring Port Security

This chapter describes how to configure port security on Cisco NX-OS devices.

This chapter includes the following sections:

- About Port Security, on page 277
- Licensing Requirements for Port Security, on page 283
- Prerequisites for Port Security, on page 283
- Default Settings for Port Security, on page 283
- Guidelines and Limitations for Port Security, on page 284
- Guidelines and Limitations for Port Security on vPCs, on page 284
- Configuring Port Security, on page 285
- Verifying the Port Security Configuration, on page 295
- Displaying Secure MAC Addresses, on page 295
- Configuration Example for Port Security, on page 296
- Configuration Examples for Port Security in a vPC Domain, on page 296
- Additional References for Port Security, on page 297

About Port Security

Port security allows you to configure Layer 2 physical interfaces and Layer 2 port-channel interfaces to allow inbound traffic from only a restricted set of MAC addresses. The MAC addresses in the restricted set are called secure MAC addresses. In addition, the device does not allow traffic from these MAC addresses on another interface within the same VLAN. The number of MAC addresses that the device can secure is configurable per interface.

Note

Unless otherwise specified, the term *interface* refers to both physical interfaces and port-channel interfaces; likewise, the term *Layer 2 interface* refers to both Layer 2 physical interfaces and Layer 2 port-channel interfaces.

Secure MAC Address Learning

The process of securing a MAC address is called learning. A MAC address can be a secure MAC address on one interface only. For each interface on which you enable port security, the device can learn a limited number

of MAC addresses by the static or dynamic methods. The way that the device stores secure MAC addresses varies depending upon how the device learned the secure MAC address.

Static Method

The static learning method allows you to manually add or remove secure MAC addresses to the running configuration of an interface. If you copy the running configuration to the startup configuration, static secure MAC addresses are unaffected if the device restarts.

A static secure MAC address entry remains in the configuration of an interface until one of the following events occurs:

- You explicitly remove the address from the configuration.
- You configure the interface to act as a Layer 3 interface.

Adding secure addresses by the static method is not affected by whether dynamic address learning is enabled.

Dynamic Method

By default, when you enable port security on an interface, you enable the dynamic learning method. With this method, the device secures MAC addresses as ingress traffic passes through the interface. If the address is not yet secured and the device has not reached any applicable maximum, it secures the address and allows the traffic.

The device stores dynamic secure MAC addresses in memory. A dynamic secure MAC address entry remains in the configuration of an interface until one of the following events occurs:

- The device restarts
- The interface restarts
- The address reaches the age limit that you configured for the interface
- You explicitly remove the address
- You configure the interface to act as a Layer 3 interface

Sticky Method

If you enable the sticky method, the device secures MAC addresses in the same manner as dynamic address learning, but the device stores addresses learned by this method in nonvolatile RAM (NVRAM). As a result, addresses learned by the sticky method persist through a device restart. Sticky secure MAC addresses do not appear in the running configuration of an interface.

Dynamic and sticky address learning are mutually exclusive. When you enable sticky learning on an interface, the device stops dynamic learning and performs sticky learning instead. If you disable sticky learning, the device resumes dynamic learning.

A sticky secure MAC address entry remains in the configuration of an interface until one of the following events occurs:

- You explicitly remove the address
- You configure the interface to act as a Layer 3 interface

Dynamic Address Aging

The device ages MAC addresses learned by the dynamic method and drops them after the age limit is reached. You can configure the age limit on each interface. The range is from 0 to 1440 minutes, where 0 disables aging.

The method that the device uses to determine that the MAC address age is also configurable. The two methods of determining address age are as follows:

Inactivity

The length of time after the device last received a packet from the address on the applicable interface.

Note

This feature is supported only on Cisco Nexus 9200 and 9300-EX Series switches.

Absolute

The length of time after the device learned the address. This is the default aging method; however, the default aging time is 0 minutes, which disables aging.

Note

When the absolute aging time is configured, MAC aging occurs even when the traffic from the source MAC is flowing. However, during MAC aging and re-learn, there could be a transient traffic drop.

Secure MAC Address Maximums

By default, an interface can have only one secure MAC address. You can configure the maximum number of MAC addresses permitted per interface or per VLAN on an interface. Maximums apply to secure MAC addresses learned by any method: static or dynamic.

Пр

To ensure that an attached device has the full bandwidth of the port, set the maximum number of addresses to one and configure the MAC address of the attached device.

The following three limits can determine how many secure MAC addresses are permitted on an interface:

Device Maximum

The device has a nonconfigurable limit of 8192 secure MAC addresses. If learning a new address would violate the device maximum, the device does not permit the new address to be learned, even if the interface or VLAN maximum has not been reached.

Interface Maximum

You can configure a maximum number of 1025 secure MAC addresses for each interface protected by port security. The default interface maximum is one address. Interface maximums cannot exceed the device maximum.

VLAN Maximum

You can configure the maximum number of secure MAC addresses per VLAN for each interface protected by port security. A VLAN maximum cannot exceed the configured interface maximum. VLAN maximums are useful only for trunk ports. There are no default VLAN maximums.

You can configure VLAN and interface maximums per interface, as needed; however, when the new limit is less than the applicable number of secure addresses, you must reduce the number of secure MAC addresses first.

Security Violations and Actions

Port security triggers security violations when either of the following events occurs:

MAC Count Violation

Ingress traffic arrives at an interface from a nonsecure MAC address, and learning the address would exceed the applicable maximum number of secure MAC addresses.

When an interface has both a VLAN maximum and an interface maximum configured, a violation occurs when either maximum is exceeded. For example, consider the following on a single interface configured with port security:

- VLAN 1 has a maximum of five addresses
- The interface has a maximum of ten addresses

The device detects a violation when any of the following occurs:

- The device has learned five addresses for VLAN 1, and inbound traffic from a sixth address arrives at the interface in VLAN 1.
- The device has learned ten addresses on the interface, and inbound traffic from an eleventh address arrives at the interface.

The possible actions that the device can take are as follows:

Shutdown

Shuts down the interface that received the packet triggering the violation. The interface is error disabled. This action is the default. After you reenable the interface, it retains its port security configuration, including its secure MAC addresses.

You can use the **errdisable** global configuration command to configure the device to reenable the interface automatically if a shutdown occurs, or you can manually reenable the interface by entering the **shutdown** and **no shutdown** interface configuration commands.

Restrict

Drops ingress traffic from any nonsecure MAC addresses.

The device keeps a count of the number of dropped MAC addresses, which is called the security violation count. Address learning continues until the maximum security violations have occurred on the interface. Traffic from addresses learned after the first security violation is dropped.

MAC Move Violation

Ingress traffic from a secure MAC address arrives at a different interface in the same VLAN as the interface on which the address is secured.

You see a mac move notification only when the the logging level of Layer2 Forwarding Module (L2FM) is increased to 4 or 5

When a MAC move violation occurs, the device increments the security violation counter for the interface, and irrespective of the violation mode configured, the interface is error disabled. If the violation mode is configured as Restrict or Protect, the violation is logged in the system log.

Because a MAC move violation results in the interface being error disabled, irrespective of the violation mode configured, we recommend using the **errdisable** command to enable automatic errdisable recovery.

Port Security and Port Types

You can configure port security only on Layer 2 interfaces. Details about port security and different types of interfaces or ports are as follows:

Access Ports

You can configure port security on interfaces that you have configured as Layer 2 access ports. On an access port, port security applies only to the access VLAN. VLAN maximums are not useful for access ports.

Trunk Ports

You can configure port security on interfaces that you have configured as Layer 2 trunk ports. The device allows VLAN maximums only for VLANs associated with the trunk port.

SPAN Ports

You can configure port security on SPAN source ports but not on SPAN destination ports.

Ethernet Port Channels

You can configure port security on Layer 2 Ethernet port channels in either access mode or trunk mode.

Port Security and Port-Channel Interfaces

Port security is supported on Layer 2 port-channel interfaces. Port security operates on port-channel interfaces in the same manner as on physical interfaces, except as described in this section.

General Guidelines

Port security on a port-channel interface operates in either access mode or trunk mode. In trunk mode, the MAC address restrictions enforced by port security apply to all member ports on a per-VLAN basis.

Enabling port security on a port-channel interface does not affect port-channel load balancing.

Port security does not apply to port-channel control traffic passing through the port-channel interface. Port security allows port-channel control packets to pass without causing security violations. Port-channel control traffic includes the following protocols:

- Port Aggregation Protocol (PAgP)
- Link Aggregation Control Protocol (LACP)
- Inter-Switch Link (ISL)
- IEEE 802.1Q

Configuring Secure Member Ports

The port security configuration of a port-channel interface has no effect on the port security configuration of member ports.

Adding a Member Port

If you add a secure interface as a member port of a port-channel interface, the device discards all dynamic secure addresses learned on the member port but retains all other port-security configuration of the member port in the running configuration. Static secure MAC addresses learned on the secure member port are also stored in the running configuration rather than NVRAM.

If port security is enabled on the member port and not enabled on the port-channel interface, the device warns you when you attempt to add the member port to the port-channel interface. You can use the **force** keyword with the **channel-group** command to forcibly add a secure member port to a nonsecure port-channel interface.

While a port is a member of a port-channel interface, you cannot configure port security on the member port. To do so, you must first remove the member port from the port-channel interface.

Removing a Member Port

If you remove a member port from a port-channel interface, the device restores the port security configuration of the member port. Static secure MAC addresses that were learned on the port before you added it to the port-channel interface are restored to NVRAM and removed from the running configuration.

Note

To ensure that all ports are secure as needed after you remove a port-channel interface, we recommend that you closely inspect the port-security configuration of all member ports.

Removing a Port-Channel Interface

If you remove a secure port-channel interface, the following occurs:

- The device discards all secure MAC addresses learned for the port-channel interface, including static secure MAC addresses learned on the port-channel interface.
- The device restores the port-security configuration of each member port. The static secure MAC
 addresses that were learned on member ports before you added them to the port-channel interface
 are restored to NVRAM and removed from the running configuration. If a member port did not
 have port security enabled prior to joining the port-channel interface, port security is not enabled
 on the member port after the port-channel interface is removed.

Note

To ensure that all ports are secure as needed after you remove a port-channel interface, we recommend that you closely inspect the port-security configuration of all member ports.

Disabling Port Security

If port security is enabled on any member port, the device does not allow you to disable port security on the port-channel interface. To do so, remove all secure member ports from the port-channel interface first. After disabling port security on a member port, you can add it to the port-channel interface again, as needed.

Port Type Changes

When you have configured port security on a Layer 2 interface and you change the port type of the interface, the device behaves as follows:

Access Port to Trunk Port

When you change a Layer 2 interface from an access port to a trunk port, the device drops all secure addresses learned by the dynamic method. The device moves the addresses learned by the static method to the native trunk VLAN.

Switched Port to Routed Port

When you change an interface from a Layer 2 interface to a Layer 3 interface, the device disables port security on the interface and discards all port security configuration for the interface. The device also discards all secure MAC addresses for the interface, regardless of the method used to learn the address.

Routed Port to Switched Port

When you change an interface from a Layer 3 interface to a Layer 2 interface, the device has no port security configuration for the interface.

Licensing Requirements for Port Security

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	Port security requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Prerequisites for Port Security

Port security has the following prerequisites:

You must globally enable port security for the device that you want to protect with port security.

Default Settings for Port Security

This table lists the default settings for port security parameters.

Parameters	Default
Port security enablement globally	Disabled
Port security enablement per interface	Disabled
MAC address learning method	Dynamic
Interface maximum number of secure MAC addresses	1

Parameters	Default
Security violation action	Shutdown

Guidelines and Limitations for Port Security

When configuring port security, follow these guidelines:

- Port security does not support switched port analyzer (SPAN) destination ports.
- Port security does not depend upon other features.
- Port security is supported for FEX interfaces only in non-vPC deployments on Cisco Nexus 9300-EX Series switches.
- There is no supported method of disabling the USB port on Cisco Nexus 9000 Series switches.
- After configuring the association between the primary and secondary VLANs and deleting the association, all static MAC addresses that were created on the primary VLANs remain on the primary VLAN only.

Note

In some cases, the configuration is accepted with no error messages, but the commands have no effect.

After configuring the association between the primary and secondary VLANs:

- Static MAC addresses for the secondary VLANs cannot be created.
- Dynamic MAC addresses that learned the secondary VLANs are aged out.

Guidelines and Limitations for Port Security on vPCs

Apart from the guidelines and limitations for port security, check that you can meet the following guidelines and limitations for port security on vPCs:

- Port security is not supported on FEX interfaces in vPC deployments.
- You must enable port security globally on both vPC peers in a vPC domain.
- You must enable port security on the vPC interfaces of both vPC peers.
- You must configure a static secure MAC address on the primary vPC peer. The static MAC address is synchronized with the secondary vPC peer. You can also configure a static secure MAC address on the secondary peer. The second static MAC address appears in the secondary vPC configuration but does not take affect.
- You must ensure that the maximum MAC count value remains the same for both primary and secondary vPC ports.

- On a secondary vPC port, there is no limit check for static MACs configured. Cisco recommends that
 you configure the same number of static MACs on a secondary vPC port as defined in the maximum
 MAC count.
- All learned MAC addresses are synchronized between vPC peers.
- Both vPC peers can be configured using the dynamic or static MAC address learning method. Cisco recommends that you configure both vPC peers using the same method. This helps prevent port shut down (errDisabled state) in certain cases, such as a vPC role change.
- Dynamic MAC addresses are dropped only after the age limit is reached on both vPC peers.
- You set the maximum number of secure MAC addresses on the primary vPC switch. The primary vPC switch does the count validation and disregards any maximum number settings on the secondary switch.
- You must configure the violation action on the primary vPC. When a security violation is triggered, the security action defined on the primary vPC switch occurs.
- You can use the **show vpc consistency-parameters id** command to verify that the configuration is correct on both vPC peers.
- While a switch undergoes an in-service software upgrade (ISSU), port security operations are stopped
 on its peer switch. The peer switch does not learn any new MAC addresses, and MAC moves occurring
 during this operation are ignored. When the ISSU is complete, the peer switch is notified and normal
 port security functionality resumes.
- ISSU to higher versions is supported; however, ISSU to lower versions is not supported.

Configuring Port Security

Enabling or Disabling Port Security Globally

You can enable or disable port security globally on a device. By default, port security is disabled globally.

When you disable port security, all port security configuration on the interface is ineffective. When you disable port security globally, all port security configuration is lost.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] feature port-security	Enables port security globally. The no option
	Example:	disables port security globally.
	switch(config)# feature port-security	

	Command or Action	Purpose
Step 3	(Optional) show port-security	Displays the status of port security.
	Example:	
	switch(config)# show port-security	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling Port Security on a Layer 2 Interface

You can enable or disable port security on a Layer 2 interface. By default, port security is disabled on all interfaces.

When you disable port security on an interface, all switchport port security configuration for the interface is lost.

Before you begin

You must have enabled port security globally.

If a Layer 2 Ethernet interface is a member of a port-channel interface, you cannot enable or disable port security on the Layer 2 Ethernet interface.

If any member port of a secure Layer 2 port-channel interface has port security enabled, you cannot disable port security for the port-channel interface unless you first remove all secure member ports from the port-channel interface.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands:	Enters interface configuration mode for the
	• interface ethernet slot/port	Ethernet or port-channel interface that you was to configure with port security.
	• interface port-channel channel-number	
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	switchport	Configures the interface as a Layer 2 interface.
	Example:	
	switch(config-if)# switchport	

	Command or Action	Purpose
Step 4	[no] switchport port-security	Enables port security on the interface. The no option disables port security on the interface.
	Example:	
switch(config-if)# switchport port-security		
Step 5	(Optional) show running-config port-security	Displays the port security configuration.
	Example:	
	<pre>switch(config-if)# show running-config port-security</pre>	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Enabling or Disabling Sticky MAC Address Learning

You can disable or enable sticky MAC address learning on an interface. If you disable sticky learning, the device returns to dynamic MAC address learning on the interface, which is the default learning method.

By default, sticky MAC address learning is disabled.

Before you begin

You must have enabled port security globally.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands:	Enters interface configuration mode for the
	interface ethernet slot/portinterface port-channel channel-number	interface that you want to configure with stick MAC address learning.
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	switchport	Configures the interface as a Layer 2 interface.
	Example:	
	switch(config-if)# switchport	

	Command or Action	Purpose
Step 4	[no] switchport port-security mac-address sticky	Enables sticky MAC address learning on the interface. The no option disables sticky MAC address learning.
	Example:	
	<pre>switch(config-if)# switchport port-security mac-address sticky</pre>	
Step 5	(Optional) show running-config port-security	Displays the port security configuration.
	Example:	
	<pre>switch(config-if)# show running-config port-security</pre>	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Adding a Static Secure MAC Address on an Interface

You can add a static secure MAC address on a Layer 2 interface.

Note

If the MAC address is a secure MAC address on any interface, you cannot add it as a static secure MAC address to another interface until you remove it from the interface on which it is already a secure MAC address.

By default, no static secure MAC addresses are configured on an interface.

Before you begin

You must have enabled port security globally.

Verify that the interface maximum has not been reached for secure MAC addresses. If needed, you can remove a secure MAC address, or you can change the maximum number of addresses on the interface.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands: • interface ethernet slot/port • interface port-channel channel-number	Enters interface configuration mode for the interface that you specify.

	Command or Action	Purpose
	<pre>Example: switch(config) # interface ethernet 2/1 switch(config-if) #</pre>	
Step 3	<pre>[no] switchport port-security mac-address address [vlan vlan-ID] Example: switch(config-if) # switchport port-security mac-address 0019.D2D0.00AE</pre>	Configures a static MAC address for port security on the current interface. Use the vlan keyword if you want to specify the VLAN that traffic from the address is allowed on.
Step 4	(Optional) show running-config port-security Example: switch(config-if) # show running-config port-security	Displays the port security configuration.
Step 5	<pre>(Optional) copy running-config startup-config Example: switch(config-if) # copy running-config startup-config</pre>	Copies the running configuration to the startup configuration.

Removing a Static Secure MAC Address on an Interface

You can remove a static secure MAC address on a Layer 2 interface.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands:	Enters interface configuration mode for the
	• interface ethernet slot/port	interface from which you want to remove a static secure MAC address.
	• interface port-channel channel-number	
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	no switchport port-security mac-address address	Removes the static secure MAC address from port security on the current interface.
	Example:	
	switch(config-if)# no switchport port-security mac-address 0019.D2D0.00AE	

	Command or Action	Purpose
Step 4	(Optional) show running-config port-security	Displays the port security configuration.
	Example:	
	<pre>switch(config-if)# show running-config port-security</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Removing a Sticky Secure MAC Address

You can remove a sticky secure MAC address, which requires that you temporarily disable sticky address learning on the interface that has the address that you want to remove.

Before you begin

You must have enabled port security globally.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands:	Enters interface configuration mode for the
	• interface ethernet slot/port	interface from which you want to remove a sticky secure MAC address.
	• interface port-channel channel-number	sticky secure MAC address.
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	no switchport port-security mac-address sticky	Disables sticky MAC address learning on the interface, which converts any sticky secure MAC addresses on the interface to dynamic
	Example:	
	switch (config-if) # no switchport	secure MAC addresses.
	port-security mac-address sticky	
Step 4	clear port-security dynamic address address	
	Example:	you specify.
	switch(config-if)# clear port-security dynamic address 0019.D2D0.02GD	

	Command or Action	Purpose
Step 5	(Optional) show port-security address interface {ethernet slot/port port-channel channel-number}	Displays secure MAC addresses. The address that you removed should not appear.
	<pre>Example: switch(config) # show port-security address interface ethernet 2/1</pre>	
Step 6	(Optional) switchport port-security mac-address sticky	Enables sticky MAC address learning again on the interface.
	Example:	
	<pre>switch(config-if)# switchport port-security mac-address sticky</pre>	

Removing a Dynamic Secure MAC Address

You can remove dynamically learned, secure MAC addresses.

Before you begin

You must have enabled port security globally.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	clear port-security dynamic {interface ethernet slot/port address address} [vlan	Removes dynamically learned, secure MAC addresses, as specified.
	<pre>vlan-ID] Example: switch(config) # clear port-security dynamic interface ethernet 2/1</pre>	If you use the interface keyword, you remove all dynamically learned addresses on the interface that you specify.
		If you use the address keyword, you remove the single, dynamically learned address that you specify.
		Use the vlan keyword if you want to further limit the command to removing an address or addresses on a particular VLAN.
Step 3	(Optional) show port-security address	Displays secure MAC addresses.
	Example:	
	<pre>switch(config)# show port-security address</pre>	

	Command or Action	Purpose
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Configuring a Maximum Number of MAC Addresses

You can configure the maximum number of MAC addresses that can be learned or statically configured on a Layer 2 interface. You can also configure a maximum number of MAC addresses per VLAN on a Layer 2 interface. The largest maximum number of addresses that you can configure on an interface is 1025 addresses. The system maximum number of addresses is 8192.

By default, an interface has a maximum of one secure MAC address. VLANs have no default maximum number of secure MAC addresses.

Note

When you specify a maximum number of addresses that is less than the number of addresses already learned or statically configured on the interface, the device rejects the command. To remove all addresses learned by the dynamic method, use the **shutdown** and **no shutdown** commands to restart the interface.

Before you begin

You must have enabled port security globally.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	 Enter one of the following commands: interface ethernet slot/port interface port-channel channel-number Example: switch (config) # interface ethernet 2/1 	Enters interface configuration mode, where <i>slot</i> is the interface that you want to configure with the maximum number of MAC addresses.
	switch(config-if)#	
Step 3	<pre>[no] switchport port-security maximum number [vlan vlan-ID] Example: switch(config-if) # switchport port-security maximum 425</pre>	Configures the maximum number of MAC addresses that can be learned or statically configured for the current interface. The highest valid <i>number</i> is 1025. The no option resets the maximum number of MAC addresses to the default, which is 1.

	Command or Action	Purpose
		If you want to specify the VLAN that the maximum applies to, use the vlan keyword.
Step 4	(Optional) show running-config port-security	Displays the port security configuration.
	Example:	
	<pre>switch(config-if)# show running-config port-security</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Configuring an Address Aging Type and Time

You can configure the MAC address aging type and the length of time that the device uses to determine when MAC addresses learned by the dynamic method have reached their age limit.

Absolute aging is the default aging type.

By default, the aging time is 0 minutes, which disables aging.

Before you begin

You must have enabled port security globally.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example: switch# configure terminal	
	switch(config)#	
Step 2	Enter one of the following commands:	Enters interface configuration mode for the
	• interface ethernet slot/port	interface that you want to configure with the MAC aging type and time.
	• interface port-channel channel-number	WAC aging type and time.
	Example:	
	<pre>switch(config) # interface ethernet 2/1 switch(config-if) #</pre>	
Step 3	[no] switchport port-security aging type	Configures the type of aging that the device
	{absolute inactivity}	applies to dynamically learned MAC addresses.
	Example:	The no option resets the aging type to the default, which is absolute aging.
	<pre>switch(config-if)# switchport port-security aging type inactivity</pre>	detail, when is accorde aging.

	Command or Action	Purpose	
Step 4	<pre>[no] switchport port-security aging time minutes Example: switch(config-if) # switchport port-security aging time 120</pre>	Configures the number of minutes that a dynamically learned MAC address must age before the device drops the address. The maximum valid <i>minutes</i> is 1440. The no option resets the aging time to the default, which is 0 minutes (no aging).	
		Note For Cisco Nexus 9200 and 9300-EX Series switches, up to 2 minutes might be added to the configured aging time. For example, if you set the aging time to 10 minutes, the age out occurs between 10 and 12 minutes after traffic stops.	
Step 5	(Optional) show running-config port-security	Displays the port security configuration.	
	<pre>Example: switch(config-if)# show running-config port-security</pre>		
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	<pre>Example: switch(config-if)# copy running-config startup-config</pre>		

Configuring a Security Violation Action

You can configure the action that the device takes if a security violation occurs. The violation action is configurable on each interface that you enable with port security.

The default security action is to shut down the port on which the security violation occurs.

Before you begin

You must have enabled port security globally.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Enter one of the following commands: • interface ethernet slot/port	Enters interface configuration mode for the interface that you want to configure with a security violation action.

	Command or Action	Purpose
	• interface port-channel channel-number	
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	[no] switchport port-security violation {protect restrict shutdown}	Configures the security violation action for port security on the current interface. The no option
	Example:	resets the violation action to the default, which is to shut down the interface
	<pre>switch(config-if)# switchport port-security violation restrict</pre>	is to shar do wh the interface.
Step 4	(Optional) show running-config port-security	Displays the port security configuration.
	Example:	
	<pre>switch(config-if)# show running-config port-security</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Verifying the Port Security Configuration

To display the port security configuration information, perform one of the following tasks.

Command	Purpose
show running-config port-security	Displays the port security configuration.
show port-security	Displays the port security status of the device.
show port-security interface	Displays the port security status of a specific interface.
show port-security address	Displays secure MAC addresses.
show vpc consistency-parameters vpc id	Verifies configuration on both vPC peers.

Displaying Secure MAC Addresses

Use the **show port-security address** command to display secure MAC addresses.

Configuration Example for Port Security

The following example shows a port security configuration for the Ethernet 2/1 interface with VLAN and interface maximums for secure addresses. In this example, the interface is a trunk port. Additionally, the violation action is set to Restrict.

```
feature port-security
interface Ethernet 2/1
switchport
switchport port-security
switchport port-security maximum 10
switchport port-security maximum 7 vlan 10
switchport port-security maximum 3 vlan 20
switchport port-security violation restrict
```

Configuration Examples for Port Security in a vPC Domain

The following example shows how to enable and configure port security on vPC peers in a vPC domain. The first switch is the primary vPC peer and the second switch is the secondary vPC peer. Before configuring port security on the switches, create the vPC domain and check that the vPC peer-link adjacency is established.

Example: Configuring Port Security on an Orphan Port

```
primary switch(config)# feature port-security
primary switch (config-if) # int e1/1
primary switch(config-if)# switchport port-security
primary_switch(config-if)# switchport port-security max 1025
primary_switch(config-if)# switchport port-security violation restrict
primary switch(config-if)# switchport port-security aging time 4
primary switch(config-if)# switchport port-security aging type absolute
primary switch(config-if)# switchport port-security mac sticky
primary_switch(config-if)# switchport port-security mac-address 0.0.1 vlan 101
primary switch(config-if)# switchport port-security mac-address 0.0.2 vlan 101
primary switch(config-if)# copy running-config startup-config
secondary switch (config) # feature port-security
secondary_switch(config) # int e3/1
secondary switch (config-if) # switchport port-security
secondary switch(config-if)# switchport port-security max 1025
secondary switch(config-if)# switchport port-security violation restrict
secondary switch(config-if)# switchport port-security aging time 4
secondary switch(config-if)# switchport port-security aging type absolute
secondaryy switch(config-if)# switchport port-security mac sticky
secondary switch (config-if) # switchport port-security mac-address 0.0.1 vlan 101
secondary switch (config-if) # switchport port-security mac-address 0.0.2 vlan 101
secondary switch (config-if) # copy running-config startup-config
```

Example: Configuring Port Security on the vPC Leg

```
primary_switch(config) # feature port-security
primary_switch(config-if) # int po10
primary_switch(config-if) # switchport_port-security
```

```
primary switch (config-if) # switchport port-security max 1025
primary switch (config-if) # switchport port-security violation restrict
primary_switch(config-if)# switchport port-security aging time 4
primary switch(config-if)# switchport port-security aging type absolute
primary switch(config-if)# switchport port-security mac sticky
primary switch(config-if) # switchport port-security mac-address 0.0.1 vlan 101
primary_switch(config-if)# switchport port-security mac-address 0.0.2 vlan 101
primary switch(config-if) # vpc 10
primary switch(config-if)# copy running-config startup-config
secondary switch(config)# feature port-security
secondary switch(config) # int po10
secondary switch(config-if)# switchport port-security
secondary_switch(config-if)# switchport port-security max 1025
\verb|secondary_switch(config-if)| \# \textbf{ switchport port-security violation restrict}|
secondary switch (config-if) # switchport port-security aging time 4
secondary switch(config-if)# switchport port-security aging type absolute
secondaryy_switch(config-if)# switchport port-security mac sticky
secondary_switch(config-if) # switchport port-security mac-address 0.0.1 vlan 101
secondary switch (config-if) # switchport port-security mac-address 0.0.2 vlan 101
secondary switch(config-if) # vpc 10
secondary_switch(config-if)# copy running-config startup-config
```

Additional References for Port Security

Related Documents

Related Topic Document Title	
Layer 2 switching	Cisco Nexus 9000 Series NX-OS Layer 2 Switching Configuration Guide

MIBs

Cisco NX-OS provides read-only SNMP support for port security.

MIBs		MIBs Link
CISC	O-PORT-SECURITY-MIB	To locate and download MIBs, go to the following URL:
Note	Traps are supported for notification of secure MAC address violations.	https://snmp.cloudapps.cisco.com/Support/SNMP/do/ BrowseMIB.do?local=en&step=2

Additional References for Port Security

Configuring DHCP

This chapter describes how to configure the Dynamic Host Configuration Protocol (DHCP) on a Cisco NX-OS device.

This chapter includes the following sections:

- About DHCP Snooping, on page 299
- About the DHCP Relay Agent, on page 303
- About the DHCPv6 Relay Agent, on page 306
- About DHCP Client, on page 306
- Licensing Requirements for DHCP, on page 307
- Prerequisites for DHCP, on page 307
- Guidelines and Limitations for DHCP, on page 307
- Default Settings for DHCP, on page 309
- Configuring DHCP, on page 309
- Configuring DHCPv6, on page 327
- Enabling DHCP Client, on page 332
- Verifying the DHCP Configuration, on page 333
- Displaying IPv6 RA Guard Statistics, on page 334
- Displaying DHCP Snooping Bindings, on page 334
- Clearing the DHCP Snooping Binding Database, on page 334
- Monitoring DHCP, on page 335
- Clearing DHCP Snooping Statistics, on page 335
- Clearing DHCP Relay Statistics, on page 335
- Clearing DHCPv6 Relay Statistics, on page 335
- Configuration Examples for DHCP, on page 335
- Configuration Examples for DHCP Client, on page 336
- Additional References for DHCP, on page 336

About DHCP Snooping

DHCP snooping acts like a firewall between untrusted hosts and trusted DHCP servers. DHCP snooping performs the following activities:

Validates DHCP messages received from untrusted sources and filters out invalid messages.

- Builds and maintains the DHCP snooping binding database, which contains information about untrusted hosts with leased IP addresses.
- Uses the DHCP snooping binding database to validate subsequent requests from untrusted hosts.

DHCP snooping can be enabled globally and on a per-VLAN basis. By default, the feature is disabled globally and on all VLANs. You can enable the feature on a single VLAN or a range of VLANs.

Trusted and Untrusted Sources

You can configure whether DHCP snooping trusts traffic sources. An untrusted source may initiate traffic attacks or other hostile actions. To prevent such attacks, DHCP snooping filters messages from untrusted sources.

In an enterprise network, a trusted source is a device that is under your administrative control. These devices include the switches, routers, and servers in the network. Any device beyond the firewall or outside the network is an untrusted source. Generally, host ports are treated as untrusted sources.

In a service provider environment, any device that is not in the service provider network is an untrusted source (such as a customer switch). Host ports are untrusted sources.

In the Cisco NX-OS device, you indicate that a source is trusted by configuring the trust state of its connecting interface.

Note

The interfaces which are connected to the client side are considered as un-trusted, even if trust state is configured.

The default trust state of all interfaces is untrusted. You must configure DHCP server interfaces as trusted. You can also configure other interfaces as trusted if they connect to devices (such as switches or routers) inside your network. You usually do not configure host port interfaces as trusted.

Note

For DHCP snooping to function properly, all DHCP servers must be connected to the device through trusted interfaces.

DHCP Snooping Binding Database

Using information extracted from intercepted DHCP messages, DHCP snooping dynamically builds and maintains a database. The database contains an entry for each untrusted host with a leased IP address if the host is associated with a VLAN that has DHCP snooping enabled. The database does not contain entries for hosts connected through trusted interfaces.

Note

The DHCP snooping binding database is also referred to as the DHCP snooping binding table.

DHCP snooping updates the database when the device receives specific DHCP messages. For example, the feature adds an entry to the database when the device receives a DHCPACK message from the server. The

feature removes the entry in the database when the IP address lease expires or the device receives a DHCPRELEASE message from the host.

Each entry in the DHCP snooping binding database includes the MAC address of the host, the leased IP address, the lease time, the binding type, and the VLAN number and interface information associated with the host.

Dynamic ARP inspection (DAI) and IP Source Guard also use information stored in the DHCP snooping binding database.

You can remove entries from the binding database by using the **clear ip dhcp snooping binding** command.

DHCP Snooping in a vPC Environment

A virtual port channel (vPC) allows two Cisco NX-OS switches to appear as a single logical port channel to a third device. The third device can be a switch, a server, or any other networking device that supports port channels.

In a typical vPC environment, DHCP requests can reach one vPC peer switch, and the responses can reach the other vPC peer switch, resulting in a partial DHCP (IP-MAC) binding entry in one switch and no binding entry in the other switch. As a result, DHCP snooping and associated features such as dynamic ARP inspection (DAI) and IP Source Guard are disrupted. This issue is addressed by using Cisco Fabric Service over Ethernet (CFSoE) distribution to ensure that all DHCP packets (requests and responses) appear on both switches, which helps in creating and maintaining the same binding entry on both switches for all clients behind the vPC link.

CFSoE distribution also allows only one switch to forward the DHCP requests and responses on the vPC link. In non-vPC environments, both switches forward the DHCP packets.

Synchronizing DHCP Snooping Binding Entries

The dynamic DHCP binding entries should be synchronized in the following scenarios:

- When the remote vPC is online, all the binding entries for that vPC link should be synchronized with the peer.
- When DHCP snooping is enabled on the peer switch, the dynamic binding entries for all vPC links should be synchronized with the peer.

Packet Validation

The device validates DHCP packets received on the untrusted interfaces of VLANs that have DHCP snooping enabled. The device forwards the DHCP packet unless any of the following conditions occur (in which case, the packet is dropped):

- The device receives a DHCP response packet (such as a DHCPACK, DHCPNAK, or DHCPOFFER packet) on an untrusted interface.
- The device receives a packet on an untrusted interface, and the source MAC address and the DHCP client hardware address do not match. This check is performed only if the DHCP snooping MAC address verification option is turned on.
- The device receives a DHCPRELEASE or DHCPDECLINE message from an untrusted host with an
 entry in the DHCP snooping binding table, and the interface information in the binding table does not
 match the interface on which the message was received.

In addition, you can enable strict validation of DHCP packets, which checks the options field of DHCP packets, including the "magic cookie" value in the first four bytes of the options field. By default, strict validation is disabled. When you enable it, by using the **ip dhcp packet strict-validation** command, if DHCP snooping processes a packet that has an invalid options field, it drops the packet.

DHCP Snooping Option 82 Data Insertion

DHCP can centrally manage the IP address assignments for a large number of subscribers. When you enable Option 82, the device identifies a subscriber device that connects to the network (in addition to its MAC address). Multiple hosts on the subscriber LAN can connect to the same port on the access device and are uniquely identified.

When you enable Option 82 on the Cisco NX-OS device, the following sequence of events occurs:

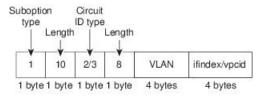
- 1. The host (DHCP client) generates a DHCP request and broadcasts it on the network.
- 2. When the Cisco NX-OS device receives the DHCP request, it adds the Option 82 information in the packet. The Option 82 information contains the device MAC address (the remote ID suboption) and the port identifier vlan-ifindex (for non-vPCs) or vlan-vpcid (for vPCs), from which the packet is received (the circuit ID suboption).

Note

For vPC peer switches, the remote ID suboption contains the vPC switch MAC address, which is unique in both switches. This MAC address is computed with the vPC domain ID. The Option 82 information is inserted at the switch where the DHCP request is first received before it is forwarded to the other vPC peer switch.

- 3. The device forwards the DHCP request that includes the Option 82 field to the DHCP server.
- 4. The DHCP server receives the packet. If the server is Option 82 capable, it can use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. The DHCP server echoes the Option 82 field in the DHCP reply.
- 5. The DHCP server sends the reply to the Cisco NX-OS device. The Cisco NX-OS device verifies that it originally inserted the Option 82 data by inspecting the remote ID and possibly the circuit ID fields. The Cisco NX-OS device removes the Option 82 field and forwards the packet to the interface that connects to the DHCP client that sent the DHCP request.

If the previously described sequence of events occurs, the following values do not change:


- Circuit ID suboption fields
 - Suboption type
 - Length of the suboption type
 - · Circuit ID type
 - Length of the circuit ID type
- Remote ID suboption fields
 - Suboption type
 - Length of the suboption type

- · Remote ID type
- Length of the circuit ID type

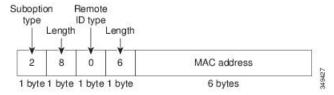

This figure shows the packet formats for the remote ID suboption and the circuit ID suboption. The Cisco NX-OS device uses the packet formats when you globally enable DHCP snooping and when you enable Option 82 data insertion and removal. For the circuit ID suboption, the module field is the slot number of the module.

Figure 9: Suboption Packet Formats

Circuit ID Suboption Frame Format

Remote ID Suboption Frame Format

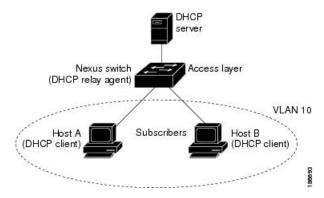
About the DHCP Relay Agent

DHCP Relay Agent

You can configure the device to run a DHCP relay agent, which forwards DHCP packets between clients and servers. This feature is useful when clients and servers are not on the same physical subnet. Relay agents receive DHCP messages and then generate a new DHCP message to send out on another interface. The relay agent sets the gateway address (giaddr field of the DHCP packet) and, if configured, adds the relay agent information option (Option 82) in the packet and forwards it to the DHCP server. The reply from the server is forwarded back to the client after removing Option 82.

After you enable Option 82, the device uses the binary ifindex format by default. If needed, you can change the Option 82 setting to use an encoded string format instead.

Note

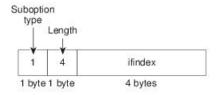

When the device relays a DHCP request that already includes Option 82 information, the device forwards the request with the original Option 82 information without altering it.

DHCP Relay Agent Option 82

You can enable the device to insert and remove Option 82 information on DHCP packets that are forwarded by the relay agent.

Figure 10: DHCP Relay Agent in a Metropolitan Ethernet Network

This figure shows an example of a metropolitan Ethernet network in which a centralized DHCP server assigns IP addresses to subscribers connected to the device at the access layer. Because the DHCP clients and their associated DHCP server do not reside on the same IP network or subnet, a DHCP relay agent is configured with a helper address to enable broadcast forwarding and to transfer DHCP messages between the clients and the server.


When you enable Option 82 for the DHCP relay agent on the Cisco NX-OS device, the following sequence of events occurs:

- 1. The host (DHCP client) generates a DHCP request and broadcasts it on the network.
- 2. When the Cisco NX-OS device receives the DHCP request, it adds the Option 82 information in the packet. The Option 82 information contains the device MAC address (the remote ID suboption) and the port identifier ifindex (for non-VXLAN VLANs) or vn-segment-id-mod-port (for VXLAN VLANs), from which the packet is received (the circuit ID suboption). In DHCP relay, the circuit ID is filled with the ifindex of the SVI or Layer 3 interface on which DHCP relay is configured.
- 3. The device adds the IP address of the relay agent to the DHCP packet.
- 4. The device forwards the DHCP request that includes the Option 82 field to the DHCP server.
- 5. The DHCP server receives the packet. If the server is Option 82 capable, it can use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. The DHCP server echoes the Option 82 field in the DHCP reply.
- 6. The DHCP server unicasts the reply to the Cisco NX-OS device if the request was relayed to the server by the device. The Cisco NX-OS device verifies that it originally inserted the Option 82 data by inspecting the remote ID and possibly the circuit ID fields. The Cisco NX-OS device removes the Option 82 field and forwards the packet to the interface that connects to the DHCP client that sent the DHCP request.

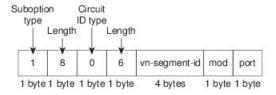
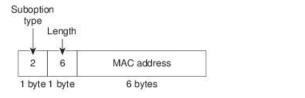

This figure shows the packet formats for the circuit ID suboption and the remote ID suboption.

Figure 11: Suboption Packet Formats


Circuit ID Suboption Frame Format (for non-VXLAN VLANs)

Circuit ID Suboption Frame Format (for VXLAN VLANs)

Remote ID Suboption Frame Format

VRF Support for the DHCP Relay Agent

You can configure the DHCP relay agent to forward DHCP broadcast messages from clients in a virtual routing and forwarding (VRF) instance to DHCP servers in a different VRF. By using a single DHCP server to provide DHCP support to clients in multiple VRFs, you can conserve IP addresses by using a single IP address pool rather than one for each VRF. For general information about VRFs, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Enabling VRF support for the DHCP relay agent requires that you enable Option 82 for the DHCP relay agent.

If a DHCP request arrives on an interface that you have configured with a DHCP relay address and VRF information and the address of the DCHP server belongs to a network on an interface that is a member of a different VRF, the device inserts Option 82 information in the request and forwards it to the DHCP server in the server VRF. The Option 82 information includes the following:

VPN identifier

Name of the VRF that the interface that receives the DHCP request is a member of.

Link selection

Subnet address of the interface that receives the DHCP request. When DHCP smart relay is enabled, the link selection is filled with the subnet of the active giaddr.

Server identifier override

IP address of the interface that receives the DHCP request. When DHCP smart relay is enabled, the server identifier is filled with the active giaddr.

Note

The DHCP server must support the VPN identifier, link selection, and server identifier override options.

When the device receives the DHCP response message, it strips off the Option 82 information and forwards the response to the DHCP client in the client VRF.

DHCP Smart Relay Agent

When the DHCP relay agent receives broadcast DHCP request packets from a host, it sets giaddr to the primary address of the inbound interface and forwards the packets to the server. The server allocates IP addresses from the giaddr subnet pool until the pool is exhausted and ignores further requests.

You can configure the DHCP smart relay agent to allocate IP addresses from the secondary IP address subnet pool if the first subnet pool is exhausted or the server ignores further requests. This enhancement is useful if the number of hosts is greater than the number of IP addresses in the pool or if multiple subnets are configured on an interface using secondary addresses.

About the DHCPv6 Relay Agent

DHCPv6 Relay Agent

You can configure the device to run a DHCPv6 relay agent, which forwards DHCPv6 packets between clients and servers. This feature is useful when clients and servers are not on the same physical subnet. Relay agents receive DHCPv6 messages and then generate a new DHCPv6 message to send out on another interface. The relay agent sets the gateway address (giaddr field of the DHCPv6 packet) and forwards it to the DHCPv6 server.

VRF Support for the DHCPv6 Relay Agent

You can configure the DHCPv6 relay agent to forward DHCPv6 broadcast messages from clients in a virtual routing and forwarding (VRF) instance to DHCPv6 servers in a different VRF. By using a single DHCPv6 server to provide DHCP support to clients in multiple VRFs, you can conserve IP addresses by using a single IP address pool rather than one for each VRF. For general information about VRFs, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

About DHCP Client

The DHCP client feature enables the configuration of an IPv4 or IPv6 address on an interface. Interfaces can include routed ports, the management port, and switch virtual interfaces (SVIs).

Licensing Requirements for DHCP

This table shows the licensing requirements for DHCP.

Product	License Requirement
Cisco NX-OS	DHCP requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Prerequisites for DHCP

DHCP has the following prerequisite:

You should be familiar with DHCP before you configure DHCP snooping or the DHCP relay agent.

Guidelines and Limitations for DHCP

DHCP has the following configuration guidelines and limitations:

- For secure POAP, make sure that DHCP snooping is enabled and firewall rules are set to block unintended or malicious DHCP servers.
- Cisco Nexus 9000 Series switches do not support the relaying of bootp packets. However, the switches do support bootp packets that are Layer 2 switched.
- DHCP subnet broadcast is not supported.
- You must enable the insertion of Option 82 information for DHCP packets to support the highest DHCP snooping scale.
- Before you globally enable DHCP snooping on the device, make sure that the devices acting as the DHCP server and the DHCP relay agent are configured and enabled.
- When DHCP relay and DHCP snooping are supported on the same Nexus 9000 switch, DHCP snooping
 configuration should not be followed by DHCP relay configuration in the network. Also, when DHCP
 snooping and relay are enabled on the same VLAN, DHCP relay takes precedence and packet forwarding
 takes DHCP relay functionality.
- DHCP snooping is not supported on VXLAN VLANs.
- Beginning with Cisco NX-OS Release 7.0(3)I1(2), DHCP snooping supports multiple IP addresses with the same MAC address and VLAN in static binding entries. In previous releases, DHCP snooping static binding entries allow only one IP address with the same MAC address and VLAN.
- VXLAN supports DHCP relay when the DHCP server is reachable through a default VRF.
- If a VLAN ACL (VACL) is configured on a VLAN that you are configuring with DHCP snooping, make sure that the VACL permits DHCP traffic between DHCP servers and DHCP hosts. When both DHCP snooping and DHCP relay are enabled on a VLAN and the SVI of that VLAN, DHCP relay takes precedence.

- If an ingress router ACL is configured on a Layer 3 interface that you are configuring with a DHCP server address, make sure that the router ACL permits DHCP traffic between DHCP servers and DHCP hosts.
- If you use DHCP relay where DHCP clients and servers are in different VRFs, use only one DHCP server within a VRF.
- Access-control list (ACL) statistics are not supported if the DHCP snooping feature is enabled.
- Make sure that the DHCP configuration is synchronized across the switches in a vPC link. Otherwise, a run-time error can occur, resulting in dropped packets.
- DHCP Smart Relay is limited to the first 100 IP addresses of the interface on which it is enabled.
- You must configure a helper address on the interface in order to use DHCP smart relay.
- If DHCP Smart Relay is enabled in a vPC environment, primary interface IP addresses should share a subnet between the peers. Secondary interface IP addresses should also share a subnet between the peers.
- When you configure DHCPv6 server addresses on an interface, a destination interface cannot be used with global IPv6 addresses.
- DHCPv6-PD Routes will not be generated when a DHCPv6 client initiates a Rebind. Existing IAPD entries for the client will be refreshed, but not created. For IAPD route creation, a full Solicit, Advertise, Request, Reply must be seen by the DHCPv6 Relay agent.
- DHCPv6 Prefix Delegation Routes are not generated when Option 14 **Rapid Commit** is present. A full Solicit, Advertise, Request, Reply sequence is needed to generate an IAPD route.
- The following guidelines and limitations apply to the DHCP client feature:
 - You can configure multiple SVIs, but each interface VLAN should be in a different subnet. The DHCP client feature cannot configure different IP addresses with the same subnet on different interface VLANs on the same device.
 - DHCP client and DHCP relay are not supported on the same switch.
 - DHCP client is not supported for Layer 3 subinterfaces.
 - DHCP client is supported on the Cisco Nexus 9300 Series switches beginning with Cisco NX-OS Release 7.0(3)I2(1) and on the Cisco Nexus 9500 Series switches beginning with Cisco NX-OS Release 7.0(3)I2(2).
 - DHCP client is not supported on Cisco Nexus 9500 platform switches with N9K-X9636C-R, N9K-X9636C-RX, N9K-X9636Q-R, and N9K-X96136YC-R line cards.

Note

For DHCP configuration limits, see the Cisco Nexus 9000 Series NX-OS Verified Scalability Guide.

Default Settings for DHCP

This table lists the default settings for DHCP parameters.

Table 33: Default DHCP Parameters

Parameters	Default
DHCP feature	Disabled
DHCP snooping	Disabled
DHCP snooping on VLANs	Disabled
DHCP snooping MAC address verification	Enabled
DHCP snooping Option 82 support	Disabled
DHCP snooping trust	Untrusted
DHCP relay agent	Enabled
DHCPv6 relay agent	Enabled
VRF support for the DHCP relay agent	Disabled
VRF support for the DHCPv6 relay agent	Disabled
DHCP Option 82 for relay agent	Disabled
DHCP smart relay agent	Disabled
DHCP server IP address	None

Configuring DHCP

Minimum DHCP Configuration

- **Step 1** Enable the DHCP feature.
 - When the DHCP feature is disabled, you cannot configure DHCP snooping.
- **Step 2** Enable DHCP snooping globally.
- **Step 3** Enable DHCP snooping on at least one VLAN.
 - By default, DHCP snooping is disabled on all VLANs.

- **Step 4** Make sure that the DHCP server is connected to the device using a trusted interface.
- **Step 5** (Optional) Enable the DHCP relay agent.
- **Step 6** (Optional) If DHCP servers and clients are in different VRFs, do the following:
 - a) Enable Option 82 for the DHCP relay agent.
 - b) Enable VRF support for the DHCP relay agent.
- **Step 7** (Optional) Configure an interface with the IP address of the DHCP server.

Enabling or Disabling the DHCP Feature

You can enable or disable the DHCP feature on the device. By default, DHCP is disabled.

When the DHCP feature is disabled, you cannot configure the DHCP relay agent, DHCP snooping, or any of the features that depend on DHCP. In addition, all DHCP configuration is removed from the device.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] feature dhcp	Enables the DHCP feature. The no option
	Example:	disables the DHCP feature and erases all DHCP
	switch(config)# feature dhcp	configuration.
Step 3	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config) # show running-config dhcp	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	switch(config)# copy running-config startup-config	

Configuring DHCP Snooping

Enabling or Disabling DHCP Snooping Globally

You can enable or disable DHCP snooping globally on the device.

Before you begin

Make sure that you have enabled the DHCP feature.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp snooping	Enables DHCP snooping globally. The no form
	Example:	of this command disables DHCP snooping.
	switch(config)# ip dhcp snooping	
Step 3	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling DHCP Snooping on a VLAN

You can enable or disable DHCP snooping on one or more VLANs. By default, DHCP snooping is disabled on all VLANs.

Before you begin

Make sure that the DHCP feature is enabled.

Note

If a VACL is configured on a VLAN that you are configuring with DHCP snooping, make sure that the VACL permits DHCP traffic between DHCP servers and DHCP hosts.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp snooping vlan vlan-list	Enables DHCP snooping on the VLANs specified by <i>vlan-list</i> . The no form of this command disables DHCP snooping on the VLANs specified.
	Example:	
	switch(config)# ip dhep snooping vlan 100,200,250-252	

	Command or Action	Purpose
Step 3	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling DHCP Snooping MAC Address Verification

You can enable or disable DHCP snooping MAC address verification. If the device receives a packet on an untrusted interface and the source MAC address and the DHCP client hardware address do not match, address verification causes the device to drop the packet. MAC address verification is enabled by default.

Before you begin

Make sure that the DHCP feature is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# config t switch(config)#</pre>	
Step 2	[no] ip dhcp snooping verify mac-address	Enables DHCP snooping MAC address
	Example:	verification. The no form of this command disables MAC address verification.
	<pre>switch(config)# ip dhcp snooping verify mac-address</pre>	
Step 3	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config) # show running-config dhcp	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling Option 82 Data Insertion and Removal

You can enable or disable the insertion and removal of Option 82 information for DHCP packets forwarded without the use of the DHCP relay agent. By default, the device does not include Option 82 information in DHCP packets.

Note

DHCP relay agent support for Option 82 is configured separately.

Note

To support a higher DHCP pps scale, you must enable the insertion of Option 82 information for DHCP packets.

Note

You must add Option82 as specified in the format string in the command configuration.

- The length of the Option82 string increases based on the length of the format string.
- The circuit-id must include the ascii value of the format string.

Before you begin

Make sure that the DHCP feature is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp snooping information option	Enables the insertion and removal of Option 82
Example:	Example:	information for DHCP packets. The no form of this command disables the insertion and
	<pre>switch(config)# ip dhcp snooping information option</pre>	removal of Option 82 information.
Step 3	(Optional) [no] ip dhcp option82 sub-option	Configures Option 82 as follows:
	circuit-id format_type string format	• If you do not specify <i>format-type</i> , the
	Example:	circuit-id displays the incoming port, for
sub-option circuit-id format-type string	example, ethernet1/1.If you specify format <word>, the</word>	
	Example:	circuit-id displays the specified word
	<pre>switch(config)# ip dhcp snooping sub-option circuit-id format-type string</pre>	• If you specify %h instead of <word>, the circuit-id displays the host name.</word>

	Command or Action	Purpose
	format? WORD Format string (Max Size 64)	 If you specify %p instead of <word>, the circuit-id displays the port name.</word> If you specify %h:%p instead of <word>, the circuit-id displays both host and port name.</word> Note This command is available beginning with Cisco NX-OS Release 7.0(3)I7(1).
Step 4	interface interface slot/port	The <i>no</i> option disables this behavior. Enters the interface configuration mode, where
	<pre>Example: switch(config) # interface ethernet 2/2 switch(config-if) #</pre>	slot/port is the interface where you want to enable or disable snooping.
Step 5	(Optional) ip dhcp option82 sub-option	Configures Option 82 at the interface.
	<pre>circuit-id Example: switch(config-if) # ip dhcp option82 sub-option circuit-id? WORD Format string (Max Size 64)</pre>	Note This command is not supported at SVI and Sub-Interface.
	<pre>Example: switch(config-if)# ip dhcp option82 sub-option circuit-id test switch(config-if)#</pre>	
Step 6	exit	Exits interface configuration mode.
	<pre>Example: switch(config-if)# exit switch(config)#</pre>	
Step 7	(Optional) show ip dhcp option82 info interface intf_name	Displays the DHCP configuration. This command is available beginning with Cisco NX-OS Release 7.0(3)I7(1). It shows whether option82 is enabled or disabled on that interface and the transmitted packets for an interface that is option82 enabled.
Step 8	(Optional) show running-config dhcp	Displays the DHCP configuration.
	<pre>Example: switch(config) # show running-config dhcp</pre>	
Step 9	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Enabling or Disabling Strict DHCP Packet Validation

You can enable or disable the strict validation of DHCP packets. By default, strict validation of DHCP packets is disabled.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp packet strict-validation	Enables the strict validation of DHCP packets.
	Example:	The no form of this command disables strict DHCP packet validation.
	<pre>switch(config)# ip dhcp packet strict-validation</pre>	
Step 3	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring an Interface as Trusted or Untrusted

You can configure whether an interface is a trusted or untrusted source of DHCP messages. By default, all interfaces are untrusted. You can configure DHCP trust on the following types of interfaces:

- Layer 2 Ethernet interfaces
- Layer 2 port-channel interfaces

Before you begin

Make sure that the DHCP feature is enabled.

Make sure that the interface is configured as a Layer 2 interface.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	Do one of the following options: • interface ethernet slot/port • interface port-channel channel-number Example: switch(config) # interface ethernet 2/1 switch(config-if) #	 Enters interface configuration mode, where slot/port is the Layer 2 Ethernet interface that you want to configure as trusted or untrusted for DHCP snooping. Enters interface configuration mode, where slot/port is the Layer 2 port-channel interface that you want to configure as trusted or untrusted for DHCP snooping.
Step 3	<pre>[no] ip dhcp snooping trust Example: switch(config-if)# ip dhcp snooping trust</pre>	Configures the interface as a trusted interface for DHCP snooping. The no form of this command configures the port as an untrusted interface.
Step 4	(Optional) show running-config dhcp Example: switch(config-if) # show running-config dhcp	Displays the DHCP configuration.
Step 5	(Optional) copy running-config startup-config Example: switch (config-if) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Enabling or Disabling DHCP Relay Trusted Port Functionality

You can enable or disable the DHCP relay trusted port functionality. By default, if the gateway address is set to all zeros in the DHCP packet and the relay information option is already present in the packet, the DHCP relay agent will not discard the packet. If the **ip dhcp relay information option trust** command is configured globally, the DHCP relay agent will discard the packet if the gateway address is set to all zeros.

Before you begin

Make sure that the DHCP feature is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp relay information option trust	Enables the DHCP relay trusted port
	Example:	functionality. The no form of this comman disables this functionality.
	<pre>switch(config)# ip dhcp relay information option trust</pre>	

	Command or Action	Purpose
Step 3	(Optional) show ip dhcp relay	Displays the DHCP relay configuration.
	<pre>Example: switch(config)# show ip dhcp relay</pre>	
Step 4	(Optional) show ip dhcp relay information trusted-sources	Displays the DHCP relay trusted ports configuration.
	Example:	
	<pre>switch(config)# show ip dhcp relay information trusted-sources</pre>	
Step 5	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config) # show running-config dhcp	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring an Interface as a DHCP Relay Trusted or Untrusted Port

You can configure whether a Layer 3 interface is a DHCP relay trusted or untrusted interface. By default, all interfaces are untrusted. You can configure DHCP relay trust on the following types of interfaces:

- Layer 3 Ethernet interfaces and subinterfaces
- Layer 3 port-channel interfaces

Before you begin

Make sure that the DHCP feature is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>interface [ethernet slot/port[.number] port-channel channel-number]</pre>	Enters interface configuration mode, where <i>slot/port</i> is the Layer 3 Ethernet interface that
	Example:	you want to configure as trusted or untrusted channel-number is the Layer 3 port-channel
	<pre>switch(config) # interface ethernet 2/1 switch(config-if) #</pre>	interface that you want to configure as trusted or untrusted.

	Command or Action	Purpose
Step 3	<pre>[no] ip dhcp relay information trusted Example: switch(config-if)# ip dhcp relay information trusted</pre>	Configures the interface as a trusted interface for DHCP relay agent information. The no form of this command configures the port as an untrusted interface.
		Note For any Layer 3 interface, if the interface is configured as trusted either through a global command or an interface-level command, the interface is considered as a trusted interface. Hence, when the trusted-port command is enabled at the global level, any Layer 3 interface cannot be considered as untrusted irrespective of the interface-level configuration.
Step 4	(Optional) show ip dhcp relay information trusted-sources	Displays the DHCP relay trusted ports configuration.
	<pre>Example: switch(config-if)# show ip dhcp relay information trusted-sources</pre>	
Step 5	(Optional) show running-config dhcp	Displays the DHCP configuration.
	<pre>Example: switch(config-if)# show running-config dhcp</pre>	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	<pre>Example: switch(config-if)# copy running-config startup-config</pre>	

Configuring all Interfaces as Trusted or Untrusted

You can configure all Layer 3 interfaces as DHCP relay trusted or untrusted interfaces. By default, all interfaces are untrusted. You can configure DHCP relay trust on the following types of interfaces:

- Layer 3 Ethernet interfaces and subinterfaces
- Layer 3 port-channel interfaces

When you enable the **ip dhcp relay information trust-all** command, any Layer 3 interface cannot be considered as untrusted irrespective of the interface-level configuration.

Before you begin

Make sure that the DHCP feature is enabled.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp relay information trust-all	Configures the interfaces as trusted sources of
	<pre>Example: switch(config) # ip dhcp relay information trust-all</pre>	DHCP messages. The no form of this command configures the ports as untrusted interfaces.
Step 3	(Optional) show ip dhcp relay information trusted-sources	Displays the DHCP relay trusted ports configuration.
	Example:	
	<pre>switch(config)# show ip dhcp relay information trusted-sources</pre>	
Step 4	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling the DHCP Relay Agent

You can enable or disable the DHCP relay agent. By default, the DHCP relay agent is enabled.

Before you begin

Ensure that the DHCP feature is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp relay	Enables the DHCP relay agent. The no option
	Example:	disables the DHCP relay agent.

	Command or Action	Purpose
	switch(config)# ip dhcp relay	
Step 3	(Optional) show ip dhcp relay	Displays the DHCP relay configuration.
	Example:	
	switch(config)# show ip dhcp relay	
Step 4	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example: switch(config) # show running-config dhcp	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling Option 82 for the DHCP Relay Agent

You can enable or disable the device to insert and remove Option 82 information on DHCP packets forwarded by the relay agent.

By default, the DHCP relay agent does not include Option 82 information in DHCP packets.

Before you begin

Ensure that the DHCP feature is enabled.

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# [no] ip dhcp relay information option	Enables the DHCP relay agent to insert and remove Option 82 information on the packets that it forwards. The Option 82 information is in binary ifindex format by default. The no option disables this behavior.
Step 3	(Optional) switch(config)# [no] ip dhcp relay sub-option circuit-id customized	Programs Option 82 with the VLAN + slot + port format. This command is applicable only for SVIs and is available beginning with Cisco NX-OS Release 7.0(3)I3(1). The no option disables this behavior.
Step 4	(Optional) switch(config)# [no] ip dhcp relay sub-option circuit-id format-type string	Configures Option 82 to use encoded string format instead of the default binary ifindex format. This command is available beginning

	Command or Action	Purpose
		with Cisco NX-OS Release 7.0(3)I5(2). The no option disables this behavior.
		For VLANs and SVIs:
		When this command and the ip dhcp relay sub-option circuit-id customized command are both configured, the ip dhcp relay sub-option circuit-id format-type string command is programmed.
		When the ip dhcp relay sub-option circuit-id format-type string command is removed, the ip dhcp relay sub-option circuit-id customized command is programmed.
		When both commands are removed, the ifindex is programmed.
		For other interfaces, if the ip dhcp relay sub-option circuit-id format-type string command is configured, it is used. Otherwise, the default ifindex is programmed.
Step 5	(Optional) switch(config)# show ip dhcp relay	Displays the DHCP relay configuration.
Step 6	(Optional) switch(config)# show running-config dhcp	Displays the DHCP configuration.
Step 7	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Enabling or Disabling VRF Support for the DHCP Relay Agent

You can configure the device to support the relaying of DHCP requests that arrive on an interface in one VRF to a DHCP server in a different VRF.

Before you begin

You must enable Option 82 for the DHCP relay agent.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	<pre>[no] ip dhcp relay information option vpn Example: switch(config) # ip dhcp relay information option vpn</pre>	Enables VRF support for the DHCP relay agent. The no option disables this behavior.
Step 3	<pre>[no] ip dhcp relay sub-option type cisco Example: switch(config) # ip dhcp relay sub-option type cisco</pre>	Enables DHCP to use Cisco proprietary numbers 150, 152, and 151 when filling the link selection, server ID override, and VRF name/VPN ID relay agent Option 82 suboptions. The no option causes DHCP to use RFC numbers 5, 11, and 151 for the link selection, server ID override, and VRF name/VPN ID suboptions.
Step 4	(Optional) show ip dhcp relay	Displays the DHCP relay configuration.
	<pre>Example: switch(config) # show ip dhcp relay</pre>	
Step 5	(Optional) show running-config dhcp Example: switch(config) # show running-config dhcp	Displays the DHCP configuration.
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	<pre>Example: switch(config)# copy running-config startup-config</pre>	

Configuring DHCP Server Addresses on an Interface

You can configure DHCP server IP addresses on an interface. When an inbound DHCP BOOTREQUEST packet arrives on the interface, the relay agent forwards the packet to all DHCP server IP addresses specified. The relay agent forwards replies from all DHCP servers to the host that sent the request.

Before you begin

Ensure that the DHCP feature is enabled.

Ensure that the DHCP server is correctly configured.

Determine the IP address for each DHCP server that you want to configure on the interface.

If the DHCP server is in a different VRF than the interface, ensure that you have enabled VRF support.

Note

If an ingress router ACL is configured on an interface that you are configuring with a DHCP server address, ensure that the router ACL permits DHCP traffic between DHCP servers and DHCP hosts.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	Do one of the following options: • interface ethernet slot/port[.number] • interface vlan vlan-id • interface port-channel channel-id[.subchannel-id] Example: switch (config) # interface ethernet 2/3	Enters interface configuration mode, where slot/port is the physical Ethernet interface that you want to configure with a DHCP server IP address. If you want to configure a subinterface, include the number argument to specify the subinterface number. Note Port-channel subinterfaces are
	switch(config-if)#	supported only in Cisco NX-OS Releases 6.1(2)I3(3) and 6.1(2)I3(3a). They are not supported in Cisco NX-OS Release 7.0(3)I1(1).
		• Enters interface configuration mode, where <i>vlan-id</i> is the ID of the VLAN that you want to configure with a DHCP server IP address.
		• Enters interface configuration mode, where <i>channel-id</i> is the ID of the port channel that you want to configure with a DHCP server IP address. If you want to configure a subchannel, include the <i>subchannel-id</i> argument to specify the subchannel ID.
Step 3	ip dhcp relay address IP-address [use-vrf vrf-name] Example:	Configures an IP address for a DHCP server to which the relay agent forwards BOOTREQUEST packets received on this interface.
	switch(config-if)# ip dhcp relay address 10.132.7.120 use-vrf red	To configure more than one IP address, use the ip dhcp relay address command once per address.
Step 4	(Optional) show ip dhcp relay address	Displays all the configured DHCP server
	Example:	addresses.
	<pre>switch(config-if)# show ip dhcp relay address</pre>	
Step 5	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	

	Command or Action	Purpose
	<pre>switch(config-if)# show running-config dhcp</pre>	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Configuring the DHCP Relay Source Interface

You can configure the source interface for the DHCP relay agent. By default, the DHCP relay agent uses the relay agent address as the source address of the outgoing packet. Configuring the source interface enables you to use a more stable address (such as the loopback interface address) as the source address of relayed messages.

Before you begin

Ensure that the DHCP feature is enabled.

Ensure that the DHCP relay agent is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp relay source-interface interface	Configures the source interface for the DHCP
	Example:	relay agent.
	<pre>switch(config)# ip dhcp relay source-interface loopback 2</pre>	Note The DHCP relay source interface can be configured globally, per interface, or both. When both the global and interface levels are configured, the interface-level configuration overrides the global configuration.
Step 3	(Optional) show ip dhcp relay [interface interface]	Displays the DHCP relay configuration.
	Example:	
	switch(config)# show ip dhcp relay	
Step 4	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	

	Command or Action	Purpose
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling DHCP Smart Relay Globally

You can enable or disable DHCP smart relay globally on the device.

Before you begin

Ensure that the DHCP feature is enabled.

Ensure that the DHCP relay agent is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp smart-relay global	Enables DHCP smart relay globally. The no
	<pre>Example: switch(config) # ip dhcp smart-relay global</pre>	form of this command disables DHCP smart relay.
Step 3	(Optional) show ip dhcp relay	Displays the DHCP smart relay configuration.
	<pre>Example: switch(config) # show ip dhcp relay</pre>	
Step 4	(Optional) show running-config dhcp	Displays the DHCP configuration.
	<pre>Example: switch(config) # show running-config dhcp</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	<pre>Example: switch(config) # copy running-config startup-config</pre>	

Enabling or Disabling DHCP Smart Relay on a Layer 3 Interface

You can enable or disable DHCP smart relay on Layer 3 interfaces.

Before you begin

Ensure that the DHCP feature is enabled.

Ensure that the DHCP relay agent is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface interface slot/port	Enters interface configuration mode, where
	Example:	slot/port is the interface for which you want to enable or disable DHCP smart relay.
	<pre>switch(config)# interface ethernet 2/3 switch(config-if)#</pre>	chaote of disuble Birer small relay.
Step 3	[no] ip dhcp smart-relay	Enables DHCP smart relay on the interface. The
	Example:	no form of this command disables DHCP smart relay on the interface.
	<pre>switch(config-if)# ip dhcp smart-relay</pre>	rolly on the interface.
Step 4	exit	Exits interface configuration mode.
	Example:	
	<pre>switch(config-if)# exit switch(config)#</pre>	
Step 5	exit	Exits global configuration mode.
	Example:	
	<pre>switch(config)# exit switch#</pre>	
Step 6	(Optional) show ip dhcp relay	Displays the DHCP smart relay configuration.
	Example:	
	switch# show ip dhcp relay	
Step 7	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch# show running-config dhcp	
Step 8	(Optional) copy running-config	Copies the running configuration to the startup
	startup-config	configuration.
	Example:	

Con	mmand or Action	Purpose
	tch# copy running-config artup-config	

Configuring DHCPv6

Enabling or Disabling the DHCPv6 Relay Agent

You can enable or disable the DHCPv6 relay agent. By default, the DHCPv6 relay agent is enabled.

Before you begin

Ensure that the DHCP feature is enabled.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ipv6 dhcp relay	Enables the DHCPv6 relay agent. The no option
	Example:	disables the relay agent.
	switch(config)# ipv6 dhcp relay	
Step 3	(Optional) show ipv6 dhcp relay [interface interface]	Displays the DHCPv6 relay configuration.
	Example:	
	switch(config)# show ipv6 dhcp relay	
Step 4	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Enabling or Disabling VRF Support for the DHCPv6 Relay Agent

You can configure the device to support the relaying of DHCPv6 requests that arrive on an interface in one VRF to a DHCPv6 server in a different VRF.

Before you begin

Ensure that the DHCP feature is enabled.

Ensure that the DHCPv6 relay agent is enabled.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ipv6 dhcp relay option vpn	Enables VRF support for the DHCPv6 relay
	Example:	agent. The no option disables this behavior.
	<pre>switch(config)# ipv6 dhcp relay option vpn</pre>	
Step 3	[no] ipv6 dhcp relay option type cisco	Causes the DHCPv6 relay agent to insert virtual
	Example:	subnet selection (VSS) details as part of the vendor-specific option. The no option causes
	<pre>switch(config)# ipv6 dhcp relay option type cisco</pre>	the DHCPv6 relay agent to insert VSS detail as part of the VSS option (68), which is defin in RFC-6607. This command is useful when you want to use DHCPv6 servers that do not support RFC-6607 but allocate IPv6 address based on the client VRF name.
Step 4	(Optional) show ipv6 dhcp relay [interface interface]	Displays the DHCPv6 relay configuration.
	Example:	
	switch(config)# show ipv6 dhcp relay	
Step 5	(Optional) show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring DHCPv6 Server Addresses on an Interface

You can configure DHCPv6 server IP addresses on an interface. When an inbound DHCP BOOTREQUEST packet arrives on the interface, the relay agent forwards the packet to all DHCPv6 server IP addresses specified. The relay agent forwards replies from all DHCPv6 servers to the host that sent the request.

Before you begin

Ensure that the DHCP feature is enabled.

Ensure that the DHCPv6 server is correctly configured.

Determine the IP address for each DHCPv6 server that you want to configure on the interface.

If the DHCPv6 server is in a different VRF than the interface, ensure that you have enabled VRF support.

Note

If an ingress router ACL is configured on an interface that you are configuring with a DHCPv6 server address, ensure that the router ACL permits DHCP traffic between DHCPv6 servers and DHCP hosts.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	Do one of the following options: • interface ethernet slot/port • interface port-channel channel-id Example: switch(config) # interface ethernet 2/3 switch(config-if) #	 Enters interface configuration mode, where slot/port is the physical Ethernet interface that you want to configure with a DHCPv6 server IP address. Enters interface configuration mode, where channel-id is the ID of the port channel that you want to configure with a DHCPv6 server IP address.
Step 3	<pre>[no] ipv6 dhcp relay address IPv6-address [use-vrf vrf-name] [interface interface] Example: switch(config-if) # ipv6 dhcp relay address FF02:1::FF0E:8C6C use-vrf red</pre>	Configures an IP address for a DHCPv6 server to which the relay agent forwards BOOTREQUEST packets received on this interface. Use the use-vrf option to specify the VRF name of the server if it is in a different VRF and the other argument interface is used to specify the output interface for the destination. The server address can either be a link-scoped unicast or multicast address or a global or site-local unicast or multicast address. The interface option is mandatory for a link-scoped server address and multicast address. It is not allowed for a global or site-scoped server address. To configure more than one IP address, use the ipv6 dhcp relay address command once per address.

	Command or Action	Purpose
Step 4	(Optional) show running-config dhcp	Displays the DHCPv6 configuration.
	Example:	
	<pre>switch(config-if)# show running-config dhcp</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Configuring the DHCPv6 Relay Source Interface

You can configure the source interface for the DHCPv6 relay agent. By default, the DHCPv6 relay agent uses the relay agent address as the source address of the outgoing packet. Configuring the source interface enables you to use a more stable address (such as the loopback interface address) as the source address of relayed messages.

Before you begin

Ensure that the DHCP feature is enabled.

Ensure that the DHCPv6 relay agent is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ipv6 dhcp relay source-interface interface	Configures the source interface for the DHCPv6 relay agent.
	<pre>Example: switch(config) # ipv6 dhcp relay source-interface loopback 2</pre>	Note The DHCPv6 relay source interface can be configured globally, per interface, or both. When both the global and interface levels are configured, the interface-level configuration overrides the global configuration.
Step 3	(Optional) show ipv6 dhcp relay [interface interface]	Displays the DHCPv6 relay configuration.
	Example:	
	switch(config)# show ipv6 dhcp relay	

	Command or Action	Purpose
Step 4	(Optional) show running-config dhcp show running-config dhcp	Displays the DHCP configuration.
	Example:	
	switch(config)# show running-config dhcp	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring IPv6 RA Guard

Beginning with Cisco NX-OS Release 7.0(3)I5(2), you can configure the IPv6 router advertisement (RA) guard feature for Cisco Nexus 9200, 9300, and 9300-EX Series switches and the N9K-X9732C-EX line card. This feature is used to drop all incoming IPv6 RA packets on a Layer 2 interface.

Before you begin

You must enable DHCP (using the feature dhcp command).

To enable DHCP relay on any interface, you must disable DHCP on interfaces that have an IPv4 or IPv6 address assigned using DHCP (dynamic IP addressing).

Make sure that both PTP (**feature ptp**) and NV overlay (**feature nv overlay**) are not already configured. A dynamic ifacl label is reserved when these features are configured. However, only two dynamic ifacl label bits are available. If both of these features are already configured, a dynamic ifacl label will not be available for IPv6 RA guard, and the feature cannot be enabled.

	Command or Action	Purpose			
Step 1	configure terminal	Enters global configuration mode.			
	Example:				
	<pre>switch# configure terminal switch(config)#</pre>				
Step 2	interface interface slot/port	Enters interface configuration mode.			
	Example:				
	<pre>switch(config)# interface ethernet 2/2 switch(config-if)#</pre>				
Step 3	[no] ipv6 nd raguard	Enables the IPv6 RA guard feature on the			
	Example:	specified interface.			
	switch(config-if)# ipv6 nd raguard				

	Command or Action	Purpose			
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.			
	Example:				
	<pre>switch(config-if)# copy running-config startup-config</pre>				

Enabling DHCP Client

You can use the DHCP client feature to enable the configuration of an IPv4 or IPv6 address on an interface. Interfaces can include routed ports, the management port, and switch virtual interfaces (SVIs). Layer 3 subinterfaces are not supported.

Note

DHCP client is independent of the DHCP relay and DHCP snooping processes, so it does not require that the **feature dhcp** command be enabled.

	Command or Action	Purpose			
Step 1	configure terminal	Enters global configuration mode.			
	<pre>Example: switch# configure terminal switch(config)#</pre>				
Step 2	Do one of the following options: • interface ethernet slot/port • interface mgmt 0 • interface vlan vlan-id Example: switch (config) # interface vlan 3 switch (config-if) #	 Enters interface configuration mode, where slot/port is the physical Ethernet interface for which you want to enable the DHCP client feature. Enters interface configuration mode and specifies the management interface as the interface for which you want to enable the DHCP client feature. Enters interface configuration mode, where vlan-id is the ID of the VLAN for which you want to enable the DHCP client feature. 			
Step 3	<pre>ipv6 address use-link-local-only Example: switch(config-if) # ipv6 address use-link-local-only</pre>	You must enter this command before assigning an IPv6 address to the interface in the next step. This command is not required if you will assign an IPv4 address to the interface.			
Step 4	[no] {ip ipv6} address dhcp	Assigns an IPv4 or IPv6 address to the interface.			

	Command or Action	Purpose
	<pre>Example: switch(config-if)# ip address dhcp</pre>	The no form of this command releases the IP address.
Step 5	(Optional) Do one of the following options: • show running-config interface ethernet slot/port • show running-config interface mgmt 0 • show running-config interface vlan vlan-id Example: switch (config-if) # show running-config interface vlan 3	Displays the IPv4 or IPv6 address assigned to the interface in the running configuration.
Step 6	(Optional) copy running-config startup-config Example: switch(config-if) # copy running-config startup-config	Copies the running configuration to the startup configuration. Only the {ip ipv6} address dhcp command is saved. The assigned IP address is not saved even though it shows in the running configuration.

Verifying the DHCP Configuration

To display DHCP configuration information, perform one of the following tasks:

Command	Purpose
show ip dhcp relay	Displays the DHCP relay configuration.
show ipv6 dhcp relay [interface interface]	Displays the DHCPv6 relay global or interface-level configuration.
show ip dhcp relay address	Displays all the DHCP server addresses configured on the device.
show ip dhcp snooping	Displays general information about DHCP snooping.
show running-config dhep [all]	Displays the DHCP configuration in the running configuration.
	Note The show running-config dhcp command displays the ip dhcp relay and the ipv6 dhcp relay commands, although these are configured by default.

Command	Purpose
	Displays the IPv4 or IPv6 address assigned to the interface when DHCP client is enabled.
show startup-config dhcp [all]	Displays the DHCP configuration in the startup configuration.

Displaying IPv6 RA Guard Statistics

To display IPv6 RA guard statistics, perform one of the following tasks:

Command	Purpose		
show ipv6 raguard statistics	Displays IPv6-related RA guard statistics.		

The following example shows sample statistics:

switch# show	ipv6 raguar	d statistics
Interface	Rx	Drops
Ethernet1/53	4561102	4561102

Displaying DHCP Snooping Bindings

Use the **show ip dhcp snooping binding** [*ip-address* | *mac-address* | **dynamic** | **static** | **vlan** *vlan-id* | **interface** *interface-type interface-number*] command to display all entries from the DHCP snooping binding database.

MacAddress	IpAddress	LeaseSec	Type	VLAN	Interface
Of:00:60:b3:23:33	10.3.2.2	infinite	static	13	Ethernet2/46
0f:00:60:b3:23:35	10.2.2.2	infinite	static	100	Ethernet2/10

Clearing the DHCP Snooping Binding Database

Use the **clear ip dhcp snooping binding** command to clear all entries from the DHCP snooping binding database.

Use the **clear ip dhcp snooping binding interface ethernet** *slot/port* command to clear entries associated with a specific Ethernet interface from the DHCP snooping binding database.

Use the **clear ip dhcp snooping binding interface port-channel** *channel-number* command to clear entries associated with a specific port-channel interface from the DHCP snooping binding database.

Use the **clear ip dhcp snooping binding vlan** *vlan-id* [**mac** *mac-address* **ip** *ip-address* **interface** {**ethernet** *slot /port* | **port-channel** *channel-number*}] command to clear a single specific VLAN entry from the DHCP snooping binding database.

Monitoring DHCP

Use the **show ip dhcp snooping statistics** command to monitor DHCP snooping.

Use the **show ip dhcp relay statistics** [**interface** interface] command to monitor DHCP relay statistics at the global or interface level.

Use the **show ipv6 dhcp relay statistics** [**interface** *interface*] command to monitor DHCPv6 relay statistics at the global or interface level.

Clearing DHCP Snooping Statistics

Use the **clear ip dhcp snooping statistics** [vlan vlan-id] command to clear the DHCP snooping statistics.

Clearing DHCP Relay Statistics

Use the **clear ip dhcp relay statistics** command to clear the global DHCP relay statistics.

Use the **clear ip dhcp relay statistics interface** interface command to clear the DHCP relay statistics for a particular interface.

Use the clear ip dhcp global statistics command to clear the DHCP statistics globally.

Clearing DHCPv6 Relay Statistics

Use the **clear ipv6 dhcp relay statistics** command to clear the global DHCPv6 relay statistics.

Use the **clear ipv6 dhcp relay statistics interface** *interface* command to clear the DHCPv6 relay statistics for a particular interface.

Configuration Examples for DHCP

This example shows how to enable DHCP snooping on two VLANs, with Option 82 support enabled and Ethernet interface 2/5 trusted because the DHCP server is connected to that interface:

```
ip dhcp snooping
ip dhcp snooping information option

interface ethernet 2/5
  ip dhcp snooping trust
ip dhcp snooping vlan 1
ip dhcp snooping vlan 50
```

This example shows how to enable the DHCP relay agent and configure the DHCP server IP address for Ethernet interface 2/3, where the DHCP server IP address is 10.132.7.120 and the DHCP server is in the VRF instance named red:

```
feature dhcp
ip dhcp relay
ip dhcp relay information option
ip dhcp relay information option vpn
interface ethernet 2/3
  ip dhcp relay address 10.132.7.120 use-vrf red
```

This example shows how to enable and use the DHCP smart relay agent. In this example, the device forwards the DHCP broadcast packets received on Ethernet interface 2/2 to the DHCP server (10.55.11.3), inserting 192.168.100.1 in the giaddr field. If the DHCP server has a pool configured for the 192.168.100.0/24 network, it responds. If the server does not respond, the device sends two more requests using 192.168.100.1 in the giaddr field. If the device still does not receive a response, it starts using 172.16.31.254 in the giaddr field instead.

```
feature dhcp
ip dhcp relay
ip dhcp smart-relay global
interface ethernet 2/2
  ip address 192.168.100.1/24
  ip address 172.16.31.254/24 secondary
  ip dhcp relay address 10.55.11.3
```

Configuration Examples for DHCP Client

The following example shows how the DHCP client feature can be used to assign an IPv4 address to a VLAN interface:

```
switch# configure terminal
switch(config)# interface vlan 7
switch(config-if)# no shutdown
switch(config-if)# ip address dhcp
switch(config-if)# show running-config interface vlan 7
interface Vlan7
no shutdown
ip address dhcp
```

Additional References for DHCP

Related Documents

Related Topic	Document Title
Dynamic ARP inspection (DAI)	Cisco Nexus 9000 Series NX-OS Security Configuration Guide
IP Source Guard	Cisco Nexus 9000 Series NX-OS Security Configuration Guide
vPCs	Cisco Nexus 9000 Series NX-OS Interfaces Configuration Guide

Related Topic	Document Title
VRFs and Layer 3 virtualization	Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide

Standards

Standards	Title
RFC 2131	Dynamic Host Configuration Protocol (https://datatracker.ietf.org/doc/html/rfc2131)
RFC 3046	DHCP Relay Agent Information Option (https://datatracker.ietf.org/doc/html/rfc3046)
RFC 6607	Virtual Subnet Selection Options for DHCPv4 and DHCPv6 (https://datatracker.ietf.org/doc/html/rfc6607)

Additional References for DHCP

Configuring IPv6 First Hop Security

This chapter describes how to configure First Hop Security (FHS) features on Cisco NX-OS devices.

This chapter includes the following sections:

- About First-Hop Security, on page 339
- About vPC First-Hop Security Configuration, on page 341
- RA Guard, on page 344
- DHCPv6 Guard, on page 346
- IPv6 Snooping, on page 346
- How to Configure IPv6 FHS, on page 347
- Configuration Examples, on page 355
- Additional References for IPv6 First-Hop Security, on page 356

About First-Hop Security

The Layer 2 and Layer 3 switches operate in the Layer 2 domains with technologies such as server virtualization, Overlay Transport Virtualization (OTV), and Layer 2 mobility. These devices are sometimes referred to as "first hops", specifically when they are facing end nodes. The First-Hop Security feature provides end node protection and optimizes link operations on IPv6 or dual-stack networks.

First-Hop Security (FHS) is a set of features to optimize IPv6 link operation, and help with scale in large L2 domains. These features provide protection from a wide host of rogue or mis-configured users. You can use extended FHS features for different deployment scenarios, or attack vectors.

The following FHS features are supported:

- IPv6 RA Guard
- DHCPv6 Guard
- IPv6 Snooping

Note

See Guidelines and Limitations of First-Hop Security, on page 340 for information about enabling this feature.

Note

Use the **feature dhcp** command to enable the FHS features on a switch.

IPv6 Global Policies

IPv6 global policies provide storage and access policy database services. IPv6 snooping, DHCPv6 guard, and IPv6 RA guard are IPv6 global policies features. Each time IPv6 snooping, DHCPv6 guard, or RA guard is configured globally, the policy attributes are stored in the software policy database. The policy is then applied to an interface, and the software policy database entry is updated to include this interface to which the policy is applied.

Use the **hardware access-list tcam region ing-redirect tcam_size** command, to configure FHS. You can resize the **ing-racl** region to allocate space to the **ing-redirect** region.

- Cisco Nexus 9200, 9300-EX, and 9300-FX/FX2 platform switches, FHS packets take the copp-s-dhcpreq queue for software processing.
- Cisco Nexus 9300, 9500 platform switches, N9K-X9432C-S line card use the class default.

Note

When you upgrade the Cisco Nexus Series switch to Cisco NX-OS Release 7.0(3)I7(1) using the In-Service Software Upgrades (ISSU), you must reload the Cisco NX-OS box before configuring the port level FHS policies.

IPv6 First-Hop Security Binding Table

A database table of IPv6 neighbors connected to the device is created from information sources such as IPv6 snooping. This database, or binding table is used by various IPv6 guard features to validate the link-layer address (LLA), the IPv6 address, and prefix binding of the neighbors to prevent spoofing and redirect attacks.

Guidelines and Limitations of First-Hop Security

The general guidelines and limitations of First-Hop Security are as follows:

- Before enabling the FHS on the interface or VLAN, we recommend carving TCAM regions on Cisco Nexus 9300 and 9500 Series switches. To enable FHS successfully:
 - On an interface, you must carve the **ifacl** TCAM region.

Note

When you upgrade the Cisco Nexus Series switch to Cisco NX-OS Release 7.0(3)I7(1) using the In-Service Software Upgrades (ISSU), you must reload the system after upgrading to Cisco Nexus 7.0(3)I7(1). If you carved the **ifacl** TCAM region in a previous release, then uploading the system creates the required match qualifiers for the FHS TCAM region, **ifacl**.

• On a VLAN, you must carve the necessary redirect TCAM region.

- On a FEX interface, you must carve the **fex-ipv6-ifacl** TCAM region.
- Before enabling the FHS, we recommend carving the **ing-redirect** TCAM region on Cisco Nexus 9200 and 9300-EX Series switches.

Note

When you upgrade the Cisco Nexus Series switch to Cisco NX-OS Release 7.0(3)I7(1) using the In-Service Software Upgrades (ISSU), you must reload the system after upgrading to Cisco Nexus 7.0(3)I7(1). This reloads the **ing-redirect** TCAM region you configured in a previous release and creates the required match qualifiers for the FHS TCAM region, **ing-redirect**.

About vPC First-Hop Security Configuration

You can deploy IPv6 First-Hop Security vPC in many ways. We recommend the following best practice deployment scenarios:

- · DHCP relay on-stack
- DHCP relay on vPC leg
- DHCP client and relay on orphan ports

DHCP Relay On-stack

In this deployment scenario, you can directly connect clients behind the vPC link, or behind an intermediary switch with DHCP relay running on the Nexus switch. Connecting clients behind an intermediary switch with DHCP relay running on the Nexus switch, is ideal because you can configure the IPv6 Snooping feature on the vPC interface links directly, instead of at a VLAN level. Configuration at the interface level is efficient for the following reasons:

- Control traffic (DHCP/ND) will not be redirected to CPU for processing on both vPC peers if it goes over the peer link.
- Packets switched over the peer link aren't processed a second time.

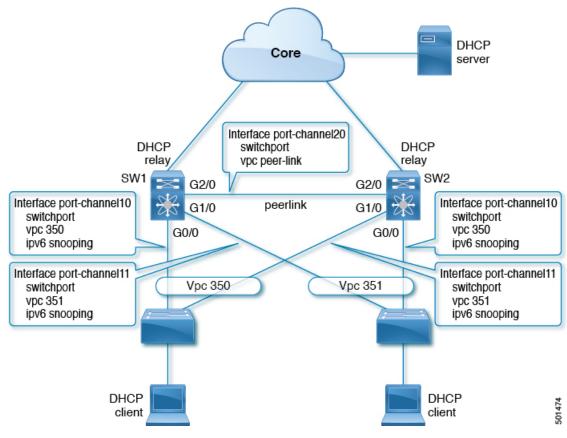


Figure 12: FHS Configuration with DHCP relay on-stack

In the figure, snooping policy is enabled on both vPC links. In this scenario, the two vPC peers learn all the host IP/MAC bindings behind the vPC links and sync these up between themselves. The two vPC peers learn the bindings using both IPv6 ND and IPv6 DHCP control protocols.

DHCP Relay on VPC Leg

In this configuration, the relay agent does not run on the vPC peers. Instead, the DHCP relay agent (or a DHCP server) is runs behind a vPC link (it can be towards the access, or even somewhere in the core). In such a deployment scenario, the IPv6 Snooping feature doesn't implicitly trust the DHCP Server messages and drops DHCP Server messages by default. You can customize the IPv6 policy to implement:

- Security-level glean.
- IPv6 DHCP Guard policy with device-role server. In this configuration, IPv6 Snooping trusts DHCP server messages attached to the vPC link.

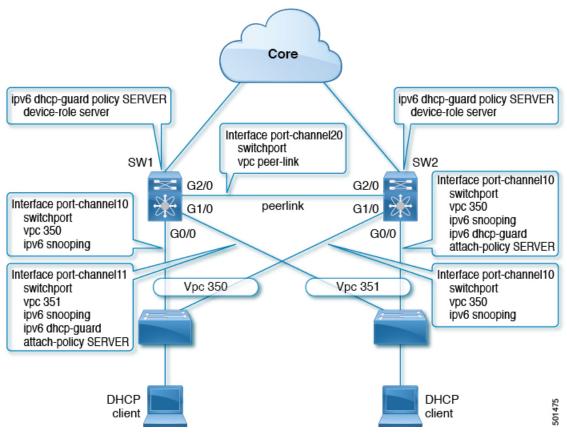


Figure 13: FHS Configuration with external DHCP relay

In the figure, the clients are located behind the vPC links with the default IPv6 snooping policy. You can attach both ipv6 snooping and ipv6 dhcp-guard attach-policy SERVER policies to the links where DHCP server traffic arrives. You will need both the server or relay facing and client facing IPv6 snooping policies to create the client binding entries via DHCP control traffic. This is because IPv6 Snooping needs to see both the client and server packets to create the binding. You must also configure the IPv6 DHCP Guard policy to allow DHCP server traffic by the IPv6 Snooping policy. Both peers require the same configuration because the vPC peers synch all newly learnt client entries learnt on the vPC port.

DHCP Client Relay on Orphan Ports

In this configuration, you can connect the client via an orphan port. The IPv6 Snooping feature only syncs client bindings on vPC ports, but not on orphan ports as these are not directly connected to both vPC peers. In such a configuration, the IPv6 Snooping feature runs independently on both switches. The figure illustrates the following:

• On the first switch, you must attach the IPv6 Snooping policy on the client facing interface. However, to accommodate DHCP server packets coming from the server on an orphan port behind the vPC peer, you must attach the policy at the VLAN level. In such a case, the policy applied at the VLAN inspects both the client traffic interface and DHCP server traffic. You do not require an individual IPv6 snooping policy per interface. Any DHCP traffic arriving via the vPC peer is also implicitly trusted and if policing is required, the vPC peer automatically drops it.

• You must also configure IPv6 on the second switch at the VLAN level. You must also configure the IPv6 DHCP Guard policy with a "device-role server" on the server facing orphan port. This prevents the IPv6 Snooping feature from dropping the DHCP server packets. Both switches learn the client binding entries individually and will not sync them, because the client is not on a vPC link.

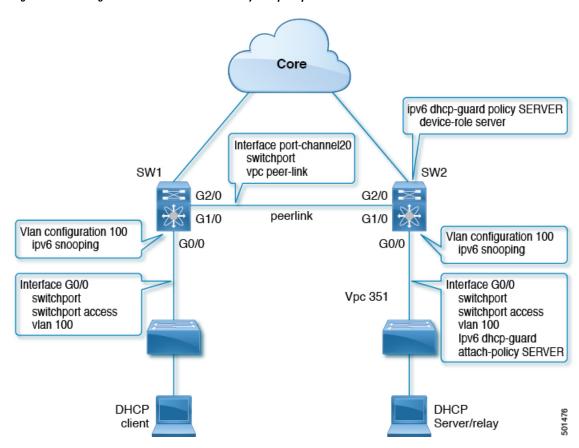


Figure 14: FHS configuration with client and DHCP relay on orphan port

RA Guard

Overview of IPv6 RA Guard

The IPv6 RA Guard feature provides support for allowing the network administrator to block or reject unwanted or rogue RA guard messages that arrive at the network device platform. RAs are used by devices to announce themselves on the link. The IPv6 RA Guard feature analyzes these RAs and filters out RAs that are sent by unauthorized devices. In host mode, all RA and router redirect messages are disallowed on the port. The RA guard feature compares configuration information on the Layer 2 (L2) device with the information found in the received RA frame. Once the L2 device has validated the content of the RA frame and router redirect frame against the configuration, it forwards the RA to its unicast or multicast destination. If the RA frame content is not validated, the RA is dropped.

IPv6 RA Router Advertisement and the Flags

The Router Advertisement suggests to devices how to create or obtain a global unicast address and other addressing information for communicating on the link. The RA message uses four flags to tell devices how this is to be done:

- 1. Address Autoconfiguration flag (A flag): The A flag is enabled by default. This flag tells to hosts on the local link that the specified prefix can be used for IPv6 autoconfiguration.
- 2. Other Configuration flag (O flag): The O flag is disabled by default. This flag tells the host to get addressing information other than its global unicast address from a stateless DHCPv6 server. This information may include DNS server addresses and a domain name.
- **3.** Managed Address Configuration flag (M flag): The M flag is disabled by default. This flag tells a host to use a stateful DHCPv6 server for its global unicast address and all other addressing information. When stateful DHCPv6 is required, use the **ipv6 managed-config-flag** command to enable the M Flag.

Note

When the M flag is enabled, the A flag should usually be disabled. Manually enabling the M flag does not automatically disable the A flag. To disable the A flag, use the **ipv6 nd prefix** *ipv6-prefix/prefix-length* **no-autoconfig** command.

4. On-Link flag (L flag): The L flag is also enabled by default. The L flag identifies that a specific prefix is on this link or subnet. IPv6 does not perform the Logical AND hashing to determine whether a destination IP address is local to the link as IPv4 does. If the L flag is disabled, every packet is sent to the default gateway. The A flag and the L flag are advertised via ICMPv6 Router Advertisement (RA) by default.

Guidelines and Limitations of IPv6 RA Guard

The guidelines and limitations of IPv6 RA Guard are as follows:

- The IPv6 RA Guard feature does not offer protection in environments where IPv6 traffic is tunneled.
- Beginning with Cisco NX-OS Release 10.1(1), IPV6 RA guard is supported on Cisco Nexus 9300-GX platform switches.
- This feature is supported only in hardware when the ternary content addressable memory (TCAM) is programmed.
- This feature can be configured on a switch port interface in the ingress direction.
- This feature supports host mode and router mode.
- This feature is supported only in the ingress direction; it is not supported in the egress direction.
- This feature is supported on auxiliary VLANs and private VLANs (PVLANs). In the case of PVLANs, primary VLAN features are inherited and merged with port features.
- Packets dropped by the IPv6 RA Guard feature can be spanned.

DHCPv6 Guard

Overview of DHCP—DHCPv6 Guard

The DHCPv6 Guard feature blocks DHCP reply and advertisement messages that originate from unauthorized DHCP servers and relay agents that forward DHCP packets from servers to clients. Client messages or messages sent by relay agents from clients to servers are not blocked. The filtering decision is determined by the device role assigned to the receiving switch port, trunk, or VLAN. This functionality helps to prevent traffic redirection or denial of service (DoS).

Packets are classified into one of the three DHCP type messages. All client messages are always switched regardless of device role. DHCP server messages are only processed further if the device role is set to server. Further processing of DHCP server advertisements occurs for server preference checking.

If the device is configured as a DHCP server, all the messages need to be switched, regardless of the device role configuration.

Limitation of DHCPv6 Guard

The guidelines and limitations of DHCPv6 Guard are as follows:

• If a packet arriving from DHCP server is a Relay Forward or a Relay Reply, only the device role is checked. In addition, IPv6 DHCP Guard doesn't apply the policy for a packet sent out by the local relay agent running on the switch.

IPv6 Snooping

Overview of IPv6 Snooping

IPv6 "snooping," feature bundles several Layer 2 IPv6 first-hop security features, which operates at Layer 2, or between Layer 2 and Layer 3, and provides IPv6 features with security and scalability. This feature mitigates some of the inherent vulnerabilities for the neighbor discovery mechanism, such as attacks on duplicate address detection (DAD), address resolution, device discovery, and the neighbor cache.

IPv6 snooping learns and secures bindings for stateless autoconfiguration addresses in Layer 2 neighbor tables and analyzes snooping messages in order to build a trusted binding table. IPv6 snooping messages that do not have valid bindings are dropped. An IPv6 snooping message is considered trustworthy if its IPv6-to-MAC mapping is verifiable.

When IPv6 snooping is configured on a target (which varies depending on platform target support and may include device ports, switch ports, Layer 2 interfaces, Layer 3 interfaces, and VLANs), capture instructions are downloaded to the hardware to redirect the snooping protocol and Dynamic Host Configuration Protocol (DHCP) for IPv6 traffic up to the switch integrated security features (SISF) infrastructure in the routing device. For snooping traffic, Neighbor Discovery Protocol (NDP) messages are directed to SISF. For DHCPv6, UDP messages sourced from dhcvp6_client and dhcvp_server ports are redirected.

IPv6 snooping registers its "capture rules" to the classifier, which aggregates all rules from all features on a given target and installs the corresponding ACL down into the platform-dependent modules. Upon receiving

redirected traffic, the classifier calls all entry points from any registered feature (for the target on which the traffic is being received), including the IPv6 snooping entry point. This entry point is the last to be called, so any decision (such as drop) made by another feature supersedes the IPv6 snooping decision.

IPv6 snooping provides IPv6 host liveness tracking so that a neighbor table can be immediately updated when an IPv6 host disappears.

Additionally, IPv6 snooping is the foundation for many other IPv6 features that depend on an accurate binding table. It inspects snooping and DHCP messages on a link to glean addresses, and then populates the binding table with these addresses. This feature also enforces address ownership and limits the number of addresses any given node is allowed to claim.

Guidelines and Limitations for IPv6 Snooping

The guidelines and limitations of IPv6 Snooping are as follows:

- You must perform the same configurations on both the vPC peers. Cisco NX-OS Release 7.0(3)I7(1) does not support automatic consistency checker for IPv6 snooping.
- The IPv6 Snooping feature is supported only in hardware when the ternary content addressable memory (TCAM) is programed.
- This feature can be configured on a switch port interface or VLAN only on the ingress port.
- For IPv6 Snooping to learn DHCP bindings, it must see both server and client replies. A IPv6 snooping policy must be attached to both the client facing the interface (or VLAN) as well as the DHCP server facing interface (or VLAN). In the case of DHCP Relay, an IPv6 Snooping policy must be attached at the VLAN level to see the server replies.

How to Configure IPv6 FHS

Configuring the IPv6 RA Guard Policy on the Device

Note

When the **ipv6 nd raguard** command is configured on ports, router solicitation messages are not replicated to these ports. To replicate router solicitation messages, all ports that face routers must be set to the router role.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

	Command or Action	Purpose
Step 2	ipv6 nd raguard policy policy-name Example:	Defines the RA guard policy name and enters RA guard policy configuration mode.
	Device(config)# ipv6 nd raguard policy policy1	
Step 3	device-role {host router monitor switch}	Specifies the role of the device attached to the port.
	Example: Device(config-raguard-policy)# device-role router	• device-role host—Interface or VLAN where you connect a regular node or host. This where you apply the IPV6 RA Guard policy. The device-role host allows incoming RS packets, and blocks incoming RA or RR packets. RS packets that are received on another interface, are not redirected to the device-role host. Only RA and RR packets (that are allowed) are redirected to the device-role host.
		 device-role switch—The device-role switch behaves similar to the device-role host. For example, you can use it as a label for a trunk port. device-role monitor—This device monitors network traffic. It behaves similar to the device-role host, except that RS packets are also sent to this interface. This helps capture traffic. device-role router—Interface that connects to the router. This interface allows incoming RS, RA, or RR packets.
Step 4	hop-limit {maximum minimum limit} Example: Device (config-raguard-policy) # hop-limit minimum 3	(Optional) Enables verification of the advertised hop count limit. • If not configured, this check will be bypassed.
Step 5	<pre>managed-config-flag {on off} Example: Device (config-raguard-policy) # managed-config-flag on</pre>	(Optional) Enables verification that the advertised managed address configuration flag is on. Note When enabling the M flag, it is recommended to disable the A flag. • If not configured, this check will be bypassed.

	Command or Action	Purpose
Step 6	other-config-flag {on off}	(Optional) Enables verification of the advertised
	Example:	"other" configuration parameter.
	Device(config-raguard-policy)# other-config-flag on	
Step 7	router-preference maximum {high low medium}	(Optional) Enables verification that the advertised default router preference parameter
	Example:	value is lower than or equal to a specified limit.
	Device(config-raguard-policy)# router-preference maximum high	
Step 8	trusted-port	(Optional) Specifies that this policy is being
	Example:	applied to trusted ports.
Device (config-raguard-polic trusted-port	<pre>Device(config-raguard-policy)# trusted-port</pre>	All RA guard policing will be disabled.
Step 9	exit	Exits RA guard policy configuration mode and returns to global configuration mode.
	Example:	
	Device(config-raguard-policy)# exit	

Configuring IPv6 RA Guard on an Interface

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 2	interface type number	Specifies an interface type and number, and
	Example:	places the device in interface or VLAN configuration mode.
	Device(config)# interface ethernet 1/1	
	Example:	
	Device(config)# vlan configuration 10	
Step 3	ipv6 nd raguard attach-policy [policy-name]	Applies the IPv6 RA Guard feature to a
	Example: specifi	specified interface.
	Device(config-if)# ipv6 nd raguard attach-policy	

	Command or Action	Purpose
Step 4	exit	Exits interface configuration mode.
	Example:	
	Device(config-if)# exit	
Step 5	show ipv6 nd raguard policy [policy-name]	Displays the RA guard policy on all interfaces
	Example:	configured with the RA guard.
	<pre>switch# show ipv6 nd raguard policy host Policy host configuration: device-role host</pre>	
	Policy applied on the following interfaces:	
	Et0/0 vlan all Et1/0 vlan all	
Step 6	debug ipv6 snooping raguard [filter interface vlanid]	Enables debugging for IPv6 RA guard snooping information.
	Example:	
	Device# debug ipv6 snooping raguard	

Configuring DHCP—DHCPv6 Guard

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 2	ipv6 dhcp guard policy policy-name	Defines the DHCPv6 guard policy name and
	Example:	enters DHCP guard configuration mode.
	Device(config)# ipv6 dhcp guard policy pol1	
Step 3	device-role {client server}	Specifies the device role of the device attached
	Example:	to the target (interface or VLAN).
	Device(config-dhcpg-policy)# device-role server	device-role client—Interface where a normal DHCPv6 client is connected. It blocks any incoming server packets.
		device-role server—Interface where a normal DHCPv6 server is connected. It

	Command or Action	Purpose
		allows all DHCPv6 packets originating on this interface.
Step 4	<pre>preference min limit Example: Device(config-dhcpg-policy) # preference min 0</pre>	(Optional) Enables verification that the advertised preference (in preference option) is greater than the specified limit. If not specified, this check will be bypassed.
Step 5	preference max limit Example: Device(config-dhcpg-policy) # preference max 255	(Optional) Enables verification that the advertised preference (in preference option) is less than the specified limit. If not specified, this check will be bypassed.
Step 6	<pre>trusted-port Example: Device(config-dhcpg-policy)# trusted-port</pre>	(Optional) Specifies that this policy is being applied to trusted ports. All DHCP guard policing will be disabled.
Step 7	<pre>exit Example: Device(config-dhcpg-policy)# exit</pre>	Exits DHCP guard configuration mode and returns to global configuration mode.
Step 8	<pre>interface type number Example: Device(config) # interface GigabitEthernet 0/2/0</pre>	Specifies an interface and enters interface configuration mode.
Step 9	<pre>switchport Example: Device(config-if)# switchport</pre>	Puts an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.
Step 10	<pre>ipv6 dhcp guard [attach-policy policy-name] Example: Device(config-if) # ipv6 dhcp guard attach-policy pol1</pre>	Attaches a DHCPv6 guard policy to an interface.
Step 11	<pre>exit Example: Device(config-if)# exit</pre>	Exits interface configuration mode and returns to global configuration mode.

	Command or Action	Purpose
Step 12	<pre>vlan configuration vlan-id Example: Device (config) # vlan configuration 1</pre>	Specifies a VLAN and enters VLAN configuration mode.
Step 13	<pre>ipv6 dhcp guard [attach-policy policy-name] Example: Device (config-vlan-config) # ipv6 dhcp</pre>	Attaches a DHCPv6 guard policy to a VLAN.
Step 14	exit Example: Device (config-vlan-config) # exit	Exits VLAN configuration mode and returns to global configuration mode.
Step 15	<pre>exit Example: Device(config)# exit</pre>	Exits global configuration mode and returns to privileged EXEC mode.
Step 16	<pre>show ipv6 dhcp guard policy [policy-name] Example: Device# show ipv6 dhcp policy guard pol1</pre>	as well as all the interfaces where the policy is applied.

Configuring IPv6 Snooping

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 2	ipv6 snooping policy policy-name	Configures an IPv6 snooping policy and enters
	Example:	IPv6 snooping configuration mode.
	Device(config)# ipv6 snooping policy policy1	
Step 3	device-role { node switch }	Specifies the role of the device attached to the
	Example:	target (interface or VLAN):
	Device(config-snoop-policy)# device-node switch	 node—is the default. Bindings are created and entries are probed.

	Command or Action	Purpose
		switch—Entries are not probed and when a trusted port is enabled, bindings are not created.
Step 4	<pre>[no] limit address-count Example: Device (config-snoop-policy) # limit</pre>	Limits the number of binding entries, a no limit address-count means no limit.
	address-count 500	
Step 5	<pre>[no] protocol dhcp ndp Example: Device (config-snoop-policy) # protocol dhcp</pre>	Turns on or switches off either DHCP or NDP gleaning.
	Device(config-snoop-policy)# protocol ndp	
Step 6	<pre>trusted-port Example: Device (config-snoop-policy) # trusted-port</pre>	Specifies that the policy be applied to a trusted port. If an entry is a trusted-port, none of it's traffic will be blocked or dropped.
Step 7	<pre>security-level glean guard inspect Example: Device(config-snoop-policy) # security-level guard</pre>	Specifies the type of security applied to the policy: glean, guard, or inspect. Here is what each security level means: • glean—learns bindings but does not drop packets. • inspect—learns bindings and drops packets in case it detects an issue, such as address theft. • guard—works like inspect, but in addition drops IPv6, ND, RA, and IPv6 DHCP Server packets in case of a threat.
Step 8	<pre>tracking Example: Device(config-snoop-policy)# tracking enable</pre>	Enables tracking.
Step 9	<pre>exit Example: Device(config-snoop-policy)# exit</pre>	Exits snooping configuration mode and returns to global configuration mode.
Step 10	interface type-number Example:	Specifies an interface and enters interface configuration mode.

	Command or Action	Purpose	
	Device(config-if)# interface ethernet 1/25		
Step 11	[no] switchport	Switches between Layer 2 and Layer 3 mode.	
	Example:		
	Device(config-if)# switchport		
Step 12	ipv6 snooping attach-policy policy-name	Attaches the IPv6 snooping policy to an	
	Example:	interface.	
	Device(config-if)# ipv6 snooping attach-policy policy1		
Step 13	exit	Exits interface configuration mode and returns	
	Example:	to global configuration mode.	
	Device(config-if)# exit		
Step 14	vlan configuration vlan-id	Specifies a VLAN and enters VLAN	
	Example:	configuration mode.	
	Device(config)# vlan configuration 333		
Step 15	ipv6 snooping attach-policy policy-name	Attaches the IPv6 snooping policy to a VLAN.	
	Example:		
	Device(config-vlan-config)# ipv6 snooping attach-policy policy1		
Step 16	exit	Exits VLAN configuration mode and returns	
	Example:	to global configuration mode.	
	Device(config-vlan-config)# exit		
Step 17	exit	Exits global configuration mode and returns	
	Example:	to privileged EXEC mode.	
	Device(config)# exit		
Step 18	show ipv6 snooping policy policy-name	Displays the policy configuration and the	
	Example:	interfaces where the policy is applied.	
	Device(config)# show ipv6 snooping policy policy1		

Verifying and Troubleshooting IPv6 Snooping

	Command or Action	Purpose
Step 1	show ipv6 snooping capture-policy [interface type number]	Displays snooping message capture policies.

	Command or Action	Purpose
	Example:	
	Device# show ipv6 snooping capture-policy interface ethernet 0/0	
Step 2	show ipv6 snooping counter [interface type number]	Displays information about the packets counted by the interface counter.
	Example:	
	Device# show ipv6 snooping counter interface FastEthernet 4/12	
Step 3	show ipv6 snooping features Example:	Displays information about snooping features configured on the device.
	Device# show ipv6 snooping features	
Step 4	show ipv6 snooping policies [interface type number]	Displays information about the configured policies and the interfaces to which they are
	Example:	attached.
	Device# show ipv6 snooping policies	
Step 5	debug ipv6 snooping	Enables debugging for snooping information in
	Example:	IPv6.
	Device# debug ipv6 snooping	

Configuration Examples

Example: IPv6 RA Guard Configuration

```
Device(config)# interface ethernet 1/1

Device(config-if)# ipv6 nd raguard attach-policy

Device# show running-config interface ethernet 1/1

Building configuration...

Current configuration : 129 bytes
!
interface ethernet1/1
  switchport
  switchport access vlan 222
  switchport mode access
  access-group mode prefer port
```

```
ipv6 nd raguard
```

Example: Configuring DHCP—DHCPv6 Guard

The following example displays a sample configuration for DHCPv6 Guard:

```
configure terminal
ipv6 dhcp guard policy pol1
device-role server
preference min 0
preference max 255
trusted-port
interface GigabitEthernet 0/2/0
switchport
ipv6 dhcp guard attach-policy pol1
vlan configuration 1
ipv6 dhcp guard attach-policy pol1
show ipv6 dhcp guard policy pol1
```

Example: Configuring IPv6 First-Hop Security Binding Table

```
config terminal
ipv6 neighbor binding vlan 100 2001:db8::1 interface ethernet3/0
ipv6 neighbor binding max-entries 100
ipv6 neighbor binding logging
ipv6 neighbor binding retry-interval 8
exit
show ipv6 neighbor binding
```

Example: Configuring IPv6 Snooping

```
switch (config) # ipv6 snooping policy policy1
switch(config-ipv6-snooping) # ipv6 snooping attach-policy policy1
switch(config-ipv6-snooping) # exit
.
.
.
Device # show ipv6 snooping policies policy1
Policy policy1 configuration:
    trusted-port
    device-role node
Policy applied on the following interfaces:
    Et0/0     vlan all
    Et1/0     vlan all
Policy applied on the following vlans:
    vlan 1-100,200,300-400
```

Additional References for IPv6 First-Hop Security

This section includes additional information related to configuring IPv6 First-Hop Security.

Related Documents

Related Topic	Document Title
Cisco NX-OS Licensing	Cisco NX-OS Licensing Guide
Command reference	Cisco Nexus 7000 Series NX-OS Security Command Reference

Additional References for IPv6 First-Hop Security

Configuring Dynamic ARP Inspection

This chapter describes how to configure dynamic Address Resolution Protocol (ARP) inspection (DAI) on a Cisco NX-OS device.

This chapter includes the following sections:

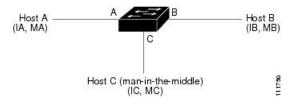
- About DAI, on page 359
- Licensing Requirements for DAI, on page 362
- Prerequisites for DAI, on page 362
- Guidelines and Limitations for DAI, on page 363
- Default Settings for DAI, on page 363
- Configuring DAI, on page 364
- Verifying the DAI Configuration, on page 368
- Monitoring and Clearing DAI Statistics, on page 369
- Configuration Examples for DAI, on page 369
- Additional References for DAI, on page 374

About DAI

ARP

ARP provides IP communication within a Layer 2 broadcast domain by mapping an IP address to a MAC address. For example, host B wants to send information to host A but does not have the MAC address of host A in its ARP cache. In ARP terms, host B is the sender and host A is the target.

To get the MAC address of host A, host B generates a broadcast message for all hosts within the broadcast domain to obtain the MAC address associated with the IP address of host A. All hosts within the broadcast domain receive the ARP request, and host A responds with its MAC address.


ARP Spoofing Attacks

ARP spoofing attacks and ARP cache poisoning can occur because ARP allows a reply from a host even if an ARP request was not received. After the attack, all traffic from the device under attack flows through the attacker's computer and then to the router, switch, or host.

An ARP spoofing attack can affect hosts, switches, and routers connected to your Layer 2 network by sending false information to the ARP caches of the devices connected to the subnet. Sending false information to an ARP cache is known as ARP cache poisoning. Spoof attacks can also intercept traffic that is intended for other hosts on the subnet.

Figure 15: ARP Cache Poisoning

This figure shows an example of ARP cache poisoning.

Hosts A, B, and C are connected to the device on interfaces A, B, and C, which are on the same subnet. Their IP and MAC addresses are shown in parentheses; for example, host A uses IP address IA and MAC address MA. When host A needs to send IP data to host B, it broadcasts an ARP request for the MAC address that is associated with IP address of IB. When host B receives the ARP request, the ARP cache on host B is populated with an ARP binding for a host with the IP address IA and a MAC address MA; for example, IP address IA is bound to MAC address MA. When host B responds and the response reaches host A, the ARP cache on host A is populated with an ARP binding for a host with the IP address IB and MAC address MB. The device in between does not populate the ARP cache as both the request and the response are not destined to its local IP address.

Host C can poison the ARP caches of host A and host B by broadcasting two forged ARP responses with bindings: one for a host with the IP address of IA, a MAC address of MC, and another for a host with an IP address of IB and a MAC address of MC. Host B then uses the MAC address MC as the destination MAC address for traffic intended for IA, which means that host C intercepts that traffic. Similarly, host A uses MAC address MC as the destination MAC address for traffic intended for IB.

Because host C knows the true MAC addresses associated with IA and IB, it can forward the intercepted traffic to those hosts by using the correct MAC address as the destination. This topology, in which host C has inserted itself into the traffic stream from host A to host B, is an example of a *man-in-the middle* attack.

DAI and ARP Spoofing Attacks

DAI ensures that only valid ARP requests and responses are relayed. When DAI is enabled and properly configured, a Cisco Nexus device performs these activities:

- Intercepts all ARP requests and responses on untrusted ports
- Verifies that each of these intercepted packets has a valid IP-to-MAC address binding before updating the local ARP cache or before forwarding the packet to the appropriate destination
- Drops invalid ARP packets

DAI can determine the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a Dynamic Host Configuration Protocol (DHCP) snooping binding database. This database can also contain static entries that you create. If the ARP packet is received on a trusted interface, the device forwards the packet without any checks. On untrusted interfaces, the device forwards the packet only if it is valid.

You can configure DAI to drop ARP packets when the IP addresses in the packets are invalid or when the MAC addresses in the body of the ARP packets do not match the addresses specified in the Ethernet header.

Interface Trust States and Network Security

DAI associates a trust state with each interface on the device. Packets that arrive on trusted interfaces bypass all DAI validation checks, and packets that arrive on untrusted interfaces go through the DAI validation process.

In a typical network configuration, the guidelines for configuring the trust state of interfaces are as follows:

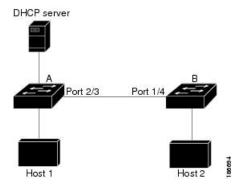
Untrusted

Interfaces that are connected to hosts

Trusted

Interfaces that are connected to devices

With this configuration, all ARP packets that enter the network from a device bypass the security check. No other validation is needed at any other place in the VLAN or in the network.



Caution

Use the trust state configuration carefully. Configuring interfaces as untrusted when they should be trusted can result in a loss of connectivity.

Figure 16: ARP Packet Validation on a VLAN Enabled for DAI

The following figure assumes that both device A and device B are running DAI on the VLAN that includes host 1 and host 2. If host 1 and host 2 acquire their IP addresses from the DHCP server connected to device A, only device A binds the IP-to-MAC address of host 1. If the interface between device A and device B is untrusted, the ARP packets from host 1 are dropped by device B and connectivity between host 1 and host 2 is lost.

If you configure interfaces as trusted when they should be untrusted, you may open a security hole in a network. If device A is not running DAI, host 1 can easily poison the ARP cache of device B (and host 2, if you configured the link between the devices as trusted). This condition can occur even though device B is running DAI.

DAI ensures that hosts (on untrusted interfaces) connected to a device that runs DAI do not poison the ARP caches of other hosts in the network; however, DAI does not prevent hosts in other portions of the network from poisoning the caches of the hosts that are connected to a device that runs DAI.

If some devices in a VLAN run DAI and other devices do not, the guidelines for configuring the trust state of interfaces on a device that runs DAI become the following:

Untrusted

Interfaces that are connected to hosts or to devices that are not running DAI

Trusted

Interfaces that are connected to devices that are running DAI

When you cannot determine the bindings of packets from devices that do not run DAI, isolate at Layer 3 the devices that run DAI from devices that do not run DAI.

Note

Depending on your network setup, you may not be able to validate a given ARP packet on all devices in the VLAN.

Logging DAI Packets

Cisco NX-OS maintains a buffer of log entries about DAI packets processed. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

You can also specify the type of packets that are logged. By default, a Cisco Nexus device logs only packets that DAI drops.

If the log buffer overflows, the device overwrites the oldest DAI log entries with newer entries. You can configure the maximum number of entries in the buffer.

Note

Cisco NX-OS does not generate system messages about DAI packets that are logged.

Licensing Requirements for DAI

This table shows the licensing requirements for DAI.

Product	License Requirement	
Cisco NX-OS	DAI requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .	

Prerequisites for DAI

- You must enable the DHCP feature before you can configure DAI. See Configuring DHCP, on page 299.
- You must configure the VLANs on which you want to enable DAI. See the *Cisco Nexus 9000 Series NX-OS Layer 2 Switching Configuration Guide*.

 You must configure the ACL TCAM region size for DAI using the hardware access-list tcam region arp-ether command. The DAI configuration will not be accepted unless the arp-ether region is effective. See Configuring ACL TCAM Region Sizes, on page 214.

Guidelines and Limitations for DAI

DAI has the following configuration guidelines and limitations:

- DAI is an ingress security feature; it does not perform any egress checking.
- DAI is not effective for hosts connected to devices that do not support DAI or that do not have this feature enabled. Because man-in-the-middle attacks are limited to a single Layer 2 broadcast domain, you should separate the domain with DAI from domains without DAI. This separation secures the ARP caches of hosts in the domain with DAI.
- When you use the **feature dhcp** command to enable the DHCP feature, there is a delay of approximately 30 seconds before the I/O modules receive the DHCP or DAI configuration. This delay occurs regardless of the method that you use to change from a configuration with the DHCP feature disabled to a configuration with the DHCP feature enabled. For example, if you use the rollback feature to revert to a configuration that enables the DHCP feature, the I/O modules receive the DHCP and DAI configuration approximately 30 seconds after you complete the rollback.
- DAI is supported on access ports, trunk ports, and port-channel ports.
- The DAI trust configuration of a port channel determines the trust state of all physical ports that you assign to the port channel. For example, if you have configured a physical port as a trusted interface and then you add that physical port to a port channel that is an untrusted interface, the physical port becomes untrusted.
- When you remove a physical port from a port channel, the physical port does not retain the DAI trust state configuration of the port channel.
- When you change the trust state on the port channel, the device onfigures a new trust state on all the physical ports that comprise the channel.
- If you want DAI to use static IP-MAC address bindings to determine if ARP packets are valid, make sure that you have configured the static IP-MAC address bindings.
- If you want DAI to use dynamic IP-MAC address bindings to determine if ARP packets are valid, make sure that DHCP snooping is enabled.
- ARP ACLs are not supported.

Default Settings for DAI

This table lists the default settings for DAI parameters.

Table 34: Default DAI Parameters

Parameters	Default
DAI	Disabled on all VLANs.

Parameters	Default
Interface trust state	All interfaces are untrusted.
Validation checks	No checks are performed.
Log buffer	When DAI is enabled, all denied or dropped ARP packets are logged.
	The number of entries in the log is 32.
	The number of system messages is limited to 5 per second.
	The logging-rate interval is 1 second.
Per-VLAN logging	All denied or dropped ARP packets are logged.

Configuring DAI

Enabling or Disabling DAI on VLANs

You can enable or disable DAI on VLANs. By default, DAI is disabled on all VLANs.

Before you begin

Make sure that the DHCP feature is enabled.

Make sure that the VLANs on which you want to enable DAI are configured.

Make sure that the ACL TCAM region size for DAI (arp-ether) is configured.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	[no] ip arp inspection vlan vlan-list	Enables DAI for the specified list of VLANs.	
	Example:	The no option disables DAI for the specified VLANs.	
	<pre>switch(config)# ip arp inspection vlan 13</pre>	VLANS.	
Step 3	(Optional) show ip arp inspection vlan vlan-id	Displays the DAI configuration for a specific	
	Example:	VLAN.	
	switch(config)# show ip arp inspection vlan 13		

	Command or Action	Purpose
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring the DAI Trust State of a Layer 2 Interface

You can configure the DAI interface trust state of a Layer 2 interface. By default, all interfaces are untrusted.

A device forwards ARP packets that it receives on a trusted Layer 2 interface but does not check them.

On untrusted interfaces, the device intercepts all ARP requests and responses and verifies that the intercepted packets have valid IP-MAC address bindings before updating the local cache and forwarding the packet to the appropriate destination. If the device determines that packets have invalid bindings, it drops the packets and logs them according to the logging configuration.

Before you begin

If you are enabling DAI, make sure that the DHCP feature is enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface type port/slot	Enters interface configuration mode.
	Example:	
	<pre>switch(config)# interface ethernet 2/1 switch(config-if)#</pre>	
Step 3	[no] ip arp inspection trust	Configures the interface as a trusted ARP interface. The no option configures the interface as an untrusted ARP interface.
	Example:	
I .	<pre>switch(config-if)# ip arp inspection trust</pre>	
Step 4	(Optional) show ip arp inspection interface <i>type port/slot</i>	Displays the trust state and the ARP packet rate for the specified interface.
	Example:	
	switch(config-if)# show ip arp inspection interface ethernet 2/1	

	Command or Action	Purpose
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Enabling or Disabling Additional Validation

You can enable or disable additional validation of ARP packets. By default, no additional validation of ARP packets is enabled. When no additional validation is configured, the source MAC address and the source IP address check against the IP-to-MAC binding entry for ARP packets is performed by using the ARP sender MAC address and the ARP sender IP address.

DAI intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. You can enable additional validation on the destination MAC address, the sender and target IP addresses, and the source MAC address.

You can use the following keywords with the **ip arp inspection validate** command to implement additional validations:

dst-mac

Checks the destination MAC address in the Ethernet header against the target MAC address in the ARP body for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

ip

Checks the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are checked in all ARP requests and responses, and target IP addresses are checked only in ARP responses.

src-mac

Checks the source MAC address in the Ethernet header against the sender MAC address in the ARP body for ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

When enabling additional validation, follow these guidelines:

- You must specify at least one of the keywords. You can specify one, two, or all three keywords.
- Each **ip arp inspection validate** command that you enter replaces the configuration from any previous commands. If you enter an **ip arp inspection validate** command to enable src-mac and dst-mac validations, and a second **ip arp inspection validate** command to enable ip validation, the src-mac and dst-mac validations are disabled when you enter the second command.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose	
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	[no] ip arp inspection validate {[src-mac] [dst-mac] [ip]}	Enables additional DAI validation. The no form of this command disables additional DAI	
	Example: validation.	validation.	
	<pre>switch(config)# ip arp inspection validate src-mac dst-mac ip</pre>		
Step 3	(Optional) show running-config dhcp	Displays the DHCP snooping configuration, including the DAI configuration.	
	Example:	merading the DAI configuration.	
	switch(config)# show running-config dhcp		
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	<pre>switch(config) # copy running-config startup-config</pre>		

Configuring the DAI Logging Buffer Size

You can configure the DAI logging buffer size. The default buffer size is 32 messages.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	[no] ip arp inspection log-buffer entries number	Configures the DAI logging buffer size. The no option reverts to the default buffer size, which	
	Example:	is 32 messages. The buffer size can be between 1 and 1024 messages.	
	switch(config)# ip arp inspection log-buffer entries 64		
Step 3	(Optional) show running-config dhcp	Displays the DHCP snooping configuration,	
	Example:	including the DAI configuration.	
	switch(config) # show running-config dhcp		
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	<pre>switch(config) # copy running-config startup-config</pre>		

Configuring DAI Log Filtering

You can configure how the device determines whether to log a DAI packet. By default, the device logs DAI packets that are dropped.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	[no] ip arp inspection vlan vlan-list logging dhcp-bindings {all none permit}	Configures DAI log filtering, as follows. The no form of this command removes DAI log	
	Example:	filtering.	
	switch(config)# ip arp inspection vlan 100 dhcp-bindings permit	• all—Logs all packets that match DHCP bindings.	
		• none—Does not log packets that match DHCP bindings.	
		permit—Logs packets permitted by DHCP bindings.	
Step 3	(Optional) show running-config dhcp	Displays the DHCP snooping configuration,	
	Example:	including the DAI configuration.	
	switch(config)# show running-config dhcp		
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.	
	Example:		
	switch(config)# copy running-config startup-config		

Verifying the DAI Configuration

To display the DAI configuration information, perform one of the following tasks.

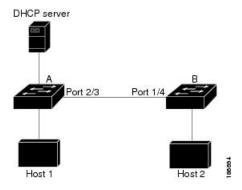
Command	Purpose
show ip arp inspection	Displays the status of DAI.
show ip arp inspection interfaces [ethernet slot/port port-channel number]	Displays the trust state and ARP packet rate for a specific interface or port channel.
show ip arp inspection log	Displays the DAI log configuration.

Command	Purpose
show ip arp inspection vlan vlan-id	Displays the DAI configuration for a specific VLAN.
show running-config dhcp [all]	Displays the DAI configuration.

Monitoring and Clearing DAI Statistics

To monitor and clear DAI statistics, use the commands in this table.

Command	Purpose
show ip arp inspection statistics [vlan vlan-id]	Displays DAI statistics.
clear ip arp inspection statistics vlan vlan-id	Clears DAI statistics.
clear ip arp inspection log	Clears DAI logs.


Configuration Examples for DAI

Two Devices Support DAI

These procedures show how to configure DAI when two devices support DAI.

Figure 17: Two Devices Supporting DAI

The following figure shows the network configuration for this example. Host 1 is connected to device A, and Host 2 is connected to device B. Both devices are running DAI on VLAN 1 where the hosts are located. A DHCP server is connected to device A. Both hosts acquire their IP addresses from the same DHCP server. Device A has the bindings for Host 1 and Host 2, and device B has the binding for Host 2. Device A Ethernet interface 2/3 is connected to device B Ethernet interface 1/4.

DAI depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically-assigned IP addresses.

• This configuration does not work if the DHCP server is moved from device A to a different location.

• To ensure that this configuration does not compromise security, configure Ethernet interface 2/3 on device A and Ethernet interface 1/4 on device B as trusted.

Configuring Device A

To enable DAI and configure Ethernet interface 2/3 on device A as trusted, follow these steps:

Procedure

Step 1 While logged into device A, verify the connection between device A and device B.

Step 2 Enable DAI on VLAN 1 and verify the configuration.

Step 3 Configure Ethernet interface 2/3 as trusted.

Step 4 Verify the bindings.

Step 5 Check the statistics before and after DAI processes any packets.

```
switchA# show ip arp inspection statistics vlan 1
Vlan : 1
ARP Req Forwarded = 0
ARP Res Forwarded = 0
ARP Req Dropped = 0
ARP Res Dropped = 0
ARP Res Dropped
DHCP Drops
                   = 0
DHCP Permits
                   = 0
SMAC Fails-ARP Req = 0
SMAC Fails-ARP Res = 0
DMAC Fails-ARP Res = 0
IP Fails-ARP Req = 0
IP Fails-ARP Res = 0
switchA#
```

If host 1 sends out two ARP requests with an IP address of 10.0.0.1 and a MAC address of 0002.0002.0002, both requests are permitted and are shown as follows:

```
switchA# show ip arp inspection statistics vlan 1
Vlan : 1
------
ARP Req Forwarded = 2
ARP Res Forwarded = 0
ARP Req Dropped = 0
ARP Res Dropped = 0
DHCP Drops = 0
DHCP Permits = 2
SMAC Fails-ARP Req = 0
SMAC Fails-ARP Res = 0
DMAC Fails-ARP Res = 0
IP Fails-ARP Req = 0
IP Fails-ARP Res = 0
```

If host 1 tries to send an ARP request with an IP address of 10.0.0.3, the packet is dropped, and an error message is logged.

```
00:12:08: %SW_DAI-4-DHCP_SNOOPING_DENY: 2 Invalid ARPs (Req) on Ethernet2/3, vlan 1.([0002.0002.0002/10.0.0.3/0000.0000/0.0.0.0/02:42:35 UTC Fri Jan 23 2015])
```

The statistics display as follows:

```
switchA# show ip arp inspection statistics vlan 1
switchA#
Vlan : 1
----------
ARP Req Forwarded = 2
ARP Res Forwarded = 0
ARP Req Dropped = 2
ARP Res Dropped = 0
DHCP Drops = 2
DHCP Permits = 2
SMAC Fails-ARP Req = 0
SMAC Fails-ARP Res = 0
IP Fails-ARP Req = 0
IP Fails-ARP Req = 0
switchA#
```

Configuring Device B

To enable DAI and configure Ethernet interface 1/4 on device B as trusted, follow these steps:

Procedure

Step 1 While logged into device B, verify the connection between device B and device A.

```
switchB# show cdp neighbors
Capability Codes: R - Router, T - Trans-Bridge, B - Source-Route-Bridge
    S - Switch, H - Host, I - IGMP, r - Repeater,
    V - VoIP-Phone, D - Remotely-Managed-Device,
    s - Supports-STP-Dispute

Device ID
switchA
Ethernet1/4 120 R S I WS-C2960-24TC Ethernet2/3
switchB#
```

Step 2 Enable DAI on VLAN 1 and verify the configuration.

Step 3 Configure Ethernet interface 1/4 as trusted.

Step 4 Verify the list of DHCP snooping bindings.

Step 5 Check the statistics before and after DAI processes any packets.

```
switchB# show ip arp inspection statistics vlan 1
Vlan : 1
--------
ARP Req Forwarded = 0
ARP Res Forwarded = 0
```

```
ARP Req Dropped = 0
ARP Res Dropped = 0
DHCP Drops = 0
DHCP Permits = 0
SMAC Fails-ARP Req = 0
SMAC Fails-ARP Res = 0
DMAC Fails-ARP Res = 0
IP Fails-ARP Res = 0
switchB#
```

If Host 2 sends out an ARP request with the IP address 10.0.0.2 and the MAC address 0001.0001.0001, the packet is forwarded, and the statistics are updated.

```
switchB# show ip arp inspection statistics vlan 1
Vlan : 1
-------
ARP Req Forwarded = 1
ARP Res Forwarded = 0
ARP Req Dropped = 0
ARP Res Dropped = 0
DHCP Drops = 0
DHCP Permits = 1
SMAC Fails-ARP Req = 0
SMAC Fails-ARP Res = 0
DMAC Fails-ARP Res = 0
IP Fails-ARP Req = 0
IP Fails-ARP Res = 0
switchB#
```

If Host 2 attempts to send an ARP request with the IP address 10.0.0.1, DAI drops the request and logs the following system message:

```
00:18:08: \$SW\_DAI-4-DHCP\_SNOOPING\_DENY: 1 Invalid ARPs (Req) on Ethernet1/4, vlan \\ 1.([0001.0001.0001/10.0.0.1/0000.0000.0000/0.0.0.0/01:53:21 UTC Fri Jan 23 2015])
```

The statistics display as follows:

```
switchB# show ip arp inspection statistics vlan 1
Vlan:1
ARP Req Forwarded = 1
ARP Res Forwarded = 0
ARP Req Dropped = 1
ARP Res Dropped = 0
             = 1
DHCP Drops
DHCP Permits
                 = 1
SMAC Fails-ARP Req = 0
SMAC Fails-ARP Res = 0
DMAC Fails-ARP Res = 0
IP Fails-ARP Req = 0
IP Fails-ARP Res = 0
switchB#
```

Additional References for DAI

Related Documents

Related Topic	Document Title
ACL TCAM regions	Configuring IP ACLs, on page 189
DHCP and DHCP snooping	Configuring DHCP, on page 299

Standards

Standard	Title
RFC-826	An Ethernet Address Resolution Protocol (https://datatracker.ietf.org/doc/html/rfc826)

Configuring IP Source Guard

This chapter describes how to configure IP Source Guard on Cisco NX-OS devices.

This chapter includes the following sections:

- About IP Source Guard, on page 375
- Licensing Requirements for IP Source Guard, on page 376
- Prerequisites for IP Source Guard, on page 376
- Guidelines and Limitations for IP Source Guard, on page 376
- Default Settings for IP Source Guard, on page 377
- Configuring IP Source Guard, on page 377
- Displaying IP Source Guard Bindings, on page 380
- Clearing IP Source Guard Statistics, on page 380
- Configuration Example for IP Source Guard, on page 380
- Additional References, on page 380

About IP Source Guard

IP Source Guard is a per-interface traffic filter that permits IP traffic only when the IP address and MAC address of each packet matches one of two sources of IP and MAC address bindings:

- Entries in the Dynamic Host Configuration Protocol (DHCP) snooping binding table
- Static IP source entries that you configure

Filtering on trusted IP and MAC address bindings helps prevent spoofing attacks, in which an attacker uses the IP address of a valid host to gain unauthorized network access. To circumvent IP Source Guard, an attacker would have to spoof both the IP address and the MAC address of a valid host.

You can enable IP Source Guard on Layer 2 interfaces that are not trusted by DHCP snooping. IP Source Guard supports interfaces that are configured to operate in access mode and trunk mode. When you initially enable IP Source Guard, all inbound IP traffic on the interface is blocked except for the following:

- DHCP packets, which DHCP snooping inspects and then forwards or drops, depending upon the results of inspecting the packet
- IP traffic from static IP source entries that you have configured on the Cisco NX-OS device

The device permits the IP traffic when DHCP snooping adds a binding table entry for the IP address and MAC address of an IP packet or when you have configured a static IP source entry.

The device drops IP packets when the IP address and MAC address of the packet do not have a binding table entry or a static IP source entry. For example, assume that the **show ip dhcp snooping binding** command displays the following binding table entry:

MacAddress	IpAddress	LeaseSec	Type	VLAN	Interface
00:02:B3:3F:3B:99	10.5.5.2	6943	dhcp-snooping	10	Ethernet2/3

If the device receives an IP packet with an IP address of 10.5.5.2, IP Source Guard forwards the packet only if the MAC address of the packet is 00:02:B3:3F:3B:99.

Licensing Requirements for IP Source Guard

This table shows the licensing requirements for IP Source Guard.

Product	License Requirement
Cisco NX-OS	IP Source Guard requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Prerequisites for IP Source Guard

IP Source Guard has the following prerequisites:

- You must enable the DHCP feature and DHCP snooping before you can configure IP Source Guard. See Configuring DHCP, on page 299.
- You must configure the ACL TCAM region size for IP Source Guard using the hardware access-list tcam region ipsg command. See Configuring ACL TCAM Region Sizes, on page 214.

Note

By default the ipsg region size is zero. You need to allocate enough entries to this region for storing and enforcing the SMAC-IP bindings.

Guidelines and Limitations for IP Source Guard

IP Source Guard has the following configuration guidelines and limitations:

• IP Source Guard limits IP traffic on an interface to only those sources that have an IP-MAC address binding table entry or static IP source entry. When you first enable IP Source Guard on an interface, you may experience disruption in IP traffic until the hosts on the interface receive a new IP address from a DHCP server.

- IP Source Guard is dependent upon DHCP snooping to build and maintain the IP-MAC address binding table or upon manual maintenance of static IP source entries.
- IP Source Guard is not supported on fabric extender (FEX) ports or generic expansion module (GEM) ports.
- The following guidelines and limitations apply to the Cisco Nexus 9200 Series switches:
 - IPv6 adjacency is not formed with IPSG enabled on the incoming interface.
 - IPSG drops ARP packets at HSRP standby.
 - With DHCP snooping and IPSG enabled, if a binding entry exists for the host, traffic is forwarded to the host even without ARP.

Default Settings for IP Source Guard

This table lists the default settings for IP Source Guard parameters.

Table 35: Default IP Source Guard Parameters

Parameters	Default
IP Source Guard	Disabled on each interface
IP source entries	None. No static or default IP source entries exist by default.

Configuring IP Source Guard

Enabling or Disabling IP Source Guard on a Layer 2 Interface

You can enable or disable IP Source Guard on a Layer 2 interface. By default, IP Source Guard is disabled on all interfaces.

Before you begin

Make sure that the DHCP feature and DHCP snooping are enabled.

Make sure that the ACL TCAM region size for IPSG (ipsg) is configured.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	interface ethernet slot/port	Enters interface configuration mode for the
	Example:	specified interface.
	<pre>switch(config)# interface ethernet 2/3 switch(config-if)#</pre>	
Step 3 [no] ip verify source dhcp-snooping-vlan Ena	Enables IP Source Guard on the interface. The	
	Example:	no form of this command disables IP Source Guard on the interface.
	<pre>switch(config-if)# ip verify source dhcp-snooping vlan</pre>	Guard on the interface.
Step 4	(Optional) show running-config dhcp	Displays the running configuration for DHCP
	Example:	snooping, including the IP Source Guard configuration.
	<pre>switch(config-if)# show running-config dhcp</pre>	configuration.
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Adding or Removing a Static IP Source Entry

You can add or remove a static IP source entry on the device. By default, there are no static IP source entries.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2		interface. The no form of this command
	Example:	removes the static IP source entry.
	<pre>switch(config)# ip source binding 10.5.22.17 001f.28bd.0013 vlan 100 interface ethernet 2/3</pre>	
Step 3	(Optional) show ip dhcp snooping binding [interface interface-type slot/port]	Displays IP-MAC address bindings for the interface specified, including static IP source
	Example:	entries. Static entries appear with the term in the Type column.
	switch(config)# show ip dhcp snooping binding interface ethernet 2/3	

	Command or Action	Purpose
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring IP Source Guard for Trunk Ports

When IP Source Guard is configured on a port, traffic coming on that port will be dropped unless there is a DHCP snooping entry to allow it in the TCAM. However, when IP Source Guard is configured on trunk ports and you do not want traffic coming on certain VLANs to undergo this check (even if DHCP snooping is not enabled on them), you can specify a list of VLANs to exclude.

Before you begin

Make sure that the DHCP feature and DHCP snooping are enabled.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] ip dhcp snooping ipsg-excluded vlan vlan-list	Specifies the list of VLANs to exclude from the DHCP snooping check for IP Source Guard on
	Example:	trunk ports.
	<pre>switch(config)# ip dhcp snooping ipsg-excluded vlan 1001-1256,3097</pre>	
Step 3	(Optional) show ip ver source [ethernet slot/port port-channel channel-number]	Displays which VLANs are excluded.
	Example:	
	switch(config)# show ip ver source	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Displaying IP Source Guard Bindings

Use the **show ip ver source** [ethernet *slot/port* | port-channel *channel-number*] command to display the IP-MAC address bindings.

Clearing IP Source Guard Statistics

To clear IP Source Guard statistics, use the commands in this table.

Command	Purpose
clear access-list ipsg stats [instance number module number]	Clears IP Source Guard statistics.

Configuration Example for IP Source Guard

This example shows how to create a static IP source entry and enable IP Source Guard on an interface:

Additional References

Related Documents

Related Topic	Document Title
ACL TCAM regions	Configuring IP ACLs, on page 189
DHCP and DHCP snooping	Configuring DHCP, on page 299

Configuring Password Encryption

This chapter describes how to configure password encryption on Cisco NX-OS devices.

This chapter includes the following sections:

- About AES Password Encryption and Primary Encryption Keys, on page 381
- Licensing Requirements for Password Encryption, on page 381
- Guidelines and Limitations for Password Encryption, on page 382
- Default Settings for Password Encryption, on page 382
- Configuring Password Encryption, on page 382
- Verifying the Password Encryption Configuration, on page 385
- Configuration Examples for Password Encryption, on page 385

About AES Password Encryption and Primary Encryption Keys

You can enable strong, reversible 128-bit Advanced Encryption Standard (AES) password encryption, also known as Type-6 encryption. To start using Type-6 encryption, you must enable the AES password encryption feature and configure a primary encryption key, which is used to encrypt and decrypt passwords.

After you enable AES password encryption and configure a primary key, all existing and newly created clear-text passwords for supported applications (currently RADIUS and TACACS+) are stored in Type-6 encrypted format, unless you disable Type-6 password encryption. You can also configure Cisco NX-OS to convert all existing weakly encrypted passwords to Type-6 encrypted passwords.

Licensing Requirements for Password Encryption

The following table shows the licensing requirements for this feature:

Product	License Requirement	
Cisco NX-OS	Password encryption requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .	

Guidelines and Limitations for Password Encryption

Password encryption has the following configuration guidelines and limitations:

- Only users with administrator privilege (network-admin) can configure the AES password encryption feature, associated encryption and decryption commands, and primary keys.
- RADIUS and TACACS+ are the only applications that can use the AES password encryption feature.
- Configurations containing type-6 encrypted passwords are not rollback compliant.
- You can enable the AES password encryption feature without a master key, but encryption starts only when a primary key is present in the system.
- For TACACS+, after you enable the AES password encryption feature and configure a primary key, you
 must run the encryption re-encrypt obfuscated command to convert the passwords to type-6 encrypted
 passwords.
- Deleting the primary key stops type-6 encryption and causes all existing type-6 encrypted passwords to become unusable, unless the same primary key is reconfigured.
- To move the device configuration to another device, either decrypt the configuration before porting it to the other device or configure the same primary key on the device to which the configuration will be applied.

Default Settings for Password Encryption

This table lists the default settings for password encryption parameters.

Table 36: Default Password Encryption Parameter Settings

Parameters	Default
AES password encryption feature	Disabled
Primary key	Not configured

Configuring Password Encryption

This section describes the tasks for configuring password encryption on Cisco NX-OS devices.

Configuring a Primary Key and Enabling the AES Password Encryption Feature

You can configure a primary key for Type-6 encryption and enable the Advanced Encryption Standard (AES) password encryption feature.

	Command or Action	Purpose
Step 1	<pre>[no] key config-key ascii[<new_key> old <old_master_key>] Example: switch# key config-key ascii New Master Key: Retype Master Key:</old_master_key></new_key></pre>	Configures a primary key (Master Key) to be used with the AES password encryption feature. The primary key can contain between 16 and 32 alphanumeric characters. You can use the no form of this command to delete the primary key at any time.
		If you enable the AES password encryption feature before configuring a primary key, a message appears stating that password encryption will not take place unless a primary key is configured. If a primary key is already configured, you are prompted to enter the current primary key before entering a new primary key.
		Note Starting with Cisco NX-OS Release 10.3(2)F, you can configure primary key using DME payload and non-interactive mode.
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 3	<pre>[no] feature password encryption aes Example: switch(config) # feature password encryption aes</pre>	Enables or disables the AES password encryption feature.
Step 4	<pre>encryption re-encrypt obfuscated Example: switch(config)# encryption re-encrypt obfuscated</pre>	Converts existing plain or weakly encrypted passwords to Type-6 encrypted passwords.
Step 5	(Optional) show encryption service stat Example: switch(config) # show encryption service stat	Displays the configuration status of the AES password encryption feature and the primary key.
Step 6	<pre>copy running-config startup-config Example: switch(config) # copy running-config startup-config</pre>	Copies the running configuration to the startup configuration. Note This command is necessary to synchronize the primary key in the running configuration and the startup configuration.

Converting Existing Passwords to Type-6 Encrypted Passwords

You can convert existing plain or weakly encrypted passwords to Type-6 encrypted passwords.

Before you begin

Ensure that you have enabled the AES password encryption feature and configured a primary key.

Procedure

	Command or Action	Purpose
Step 1	encryption re-encrypt obfuscated	Converts existing plain or weakly encrypted
	Example:	passwords to Type-6 encrypted passwords.
	switch# encryption re-encrypt obfuscated	

Converting Type-6 Encrypted Passwords Back to Their Original States

You can convert Type-6 encrypted passwords back to their original states.

Before you begin

Ensure that you have configured a primary key.

Procedure

	Command or Action	Purpose
Step 1	encryption decrypt type6	Converts Type-6 encrypted passwords back to
	Example:	their original states.
	switch# encryption decrypt type6 Please enter current Master Key:	

Deleting Type-6 Encrypted Passwords

You can delete all Type-6 encrypted passwords from the Cisco NX-OS device.

	Command or Action	Purpose
Step 1	encryption delete type6	Deletes all Type-6 encrypted passwords.
	Example:	
	switch# encryption delete type6	

Verifying the Password Encryption Configuration

To display password encryption configuration information, perform the following task:

Command	Purpose
show encryption service stat	Displays the configuration status of the AES password encryption feature and the primary key.

Configuration Examples for Password Encryption

The following example shows how to create a primary key, enable the AES password encryption feature, and configure a Type-6 encrypted password for a TACACS+ application:

```
key config-key ascii
 New Master Key:
 Retype Master Key:
configure terminal
feature password encryption aes
show encryption service stat
 Encryption service is enabled.
 Master Encryption Key is configured.
 Type-6 encryption is being used.
feature tacacs+
tacacs-server key Cisco123
show running-config tacacs+
 feature tacacs+
 logging level tacacs 5
 tacacs-server key 6
"JDYkqyIFWeBvzpljSfWmRZrmRSRE8syxKlOSjP9RCCkFinZbJI3GD5c6rckJR/Qju2PKLmOewbheAA=="
```

Configuration Examples for Password Encryption

Configuring Keychain Management

This chapter describes how to configure keychain management on a Cisco NX-OS device.

This chapter includes the following sections:

- About Keychain Management, on page 387
- Licensing Requirements for Keychain Management, on page 388
- Prerequisites for Keychain Management, on page 388
- Guidelines and Limitations for Keychain Management, on page 388
- Default Settings for Keychain Management, on page 389
- Configuring Keychain Management, on page 389
- Determining Active Key Lifetimes, on page 396
- Verifying the Keychain Management Configuration, on page 396
- Configuration Example for Keychain Management, on page 396
- Where to Go Next, on page 397
- Additional References for Keychain Management, on page 397

About Keychain Management

Keychain management allows you to create and maintain keychains, which are sequences of keys (sometimes called shared secrets). You can use keychains with features that secure communications with other devices by using key-based authentication. The device allows you to configure multiple keychains.

Some routing protocols that support key-based authentication can use a keychain to implement a hitless key rollover for authentication. For more information, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Lifetime of a Key

To maintain stable communications, each device that uses a protocol that is secured by key-based authentication must be able to store and use more than one key for a feature at the same time. Based on the send and accept lifetimes of a key, keychain management provides a secure mechanism to handle key rollover. The device uses the lifetimes of keys to determine which keys in a keychain are active.

Each key in a keychain has two lifetimes, as follows:

Accept lifetime

The time interval within which the device accepts the key during a key exchange with another device.

Send lifetime

The time interval within which the device sends the key during a key exchange with another device.

You define the send and accept lifetimes of a key using the following parameters:

Start-time

The absolute time that the lifetime begins.

End-time

The end time can be defined in one of the following ways:

- The absolute time that the lifetime ends
- The number of seconds after the start time that the lifetime ends
- Infinite lifetime (no end-time)

During a key send lifetime, the device sends routing update packets with the key. The device does not accept communication from other devices when the key sent is not within the accept lifetime of the key on the device.

We recommend that you configure key lifetimes that overlap within every keychain. This practice avoids failure of neighbor authentication due to the absence of active keys.

Licensing Requirements for Keychain Management

This table shows the licensing requirements for keychain management.

Product	License Requirement	
Cisco NX-OS	Keychain management requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .	

Prerequisites for Keychain Management

Keychain management has no prerequisites.

Guidelines and Limitations for Keychain Management

Keychain management has the following configuration guideline and limitation:

• Changing the system clock impacts when the keys are active.

Default Settings for Keychain Management

This table lists the default settings for Cisco NX-OS keychain management parameters.

Table 37: Default Keychain Management Parameters

Parameters	Default
Key chains	No keychain exists by default.
Keys	No keys are created by default when you create a new keychain.
Accept lifetime	Always valid.
Send lifetime	Always valid.
Key-string entry encryption	Unencrypted.

Configuring Keychain Management

Creating a Keychain

You can create a keychain on the device. A new keychain contains no keys.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	key chain name	Creates the keychain and enters keychain
	Example:	configuration mode.
	<pre>switch(config)# key chain bgp-keys switch(config-keychain)#</pre>	
Step 3	(Optional) show key chain name	Displays the keychain configuration.
	Example:	
	<pre>switch(config-keychain)# show key chain bgp-keys</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	

Command or Action	Purpose
<pre>switch(config-keychain) # copy running-config startup-config</pre>	

Removing a Keychain

You can remove a keychain on the device.

Note

Removing a keychain removes any keys within the keychain.

Before you begin

If you are removing a keychain, ensure that no feature uses it. If a feature is configured to use a keychain that you remove, that feature is likely to fail to communicate with other devices.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	no key chain name	Removes the keychain and any keys that the
Example: keychain conta	keychain contains.	
	switch(config)# no key chain bgp-keys	
Step 3	(Optional) show key chain name	Confirms that the keychain no longer exists in
	Example:	running configuration.
	<pre>switch(config-keychain)# show key chain bgp-keys</pre>	
Step 4	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-keychain)# copy running-config startup-config</pre>	

Configuring a Primary Key and Enabling the AES Password Encryption Feature

You can configure a primary key for Type-6 encryption and enable the Advanced Encryption Standard (AES) password encryption feature.

	Command or Action	Purpose
Step 1	<pre>[no] key config-key ascii[<new_key> old</new_key></pre>	Configures a primary key (Master Key) to be used with the AES password encryption feature. The primary key can contain between 16 and 32 alphanumeric characters. You can use the no form of this command to delete the primary key at any time.
		If you enable the AES password encryption feature before configuring a primary key, a message appears stating that password encryption will not take place unless a primary key is configured. If a primary key is already configured, you are prompted to enter the current primary key before entering a new primary key.
		Note Starting with Cisco NX-OS Release 10.3(2)F, you can configure primary key using DME payload and non-interactive mode.
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 3	<pre>[no] feature password encryption aes Example: switch(config) # feature password</pre>	Enables or disables the AES password encryption feature.
	encryption aes	
Step 4	<pre>encryption re-encrypt obfuscated Example: switch(config) # encryption re-encrypt obfuscated</pre>	Converts existing plain or weakly encrypted passwords to Type-6 encrypted passwords.
Step 5	(Optional) show encryption service stat Example: switch(config) # show encryption service stat	Displays the configuration status of the AES password encryption feature and the primary key.
Step 6	copy running-config startup-config Example:	Copies the running configuration to the startup configuration.
	switch(config)# copy running-config startup-config	Note This command is necessary to synchronize the primary key in the running configuration and the startup configuration.

Configuring Text for a Key

You can configure the text for a key. The text is the shared secret. The device stores the text in a secure format.

By default, accept and send lifetimes for a key are infinite, which means that the key is always valid. After you configure the text for a key, configure the accept and send lifetimes for the key.

Before you begin

Determine the text for the key. You can enter the text as unencrypted text or in the encrypted form that Cisco NX-OS uses to display key text when you use the **show key chain** command. Using the encrypted form is particularly helpful if you are creating key text to match a key as shown in the **show key chain** command output from another device.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	key chain name	Enters keychain configuration mode for the keychain that you specified.
	Example:	
	<pre>switch(config)# key chain bgp-keys switch(config-keychain)#</pre>	
Step 3	key key-ID	Enters key configuration mode for the key that
	Example:	you specified. The <i>key-ID</i> argument must be a whole number between 0 and 65535.
	<pre>switch(config-keychain)# key 13 switch(config-keychain-key)#</pre>	a whole number between 6 and 63333.
Step 4	key-string [encryption-type] text-string	Configures the text string for the key. The
	<pre>Example: switch(config-keychain-key)# key-string 0 AS3cureStr1ng</pre>	text-string argument is alphanumeric, case-sensitive, and supports special characters.
		The <i>encryption-type</i> argument can be one of the
		following values:
		• 0—The <i>text-string</i> argument that you enter is unencrypted text. This is the default.
		• 7—The <i>text-string</i> argument that you enter is encrypted. The encryption method is a Cisco proprietary method. This option is useful when you are entering a text string based on the encrypted output of a show key chain command that you ran on another Cisco NX-OS device.

Ver Gree Bace Lef Apo

	Command or Action	Purpose
		The key-string command has limitations on using the following special characters in the <i>text-string</i> :
		Special Character
		I
		>
		\
		(
		'
		"
		?
		For more information on the special characters usage in commands, see Understanding the Command-Line Interface section.
Step 5	(Optional) show key chain name [mode decrypt]	Shows the keychain configuration, including the key text configuration. The mode decrypt
	Example:	option, which can be used by a device administrator only, displays the keys in
	<pre>switch(config-keychain-key)# show key chain bgp-keys</pre>	cleartext.
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-keychain-key)# copy running-config startup-config</pre>	

Configuring Accept and Send Lifetimes for a Key

You can configure the accept lifetime and send lifetime for a key. By default, accept and send lifetimes for a key are infinite, which means that the key is always valid.

Note

We recommend that you configure the keys in a keychain to have overlapping lifetimes. This practice prevents loss of key-secured communication due to moments where no key is active.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	key chain name	Enters keychain configuration mode for the
	Example:	keychain that you specified.
	<pre>switch(config)# key chain bgp-keys switch(config-keychain)#</pre>	
Step 3	key key-ID	Enters key configuration mode for the key tha
	Example:	you specified.
	<pre>switch(config-keychain) # key 13 switch(config-keychain-key) #</pre>	
Step 4	accept-lifetime [local] start-time [duration duration-value infinite end-time]	Configures an accept lifetime for the key. By default, the device treats the <i>start-time</i> and
	Example:	end-time arguments as UTC. If you specify the
	switch(config-keychain-key)#	local keyword, the device treats these times as local times.
	accept-lifetime 00:00:00 Jun 13 2013 23:59:59 Sep 12 2013	The <i>start-time</i> argument is the time of day and date that the key becomes active.
		Specify the end of the lifetime with one of the following options:
		• duration duration-value — The length of the lifetime in seconds. The maximum length is 2147483646 seconds (approximately 68 years).
		• infinite—The accept lifetime of the key never expires.
		• end-time —The end-time argument is the time of day and date that the key becomes inactive.
Step 5	send-lifetime [local] start-time [duration duration-value infinite end-time]	Configures a send lifetime for the key. By default, the device treats the <i>start-time</i> and
	Example:	end-time arguments as UTC. If you specify the
	switch(config-keychain-key)# send-lifetime 00:00:00 Jun 13 2013	local keyword, the device treats these times as local times.
	23:59:59 Aug 12 2013	The <i>start-time</i> argument is the time of day and date that the key becomes active.
		You can specify the end of the send lifetime with one of the following options:

	Command or Action	Purpose
		• duration duration-value — The length of the lifetime in seconds. The maximum length is 2147483646 seconds (approximately 68 years).
		• infinite—The send lifetime of the key never expires.
		• end-time — The end-time argument is the time of day and date that the key becomes inactive.
Step 6	(Optional) show key chain name [mode decrypt]	Shows the keychain configuration, including the key text configuration. The mode decrypt
	Example:	option, which can be used by a device administrator only, displays the keys in
	<pre>switch(config-keychain-key)# show key chain bgp-keys</pre>	cleartext.
Step 7	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-keychain-key)# copy running-config startup-config</pre>	

Configuring a Key for OSPFv2 Cryptographic Authentication

You can configure message digest 5 (MD5) or hash-based message authentication code secure hash algorithm (HMAC-SHA) authentication for OSPFv2.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	key chain name	Enters keychain configuration mode for the	
	Example:	keychain that you specified.	
	<pre>switch(config)# key chain bgp-keys switch(config-keychain)#</pre>		
Step 3	key key-ID	Enters key configuration mode for the key that	
	Example:	you specified. The <i>key-ID</i> argument must be a whole number between 0 and 65535.	
	<pre>switch(config-keychain) # key 13 switch(config-keychain-key) #</pre>	whole number between 0 and 03333.	

	Command or Action	Purpose	
		Note For OSPFv2, the key identifier in the key key-id command supports values from 0 to 255 only.	
Step 4	[no] cryptographic-algorithm {HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-384 HMAC-SHA-512 MD5} Example: switch (config-keychain-key) # cryptographic-algorithm HMAC-SHA-1	Configures the OSPFv2 cryptographic algorithm to be used for the specified key. You can configure only one cryptographic algorithm per key.	
Step 5	(Optional) show key chain name Example: switch (config-keychain-key) # show key chain bgp-keys	Shows the keychain configuration.	
Step 6	(Optional) copy running-config startup-config Example: switch(config-keychain-key) # copy running-config startup-config	Copies the running configuration to the startup configuration.	

Determining Active Key Lifetimes

To determine which keys within a key chain have active accept or send lifetimes, use the command in this table.

Command	Purpose
show key chain	Displays the key chains configured on the device.

Verifying the Keychain Management Configuration

To display keychain management configuration information, perform the following task:

Command	Purpose
show key chain name	Displays the keychains configured on the device.

Configuration Example for Keychain Management

This example shows how to configure a keychain named "ospf-keys". Each key text string is encrypted. The keys are configured to use MD5 as their cryptographic algorithm. Each key has longer accept lifetimes than send lifetimes, resulting in overlap between a pair of keys. In this example, there is configured overlap between

key 1 and key 2, as well as key 2 and key 3. This prevents a period of time in which there are no active keys, helping to avoid a disruption in communication of the underlying protocol:

```
key chain ospf-keys
 key 1
   key-string 7 070c285f4d0658544541
   accept-lifetime local 00:00:00 May 13 2024 12:00:00 Sep 14 2024
   send-lifetime local 00:00:00 May 13 2024 00:00:00 Sep 14 2024
   cryptographic-algorithm MD5
  key 2
   key-string 7 070c285f4d0658574446
    accept-lifetime local 00:00:00 Sep 13 2024 12:00:00 Jan 15 2025
   send-lifetime local 10:00:00 Sep 13 2024 12:00:00 Jan 15 2025
   cryptographic-algorithm MD5
  key 3
    key-string 7 070c285fad0622474941
   accept-lifetime local 00:00:00 Jan 15 2025 12:00:00 Jun 15 2025
   send-lifetime local 10:00:00 Jan 15 2025 12:00:00 Jun 15 2025
   cryptographic-algorithm MD5
```

Where to Go Next

For information about routing features that use keychains, see the *Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide*.

Additional References for Keychain Management

Related Documents

Related Topic	Document Title
Border Gateway Protocol	Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide
OSPFv2	Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	_

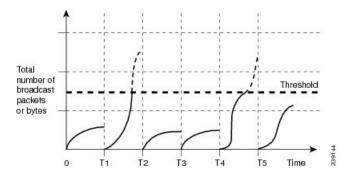
Additional References for Keychain Management

Configuring Traffic Storm Control

This chapter describes how to configure traffic storm control on the Cisco NX-OS device.

This chapter includes the following sections:

- About Traffic Storm Control, on page 399
- Licensing Requirements for Traffic Storm Control, on page 401
- Guidelines and Limitations for Traffic Storm Control, on page 401
- Default Settings for Traffic Storm Control, on page 402
- Configuring Traffic Storm Control, on page 403
- Verifying Traffic Storm Control Configuration, on page 404
- Monitoring Traffic Storm Control Counters, on page 404
- Configuration Example for Traffic Storm Control, on page 405
- Additional References for Traffic Storm Control, on page 405


About Traffic Storm Control

A traffic storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. You can use the traffic storm control feature to prevent disruptions on Layer 2 ports by a broadcast, multicast, or unicast traffic storm on physical interfaces.

Traffic storm control (also called traffic suppression) allows you to monitor the levels of the incoming broadcast, multicast, and unicast traffic over a 3.9-millisecond interval. During this interval, the traffic level, which is a percentage of the total available bandwidth of the port, is compared with the traffic storm control level that you configured. When the ingress traffic reaches the traffic storm control level that is configured on the port, traffic storm control drops the traffic until the interval ends.

This table shows the broadcast traffic patterns on a Layer 2 interface over a given interval. In this example, traffic storm control occurs between times T1 and T2 and between T4 and T5. During those intervals, the amount of broadcast traffic exceeded the configured threshold.

Figure 18: Broadcast Suppression

The traffic storm control threshold numbers and the time interval allow the traffic storm control algorithm to work with different levels of granularity. A higher threshold allows more packets to pass through.

Traffic storm control on the Cisco Nexus 9000v device is implemented in the hardware. The traffic storm control circuitry monitors packets that pass from a Layer 2 interface to the switching bus. Using the Individual/Group bit in the packet destination address, the circuitry determines if the packet is unicast or broadcast, tracks the current count of packets within the 3.9-millisecond interval, and filters out subsequent packets when a threshold is reached.

Traffic storm control uses a bandwidth-based method to measure traffic. You set the percentage of total available bandwidth that the controlled traffic can use. Because packets do not arrive at uniform intervals, the 3.9-millisecond interval can affect the behavior of traffic storm control.

The following are examples of how traffic storm control operation is affected

- If you enable broadcast traffic storm control, and broadcast traffic exceeds the level within the 3.9-millisecond interval, traffic storm control drops all broadcast traffic until the end of the interval.
- If you enable broadcast and multicast traffic storm control, and the combined broadcast and multicast traffic exceeds the level within the 3.9-millisecond interval, traffic storm control drops all broadcast and multicast traffic until the end of the interval.
- If you enable broadcast and multicast traffic storm control, and broadcast traffic exceeds the level within the 3.9-millisecond interval, traffic storm control drops all broadcast and multicast traffic until the end of the interval.
- If you enable broadcast and multicast traffic storm control, and multicast traffic exceeds the level within the 3.9-millisecond interval, traffic storm control drops all broadcast and multicast traffic until the end of the interval.

When the traffic exceeds the configured level, you can configure traffic storm control to perform the following optional corrective actions:

- Shut down—When ingress traffic exceeds the traffic storm control level that is configured on a port, traffic storm control puts the port into the error-disabled state. To reenable this port, you can use either the **shutdown** and **no shutdown** options on the configured interface, or the error-disable detection and recovery feature. You are recommended to use the **errdisable recovery cause storm-control** command for error-disable detection and recovery along with the **errdisable recovery interval** command for defining the recovery interval. The interval can range between 30 and 65535 seconds.
- Trap—You can configure traffic storm control to generate an SNMP trap when ingress traffic exceeds the configured traffic storm control level. The SNMP trap action is enabled by default. However, storm

control traps are not rate-limited by default. You can control the number of traps generated per minute by using the **snmp-server enable traps storm-control trap-rate** command.

By default, Cisco NX-OS takes no corrective action when traffic exceeds the configured level.

Licensing Requirements for Traffic Storm Control

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	Traffic storm control requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Guidelines and Limitations for Traffic Storm Control

Traffic storm control has the following configuration guidelines and limitations:

- You can configure traffic storm control on a port-channel interface.
- Specify the traffic storm control level as a percentage of the total interface bandwidth:
 - The level can be from 0 to 100.
 - The optional fraction of a level can be from 0 to 99.
 - 100 percent means no traffic storm control.
 - 0.0 percent suppresses all traffic.
- The storm control feature does not work if you enable storm control on an interface where sFlow is also enabled.
- Beginning with Cisco Nexus Release 7.0(3)I7(1), for Cisco Nexus 9500 Series switches with 9400 Series line cards, and Cisco Nexus 9300 Series switches, you can use the storm control CLI to specify bandwidth level either as a percentage of port capacity or packets-per-second.
- If you have configured a SVI for the VLAN on Cisco Nexus 9200, 9300-EX platform switches, or on the N9K-X9700-FX3 line cards, storm control broadcast does not work for ARP traffic (ARP request).
- Beginning with Cisco Nexus Release 7.0(3)I6(1), for Cisco Nexus NFE2-enabled devices, you can use the storm control-cpu to control the number of ARP packets sent to the CPU.
- Local link and hardware limitations prevent storm-control drops from being counted separately. Instead, storm-control drops are counted with other drops in the discards counter.
- Because of hardware limitations and the method by which packets of different sizes are counted, the traffic storm control level percentage is an approximation. Depending on the sizes of the frames that make up the incoming traffic, the actual enforced level might differ from the configured level by several percentage points.

- Due to a hardware limitation, the output for the **show interface counters storm-control** command does not show ARP suppressions when storm control is configured and the interface is actually suppressing ARP broadcast traffic. This limitation can lead to the configured action not being triggered but the incoming ARP broadcast traffic being correctly storm suppressed.
- Due to a hardware limitation, the packet drop counter cannot distinguish between packet drops caused by a traffic storm and packet drops caused by other discarded input frames. This limitation can lead to the configured action being triggered even in the absence of a traffic storm.
- Due to a hardware limitation, storm suppression packet statistics are not supported on uplink ports.
- Due to a hardware limitation, storm suppression packet statistics do not include broadcast traffic on VLANs with an active switched virtual interface (SVI).
- Due to a design limitation, storm suppression packet statistics do not work if the configured level is 0.0, which is meant to suppress all incoming storm packets.
- Traffic storm control is not supported on 100G ports on the Cisco Nexus 9300 Series switches. It is supported on the Cisco Nexus 9300-EX/FX and FX2 Series switches and the Cisco Nexus 9500 Series switches with the 9700-EX/FX line card.
- Traffic storm control is not supported on FEX interfaces.
- Traffic storm control is only for ingress traffic, specifically for unknown unicast, unknown multicast, and broadcast traffic.

Note

On Cisco Nexus 9000 Series switches, traffic storm control applies to unknown unicast traffic and not known unicast traffic

- When port channel members are error disabled due to a configured action, all individual member ports should be flapped to recover from the error disabled state.
- The following guidelines and limitations apply to Cisco Nexus 9200 Series switches:
 - Traffic storm control with unknown multicast traffic is not supported.
 - Packet-based statistics are not supported for traffic storm control as the policer supports only byte-based statistics.
 - Traffic storm control is not supported for copy-to-CPU packets.
- Storm control PPS option is supported only on Cisco Nexus 9300-FX2 platform switches.

Default Settings for Traffic Storm Control

This table lists the default settings for traffic storm control parameters.

Table 38: Default Traffic Storm Control Parameters

Parameters	Default
Traffic storm control	Disabled

Parameters	Default
Threshold percentage	100

Configuring Traffic Storm Control

You can set the percentage of total available bandwidth that the controlled traffic can use.

Note

- Traffic storm control uses a 3.9-millisecond interval that can affect the behavior of traffic storm control.
- You must carve the n9k-arp-acl TCAM region before setting storm-control-cpu rate on port-channel. For information on configuring the TCAM region size, see the *Configuring ACL TCAM Region Sizes* section in the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>interface {ethernet slot/port port-channel number}</pre>	Enters interface configuration mode.
	Example:	
	<pre>switch# interface ethernet 1/1 switch(config-if)#</pre>	
uni pps Exa swi	[no] storm-control {broadcast multicast unicast} level { <level-value %=""> pps < pps-value > }</level-value>	Configures traffic storm control for traffic on the interface. You can also configure bandwidt level as a percentage either of port capacity of
	Example:	packets-per-second. The default state is
	<pre>switch(config-if) # storm-control unicast level 40</pre>	dibuoi di
	Example:	
	<pre>switch(config-if)# storm-control broadcast level pps 8000</pre>	
Example:	[no] storm-control action trap	Generates an SNMP trap (defined in
	Example:	CISCO-PORT-STORM-CONTROL-MIB) and a syslog message when the traffic storm control
	<pre>switch(config-if)# storm-control action trap</pre>	limit is reached.

	Command or Action	Purpose
Step 5	<pre>[no] storm-control-cpu arp rate Example: switch(config-if) # storm-control-cpu arp rate</pre>	Configures traffic storm control rate for arp packets entering a port channel. This rate is divided equally among the members of the port channel.
Step 6	exit	Exits interface configuration mode.
	<pre>Example: switch(config-if)# exit switch(config)#</pre>	
Step 7	(Optional) show running-config interface {ethernet slot/port port-channel number}	Displays the traffic storm control configuration.
	<pre>Example: switch(config) # show running-config interface ethernet 1/1</pre>	
Step 8	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Verifying Traffic Storm Control Configuration

To display traffic storm control configuration information, perform one of the following tasks:

Command	Purpose
show running-config interface	Displays the traffic storm control configuration.
show access-list storm-control arp-stats interface [ethernet port-channel] number	Displays the storm control statistics for arp packets on the interface.

Monitoring Traffic Storm Control Counters

You can monitor the counters the Cisco NX-OS device maintains for traffic storm control activity.

Command	Purpose
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Displays the traffic storm control counters.

Configuration Example for Traffic Storm Control

The following example shows how to configure traffic storm control:

```
switch# configure terminal
switch(config)# interface Ethernet1/1
switch(config-if)# storm-control broadcast level 40
switch(config-if)# storm-control multicast level 40
switch(config-if)# storm-control unicast level 40
switch(config)# storm-control-cpu arp rate 150
```

The following example checks the programmed configured rate and the statistics of dropped ARP packets:

```
switch (config) # sh access-list storm-control-cpu arp-stats
interface port-channel 132
slot 1
======

ARP Policer Entry Statistics

Interface port-channel132:
------

Member Interface Entry-ID Rate RedPacket Count GreenPacket Count

Ethernet1/35 3976 50 0 0

slot 7
======

ARP Policer Entry Statistics

Interface port-channel132:
----------

Member Interface Entry-ID Rate RedPacket Count GreenPacket Count

Slot 7
=======
```

Additional References for Traffic Storm Control

This section includes additional information related to implementing traffic storm control.

Related Documents

Related Topic	Document Title
Cisco NX-OS licensing	Cisco NX-OS Licensing Guide

Additional References for Traffic Storm Control

Configuring Unicast RPF

This chapter describes how to configure unicast reverse path forwarding (uRPF) on Cisco NX-OS devices.

This chapter includes the following sections:

- About Unicast RPF, on page 407
- Licensing Requirements for Unicast RPF, on page 409
- Guidelines and Limitations for Unicast RPF, on page 409
- Default Settings for Unicast RPF, on page 410
- Configuring Unicast RPF for Cisco Nexus 9500 Switches with -R Line Cards, on page 411
- Configuring Unicast RPF for Cisco Nexus 9300 Switches, on page 412
- Configuration Examples for Unicast RPF, on page 414
- Verifying the Unicast RPF Configuration, on page 415
- Additional References for Unicast RPF, on page 415

About Unicast RPF

The unicast RPF feature reduces problems that are caused by the introduction of malformed or forged (spoofed) IPv4 or IPv6 source addresses into a network by discarding IPv4 or IPv6 packets that lack a verifiable IP source address. For example, a number of common types of Denial-of-Service (DoS) attacks, including Smurf and Tribal Flood Network (TFN) attacks, can take advantage of forged or rapidly changing source IPv4 or IPv6 addresses to allow attackers to thwart efforts to locate or filter the attacks. Unicast RPF deflects attacks by forwarding only the packets that have source addresses that are valid and consistent with the IP routing table.

When you enable unicast RPF on an interface, the switch examines all ingress packets received on that interface to ensure that the source address and source interface appear in the routing table and match the interface on which the packet was received. This examination of source addresses relies on the Forwarding Information Base (FIB).

Note

Unicast RPF is an ingress function and is applied only on the ingress interface of a switch at the upstream end of a connection.

Unicast RPF verifies that any packet received at a switch interface arrives on the best return path (return route) to the source of the packet by doing a reverse lookup in the FIB. If the packet was received from one of the best reverse path routes, the packet is forwarded as normal. If there is no reverse path route on the same

interface from which the packet was received, the source address might have been modified by the attacker. If unicast RPF does not find a reverse path for the packet, the packet is dropped.

Note

With unicast RPF, all equal-cost "best" return paths are considered valid, which means that unicast RPF works where multiple return paths exist, if each path is equal to the others in terms of the routing cost (number of hops, weights, and so on) and as long as the route is in the FIB. Unicast RPF also functions where Enhanced Interior Gateway Routing Protocol (EIGRP) variants are being used and unequal candidate paths back to the source IP address exist.

Unicast RPF Process

Unicast RPF has several key implementation principles:

- The packet must be received at an interface that has the best return path (route) to the packet source (a process called *symmetric routing*). There must be a route in the FIB that matches the route to the receiving interface. Static routes, network statements, and dynamic routing add routes to the FIB.
- IP source addresses at the receiving interface must match the routing entry for the interface.
- Unicast RPF is an input function and is applied only on the input interface of a device at the upstream end of a connection.

You can use unicast RPF for downstream networks, even if the downstream network has other connections to the Internet.

Caution

Be careful when using optional BGP attributes, such as weight and local preference, because an attacker can modify the best path back to the source address. Modification would affect the operation of unicast RPF.

When a packet is received at the interface where you have configured unicast RPF and ACLs, the Cisco NX-OS software performs the following actions:

- 1. Checks the input ACLs on the inbound interface.
- 2. Uses unicast RPF to verify that the packet has arrived on the best return path to the source, which it does by doing a reverse lookup in the FIB table.
- **3.** Conducts a FIB lookup for packet forwarding.
- **4.** Checks the output ACLs on the outbound interface.
- 5. Forwards the packet.

Licensing Requirements for Unicast RPF

Product	License Requirement	
Cisco NX-OS	Unicast RPF requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.	

Guidelines and Limitations for Unicast RPF

Unicast RPF (uRPF) has the following configuration guidelines and limitations:

- uRPF is supported for the following platforms:
 - Cisco Nexus 9500 Series switches with N9K-X9636C-R and N9K-X9636Q-R line cards, beginning with Cisco NX-OS Release 7.0(3)F2(1)
 - Cisco Nexus 9500 Series switches with N9K-X9636C-RX line cards, beginning with Cisco NX-OS Release 7.0(3)F3(1)
 - Cisco Nexus 9300 platform switches (excluding the 9300-EX/FX/FX2/FXP switches), beginning with Cisco NX-OS Release 7.0(3)I7(3)
- You must apply uRPF at the interface downstream from the larger portion of the network, preferably at the edges of your network.
- The further downstream that you apply uRPF, the finer the granularity you have in mitigating address spoofing and in identifying the sources of spoofed addresses. For example, applying uRPF on an aggregation device helps to mitigate attacks from many downstream networks or clients and is simple to administer, but it does not help identify the source of the attack. Applying uRPF at the network access server helps limit the scope of the attack and trace the source of the attack; however, deploying uRPF across many sites does add to the administration cost of operating the network.
- The more entities that deploy uRPF across Internet, intranet, and extranet resources means the better the chances of mitigating large-scale network disruptions throughout the Internet community and of tracing the source of an attack.
- uRPF will not inspect IP packets that are encapsulated in tunnels, such as generic routing encapsulation (GRE) tunnels. You must configure uRPF at a home gateway so that uRPF processes network traffic only after the tunneling and encryption layers have been stripped off the packets.
- You can use uRPF in any "single-homed" environment where there is only one access point out of the network or one upstream connection. Networks that have one access point provide symmetric routing, which means that the interface where a packet enters the network is also the best return path to the source of the IP packet.
- Do not use uRPF on interfaces that are internal to the network. Internal interfaces are likely to have routing asymmetry, which means that multiple routes to the source of a packet exist. You should configure uRPF only where there is natural or configured symmetry.

- uRPF allows packets with 0.0.0.0 source and 255.255.255 destination to pass so that the Bootstrap Protocol (BOOTP) and the Dynamic Host Configuration Protocol (DHCP) can operate correctly.
- When uRPF is enabled, the amount of static routes to null0 the switch can install is limited to the value of "Max V4 Ucast DA TCAM table entries" in "show hardware internal forwarding table utilization".
- The following guidelines and limitations apply only to Cisco Nexus 9500 Series switches with a N9K-X9636C-R, N9K-X9636C-RX, or N9K-X9636Q-R line card:
 - For strict uRPF to work, you must enable it on both the ingress interface and the interface where the source IP address is learned.
 - The switch hardware does not implement strict uRPF per the configured routing interface.
 - Strict uRPF is implemented per learned route on strict uRPF-enabled interfaces.
 - If a route is resolved as ECMP, strict uRPF will fall back to loose mode.
 - Because of the hardware limitation on the trap resolution, uRPF might not be applied on supervisor-bound packets via inband.
 - For IP traffic, both IPv4 and IPv6 configurations should be enabled simultaneously.
 - Due to hardware limitations, the N9K-X9636C-R, N9K-X9636C-RX, and N9K-X9636Q-R line cards support only the following combinations:

uRPF Configuration		Applied Traffic Check on Source IP Address			
IPv4	IPv6	IP Unipath	IP ECMP	MPLS EncapVPNECMP	Unipath MPLS VPN for N9K-X9636C-RX Line Card
Disable	Disable	Allow	Allow	Allow	Allow
Loose	Loose	uRPF loose	uRPF loose	uRPF loose	uRPF strict
Strict	Strict	uRPF strict	uRPF loose	uRPF loose	uRPF strict

Default Settings for Unicast RPF

This table lists the default settings for unicast RPF parameters.

Table 39: Default Unicast RPF Parameter Settings

Parameters	Default
Unicast RPF	Disabled

Configuring Unicast RPF for Cisco Nexus 9500 Switches with -R Line Cards

You can configure unicast RPF on an ingress interface for Cisco Nexus 9500 Series switches with an -R line card running Cisco NX-OS Release 7.0(3)F2(1) or a later release.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	interface ethernet slot/port	Enters interface configuration mode.
	Example:	
	<pre>switch(config)# interface ethernet 2/3 switch(config-if)#</pre>	
Step 3	{ip ipv6} address ip-address/length	Specifies an IPv4 or IPv6 address for the
	Example:	interface.
	switch(config-if)# ip address 172.23.231.240/23	
Step 4	{ip ipv6} verify unicast source reachable-via any	Configures unicast RPF on the interface for both IPv4 and IPv6.
	Example:	Note When you enable uRPF for IPv4 or
	<pre>switch(config-if)# ip verify unicast source reachable-via any</pre>	IPv6 (using the ip or ipv6 keywords), uRPF is enabled for both IPv4 and IPv6.
Step 5	(Optional) show ip interface ethernet slot/port	Displays the IP information for an interface.
	Example:	
	switch(config) # show ip interface ethernet 2/3	
Step 6	(Optional) show running-config interface ethernet slot/port	Displays the configuration for an interface in the running configuration.
	Example:	
	<pre>switch(config)# show running-config interface ethernet 2/3</pre>	
Step 7	(Optional) copy running-config startup-config	
	Example:	configuration.
	switch(config)# copy running-config startup-config	

Configuring Unicast RPF for Cisco Nexus 9300 Switches

You can configure one of the following Unicast RPF modes on an ingress interface for Cisco Nexus 9300 platform switches (excluding the 9300-EX/FX/FX2/FXP switches) running Cisco NX-OS Release 7.0(3)I7(3) or a later release:

Strict Unicast RPF mode

A strict mode check is successful when Unicast RPF finds a match in the FIB for the packet source address and the ingress interface through which the packet is received matches one of the Unicast RPF interfaces in the FIB match. If this check fails, the packet is discarded. You can use this type of Unicast RPF check where packet flows are expected to be symmetrical.

Loose Unicast RPF mode

A loose mode check is successful when a lookup of a packet source address in the FIB returns a match and the FIB result indicates that the source is reachable through at least one real interface. The ingress interface through which the packet is received is not required to match any of the interfaces in the FIB result.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	[no] system urpf disable	Enables Unicast RPF on the switch.	
	<pre>Example: switch(config) # no system urpf disable</pre>	Note You must reload the Cisco NX-OS box to apply the Unicast RPF configuration.	
Step 3	interface ethernet slot/port	Specifies an Ethernet interface and enters interface configuration mode.	
	Example:		
	<pre>switch(config)# interface ethernet 2/3 switch(config-if)#</pre>		
Step 4	{ip ipv6} address ip-address/length	Specifies an IPv4 or IPv6 address for the	
	Example:	interface.	
	switch(config-if)# ip address 172.23.231.240/23		
Step 5	{ip ipv6} verify unicast source reachable-via {any [allow-default] rx}	Configures Unicast RPF on the interface for both IPv4 and IPv6.	
	Example:		

	Command or Action	Purpose	
	<pre>switch(config-if)# ip verify unicast source reachable-via any</pre>	Note When you enable Unicast RPF for IPv4 or IPv6 (using the ip or ipv6 keyword), Unicast RPF is enabled for both IPv4 and IPv6.	
		You can configure only one version of the available IPv4 and IPv6 Unicast RPF command on an interface. When you configure one version, all the mode changes must be done by this version and all other versions will be blocked by that interface.	
		• The any keyword specifies loose Unica RPF.	
		 If you specify the allow-default keywor the source address lookup can match the default route and use that for verificatio 	
		Note The allow-default keyword is no applicable in the ALPM routing mode.	
		Note The source address lookup (in case of a loose Unicast RPF check) does not match the defaul route if you do not specify the allow-default keyword.	
		• The rx keyword specifies strict Unicast RPF.	
Step 6	exit	Exits interface configuration mode.	
	<pre>Example: switch(config-if)# exit switch(config)#</pre>		
Step 7	(Optional) show ip interface ethernet slot/port		
	Example:	verifies if Unicast RPF is enabled.	
	<pre>switch(config)# show ip interface ethernet 1/54 grep -i "unicast reverse path forwarding" IP unicast reverse path forwarding: none</pre>		
Step 8	(Optional) show running-config interface ethernet <i>slot/port</i>	Displays the configuration for an interface in the running configuration.	
	<pre>Example: switch(config) # show running-config interface ethernet 2/3</pre>		

	Command or Action	Purpose
Step 9	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuration Examples for Unicast RPF

The following example shows how to configure loose unicast RPF for IPv4 packets on a Cisco Nexus 9500 Series switch with an -R line card:

```
interface Ethernet2/3
  ip address 172.23.231.240/23
  ip verify unicast source reachable-via any
```

The following example shows how to configure loose unicast RPF for IPv6 packets on a Cisco Nexus 9500 Series switch with an -R line card:

```
interface Ethernet2/1
  ipv6 address 2001:0DB8:c18:1::3/64
  ipv6 verify unicast source reachable-via any
```

The following example shows how to configure loose unicast RPF for IPv4 packets on a Cisco Nexus 9300 platform switch:

```
no system urpf disable
interface Ethernet2/3
  ip address 172.23.231.240/23
  ip verify unicast source reachable-via any
```

The following example shows how to configure loose unicast RPF for IPv6 packets on a Cisco Nexus 9300 platform switch:

```
no system urpf disable
interface Ethernet2/1
  ipv6 address 2001:0DB8:c18:1::3/64
  ipv6 verify unicast source reachable-via any
```

The following example shows how to configure strict unicast RPF for IPv4 packets on a Cisco Nexus 9300 platform switch:

```
no system urpf disable
interface Ethernet2/2
ip address 172.23.231.240/23
ip verify unicast source reachable-via rx
```

The following example shows how to configure strict unicast RPF for IPv6 packets on a Cisco Nexus 9300 platform switch:

```
no system urpf disable
interface Ethernet2/4
ipv6 address 2001:0DB8:c18:1::3/64
ipv6 verify unicast source reachable-via rx
```

Verifying the Unicast RPF Configuration

To display unicast RPF configuration information, perform one of the following tasks:

Command	Purpose
show running-config interface ethernet slot/port	Displays the interface configuration in the running configuration.
show running-config ip [all]	Displays the IPv4 configuration in the running configuration.
show running-config ipv6 [all]	Displays the IPv6 configuration in the running configuration.
show startup-config interface ethernet slot/port	Displays the interface configuration in the startup configuration.
show startup-config ip	Displays the IP configuration in the startup configuration.

Additional References for Unicast RPF

This section includes additional information related to implementing unicast RPF.

Related Documents

Related Topic	Document Title
Data Management Engine (DME)-ized commands	Cisco Nexus 3000 and 9000 Series NX-API REST SDK User Guide and API Reference
MPLS VPN	Cisco Nexus 9000 Series NX-OS Label Switching Configuration Guide

Additional References for Unicast RPF

Configuring Switchport Blocking

This chapter describes how to configure switchport blocking on the Cisco NX-OS device.

This chapter includes the following sections:

- About Switchport Blocking, on page 417
- Licensing Requirements for Switchport Blocking, on page 417
- Guidelines and Limitations for Switchport Blocking, on page 417
- Default Settings for Switchport Blocking, on page 418
- Configuring Switchport Blocking, on page 418
- Verifying the Switchport Blocking Configuration, on page 419
- Configuration Example for Switchport Blocking, on page 419

About Switchport Blocking

Occasionally, unknown multicast or unicast traffic is flooded to a switch port because a MAC address has timed out or has not been learned by the switch. Security issues could arise if unknown multicast and unicast traffic is forwarded to a switch port. You can enable switchport blocking to guarantee that no multicast or unicast traffic is flooded to the port.

Licensing Requirements for Switchport Blocking

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	Switchport blocking requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Guidelines and Limitations for Switchport Blocking

Switchport blocking has the following configuration guidelines and limitations:

• Switchport blocking applies only to egress ports while traffic storm control applies only to ingress ports.

- Switchport blocking is supported on all switched ports (including PVLAN ports) and is applied to all VLANs on which the port is forwarding.
- Switchport blocking is not supported for FEX ports.
- When you block unknown multicast or unicast traffic for a port channel, it is blocked on all ports in the port-channel group.
- Switchport blocking does not offer levels of control. It prevents the flooding of all unknown egress multicast or unicast packets on the specified port.
- Switchport blocking drops control packets that originate from the CPU on Cisco Nexus 9500 Series switches. It does not drop packets on Cisco Nexus 9300 Series switches.

Default Settings for Switchport Blocking

This table lists the default settings for switchport blocking parameters.

Table 40: Default Switchport Blocking Parameters

Parameters	Default
Switchport blocking	Disabled

Configuring Switchport Blocking

By default, the switch floods packets with unknown destination MAC addresses to all ports. To prevent the forwarding of such traffic, you can configure a port to block unknown multicast or unicast packets.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>interface {ethernet slot/port port-channel number}</pre>	Enters interface configuration mode.
	Example:	
	<pre>switch# interface ethernet 1/1 switch(config-if)#</pre>	
Step 3	[no] switchport block {multicast unicast}	Prevents the flooding of unknown multicast or
	Example:	unicast packets on the specified interface.
	<pre>switch(config-if)# switchport block unicast</pre>	Use the no form of this command to resume normal forwarding on the port.

	Command or Action	Purpose
Step 4	(Optional) show interface [ethernet <i>slot/port</i> port-channel <i>number</i>] switchport	Displays the switchport blocking configuration.
	Example:	
	<pre>switch(config-if)# show interface ethernet 1/1 switchport</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

Verifying the Switchport Blocking Configuration

To display switchport blocking configuration information, perform one of the following tasks:

Command	Purpose
show interface switchport	Displays the switchport blocking configuration for all interfaces.
$\textbf{show interface } \{\textbf{ethernet} \ slot/port \ \ \textbf{port-channel} \ number \} \ \textbf{switchport}$	Displays the switchport blocking configuration for the specified interface.
show running-config interface [ethernet slot/port port-channel number]	Displays the switchport blocking configuration in the running configuration.

Configuration Example for Switchport Blocking

The following example shows how to block multicast and unicast flooding on Ethernet interface 1/2 and how to verify the configuration:

```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# switchport block multicast
switch(config-if)# switchport block unicast
switch(config-if)# show running-config interface ethernet 1/2
!Command: show running-config interface Ethernet1/2
!Time: Wed Apr 15 16:25:48 2015

version 79.2(1)
interface Ethernet1/2
switchport
switchport block multicast
switchport block unicast
```

Configuration Example for Switchport Blocking

Configuring Control Plane Policing

This chapter contains the following sections:

- About CoPP, on page 421
- Licensing Requirements for CoPP, on page 438
- Guidelines and Limitations for CoPP, on page 438
- Default Settings for CoPP, on page 440
- Configuring CoPP, on page 440
- Verifying the CoPP Configuration, on page 448
- Displaying the CoPP Configuration Status, on page 450
- Monitoring CoPP, on page 450
- Clearing the CoPP Statistics, on page 451
- Configuration Examples for CoPP, on page 451
- Additional References for CoPP, on page 453

About CoPP

Control Plane Policing (CoPP) protects the control plane and separates it from the data plane, which ensures network stability, reachability, and packet delivery.

This feature allows a policy map to be applied to the control plane. This policy map looks like a normal QoS policy and is applied to all traffic entering the switch from a non-management port. A common attack vector for network devices is the denial-of-service (DoS) attack, where excessive traffic is directed at the device interfaces.

The Cisco NX-OS device provides CoPP to prevent DoS attacks from impacting performance. Such attacks, which can be perpetrated either inadvertently or maliciously, typically involve high rates of traffic destined to the supervisor module or CPU itself.

The supervisor module divides the traffic that it manages into three functional components or planes:

Data plane

Handles all the data traffic. The basic functionality of a Cisco NX-OS device is to forward packets from one interface to another. The packets that are not meant for the switch itself are called the transit packets. These packets are handled by the data plane.

Control plane

Handles all routing protocol control traffic. These protocols, such as the Border Gateway Protocol (BGP) and the Open Shortest Path First (OSPF) Protocol, send control packets between devices. These packets are destined to router addresses and are called control plane packets.

Management plane

Runs the components meant for Cisco NX-OS device management purposes such as the command-line interface (CLI) and Simple Network Management Protocol (SNMP).

The supervisor module has both the management plane and control plane and is critical to the operation of the network. Any disruption or attacks to the supervisor module will result in serious network outages. For example, excessive traffic to the supervisor module could overload and slow down the performance of the entire Cisco NX-OS device. For example, a DoS attack on the supervisor module could generate IP traffic streams to the control plane at a very high rate, forcing the control plane to spend a large amount of time in handling these packets and preventing the control plane from processing genuine traffic.

Examples of DoS attacks include:

- Internet Control Message Protocol (ICMP) echo requests
- IP fragments
- TCP SYN flooding

These attacks can impact the device performance and have the following negative effects:

- Reduced service quality (such as poor voice, video, or critical applications traffic)
- High route processor or switch processor CPU utilization
- Route flaps due to loss of routing protocol updates or keepalives
- Unstable Layer 2 topology
- Slow or unresponsive interactive sessions with the CLI
- Processor resource exhaustion, such as the memory and buffers
- Indiscriminate drops of incoming packets

Caution

It is important to ensure that you protect the supervisor module from accidental or malicious attacks by configuring control plane protection.

Control Plane Protection

To protect the control plane, the Cisco NX-OS device segregates different packets destined for the control plane into different classes. Once these classes are identified, the Cisco NX-OS device polices the packets, which ensures that the supervisor module is not overwhelmed.

Control Plane Packet Types

Different types of packets can reach the control plane:

Receive packets

Packets that have the destination address of a router. The destination address can be a Layer 2 address (such as a router MAC address) or a Layer 3 address (such as the IP address of a router interface). These packets include router updates and keepalive messages. Multicast packets can also be in this category where packets are sent to multicast addresses that are used by a router.

Exception packets

Packets that need special handling by the supervisor module. For example, if a destination address is not present in the Forwarding Information Base (FIB) and results in a miss, the supervisor module sends an ICMP unreachable packet back to the sender. Another example is a packet with IP options set.

The following exceptions are possible from line cards only:

- match exception ip option
- match exception ipv6 option
- match exception ttl-failure

The following exceptions are possible from fabric modules only:

- match exception ipv6 icmp unreachable
- match exception ip icmp unreachable

The following exceptions are possible from line cards and fabric modules:

match exception mtu-failure

Redirected packets

Packets that are redirected to the supervisor module.

Glean packets

If a Layer 2 MAC address for a destination IP address is not present in the FIB, the supervisor module receives the packet and sends an ARP request to the host.

All of these different packets could be maliciously used to attack the control plane and overwhelm the Cisco NX-OS device. CoPP classifies these packets to different classes and provides a mechanism to individually control the rate at which the supervisor module receives these packets.

Classification for CoPP

For effective protection, the Cisco NX-OS device classifies the packets that reach the supervisor modules to allow you to apply different rate controlling policies based on the type of the packet. For example, you might want to be less strict with a protocol packet such as Hello messages but more strict with a packet that is sent to the supervisor module because the IP option is set. You configure packet classifications and rate controlling policies using class maps and policy maps.

Rate Controlling Mechanisms

Once the packets are classified, the Cisco NX-OS device has different mechanisms to control the rate at which packets arrive at the supervisor module. Two mechanisms control the rate of traffic to the supervisor module. One is called policing and the other is called rate limiting.

Using hardware policers, you can define separate actions for traffic that conforms to or violates certain conditions. The actions can transmit the packet, mark down the packet, or drop the packet.

You can configure the following parameters for policing:

Committed information rate (CIR)

Desired bandwidth, specified as a bit rate or a percentage of the link rate.

Committed burst (BC)

Size of a traffic burst that can exceed the CIR within a given unit of time and not impact scheduling In addition, you can set separate actions such as transmit or drop for conform and violate traffic.

For more information on policing parameters, see the Cisco Nexus 9000 Series NX-OS Quality of Service Configuration Guide.

Dynamic and Static CoPP ACLs

CoPP access control lists (ACLs) are classified as either dynamic or static. Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches use only dynamic CoPP ACLs. Cisco Nexus 9200 Series switches use both dynamic and static CoPP ACLs.

Dynamic CoPP ACLs work only for Forwarding Information Base (FIB)-based supervisor redirected packets, and static CoPP ACLs work for ACL-based supervisor redirected packets. Dynamic CoPP ACLs are supported for myIP and link-local multicast traffic, and static CoPP ACLs are supported for all other types of traffic.

Static CoPP ACLs are identified by a substring. Any ACL that has one of these substrings is categorized as a static CoPP ACL.

- MAC-based static CoPP ACL substrings:
 - acl-mac-cdp-udld-vtp
 - · acl-mac-cfsoe
 - · acl-mac-dot1x
 - acl-mac-12-tunnel
 - · acl-mac-13-isis
 - acl-mac-lacp
 - acl-mac-lldp
 - · acl-mac-sdp-srp
 - acl-mac-stp
 - acl-mac-undesirable
- Protocol-based static CoPP ACL substrings:
 - · acl-dhcp
 - · acl-dhcp-relay-response
 - acl-dhcp6
 - acl-dhcp6-relay-response
 - · acl-ptp
- Multicast-based static CoPP ACL substrings:
 - · acl-igmp

For more information on static CoPP ACLs, see Guidelines and Limitations for CoPP, on page 438.

Default Policing Policies

When you bring up your Cisco NX-OS device for the first time, the Cisco NX-OS software installs the default copp-system-p-policy-strict policy to protect the supervisor module from DoS attacks. You can set the level of protection by choosing one of the following CoPP policy options from the initial setup utility:

- Strict—This policy is 1 rate and 2 color.
- Moderate—This policy is 1 rate and 2 color. The important class burst size is greater than the strict policy but less than the lenient policy.
- Lenient—This policy is 1 rate and 2 color. The important class burst size is greater than the moderate policy but less than the dense policy.
- Dense—This policy is 1 rate and 2 color. The policer CIR values are less than the strict policy.
- Skip—No control plane policy is applied. (This option is removed starting with Cisco NX-OS Release 7.0(3)I2(1). For previous releases, Cisco does not recommend using the Skip option because it will impact the control plane of the network.)

If you do not select an option or choose not to execute the setup utility, the software applies strict policing. We recommend that you start with the strict policy and later modify the CoPP policies as required.

Note

Strict policing is not applied by default when using POAP, so you must configure a CoPP policy.

The copp-system-p-policy policy has optimized values suitable for basic device operations. You must add specific class and access-control list (ACL) rules that meet your DoS protection requirements. The default CoPP policy does not change when you upgrade the software.

Caution

Selecting the skip option and not subsequently configuring CoPP protection can leave your Cisco NX-OS device vulnerable to DoS attacks.

You can reassign the CoPP default policy by entering the setup utility again using the **setup** command from the CLI prompt or by using the **copp profile** command.

Related Topics

Changing or Reapplying the Default CoPP Policy, on page 446

Default Class Maps

The copp-system-class-critical class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-critical match access-group name copp-system-p-acl-bgp match access-group name copp-system-p-acl-rip match access-group name copp-system-p-acl-vpc match access-group name copp-system-p-acl-bgp6 match access-group name copp-system-p-acl-ospf match access-group name copp-system-p-acl-rip6 match access-group name copp-system-p-acl-eigrp match access-group name copp-system-p-acl-ospf6 match access-group name copp-system-p-acl-eigrp6 match access-group name copp-system-p-acl-eigrp6 match access-group name copp-system-p-acl-auto-rp
```

```
match access-group name copp-system-p-acl-mac-13-isis
```

The copp-system-class-exception class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-exception
  match exception ip option
  match exception ip icmp unreachable
  match exception ipv6 option
  match exception ipv6 icmp unreachable
```

The copp-system-class-exception-diag class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-exception-diag
   match exception ttl-failure
   match exception mtu-failure
```

The copp-system-class-important class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-important match access-group name copp-system-p-acl-hsrp match access-group name copp-system-p-acl-vrrp match access-group name copp-system-p-acl-hsrp6 match access-group name copp-system-p-acl-vrrp6 match access-group name copp-system-p-acl-mac-lldp
```

The copp-system-class-12-default class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-12-default
    match access-group name copp-system-p-acl-mac-undesirable
```

The copp-system-class-12-unpoliced class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-12-unpoliced
  match access-group name copp-system-p-acl-mac-stp
  match access-group name copp-system-p-acl-mac-lacp
  match access-group name copp-system-p-acl-mac-cfsoe
  match access-group name copp-system-p-acl-mac-sdp-srp
  match access-group name copp-system-p-acl-mac-12-tunnel
  match access-group name copp-system-p-acl-mac-cdp-udld-vtp
```

The copp-system-class-13mc-data class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-l3mc-data
    match exception multicast rpf-failure
    match exception multicast dest-miss
```

The copp-system-class-l3uc-data class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-l3uc-data
    match exception glean
```

The copp-system-class-management class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-management
   match access-group name copp-system-p-acl-ftp
   match access-group name copp-system-p-acl-ntp
   match access-group name copp-system-p-acl-ssh
   match access-group name copp-system-p-acl-http
   match access-group name copp-system-p-acl-ntp6
   match access-group name copp-system-p-acl-sftp
```

```
match access-group name copp-system-p-acl-snmp
match access-group name copp-system-p-acl-ssh6
match access-group name copp-system-p-acl-tftp
match access-group name copp-system-p-acl-thtps
match access-group name copp-system-p-acl-snmp6
match access-group name copp-system-p-acl-tftp6
match access-group name copp-system-p-acl-radius
match access-group name copp-system-p-acl-telnet
match access-group name copp-system-p-acl-telnet
match access-group name copp-system-p-acl-tacacs6
match access-group name copp-system-p-acl-telnet6
```

The copp-system-class-monitoring class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-monitoring
   match access-group name copp-system-p-acl-icmp
   match access-group name copp-system-p-acl-icmp6
   match access-group name copp-system-p-acl-traceroute
```

The copp-system-class-multicast-host class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-multicast-host
    match access-group name copp-system-p-acl-mld
```

The copp-system-class-multicast-router class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-multicast-router
match access-group name copp-system-p-acl-pim
match access-group name copp-system-p-acl-msdp
match access-group name copp-system-p-acl-pim6
match access-group name copp-system-p-acl-pim-reg
match access-group name copp-system-p-acl-pim6-reg
match access-group name copp-system-p-acl-pim-mdt-join
```

The copp-system-class-nat-flow class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-nat-flow
    match exception nat-flow
```

The copp-system-class-ndp class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-ndp
    match access-group name copp-system-p-acl-ndp
```

The copp-system-class-normal class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-normal
    match access-group name copp-system-p-acl-mac-dot1x
    match protocol arp
```

The copp-system-class-normal-dhcp class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-normal-dhcp
    match access-group name copp-system-p-acl-dhcp
    match access-group name copp-system-p-acl-dhcp6
```

The copp-system-class-normal-dhcp-relay-response class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-normal-dhcp-relay-response match access-group name copp-system-p-acl-dhcp-relay-response match access-group name copp-system-p-acl-dhcp6-relay-response
```

The copp-system-class-normal-igmp class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-normal-igmp
    match access-group name copp-system-p-acl-igmp
```

The copp-system-class-redirect class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-redirect
    match access-group name copp-system-p-acl-ptp
```

The copp-system-class-undesirable class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-undesirable
   match access-group name copp-system-p-acl-undesirable
   match exception multicast sg-rpf-failure
```

The copp-system-class-fcoe class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-fcoe
    match access-group name copp-system-p-acl-mac-fcoe
```


Note

The copp-system-class-fcoe class is not supported for Cisco Nexus 9200 Series switches.

Strict Default CoPP Policy

On Cisco Nexus 9200 Series switches, the strict CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-strict
  class copp-system-p-class-13uc-data
   set cos 1
   police cir 800 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-critical
   set cos 7
    police cir 36000 kbps bc 1280000 bytes conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
   police cir 2500 kbps bc 1280000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
    police cir 2600 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-management
   set cos 2
   police cir 10000 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 1
    police cir 1000 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-13mc-data
   set cos 1
    police cir 2400 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 1400 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-ndp
   set cos 6
```

```
police cir 1400 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp
  set cos 1
 police cir 1300 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
  police cir 1500 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-normal-igmp
 set cos 3
  police cir 3000 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-redirect
  set cos 1
  police cir 280 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-exception
  set cos 1
 police cir 150 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-exception-diag
  set cos 1
 police cir 150 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-monitoring
 set cos 1
  police cir 150 kbps bc 128000 bytes conform transmit violate drop
class copp-system-p-class-12-unpoliced
  set cos 7
 police cir 50 mbps bc 8192000 bytes conform transmit violate drop
class copp-system-p-class-undesirable
  set cos 0
  police cir 200 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
 police cir 800 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-12-default
  set cos 0
  police cir 400 kbps bc 32000 bytes conform transmit violate drop
class class-default
 set cos 0
  police cir 400 kbps bc 32000 bytes conform transmit violate drop
```

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the strict CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-strict
 class copp-system-p-class-13uc-data
   set cos 1
   police cir 250 pps bc 32 packets conform transmit violate drop
 class copp-system-p-class-critical
    set cos 7
   police cir 19000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
   police cir 3000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-multicast-router
    set cos 6
   police cir 3000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-management
   set cos 2
   police cir 3000 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 1
   police cir 2000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-13mc-data
   set cos 1
    police cir 3000 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal
```

```
police cir 1500 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-ndp
  set cos 6
 police cir 1500 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp
  set cos 1
 police cir 300 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
 set cos 1
 police cir 400 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-normal-igmp
 set cos 3
 police cir 6000 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-redirect
 set cos 1
 police cir 1500 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-exception
 set cos 1
 police cir 50 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-exception-diag
 set cos 1
  police cir 50 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-monitoring
 set cos 1
 police cir 300 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-12-unpoliced
 set cos 7
  police cir 20000 pps bc 8192 packets conform transmit violate drop
class copp-system-p-class-undesirable
 police cir 15 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-fcoe
  set cos 6
 police cir 1500 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
 police cir 100 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-12-default
  set cos 0
 police cir 50 pps bc 32 packets conform transmit violate drop
class class-default
 set cos 0
 police cir 50 pps bc 32 packets conform transmit violate drop
```

Moderate Default CoPP Policy

On Cisco Nexus 9200 Series switches, the moderate CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-moderate
  class copp-system-p-class-13uc-data
    set cos 1
    police cir 800 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-critical
    set cos 7
    police cir 36000 kbps bc 1920000 bytes conform transmit violate drop
  class copp-system-p-class-important
    set cos 6
    police cir 2500 kbps bc 1920000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-router
    set cos 6
    police cir 2600 kbps bc 192000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-router
    set cos 6
    police cir 2600 kbps bc 192000 bytes conform transmit violate drop
    class copp-system-p-class-management
```

```
police cir 10000 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-multicast-host
  set cos 1
 police cir 1000 kbps bc 192000 bytes conform transmit violate drop
class copp-system-p-class-13mc-data
  set cos 1
 police cir 2400 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-normal
  set cos 1
  police cir 1400 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-ndp
  set cos 6
 police cir 1400 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp
 set cos 1
 police cir 1300 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
 set cos 1
 police cir 1500 kbps bc 96000 bytes conform transmit violate drop
class copp-system-p-class-normal-igmp
  set cos 3
  police cir 3000 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-redirect
 set cos 1
 police cir 280 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-exception
 set cos 1
  police cir 150 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-exception-diag
 set cos 1
 police cir 150 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-monitoring
  set cos 1
 police cir 150 kbps bc 192000 bytes conform transmit violate drop
class copp-system-p-class-12-unpoliced
  set cos 7
 police cir 50 mbps bc 8192000 bytes conform transmit violate drop
class copp-system-p-class-undesirable
  set cos 0
 police cir 200 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
  police cir 800 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-12-default
  set cos O
 police cir 400 kbps bc 48000 bytes conform transmit violate drop
class class-default
  set cos 0
  police cir 400 kbps bc 48000 bytes conform transmit violate drop
```

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the moderate CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-moderate
  class copp-system-p-class-l3uc-data
    set cos 1
    police cir 250 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-critical
    set cos 7
    police cir 19000 pps bc 192 packets conform transmit violate drop
  class copp-system-p-class-important
    set cos 6
    police cir 3000 pps bc 192 packets conform transmit violate drop
```

```
class copp-system-p-class-multicast-router
 set cos 6
 police cir 3000 pps bc 192 packets conform transmit violate drop
class copp-system-p-class-management
 set cos 2
 police cir 3000 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-multicast-host
 set cos 1
 police cir 2000 pps bc 192 packets conform transmit violate drop
class copp-system-p-class-13mc-data
 set cos 1
  police cir 3000 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-normal
 set cos 1
 police cir 1500 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-ndp
 set cos 6
  police cir 1500 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp
 set cos 1
 police cir 300 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
 set cos 1
 police cir 400 pps bc 96 packets conform transmit violate drop
class copp-system-p-class-normal-igmp
 set cos 3
 police cir 6000 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-redirect
  set cos 1
 police cir 1500 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-exception
 set cos 1
 police cir 50 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-exception-diag
 set cos 1
 police cir 50 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-monitoring
 set cos 1
 police cir 300 pps bc 192 packets conform transmit violate drop
class copp-system-p-class-12-unpoliced
 set cos 7
 police cir 20000 pps bc 8192 packets conform transmit violate drop
class copp-system-p-class-undesirable
 set cos 0
  police cir 15 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-fcoe
 set cos 6
 police cir 1500 pps bc 192 packets conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
 police cir 100 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-12-default
 set cos 0
 police cir 50 pps bc 48 packets conform transmit violate drop
class class-default
 set cos 0
 police cir 50 pps bc 48 packets conform transmit violate drop
```

Lenient Default CoPP Policy

On Cisco Nexus 9200 Series switches, the lenient CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-lenient
  class copp-system-p-class-13uc-data
   set cos 1
   police cir 800 kbps bc 32000 bytes conform transmit violate drop
 class copp-system-p-class-critical
   set cos 7
    police cir 36000 kbps bc 2560000 bytes conform transmit violate drop
 class copp-system-p-class-important
   set cos 6
   police cir 2500 kbps bc 2560000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-router
    set cos 6
   police cir 2600 kbps bc 256000 bytes conform transmit violate drop
 class copp-system-p-class-management
   set cos 2
   police cir 10000 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 1
   police cir 1000 kbps bc 256000 bytes conform transmit violate drop
  class copp-system-p-class-13mc-data
   set cos 1
   police cir 2400 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 1400 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-ndp
   set cos 6
   police cir 1400 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-normal-dhcp
   set cos 1
   police cir 1300 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-normal-dhcp-relay-response
   set cos 1
    police cir 1500 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-normal-igmp
   set cos 3
   police cir 3000 kbps bc 64000 bytes conform transmit violate drop
 class copp-system-p-class-redirect
   set cos 1
    police cir 280 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-exception
   set cos 1
   police cir 150 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-exception-diag
    set cos 1
   police cir 150 kbps bc 64000 bytes conform transmit violate drop
 class copp-system-p-class-monitoring
   set cos 1
   police cir 150 kbps bc 256000 bytes conform transmit violate drop
  class copp-system-p-class-12-unpoliced
   set cos 7
   police cir 50 mbps bc 8192000 bytes conform transmit violate drop
  class copp-system-p-class-undesirable
   set cos 0
   police cir 200 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-nat-flow
   set cos 7
   police cir 800 kbps bc 64000 bytes conform transmit violate drop
  class copp-system-p-class-12-default
   set cos 0
   police cir 400 kbps bc 64000 bytes conform transmit violate drop
  class class-default
   set cos 0
```

police cir 400 kbps bc 64000 bytes conform transmit violate drop

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the lenient CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-lenient
  class copp-system-p-class-13uc-data
    set cos 1
    police cir 250 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-critical
   set cos 7
   police cir 19000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-important
    police cir 3000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
   police cir 3000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-management
    set cos 2
   police cir 3000 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 1
   police cir 2000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-13mc-data
    set cos 1
   police cir 3000 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
    police cir 1500 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-ndp
   set cos 6
   police cir 1500 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp
   set cos 1
    police cir 300 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp-relay-response
   set cos 1
   police cir 400 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-normal-igmp
   set cos 3
    police cir 6000 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-redirect
   set cos 1
   police cir 1500 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-exception
   police cir 50 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-exception-diag
   set cos 1
    police cir 50 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-monitoring
    set cos 1
   police cir 300 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-12-unpoliced
   set cos 7
   police cir 20000 pps bc 8192 packets conform transmit violate drop
  class copp-system-p-class-undesirable
    set cos O
   police cir 15 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-fcoe
   set cos 6
    police cir 1500 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-nat-flow
```

```
set cos 7
police cir 100 pps bc 64 packets conform transmit violate drop class copp-system-p-class-12-default
set cos 0
police cir 50 pps bc 64 packets conform transmit violate drop class class-default
set cos 0
police cir 50 pps bc 64 packets conform transmit violate drop
```

Dense Default CoPP Policy

On Cisco Nexus 9200 Series switches, the dense CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-dense
 class copp-system-p-class-13uc-data
   set cos 1
   police cir 800 kbps bc 32000 bytes conform transmit violate drop
 class copp-system-p-class-critical
   set cos 7
   police cir 4500 kbps bc 1280000 bytes conform transmit violate drop
  class copp-system-p-class-important
    set cos 6
   police cir 2500 kbps bc 1280000 bytes conform transmit violate drop
 class copp-system-p-class-multicast-router
   set cos 6
   police cir 370 kbps bc 128000 bytes conform transmit violate drop
 class copp-system-p-class-management
   set cos 2
   police cir 2500 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 2
   police cir 300 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-13mc-data
   set cos 1
   police cir 600 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 1400 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-ndp
   set cos 1
   police cir 350 kbps bc 32000 bytes conform transmit violate drop
 class copp-system-p-class-normal-dhcp
   set cos 1
    police cir 750 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-normal-dhcp-relay-response
   set cos 1
   police cir 750 kbps bc 128000 bytes conform transmit violate drop
 class copp-system-p-class-normal-igmp
   set cos 3
   police cir 1400 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-redirect
   set cos 1
   police cir 200 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-exception
    set cos 1
   police cir 200 kbps bc 32000 bytes conform transmit violate drop
 class copp-system-p-class-exception-diag
   set cos 1
   police cir 200 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-monitoring
   set cos 1
   police cir 150 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-12-unpoliced
```

```
set cos 7
police cir 50 mbps bc 8192000 bytes conform transmit violate drop
class copp-system-p-class-undesirable
set cos 0
police cir 100 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-12-default
set cos 0
police cir 200 kbps bc 32000 bytes conform transmit violate drop
class class-default
set cos 0
police cir 200 kbps bc 32000 bytes conform transmit violate drop
```

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the dense CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-dense
  class copp-system-p-class-13uc-data
   set cos 1
    police cir 250 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-critical
   set cos 7
   police cir 2500 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
    police cir 1200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
   police cir 1200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-management
   set cos 2
    police cir 1200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 2
   police cir 1000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-13mc-data
    set cos 1
    police cir 1200 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 750~\mathrm{pps} bc 32~\mathrm{packets} conform transmit violate drop
  class copp-system-p-class-ndp
    set cos 1
   police cir 750 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp
   set cos 1
   police cir 150 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp-relay-response
    set cos 1
   police cir 200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-normal-igmp
   set cos 3
    police cir 2500 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-redirect
   set cos 1
   police cir 1500 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-exception
   set cos 1
    police cir 50 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-exception-diag
   set cos 1
   police cir 50 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-monitoring
   police cir 50 pps bc 128 packets conform transmit violate drop
```

```
class copp-system-p-class-12-unpoliced
set cos 7
police cir 20000 pps bc 8192 packets conform transmit violate drop
class copp-system-p-class-undesirable
set cos 0
police cir 15 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-fcoe
set cos 6
police cir 750 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-12-default
set cos 0
police cir 25 pps bc 32 packets conform transmit violate drop
class class-default
set cos 0
police cir 25 pps bc 32 packets conform transmit violate drop
class class-default
set cos 0
police cir 25 pps bc 32 packets conform transmit violate drop
```

Packets Per Second Credit Limit

The aggregate packets per second (PPS) for a given policy (sum of PPS of each class part of the policy) is capped by an upper PPS Credit Limit (PCL). If an increase in PPS of a given class causes a PCL exceed, the configuration is rejected. To increase the desired PPS, the additional PPS beyond PCL should be decreased from other class(es).

Modular QoS Command-Line Interface

CoPP uses the Modular Quality of Service Command-Line Interface (MQC). MQC is a CLI structure that allows you to define a traffic class, create a traffic policy (policy map), and attach the traffic policy to an interface. The traffic policy contains the CoPP feature that will be applied to the traffic class.

Procedure

Step 1 Define a traffic class using the **class-map** command. A traffic class is used to classify traffic.

This example shows how to create a new class-map called copp-sample-class:

```
class-map type control-plane copp-sample-class
```

- Step 2 Create a traffic policy using the **policy-map** command. A traffic policy (policy map) contains a traffic class and one or more CoPP features that will be applied to the traffic class. The CoPP features in the traffic policy determine how to treat the classified traffic.
- Step 3 Attach the traffic policy (policy map) to the control plane using the **control-plane** and **service-policy** commands.

This example shows how to attach the policy map to the control plane:

```
control-plane
service-policy input copp-system-policy
```

Note The copp-system-policy is always configured and applied. There is no need to use this command explicitly.

CoPP and the Management Interface

The Cisco NX-OS device supports only hardware-based CoPP, which does not support the management interface (mgmt0). The out-of-band mgmt0 interface connects directly to the CPU and does not pass through the in-band traffic hardware where CoPP is implemented.

On the mgmt0 interface, ACLs can be configured to give or deny access to a particular type of traffic.

Related Topics

Configuring IP ACLs, on page 189 Configuring MAC ACLs, on page 259

Licensing Requirements for CoPP

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	CoPP requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Guidelines and Limitations for CoPP

CoPP has the following configuration guidelines and limitations:

- We recommend that you use the strict default CoPP policy initially and then later modify the CoPP policies based on the data center and application requirements.
- First generation Nexus 9000 series switches (non -EX/FX/FX2), do not support source-based CoPP. This limitation does not exist for cloud scale ASIC-based Nexus switches.
- Customizing CoPP is an ongoing process. CoPP must be configured according to the protocols and
 features used in your specific environment as well as the supervisor features that are required by the
 server environment. As these protocols and features change, CoPP must be modified.
- We recommend that you continuously monitor CoPP. If drops occur, determine if CoPP dropped traffic unintentionally or in response to a malfunction or attack. In either event, analyze the situation and evaluate the need to modify the CoPP policies.
- All the traffic that you do not specify in the other class maps is put into the last class, the default class. Monitor the drops in this class and investigate if these drops are based on traffic that you do not want or the result of a feature that was not configured and you need to add.
- All broadcast traffic is sent through CoPP logic in order to determine which packets (for example, ARP and DHCP) need to be redirected through an access control list (ACL) to the router processor. Broadcast traffic that does not need to be redirected is matched against the CoPP logic, and both conforming and violated packets are counted in the hardware but not sent to the CPU. Broadcast traffic that needs to be

sent to the CPU and broadcast traffic that does not need to be sent to the CPU must be separated into different classes.

- After you have configured CoPP, delete anything that is not being used, such as old class maps and unused routing protocols.
- You must ensure that the CoPP policy does not filter critical traffic such as routing protocols or interactive
 access to the device. Filtering this traffic could prevent remote access to the Cisco NX-OS device and
 require a console connection.
- The Cisco NX-OS software does not support egress CoPP or silent mode. CoPP is supported only on ingress (you cannot use the **service-policy output copp** command to the control plane interface).
- You can use the access control entry (ACE) hit counters in the hardware only for ACL logic. Use the software ACE hit counters and the **show access-lists** and **show policy-map type control-plane** commands to evaluate CPU traffic.
- The Cisco NX-OS device hardware performs CoPP on a per-forwarding-engine basis. CoPP does not support distributed policing. Therefore, you should choose rates so that the aggregate traffic does not overwhelm the supervisor module.
- If multiple flows map to the same class, individual flow statistics will not be available.
- If you upgrade from a Cisco NX-OS release that supports the CoPP feature to a Cisco NX-OS release that supports the CoPP feature with additional classes for new protocols, you must either run the setup utility using the **setup** command or use the **copp profile** command for the new CoPP classes to be available.
- Before you downgrade from a Cisco NX-OS release that supports the CoPP feature to an earlier Cisco NX-OS release that supports the CoPP feature, you should verify compatibility using the **show** incompatibility nxos bootflash: *filename* command. If an incompatibility exists, disable any features that are incompatible with the downgrade image before downgrading the software.
- You cannot disable CoPP. If you attempt to disable it, packets are rate limited at 50 packets per seconds [for releases prior to Cisco NX-OS Release 7.0(3)I2(1)], or an error message appears [starting with Cisco NX-OS Release 7.0(3)I2(1)].
- Skip CoPP policy option has been removed from the Cisco NX-OS initial setup utility because using it can impact the control plane of the network.
- Cisco Nexus 9200 Series switches support CoPP policer rates only in multiples of 10 kbps. If a rate is configured that is not a multiple of 10 kbps, the rate is rounded down. For example, the switch will use 50 kbps if a rate of 55 kbps is configured. (The **show policy-map type control-plane** command shows the user configured rate. See Verifying the CoPP Configuration, on page 448 for more information.)
- For Cisco Nexus 9200 Series switches, ip icmp redirect, ipv6 icmp redirect, ip icmp unreachable, ipv6 icmp unreachable, and mtu-failure use the same TCAM entry, and they will all be classified to the class map where the first exception is present in the policy. In the CoPP strict profile, they are classified to the class-exception class map. In a different CoPP policy, if the first exception is in a different class map (for example, class-exception-diag), the rest of the exceptions will be classified to the same class map.
- The copp-system-class-fcoe class is not supported for Cisco Nexus 9200 Series switches.
- The following guidelines and limitations apply to static CoPP ACLs:
 - Only Cisco Nexus 9200 Series switches use static CoPP ACLs.

- Static CoPP ACLs can be remapped to a different CoPP class.
- Access control entries (ACEs) cannot be modified or removed for static CoPP ACLs.
- If a CoPP ACL has a static ACL substring, it will be mapped to that type of traffic. For example, if the ACL includes the acl-mac-stp substring, STP traffic will be classified to the class map for that ACL.
- Static CoPP ACLs take priority over dynamic CoPP ACLs, regardless of their position in the CoPP policy, the order in which they are configured, and how they appear in the output of the **show policy-map type control-plane** command.
- You must have static CoPP ACLs in the CoPP policy. Otherwise, the CoPP policy will be rejected.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Default Settings for CoPP

This table lists the default settings for CoPP parameters.

Table 41: Default CoPP Parameters Settings

Parameters	Default	
Default policy	Strict	
Default policy	9 policy entries	
	Note The maximum number of supported policies with associated class maps is 128.	
Scale factor value	1.00	

Configuring CoPP

This section describes how to configure CoPP.

Configuring a Control Plane Class Map

You must configure control plane class maps for control plane policies.

You can classify traffic by matching packets based on existing ACLs. The permit and deny ACL keywords are ignored in the matching.

You can configure policies for IP version 4 (IPv4) and IP version 6 (IPv6) packets.

Before you begin

Ensure that you have configured the IP ACLs if you want to use ACE hit counters in the class maps.

Procedure

	Command or Action	Purpose	
Step 1	<pre>configure terminal Example: switch# configure terminal switch(config)#</pre>	Enters global configuration mode.	
Step 2	class-map type control-plane [match-all match-any] class-map-name Example: switch(config) # class-map type control-plane ClassMapA switch(config-cmap) #	Specifies a control plane class map and enters class map configuration mode. The default class matching is match-any. The name can be a maximum of 64 characters long and is case sensitive. Note You cannot use class-default, match-all, or match-any as class map names.	
Step 3	(Optional) match access-group name access-list-name Example: switch(config-cmap) # match access-group name MyAccessList	Specifies matching for an IP ACL. Note The permit and deny ACL keywords are ignored in the CoPP matching.	
Step 4	<pre>(Optional) match exception {ip ipv6} icmp redirect Example: switch(config-cmap) # match exception ip icmp redirect</pre>	redirect exception packets.	
Step 5	(Optional) match exception {ip ipv6} icmp unreachable Example: switch(config-cmap) # match exception ip icmp unreachable	unreachable exception packets.	
Step 6	<pre>(Optional) match exception {ip ipv6} option Example: switch(config-cmap) # match exception ip option</pre>	Specifies matching for IPv4 or IPv6 option exception packets.	
Step 7	<pre>match protocol arp Example: switch(config-cmap) # match protocol arp</pre>	Specifies matching for IP Address Resolution Protocol (ARP) and Reverse Address Resolution Protocol (RARP) packets.	

	Command or Action	Purpose
Step 8	exit	Exits class map configuration mode.
	Example:	
	<pre>switch(config-cmap)# exit switch(config)#</pre>	
Step 9	(Optional) show class-map type control-plane [class-map-name]	Displays the control plane class map configuration.
	Example:	
	<pre>switch(config)# show class-map type control-plane</pre>	
Step 10	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring a Control Plane Policy Map

You must configure a policy map for CoPP, which includes policing parameters. If you do not configure a policer for a class, the following default is configured:

- 50 packets per second (pps) with a burst of 32 packets (for Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches)
- 150 kilobits per second (kbps) with a burst of 32,000 bytes (for Cisco Nexus 9200 Series switches)

Before you begin

Ensure that you have configured a control plane class map.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	policy-map type control-plane policy-map-name	Specifies a control plane policy map and enters policy map configuration mode. The policy map name can have a maximum of 64 characters and is case sensitive.
	Example:	
	<pre>switch(config)# policy-map type control-plane ClassMapA switch(config-pmap)#</pre>	

	Command or Action	Purpose
Step 3	<pre>class {class-map-name [insert-before class-map-name2] class-default} Example:</pre>	Specifies a control plane class map name or the class default and enters control plane class configuration mode.
	switch(config-pmap)# class ClassMapA switch(config-pmap-c)#	The class-default class map is always at the end of the class map list for a policy map.
Step 4	Enter one of the following commands: • police [cir] {cir-rate [rate-type]} • police [cir] {cir-rate [rate-type]} [bc] burst-size [burst-size-type] • police [cir] {cir-rate [rate-type]]} conform transmit [violate drop] Example: switch (config-pmap-c) # police cir 52000 bc 1000 packets Example: switch (config-pmap-c) # police cir 3400 kbps bc 200 kbytes	Specifies the committed information rate (CIR). The rate range is as follows: • 0 to 268435456 pps (for Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches) • 0 to 800000000000 bps/gbps/kbps/mbps (for Cisco Nexus 9200 Series switches) Note Beginning with Cisco NX-OS Release 7.0(3)I4(1), the CIR rate range starts with 0. In previous releases, the CIR rate range starts with 1. A value of 0 drops the packet. The committed burst (BC) range is as follows: • 1 to 1073741 packets (for Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches) • 1 to 512000000 bytes/kbytes/mbytes (for Cisco Nexus 9200 Series switches) The conform transmit action transmits the packet. Note You can specify the BC and conform action for the same CIR.
Step 5	(Optional) logging drop threshold [drop-count [level syslog-level]] Example: switch(config-pmap-c) # logging drop threshold 100	Specifies the threshold value for dropped packets and generates a syslog if the drop count exceeds the configured threshold. The range for the <i>drop-count</i> argument is from 1 to 8000000000 bytes. The range for the <i>syslog-level</i> argument is from 1 to 7, and the default level is 4.
Step 6	(Optional) set cos cos-value Example: switch(config-pmap-c) # set cos 1	Specifies the 802.1Q class of service (CoS) value. The range is from 0 to 7. The default value is 0.
Step 7	exit Example:	Exits policy map class configuration mode.

	Command or Action	Purpose
	<pre>switch(config-pmap-c)# exit switch(config-pmap)#</pre>	
Step 8	exit	Exits policy map configuration mode.
	Example:	
	<pre>switch(config-pmap)# exit switch(config)#</pre>	
Step 9	(Optional) show policy-map type control-plane [expand] [name class-map-name]	Displays the control plane policy map configuration.
	Example:	
	<pre>switch(config)# show policy-map type control-plane</pre>	
Step 10	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Related Topics

Configuring a Control Plane Class Map, on page 440

Configuring the Control Plane Service Policy

You can configure one or more policy maps for the CoPP service policy.

Note

When you try to change the CoPP policy and apply a custom CoPP policy, it is configured in the hardware as non-atomic, and the following system message appears:

```
This operation can cause disruption of control traffic. Proceed (y/n)? [no] y 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT24-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT23-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT21-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT25-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT25-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT26-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT22-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT22-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP
```

Before you begin

Ensure that you have configured a control plane policy map.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	control-plane	Enters control plane configuration mode.
	Example:	
	<pre>switch(config)# control-plane switch(config-cp)#</pre>	
Step 3	[no] service-policy input policy-map-name	Specifies a policy map for the input traffic.
	<pre>Example: switch(config-cp)# service-policy input PolicyMapA</pre>	Repeat this step if you have more than one policy map.
		You cannot disable CoPP. If you enter the no form of this command, packets are rate limited at 50 packets per seconds [for releases prior to Cisco NX-OS Release 7.0(3)I2(1)], or an error message appears [starting with Cisco NX-OS Release 7.0(3)I2(1)].
Step 4	exit	Exits control plane configuration mode.
	Example:	
	<pre>switch(config-cp)# exit switch(config)#</pre>	
Step 5	(Optional) show running-config copp [all]	Displays the CoPP configuration.
	Example:	
	switch(config) # show running-config copp	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Related Topics

Configuring a Control Plane Policy Map, on page 442

Configuring the CoPP Scale Factor Per Line Card

You can configure the CoPP scale factor per line card.

The scale factor configuration is used to scale the policer rate of the applied CoPP policy for a particular line card. The accepted value is from 0.10 to 2.00. You can increase or reduce the policer rate for a particular line card without changing the current CoPP policy. The changes are effective immediately, so you do not need to reapply the CoPP policy.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	control-plane	Enters control plane configuration mode.
	Example:	
	<pre>switch(config)# control-plane switch(config-cp)#</pre>	
Step 3	scale-factor value module multiple-module-range	Configures the policer rate per line card. The allowed scale factor value is from 0.10 to 2.00.
	Example:	When the scale factor value is configured, the policing values are multiplied by the
	<pre>switch(config-cp)# scale-factor 1.10 module 1-2</pre>	corresponding scale factor value of the module, and it is programmed in the particular module.
		To revert to the default scale factor value of 1.00, use the no scale-factor value module multiple-module-range command, or explicitly set the default scale factor value to 1.00 using the scale-factor 1 module multiple-module-range command.
Step 4	(Optional) show policy-map interface control-plane	Displays the applied scale factor values when a CoPP policy is applied.
	Example:	
	<pre>switch(config-cp)# show policy-map interface control-plane</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Changing or Reapplying the Default CoPP Policy

You can change to a different default CoPP policy, or you can reapply the same default CoPP policy.

Procedure

	Command or Action	Purpose
Step 1	<pre>[no] copp profile [strict moderate lenient dense] Example: switch(config) # copp profile moderate</pre>	Applies the CoPP best practice policy. You cannot disable CoPP. If you enter the no form of this command, packets are rate limited at 50 packets per seconds [for releases prior to Cisco NX-OS Release 7.0(3)I2(1)], or an error message appears [starting with Cisco NX-OS Release 7.0(3)I2(1)].
Step 2	(Optional) show copp status Example: switch(config) # show copp status	Displays the CoPP status, including the last configuration operation and its status. This command also enables you to verify that the CoPP best practice policy is attached to the control plane.
Step 3	(Optional) show running-config copp Example: switch(config) # show running-config copp	Displays the CoPP configuration in the running configuration.

Related Topics

Changing or Reapplying the Default CoPP Policy Using the Setup Utility, on page 452

Copying the CoPP Best Practice Policy

The CoPP best practice policy is read-only. If you want to modify its configuration, you must copy it.

Procedure

	Command or Action	Purpose
Step 1	<pre>copp copy profile {strict moderate lenient dense} {prefix suffix} string Example: switch# copp copy profile strict prefix abc</pre>	CoPP renames all class maps and policy maps with the specified prefix or suffix.
Step 2	(Optional) show copp status Example: switch# show copp status	Displays the CoPP status, including the last configuration operation and its status. This command also enables you to verify that the copied policy is not attached to the control plane.
Step 3	(Optional) show running-config copp Example: switch# show running-config copp	Displays the CoPP configuration in the running configuration, including the copied policy configuration.

Verifying the CoPP Configuration

To display CoPP configuration information, perform one of the following tasks:

Command	Purpose
show policy-map type control-plane [expand] [name policy-map-name]	Displays the control plane policy map with associated class maps and CIR and BC values.
show policy-map interface control-plane	Displays the policy values with associated class maps and drops per policy or class map. It also displays the scale factor values when a CoPP policy is applied. When the scale factor value is the default (1.00), it is not displayed.
	Note The scale factor changes the CIR and BC values internally on each module, but the display shows the configured CIR and BC values only. The actual applied value on a module is the scale factor multiplied by the configured value.
show class-map type control-plane [class-map-name]	Displays the control plane class map configuration, including the ACLs that are bound to this class map.

Command	Purpose
show copp diff profile {strict moderate lenient dense} [prior-ver] profile {strict moderate lenient dense} show copp diff profile	Displays the difference between two CoPP best practice policies.
	When you do not include the prior-ver option, this command displays the difference between two currently applied default CoPP best practice policies (such as the currently applied strict and currently applied moderate policies).
	When you include the prior-ver option, this command displays the difference between a currently applied default CoPP best practice policy and a previously applied default CoPP best practice policy (such as the currently applied strict and the previously applied lenient policies).
show copp profile {strict moderate lenient dense}	Displays the details of the CoPP best practice policy, along with the classes and policer values.
show running-config aclmgr [all]	Displays the user-configured access control lists (ACLs) in the running configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the running configuration.
show running-config copp [all]	Displays the CoPP configuration in the running configuration.
show startup-config aclmgr [all]	Displays the user-configured access control lists (ACLs) in the startup configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the startup configuration.

Displaying the CoPP Configuration Status

Procedure

	Command or Action	Purpose
Step 1	switch# show copp status	Displays the configuration status for the CoPP feature.

Example

This example shows how to display the CoPP configuration status:

switch# show copp status

Monitoring CoPP

Procedure

	Command or Action	Purpose
Step 1	switch# show policy-map interface control-plane	Displays packet-level statistics for all classes that are part of the applied CoPP policy.
		Statistics are specified in terms of OutPackets (packets admitted to the control plane) and DropPackets (packets dropped because of rate limiting).

Example

This example shows how to monitor CoPP:

```
switch# show policy-map interface control-plane
Control Plane

Service-policy input: copp-system-p-policy-strict

class-map copp-system-p-class-critical (match-any)
   set cos 7
   police cir 19000 pps , bc 128 packets
   module 4 :
        transmitted 373977 packets;
        dropped 0 packets;
```

Clearing the CoPP Statistics

Procedure

	Command or Action	Purpose
Step 1	(Optional) switch# show policy-map interface control-plane	Displays the currently applied CoPP policy and per-class statistics.
Step 2	switch# clear copp statistics	Clears the CoPP statistics.

Example

This example shows how to clear the CoPP statistics for your installation:

```
switch# show policy-map interface control-plane
switch# clear copp statistics
```

Configuration Examples for CoPP

This section includes example CoPP configurations.

Copp Configuration Example

The following example shows how to configure CoPP using IP ACLs and MAC ACLs:

```
configure terminal
ip access-list copp-system-p-acl-igmp
permit igmp any 10.0.0.0/24
ip access-list copp-system-p-acl-msdp
permit tcp any any eq 639
mac access-list copp-system-p-acl-arp
permit any any 0x0806
ip access-list copp-system-p-acl-tacas
permit udp any any eq 49
ip access-list copp-system-p-acl-ntp
permit udp any 10.0.1.1/23 eq 123
ip access-list copp-system-p-acl-icmp
permit icmp any any
class-map type control-plane match-any copp-system-p-class-critical
match access-group name copp-system-p-acl-igmp
match access-group name copp-system-p-acl-msdp
class-map type control-plane match-any copp-system-p-class-normal
match access-group name copp-system-p-acl-icmp
match exception ip icmp redirect
```

class copp-arp-class
police pps 500

```
match exception ip icmp unreachable
match exception ip option
policy-map type control-plane copp-system-p-policy
class copp-system-p-class-critical
police cir 19000 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-important
police cir 500 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-normal
police cir 300 pps bc 32 packets conform transmit violate drop
class class-default
police cir 50 pps bc 32 packets conform transmit violate drop
control-plane
service-policy input copp-system-p-policy
Create CoPP class and associate ACL:
class-map type control-plane copp-arp-class
match access-group name copp-arp-acl
Add the class to the CoPP policy:
policy-map type control-plane copp-system-policy
```

Changing or Reapplying the Default CoPP Policy Using the Setup Utility

The following example shows how to change or reapply the default CoPP policy using the setup utility.

```
--- Basic System Configuration Dialog ---

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

*Note: setup is mainly used for configuring the system initially, when no configuration is present. So setup always assumes system defaults and not the current system configuration values.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Do you want to enforce secure password standard (yes/no)[y]: <CR>

Create another login account (yes/no) [n]: n

Configure read-only SNMP community string (yes/no) [n]: n
```

```
Enter the switch name : <CR>
  Enable license grace period? (yes/no) [n]: n
  Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]: n
  Configure the default gateway? (yes/no) [y]: n
  Configure advanced IP options? (yes/no) [n]: <CR>
  Enable the telnet service? (yes/no) [n]: y
  Enable the ssh service? (yes/no) [y]: <CR>
   Type of ssh key you would like to generate (dsa/rsa) : <CR>
  Configure the ntp server? (yes/no) [n]: n
  Configure default interface layer (L3/L2) [L3]: <CR>
  Configure default switchport interface state (shut/noshut) [shut]: <CR>
  Configure best practices CoPP profile (strict/moderate/lenient/dense/skip) [strict]:
strict
The following configuration will be applied:
  password strength-check
 no license grace-period
 no telnet server enable
 no system default switchport
  system default switchport shutdown
  policy-map type control-plane copp-system-p-policy
Would you like to edit the configuration? (yes/no) [n]: <CR>
Use this configuration and save it? (yes/no) [y]: y
switch#
```

Additional References for CoPP

This section provides additional information related to implementing CoPP.

Related Documents

Related Topic	Document Title
Licensing	Cisco NX-OS Licensing Guide

Standards

Standards	Title
RFC 2698	A Two Rate Three Color Marker

Additional References for CoPP

Configuring Rate Limits

This chapter describes how to configure rate limits for supervisor-bound traffic on Cisco NX-OS devices.

This chapter includes the following sections:

- About Rate Limits, on page 455
- Licensing Requirements for Rate Limits, on page 456
- Guidelines and Limitations for Rate Limits, on page 456
- Default Settings for Rate Limits, on page 457
- Configuring Rate Limits, on page 457
- Monitoring Rate Limits, on page 459
- Clearing the Rate Limit Statistics, on page 459
- Verifying the Rate Limit Configuration, on page 460
- Configuration Examples for Rate Limits, on page 460
- Additional References for Rate Limits, on page 461

About Rate Limits

Rate limits can prevent redirected packets for exceptions from overwhelming the supervisor module on a Cisco NX-OS device.

You can configure rate limits for the following types of redirected packets:

- Access-list log packets
- Bidirectional Forwarding Detection (BFD) packets
- Catch-all exception traffic
- Fabric Extender (FEX) traffic
- Layer 3 glean packets
- Layer 3 multicast data packets
- SPAN egress traffic

For Cisco Nexus 9200, 9332C, 9364C, 9300-EX, 9300-FX Series switches and Cisco Nexus 9500 platform switches with -EX/FX line cards, the CoPP policer rate is kilo bits per second. For other Cisco Nexus 9000

Series switches, the CoPP policer rate is in packets per second; However, it is kilo bits per second for SPAN egress traffic.

Licensing Requirements for Rate Limits

The following table shows the licensing requirements for this feature:

Product	License Requirement
Cisco NX-OS	No license is required for rate limits. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For an explanation of the Cisco NX-OS licensing scheme, see the <i>Cisco NX-OS Licensing Guide</i> .

Guidelines and Limitations for Rate Limits

Rate limits has the following configuration guidelines and limitations:

• You can set rate limits for supervisor-bound exception and redirected traffic. Use control plane policing (CoPP) for other types of supervisor-bound traffic.

Note

Hardware rate-limiters protect the supervisor CPU from excessive inbound traffic. The traffic rate allowed by the hardware rate-limiters is configured globally and applied to each individual I/O module. The resulting allowed rate depends on the number of I/O modules in the system. CoPP provides more granular supervisor CPU protection by utilizing the modular quality-of-service CLI (MQC).

- Beginning with Cisco NX-OS Release 7.0(3)I6(1), you can configure a hardware rate-limiter to show statistics for outbound traffic on SPAN egress ports. This rate-limiter is supported on all Cisco Nexus 9000, 9300, and 9500 Series switches, and the Cisco Nexus 3164Q, 31128PQ, 3232C, and 3264Q switches.
- Beginning with Cisco NX-OS Release 7.0(3)I6(1):
 - The rate-limiter on egress ports is limited per pipe on the Cisco Nexus 9300 and 9500 Series switches; Cisco Nexus 3164Q and 31128PQ switches; and the Cisco Nexus 3232C and 3264Q switches. The rate-limiter on egress ports is limited per slice on the Cisco Nexus Cisco Nexus 9200 and 9300-EX Series switches.
 - Cisco Nexus 9300 and 9500 Series switches; Cisco Nexus 3164Q and 31128PQ switches; and the Cisco Nexus 3232C and 3264Q switches, support both local and ERSPAN. However, the rate-limiter only applies to ERSPAN. You must configure e-racl ACL TCAM region to enable the rate-limiter on these switches. (For more information, see the ACL TCAM Regions section in the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.)
 - Cisco Nexus 9200 and 9300-EX Series switches; and the N9K-X9736C-EX, N9K-97160YC-EX, N9K-X9732C-EX, N9K-X9732C-EXM line cards, the SPAN egress rate-limiter applies to both ERSPAN and local SPAN. You do not require special TCAM carving to use the rate-limiter on these devices.

- For Cisco Nexus 92160YC-X, 92304QC, 9272Q, 9232C, 92300YC, 9348GC-FXP, 93108TC-FX, 93180YC-FX ToR switches and Cisco Nexus 3232C and 3264Q switches, you should not configure both sFlow and ERSPAN.
- The **rate-limit cpu direction** {**input** | **output** | **both**} **pps** *packets* **action log** command is not supported on Cisco Nexus 9000 Series switches.

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Related Topics

Configuring Control Plane Policing, on page 421

Default Settings for Rate Limits

This table lists the default settings for rate limits parameters.

Table 42: Default Rate Limits Parameters Settings

Parameters	Default
Access-list log packets rate limit	100 packets per second
BFD packets rate limit	10000 packets per second
Exception packets rate limit	50 packets per second
FEX packets rate limit	1000 packets per second
Layer 3 glean packets rate limit	100 packets per second
Layer 3 multicast data packets rate limit	3000 packets per second
SPAN egress rate limit	No limit

Configuring Rate Limits

You can set rate limits on supervisor-bound traffic.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	hardware rate-limiter access-list-log {packets disable} [module module [port start end]]	Configures rate limits for packets that are copied to the supervisor module for access list logging. The range is 0–10000.
	Example:	
	<pre>switch(config)# hardware rate-limiter access-list-log 200</pre>	
Step 3	hardware rate-limiter bfd packets [module module [port start end]]	Configures rate limits for bidirectional forwarding detection (BFD) packets. The range is 0–10000.
	Example:	18 0–10000.
	<pre>switch(config) # hardware rate-limiter bfd 500</pre>	
Step 4	hardware rate-limiter exception packets [module module [port start end]]	Configures rate limits for any exception traffic in the system that is not classified by the
	Example:	Control Plane Policing (CoPP) policy. The
	<pre>switch(config)# hardware rate-limiter exception 500</pre>	range is 0–10000.
Step 5	hardware rate-limiter fex packets [module module [port start end]]	Configures rate limits for supervisor-bound FEX traffic. The range is 0–10000.
	Example:	
	<pre>switch(config)# hardware rate-limiter fex 500</pre>	
Step 6	hardware rate-limiter layer-3 glean packets [module module [port start end]]	Configures rate limits for Layer 3 glean packets. The range is 0–10000.
	Example: switch(config)# hardware rate-limiter layer-3 glean 500	A node receiving traffic for a particular destination might be unable to forward traffic because it is unaware of the rewrite information or the physical layer interface behind which the destination resides. During this time, it is possible to install a glean entry in the data path for that destination. Because this might not be a pointer to the global punt adjacency, a reserved module or port value is used to punt such packets to the supervisor. This glean rate can be controlled using the given rate limiter.
Step 7	hardware rate-limiter layer-3 multicast local-groups packets [module module [port start end]] Example:	Configures rate limits for Layer 3 multicast data packets that are punted for initiating a shortest-path tree (SPT) join. The range is 0–10000.
	switch(config)# hardware rate-limiter layer-3 multicast local-groups 300	

	Command or Action	Purpose		
Step 8	hardware rate-limiter span-egress rate [module module]	Configures rate limits for SPAN for egress traffic. The range is 0–100000000.		
	Example:	Note You should not configure both sFlow		
switch(config)# hardware rate-limiter span-egress 123	and the SPAN egress rate-limiter.			
Step 9	(Optional) show hardware rate-limiter [access-list-log bfd exception fex layer-3 glean layer-3 multicast local-groups module module]	Displays the rate limit configuration. The module range is 1–30.		
	Example:			
	switch# show hardware rate-limiter			
Step 10	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.		
	Example:			
	switch# copy running-config startup-config			

Monitoring Rate Limits

You can monitor rate limits.

Procedure

	Command or Action	Purpose
Step 1	show hardware rate-limiter [access-list-log bfd exception fex layer-3 glean layer-3 multicast local-groups span-egress module module]	Displays the rate limit statistics.
	Example:	
	switch# show hardware rate-limiter access-list-log	

Clearing the Rate Limit Statistics

You can clear the rate limit statistics.

Procedure

	Command or Action	Purpose
Step 1	clear hardware rate-limiter {all	Clears the rate limit statistics.
	access-list-log bfd exception fex layer-3	

Command or Action	Purpose
glean layer-3 multicast local-groups span-egress [module module] }	
Example:	
<pre>switch# clear hardware rate-limiter access-list-log</pre>	

Verifying the Rate Limit Configuration

To display the rate limit configuration information, perform the following tasks:

Command	Purpose
show hardware rate-limiter [access-list-log bfd exception fex layer-3 glean layer-3 multicast local-groups span-egress module module]	

Configuration Examples for Rate Limits

The following example shows how to configure rate limits for packets copied to the supervisor module for access list logging:

```
switch(config)# hardware rate-limiter access-list-log
switch(config)# show hardware rate-limiter access-list-log
Units for Config: kilo bits per second
Allowed, Dropped & Total: aggregated since last clear counters
Module: 4
 R-L Class Config Allowed Dropped Total
 access-list-log
                    100
 Port group with configuration same as default configuration
    Eth4/1-36
Module: 22
                               Allowed
 R-L Class
                 Config
                                             Dropped
 access-list-log 100
 Port group with configuration same as default configuration
     Eth22/1-0
```

The following example shows how the SPAN egress rate limiter might be in conflict with sFlow:

```
switch(config)# hardware rate-limiter span-egress 123
Warning: This span-egress rate-limiter might affect functionality of sFlow
switch(config)# show hardware rate-limiter span-egress
Units for Config: kilo bits per second
Allowed, Dropped & Total: aggregated since Module: 1
R-L Class Config Allowed Dropped Total
```

+			+-	+
L3 glean	100	0	0	0
L3 mcast loc-grp	3000	0	0	0
access-list-log	100	0	0	0
bfd	10000	0	0	0
exception	50	0	0	0
fex	3000	0	0	0
span	50	0	0	0
dpss	6400	0	0	0
span-egress	123	0	0	0
< <configured< td=""><td></td><td></td><td></td><td></td></configured<>				

Additional References for Rate Limits

This section includes additional information related to implementing rate limits.

Related Documents

Related Topic	Document Title
Cisco NX-OS licensing	Cisco NX-OS Licensing Guide

Additional References for Rate Limits

Configuring MACsec

This document describes how to configure MACsec on Cisco NX-OS devices.

- About MACsec, on page 463
- Licensing Requirements for MACsec, on page 464
- Guidelines and Limitations for MACsec, on page 464
- Enabling MACsec, on page 467
- Disabling MACsec, on page 467
- Configuring a MACsec Keychain and Keys, on page 468
- MACsec Packet-Number Exhaustion, on page 470
- Configuring MACsec Fallback Key, on page 470
- Configuring a MACsec Policy, on page 471
- Rotating PSKs, on page 473
- Verifying the MACsec Configuration, on page 473
- Displaying MACsec Statistics, on page 476
- Configuration Example for MACsec, on page 479
- XML Examples, on page 480
- MIBs, on page 488
- Related Documentation, on page 488

About MACsec

Media Access Control Security (MACsec) an IEEE 802.1AE along with MACsec Key Agreement (MKA) protocol provide secure communications on Ethernet links. It offers the following:

- Provides line rate encryption capabilities.
- Helps to ensure data confidentiality by providing strong encryption at Layer 2.
- Provides integrity checking to help ensure that data cannot be modified in transit.
- Can be selectively enabled using a centralized policy to help ensure that it is enforced where required while allowing non-MACsec-capable components to access the network.
- Encrypts packets on a hop-by-hop basis at Layer 2, allowing the network to inspect, monitor, mark, and forward traffic according to your existing policies (unlike end-to-end Layer 3 encryption techniques that hide the contents of packets from the network devices they cross).

Key Lifetime and Hitless Key Rollover

A MACsec keychain can have multiple pre-shared keys (PSKs), each configured with a key ID and an optional lifetime. A key lifetime specifies at which time the key activates and expires. In the absence of a lifetime configuration, the default lifetime is unlimited. When a lifetime is configured, MKA rolls over to the next configured pre-shared key in the keychain after the lifetime is expired. The time zone of the key can be local or UTC. The default time zone is UTC.

To configure a MACsec keychain, see Configuring a MACsec Keychain and Keys, on page 468.

A key can roll over to a second key within the same keychain by configuring the second key (in the keychain) and configuring a lifetime for the first key. When the lifetime of the first key expires, it automatically rolls over to the next key in the list. If the same key is configured on both sides of the link at the same time, then the key rollover is hitless (that is, the key rolls over without traffic interruption).

Fallback Key

A MACsec session can fail due to a key/key name (CKN) mismatch or a finite key duration between the switch and a peer. If a MACsec session does fail, a fallback session can take over if a fallback key is configured. A fallback session prevents downtime due to primary session failure and allows a user time to fix the key issue causing the failure. A fallback key also provides a backup session if the primary session fails to start. This feature is optional.

To configure a MACsec fallback key, see Configuring MACsec Fallback Key, on page 470.

Licensing Requirements for MACsec

Product License Requirement		License Requirement
		MACsec requires a Security license. For a complete explanation of the Cisco NX-OS licensing scheme to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.

Guidelines and Limitations for MACsec

MACsec has the following guidelines and limitations:

- MACsec is supported on the N9K-X9736C-FX and the N9K-X9732C-EXM line cards, and on the following interface types:
 - Layer 2 switch ports (access and trunk)
 - Layer 3 routed interfaces (no subinterfaces)

Note

Enabling MACsec on the Layer 3 routed interface also enables encryption on all the subinterfaces that are defined under that interface. However, selectively enabling MACsec on a subset of subinterfaces of the same Layer 3 routed interface is currently not supported.

- Layer 2 and Layer 3 port channels (no subinterfaces)
- Secure Channel Identified (SCI) encoding cannot be disabled on Cisco Nexus 9000 Series switches.
- MACsec is not supported on Nexus ToR switches.
- Beginning with Cisco Nexus Release 7.0(3)I7(8), MACsec is supported on N9K-X9732C-FX line cards.
- When you disable the MACsec feature immediately after a sw-over, some sessions end up pending while some peers are in a secure state.
- MKA is the only supported key exchange protocol for MACsec. The Security Association Protocol (SAP) is not supported.
- Link-level flow control (LLFC) and priority flow control (PFC) are not supported with MACsec.
- Multiple MACsec peers (different SCI values) for the same interface are not supported.
- Beginning with Cisco NX-OS Release 7.0(3)I7(4), you can retain the MACsec configuration when you disable MACsec. This ability is supported on the N9K-X9736C-FX and the N9K-X9732C-EXM line cards.
- MACsec sessions are liberal in accepting packets from a key server whose latest Rx and latest Tx flags
 have been retired after Tx SA installation for the first time. The MACsec session then converges into a
 secure state.
- Beginning Cisco NX-OS Release 7.0(3)I7(6), you cannot apply MACsec configuration directly on port-channel interface. However, you can apply MACsec configurations directly on port-channel member ports.
- Cisco Nexus 9000 Series switches do not support MACsec on any of the MACsec capable ports when QSA is being used.
- If the MACsec feature is configured, non-disruptive ISSU is not supported.

Keychain restrictions:

- You cannot overwrite the octet string for a MACsec key. Instead, you must create a new key or a new keychain.
- A new key in the keychain is configured when you enter **end** or **exit**. The default timeout for editor mode is 6 seconds. If the key is not configured with the key octet string or/and the send lifetime within the 6-second window, incomplete information may be used to bring up the MACsec session and could result in the session being stuck in an Authorization Pending state. If the MACsec sessions are not converged after the configuration is complete, you might be advised to shut/no shut the ports.
- For a given keychain, key activation times should overlap to avoid any period of time when no key is activated. If a time period occurs during which no key is activated, session negotiation fails and traffic drops can occur. The key with the latest start time among the currently active keys takes precedence for a MACsec key rollover.

Fallback restrictions:

If a MACsec session is secured on an old primary key, it does not go to a fallback session in case of
mismatched latest active primary key. So the session remains secured on the old primary key and will
show as rekeying on the old CA under status. And the MACsec session on the new key on primary PSK
will be in init state.

- Use only one key with infinite lifetime in the fallback key chain. Multiple keys are not supported.
- The key ID (CKN) used in the fallback key chain must not match any of the key IDs (CKNs) used in the primary key chain.
- Once configured, fallback configuration on an interface cannot be removed, unless the complete MACsec configuration on the interface is removed.

MACsec policy restrictions:

- You cannot make changes to an existing MACsec policy. Instead, you must create a new MACsec policy
 and attach it to the interface, or you can remove the MACsec policy from the interface, edit it, and then
 reattach it.
- All breakout ports should have the same MACsec policy. However, the breakout ports can have different
 keychains. We do not support having some breakout ports with one MACsec policy and others with
 different MACsec policy. A port cannot be without a MACsec policy. If you do not configure a policy
 on an interface, by default, the system-default-macsec-policy is applied.
- BPDU packets might be transmitted before a MACsec session becomes secure.

Layer 2 Tunneling Protocol (L2TP) restrictions:

- MACsec is not supported on ports configured for dot1q tunneling or L2TP.
- L2TP does not work if STP is enabled on trunk ports for non-native VLANs.

Statistics restrictions:

- Few CRC errors should occur during the transition between MACsec and non-MACsec mode (regular port shut/no shut).
- Secy statistics are cumulative and polled every 30 seconds.
- The IEEE8021-SECY-MIB OIDs secyRxSAStatsOKPkts, secyTxSAStatsProtectedPkts, and secyTxSAStatsEncryptedPkts can carry only up to 32 bits of counter values, but the traffic may exceed 32 bits.

Interoperability restrictions:

- Interoperability with other peer switches (other Cisco and non-Cisco switches) is supported only with the XPN cipher suite.
- MACsec peers must run the same Cisco NX-OS release in order to use the AES_128_CMAC cryptographic algorithm. For interoperability between previous releases and Cisco NX-OS Release 7.0(3)I7(2) or a later release, you must use keys with the AES_256_CMAC cryptographic algorithm.
- For interoperability between previous releases and Cisco NX-OS Release 7.0(3)I7(2) or a later release, pad the MACsec key with zeros if it is less than 32 octets.
- When you upgrade from an earlier Cisco NX-OS release to Cisco NX-OS Release 7.0(3)I7(6), then the current configuration on the port channel interfaces get transferred on to the port channel member interfaces. However when you downgrade to a Cisco NX-OS release that does not support adding, deleting and modifying MACsec configuration on a port channel member, the current configuration on the port channel member interfaces transferred on to the port channel interfaces.

• When you attempt to downgrade from Cisco NX-OS Release 7.0(3)I7(6) to a Cisco NX-OS release where the MACsec configurations on members of the same port channel interface are different from each other, you may see the following error message:

Asymmetric macsec config is present on port-channel members. Please use symmetric macsec config across members to perform Non-disruptive ISSU.

- Starting Cisco NX-OS Release 7.0(3)I7(7), the CDP/LLDP packets are dropped when the MACsec configuration on a port with a must-secure policy is not in a secured state. Prior to Cisco NX-OS Release 7.0(3)I7(7), the CDP/LLDP packets were permitted even when the MACsec configuration on a port with a must-secure policy was not in a secured state.
- When using 1G optics on MACSEC capable module, it is recommended to change diagnostics mode to 'minimal'.

Enabling MACsec

Before you can access the MACsec and MKA commands, you must enable the MACsec feature.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	feature macsec	Enables MACsec and MKA on the device.	
	Example:		
	switch(config)# feature macsec		
Step 3	(Optional) copy running-config startup-config	Copies the running configuration to the star	
	Example:	configuration.	
	<pre>switch(config) # copy running-config startup-config</pre>		

Disabling MACsec

Disabling the MACsec feature only deactivates this feature and does not remove the associated MACsec configurations.

Disabling MACsec has the following conditions:

• MACsec shutdown is global command and is not available at the interface level.

- The macsec shutdown, show macsec mka session/summary, show macsec mka session detail, and show macsec mka/secy statistics commands will display the 'Macsec is shutdown' message. However, the show macsec policy and show key chain commands will display the output.
- Consecutive MACsec status changes from macsec shutdown to no macsec shutdown and vice versa needs a 30 seconds time interval in between the status change.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	macsec shutdown	Disables the MACsec configuration on the
	Example:	device. The no option restores the MACsec feature
	switch(config)# macsec shutdown	leature.
Step 3	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration. This step is required only if you want to retain the MACsec in the shutdown state
	switch(config)# copy running-config startup-config	after the switch reload.

Configuring a MACsec Keychain and Keys

You can create a MACsec keychain and keys on the device.

Note

Only MACsec keychains will result in converged MKA sessions.

Before you begin

Make sure that MACsec is enabled.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	(Optional) [no] key-chain macsec-psk no-show	Hides the encrypted key octet string in the output of the show running-config and show startup-config commands by replacing the

	Command or Action	Purpose
	Example: switch(config) # key-chain macsec-psk no-show	string with a wildcard character. By default, PSK keys are displayed in encrypted format and can be easily decrypted. This command applies only to MACsec keychains.
		Note The octet string is also hidden when you save the configuration to a file.
Step 3	<pre>key chain name macsec Example: switch(config) # key chain 1 macsec switch(config-macseckeychain) #</pre>	Creates a MACsec keychain to hold a set of MACsec keys and enters MACsec keychain configuration mode.
Step 4	<pre>key key-id Example: switch(config-macseckeychain) # key 1000 switch(config-macseckeychain-macseckey) #</pre>	
		Note For interoperability between previous releases 7.0(3)I7(2) or a later release, pad the MACsec k octets. For example: MACsec key on pre-7.0(3)I7(2) switch: abc3 MACsec key on peer switch running Cisco NX abc3000000000000000000000000000000000000
Step 5	key-octet-string octet-string cryptographic-algorithm {AES_128_CMAC AES_256_CMAC} Example: switch (config-macseckeychain-macseckey) # key-octet-string acceptio123456789abceptio123456789abceptio123456789 cryptographic-algorithm AES_256_CMAC	Tummig-coming macsec communic.
Step 6	<pre>send-lifetime start-time duration duration Example: switch (config-macseckeychain-macseckey) #</pre>	Configures a send lifetime for the key. By default, the device treats the start time as UTC. The <i>start-time</i> argument is the time of day and
	<pre>switch(config-macseckeychain-macseckey)# send-lifetime 00:00:00 Oct 04 2016 duration 100000</pre>	date that the key becomes active. The <i>duration</i> argument is the length of the lifetime in

	Command or Action	Purpose
		seconds. The maximum length is 2147483646 seconds (approximately 68 years).
Step 7	(Optional) show key chain name	Displays the keychain configuration.
	Example:	
	<pre>switch(config-macseckeychain-macseckey)# show key chain 1</pre>	
Step 8	(Optional) copy running-config startup-config	Copies the running configuration to the startup
	Example:	configuration.
	<pre>switch(config-macseckeychain-macseckey)# copy running-config startup-config</pre>	

MACsec Packet-Number Exhaustion

Every MACsec frame contains a 32-bit packet number (PN), and it is unique for a given Security Association Key (SAK). Upon PN exhaustion (after reaching 75% of 2³²- 1), SAK rekey takes place automatically to refresh the data plane keys and the PN will wrap around.

For example, on 10G full line rate @ 64 bytes, the SAK rekey will occur every 216 seconds due to PN exhaustion.

This is applicable when using GCM-AES-PN-128 or GCM-AES-PN-256 cipher-suites.

When GCM-AES-XPN-128 or GCM-AES-XPN-256 cipher-suite is used, the SAK rekey happens automatically when reaching 75% of 2^{64} - 1, which will take several years to exhaust the packet numbering. The cipher-suite is configurable under the macsec policy and the operational cipher-suite is determined by the key-server device.

It is recommended to use XPN ciphersuite on N9K-X9732C-EXM line card

Configuring MACsec Fallback Key

You can configure a fallback key on the device to initiate a backup session if the primary session fails as a result of a key/key name (CKN) mismatch or a finite key duration between the switch and peer.

Before you begin

Make sure that MACsec is enabled and a primary and fallback keychain and key ID are configured. See Configuring a MACsec Keychain and Keys.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters the global configuration mode.
	Example:	

	Command or Action	Purpose
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	<pre>interface name Example: switch(config) # interface ethernet 1/1 switch(config-if) #</pre>	Specifies the interface that you are configuring. You can specify the interface type and identity. For an Ethernet port, use ethernet slot/port.
Step 3	macsec keychain keychain-name policy policy-name fallback-keychain keychain-name Example: switch(config-if) # macsec keychain kc2 policy abc fallback-keychain fb_kc2	Specifies the fallback keychain to use after a MACsec session failure due to a key/key ID mismatch or a key expiration. The fallback key ID should not match any key ID from a primary keychain. Fallback keychain configuration for each interface can be changed on the corresponding interface, without removing the MACsec configuration, by reissuing the same command with the fallback keychain name changed. Note The command must be entered exactly the same as the existing configuration command for the interface, except for the fallback keychain name. See Configuring a MACsec Keychain and Keys.
Step 4	(Optional) copy running-config startup-config Example: switch(config-if) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring a MACsec Policy

You can create multiple MACsec policies with different parameters. However, only one policy can be active on an interface.

Note

Dynamic changes are not allowed to the MACsec policy once the policy is enabled under the interface.

Before you begin

Make sure that MACsec is enabled.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	<pre>switch# configure terminal switch(config)#</pre>		
Step 2	macsec policy name	Creates a MACsec policy.	
	Example:		
	<pre>switch(config)# macsec policy abc switch(config-macsec-policy)#</pre>		
Step 3	cipher-suite name	Configures one of the following ciphers:	
	Example:	GCM-AES-128, GCM-AES-256, GCM-AES-XPN-128, or	
	<pre>switch(config-macsec-policy)# cipher-suite GCM-AES-256</pre>	GCM-AES-XPN-256.	
Step 4	key-server-priority number	Configures the key server priority to break the	
	Example:	tie between peers during a key exchange. The range is from 0 (highest) and 255 (lowest), and	
	<pre>switch(config-macsec-policy)# key-server-priority 0</pre>	the default value is 16.	
Step 5	security-policy name Configures one of the following security-policy name		
	Example:	policies to define the handling of data and control packets:	
	<pre>switch(config-macsec-policy)# security-policy should-secure</pre>	• must-secure—Packets not carrying MACsec headers will be dropped.	
		• should-secure—Packets not carrying MACsec headers will be permitted. This is the default value.	
Step 6	window-size number	Configures the replay protection window such	
	Example:	that the secured interface will not accept any	
	switch(config-macsec-policy)# window-size 512	packet that is less than the configured window size. The range is from 0 to 596000000.	
Step 7	sak-expiry-time time	Configures the time in seconds to force an	
	Example:	SAK rekey. This command can be used to change the session key to a predictable time	
	switch(config-macsec-policy)# sak-expiry-time 100	interval. The default is 0.	
Step 8	conf-offset name	Configures one of the following confidentiality	
	Example:	offsets in the Layer 2 frame, where encryption	
	switch(config-macsec-policy)#	begins: CONF-OFFSET-0, CONF-OFFSET-30, or CONF-OFFSET-50.	
	conf-offset CONF-OFFSET-0	This command might be necessary for	

	Command or Action	Purpose
		intermediate switches to use packet headers {dmac, smac, etype} like MPLS tags.
Step 9	(Optional) show macsec policy	Displays the MACsec policy configuration.
	Example:	
	<pre>switch(config-macsec-policy)# show macsec policy</pre>	
Step 10	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config-macsec-policy)# copy running-config startup-config</pre>	

Rotating PSKs

Follow this procedure to rotate PSKs when the SAK expiry time is configured for 60 seconds in the MACsec policy.

Procedure

- **Step 1** Use the **no sak-expiry-time** command to remove the SAK expiry timer from the MACsec policy.
 - **Note** You need to remove the SAK expiry timer only for the number of policies in the configuration. You do not need to remove it for each interface. If you have defined only one policy and applied it to all interfaces, you need to remove the SAK expiry timer only from this policy.
- **Step 2** Wait for 2 minutes.
- **Step 3** Use the **key** *key-id* command to program the new key under the keychain.
- **Step 4** Once the session with the new key is secured, use the **no key** *key-id* command to delete the old key.
- **Step 5** Wait for 2 minutes.
- **Step 6** Use the **sak-expiry-timer 60** command to add the SAK rekey timer to the MACsec policy.

Verifying the MACsec Configuration

To display MACsec configuration information, perform one of the following tasks:

Command	Purpose
show key chain name	Displays the keychain configuration.
show macsec mka session [interface type slot/port] [detail]	Displays information about the MACsec MKA session for a specific interface or for all interfaces.

Command	Purpose
show macsec mka summary	Displays the MACsec MKA configuration.
show macsec policy [policy-name]	Displays the configuration for a specific MACsec policy or for all MACsec policies.
show running-config macsec	Displays the running configuration information for MACsec.

Note

Beginning with Cisco NX-OS Release 7.0(3)I7(4), all the show commands, except for the **show macsec policy** command will display an output indicating that the MACsec feature is shutdown if the feature has been disabled.

The following example displays information about the MACsec MKA session for all interfaces. .

```
switch# show macsec mka session
Interface Local-TxSCI
                                            #Peers
Key-Server
               Auth Mode
______ ____
Ethernet2/2 2c33.11b8.7d14/0001
Yes PRIMARY-PSK
Ethernet2/3 2c33.11b8.7d18/0001
                                          1
                                                            Secured
                                          1
                                                            Secured
Yes
               PRIMARY-PSK
Total Number of Sessions : 2
      Secured Sessions : 2
      Pending Sessions : 0
```

The following example displays information about the MACsec MKA session for a specific interface. In addition to the common elements of the table as described in the previous example, the following also identifies the authentication mode which defines the current MACsec session type.

switch# show macsec mka session interface ethernet 1/1

Interface	Local-TxSCI	# Peers	Status	Key-Server	Auth Mode
Ethernet1/1	70df.2fdc.baf4/0001	0	Pending	Yes	PRIMARY-PSK
Ethernet1/1	70df.2fdc.baf4/0001	1	Secured	No	FALLBACK-PSK

The following example displays detailed information about the MACsec MKA session for a specific Ethernet interface:

```
Interface Name
                     : Ethernet2/2
                                      : SECURED - Secured MKA Session with MACsec
   Session Status
                                      : 2c33.11b8.7d14/0001
   Local Tx-SCI
   Local Tx-SSCI
                                      : 2
   MKA Port Identifier
                                      : 2
   CAK Name (CKN)
                                     : 12
   CA Authentication Mode
                                     : PRIMARY-PSK
   Member Identifier (MI)
Message Number (MN)
                                     : B54263EF7949A561E25CE617
   Message Number (MN)
                                      : 523
   MKA Policy Name
                                      : tests2
   Key Server Priority
                                     : 16
   Key Server
                                     : Yes
   Include ICV
                                      : No
```

```
SAK Cipher Suite : GCM-AES-XPN-256
SAK Cipher Suite (Operational) : GCM-AES-XPN-256
Replay Window Size : 148809600
   Replay Window Size : 1488U90UU
: CONF-OFFSET-0
   Confidentiality Offset (Operational): CONF-OFFSET-0
   Latest SAK Status
                              : Rx & TX
   Latest SAK AN
   Latest SAK KI
                                         : B54263EF7949A561E25CE61700000001
   Latest SAK KN
                                        : 1
   Last SAK key time
                                        : 12:59:38 PST Tue Mar 19 2019
   CA Peer Count
                                         : 1
   Eapol dest mac
                                         : 0180.c200.0003
   Ether-type
                                         : 0x888e
Peer Status:
   Peer MI
                                         : 2C2C090E62A96F4D6E018210
                                         : 2c33.11b8.8b88/0001
   RxSCI
    Peer CAK
                                         : Match
                                          : 13:16:54 PST Tue Mar 19 2019
    Latest Rx MKPDU
```

The following example displays the MACsec MKA configuration:

switch# show macsec mka summary			
	Interface	MACSEC-policy	Keychain
	Ethernet2/13	1	1/10000000000000000
	Ethernet2/14	1	1/10000000000000000

The following example displays the configuration for all MACsec policies:

switch# show	w macsec	: policy					
MACSec Polic	СУ	Cipher	Pri	Window	Offset	Security SA	AK Rekey time ICV
Indicator	Include	-SCI					
KC256-Po117k)	GCM-AES-256	16	148809600	0	should-secure	pn-rollover
FALSE	True						
pol1		GCM-AES-XPN-256	100	148809600	30	must-secure	60
FALSE	True						
pol256-FanO		GCM-AES-XPN-256	16	148809600	0	must-secure	60
FALSE	True						
pol256-MCT		GCM-AES-XPN-256	16	148809600	0	should-secure	60
FALSE	FALSE						
system-defau	ılt-						
macsec-polic	СУ	GCM-AES-XPN-256	16	148809600	0	should-secure	pn-rollover
FALSE	FALSE						
test1		GCM-AES-XPN-256	16	148809600	0	should-secure	pn-rollover
FALSE	True						

The following example displays the key octet string in the output of the **show running-config** and **show startup-config** commands when the **key-chain macsec-psk no-show** command is not configured:

```
key chain KC256-1 macsec
key 2000
key-octet-string 7 075e701e1c5a4a5143475e5a527d7c7c706a6c724306170103555a5c57510b051e47080
a05000101005e0e50510f005c4b5f5d0b5b070e234e4d0a1d0112175b5e cryptographic-algorithm
AES 256 CMAC
```

The following example displays the key octet string in the output of the **show running-config** and **show startup-config** commands when the **key-chain macsec-psk no-show** command is configured:

```
key chain KC256-1 macsec key 2000
```

```
key-octet-string 7 ***** cryptographic-algorithm AES 256 CMAC
```

Displaying MACsec Statistics

You can display MACsec statistics using the following commands.

Command	Description
show macsec mka statistics [interface type slot/port]	Displays MACsec MKA statistics.
show macsec secy statistics [interface type slot/port]	Displays MACsec security statistics.

The following example shows the MACsec MKA statistics for a specific Ethernet interface:

```
switch# show macsec mka statistics interface ethernet 2/2
Per-CA MKA Statistics for Session on interface (Ethernet2/2) with CKN 0x10
______
CA Statistics
  Pairwise CAK Rekeys..... 0
SA Statistics
  SAKs Generated..... 0
  SAKs Rekeyed..... 0
  SAKs Received..... 0
  SAK Responses Received.. 0
MKPDU Statistics
  MKPDUs Transmitted..... 1096
     "Distributed SAK".. 0
  MKPDUs Validated & Rx... 0
     "Distributed SAK".. 0
MKA Statistics for Session on interface (Ethernet2/2)
CA Statistics
  Pairwise CAK Rekeys.... 0
SA Statistics
  SAKs Generated..... 0
  SAKs Rekeyed..... 0
  SAKs Received..... 0
  SAK Responses Received.. 0
MKPDU Statistics
  MKPDUs Transmitted..... 1096
     "Distributed SAK".. 0
  MKPDUs Validated & Rx... 0
     "Distributed SAK".. 0
  MKPDUs Tx Success..... 1096
  MKPDUs Tx Fail..... 0
  MKPDUS Tx Pkt build fail... 0
  MKPDUS No Tx on intf down.. 0
  MKPDUS No Rx on intf down.. 0
  MKPDUs Rx CA Not found.... 0
  MKPDUs Rx Error..... 0
  MKPDUs Rx Success..... 0
MKPDU Failures
```

```
MKPDU Rx Validation ..... 0
  MKPDU Rx Bad Peer MN...... 0
  MKPDU Rx Non-recent Peerlist MN..... 0
  MKPDU Rx Drop SAKUSE, KN mismatch..... 0
  MKPDU Rx Drop SAKUSE, Rx Not Set..... 0
  MKPDU Rx Drop SAKUSE, Key MI mismatch.... 0
  MKPDU Rx Drop SAKUSE, AN Not in Use..... 0
  MKPDU Rx Drop SAKUSE, KS Rx/Tx Not Set... 0
  MKPDU Rx Drop Packet, Ethertype Mismatch. 0
SAK Failures
  SAK Generation..... 0
  Hash Key Generation..... 0
  SAK Encryption/Wrap..... 0
  SAK Decryption/Unwrap..... 0
CA Failures
  ICK Derivation..... 0
  Invalid Peer MACsec Capability... 0
MACsec Failures
  Rx SA Installation..... 0
  Tx SA Installation..... 0
```

The following example shows the MACsec security statistics for a specific Ethernet interface.

Note

The following differences exist for uncontrolled and controlled packets in Rx and Tx statistics:

- Rx statistics:
 - Uncontrolled = Encrypted and unencrypted
 - Controlled = Decrypted
- Tx statistics:
 - Uncontrolled = Unencrypted
 - Controlled = Encrypted
 - Common = Encrypted and unencrypted

```
In-Octets Uncontrolled: 169853963 bytes
   In-Octets Controlled: 55027017 bytes
   Input rate for Uncontrolled Pkts: N/A (N9K-X9736C-FX not supported)
   Input rate for Uncontrolled Pkts: N/A (N9K-X9736C-FX not supported)
   Input rate for Controlled Pkts: N/A (N9K-X9736C-FX not supported)
   Input rate for Controlled Pkts: N/A (N9K-X9736C-FX not supported)
Interface Tx Statistics:
   Unicast Uncontrolled Pkts: N/A (N9K-X9736C-FX not supported)
   Multicast Uncontrolled Pkts: N/A (N9K-X9736C-FX not supported)
   Broadcast Uncontrolled Pkts: N/A (N9K-X9736C-FX not supported)
   Uncontrolled Pkts - Rx Drop: N/A (N9K-X9736C-FX not supported)
   Uncontrolled Pkts - Rx Error: N/A (N9K-X9736C-FX not supported)
   Unicast Controlled Pkts: N/A (N9K-X9736C-FX not supported)
   Multicast Controlled Pkts: N/A (N9K-X9736C-FX not supported)
   Broadcast Controlled Pkts: N/A (N9K-X9736C-FX not supported)
   Controlled Pkts: 205429
   Controlled Pkts - Rx Drop: N/A (N9K-X9736C-FX not supported)
   Controlled Pkts - Rx Error: N/A (N9K-X9736C-FX not supported)
   Out-Octets Uncontrolled: N/A (N9K-X9736C-FX not supported)
   Out-Octets Controlled: 20612648 bytes
   Out-Octets Common: 151787484 bytes
   Output rate for Uncontrolled Pkts: N/A (N9K-X9736C-FX not supported)
   Output rate for Uncontrolled Pkts: N/A (N9K-X9736C-FX not supported)
   Output rate for Controlled Pkts: N/A (N9K-X9736C-FX not supported)
   Output rate for Controlled Pkts: N/A (N9K-X9736C-FX not supported)
SECY Rx Statistics:
  Transform Error Pkts: N/A (N9K-X9736C-FX not supported)
   Control Pkts: 952284
   Untagged Pkts: N/A (N9K-X9736C-FX not supported)
   No Tag Pkts: 0
   Bad Tag Pkts: 0
   No SCI Pkts: 0
   Unknown SCI Pkts: 0
   Tagged Control Pkts: N/A (N9K-X9736C-FX not supported)
SECY Tx Statistics:
   Transform Error Pkts: N/A (N9K-X9736C-FX not supported)
   Control Pkts: 967904
   Untagged Pkts: N/A (N9K-X9736C-FX not supported)
SAK Rx Statistics for AN [3]:
   Unchecked Pkts: 0
   Delayed Pkts: 0
   Late Pkts: 0
   OK Pkts: 1
   Invalid Pkts: 0
   Not Valid Pkts: 0
   Not-Using-SA Pkts: 0
   Unused-SA Pkts: 0
   Decrypted In-Octets: 235 bytes
   Validated In-Octets: 0 bytes
SAK Tx Statistics for AN [3]:
   Encrypted Protected Pkts: 2
   Too Long Pkts: N/A (N9K-X9736C-FX not supported)
   SA-not-in-use Pkts: N/A (N9K-X9736C-FX not supported)
   Encrypted Protected Out-Octets: 334 bytes
switch(config)#
```

Configuration Example for MACsec

The following example shows how to configure a user-defined MACsec policy and then apply the policy to interfaces:

```
switch(config) # macsec policy 1
switch(config-macsec-policy)# cipher-suite GCM-AES-256
switch(config-macsec-policy)# window-size 512
switch(config-macsec-policy)# key-server-priority 0
switch(config-macsec-policy)# conf-offset CONF-OFFSET-0
switch(config-macsec-policy) # security-policy should-secure
switch(config-macsec-policy)# exit
switch(config) # int e2/13-14
switch(config-if-range)# macsec keychain 1 policy 1
switch(config-if-range)# exit
switch(config) # show macsec mka summary
Interface MACSEC-policy
                                               Kevchain
Ethernet2/13 1
                                                1/1000000000000000000
Ethernet2/14
                1
                                                1/100000000000000000
switch(config) # show macsec mka session
Interface Local-TxSCI # Peers Status
                                                     Kev-Server
Ethernet2/13 006b.f1be.d31c/0001 1 Secured Yes Ethernet2/14 006b.f1be.d320/0001 1 Secured No
switch(config)# show running-config macsec
!Command: show running-config macsec
!Time: Mon Dec 5 04:53:40 2016
version 7.0(3) I4(5)
feature macsec
macsec policy 1
 cipher-suite GCM-AES-256
 key-server-priority 0
 window-size 512
 conf-offset CONF-OFFSET-0
 security-policy should-secure
interface Ethernet2/13
 macsec keychain 1 policy 1
interface Ethernet2/14
 macsec keychain 1 policy 1
```

The following example shows how to configure a MACsec keychain and then add the system default MACsec policy to the interfaces:

```
switch(config) # key chain 1 macsec
switch(config-macseckeychain) # key 1000
switch(config-macseckeychain-macseckey) # key-octet-string
abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789 cryptographic-algorithm
aes_256_CMAC
switch(config-macseckeychain-macseckey) # exit

switch(config) # int e2/13-14
switch(config-if-range) # macsec keychain 1
switch(config-if-range) # exit
switch(config) #
```

```
switch(config) # show running-config macsec
!Command: show running-config macsec
!Time: Mon Dec 5 04:50:16 2016
version 7.0(3) I4(5)
feature macsec
interface Ethernet2/13
 macsec keychain 1 policy system-default-macsec-policy
interface Ethernet2/14
 macsec keychain 1 policy system-default-macsec-policy
switch (config) # show macsec mka session
Interface Local-TxSCI Key-Server Auth Mode
                                           # Peers
                                                           Status
Ethernet2/2 2c33.11b8.7d14/0001
Yes PRIMARY-PSK
                                          1
                                                           Secured
               PRIMARY-PSK
Yes
Ethernet2/3
               2c33.11b8.7d18/0001
                                          1
                                                           Secured
Yes
              PRIMARY-PSK
Total Number of Sessions : 2
      Secured Sessions : 2
      Pending Sessions : 0
switch(config) # show macsec mka summary
Interface Status Cipher (Operational) Key-Server MACSEC-policy Keychain
Fallback-keychain
keych1
Ethernet2/1
                                                    tests1
no keychain
Ethernet2/2 Secured GCM-AES-XPN-256 Yes tests2
no keychain
Ethernet2/3 Secured GCM-AES-256 Yes tests3
no keychain
              Secured GCM-AES-XPN-256 Yes tests2 keych2
                                                                  keyc3
```

XML Examples

MACsec supports XML output for the following **show** commands for scripting purposes using | **xml**:

- show key chain name | xml
- show macsec mka session interface interface slot/port details | xml
- show macsec mka statistics interface interface slot/port | xml
- · show macsec mka summary | xml
- show macsec policy name | xml
- show macsec secy statistics interface interface slot/port | xml
- · show running-config macsec | xml

The following are example outputs for each of the preceding **show** commands:

Example 1: Displays the keychain configuration.

```
switch# show key chain "Kc2" | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:rpm">
<nf:data>
  <show>
   <key>
   <chain>
     < XML
            OPT Cmd rpm show keychain cmd keychain>
      <keychain>Kc2</keychain>
     </__XML__OPT_Cmd_rpm_show_keychain_cmd_keychain>
   </key>
  </show>
</nf:data>
</nf:rpc-reply>
11>11>
```

Example 2: Displays information about the MACsec MKA session for a specific interface.

```
switch# show macsec mka session interface ethernet 4/31 details | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0">
 <nf:data>
  <show>
   <macsec>
    <mka>
     <session>
      <__XML__OPT_Cmd_show_macsec_mka_session_interface>
       <interface>
        <__XML__INTF_ifname>
         <__XML__PARAM_value>
        <_ XML__INTF_output>Ethernet4/31</_XML__INTF_output>
</_XML__PARAM_value>
       </ XML INTF ifname>
       </interface>
       <__XML__OPT_Cmd_show_macsec_mka_session_details>
        <details/>
        < XML OPT Cmd show macsec mka session readonly >
          _readonly__>
         <TABLE mka session details>
          <ROW mka session details>
           <ifname>Ethernet4/31</ifname>
           <status>Secured</status>
           <sci>0c75.bd03.5360/0001</sci>
           <ssci>1</ssci>
           <port id>1</port id>
           </mi>
           <mi>F511280A765CE41C79458753</mi>
           <mn>2770</mn>
           <policy>am2</policy>
           <ks prio>0</ks prio>
           <keyserver>No</keyserver>
           <cipher>GCM-AES-XPN-256</cipher>
           <window>512</window>
           <conf offset>CONF-OFFSET-0</conf offset>
           <sak status>Rx &amp; TX</sak status>
           <sak an>1</sak an>
           <sak ki>516486241</sak ki>
           <sak kn>90</sak kn>
           <last sak rekey time>07:12:02 UTC Fri Jan 20 2017/last sak rekey ti
me>
```

Example 3: Displays MACsec MKA statistics.

```
switch# show macsec mka statistics interface ethernet 4/31 | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w</pre>
ww.cisco.com/nxos:1.0">
<nf:data>
  <show>
<macsec>
    <mka>
     <statistics>
      <__XML__OPT_Cmd_some_macsec_mka_statistics_interface>
       <interface>
          _XML__INTF_ifname>
__XML__PARAM_value>
          <__XML__INTF_output>Ethernet4/31</__XML__INTF_output>
          <__XML__INTF_output>Ethernet4/31</__XML__INTF_output>
         </__XML__PARAM_value>
        </__XML__INTF_ifname>
       </interface>
       <__XML__OPT_Cmd_some_macsec_mka_statistics___readonly__>
        < readonly >
         <TABLE_mka_intf_stats>
          <ROW mka_intf_stats>
           <TABLE ca stats>
            <ROW ca stats>
             <ca stat ckn>0x2</ca stat ckn>
             <ca stat pairwise cak rekey>0</ca stat pairwise cak rekey>
             <sa_stat_sak_generated>0</sa_stat_sak_generated>
             <sa_stat_sak_rekey>0</sa_stat_sak_rekey>
             <sa_stat_sak_received>91</sa_stat_sak_received>
             <sa_stat_sak_response_rx>0</sa_stat_sak_response_rx>
             <mkpdu stat mkpdu tx>2808</mkpdu stat mkpdu tx>
             <mkpdu stat mkpdu tx distsak>0</mkpdu stat mkpdu tx distsak>
             <mkpdu_stat_mkpdu_rx>2714</mkpdu_stat_mkpdu_rx>
             <mkpdu stat mkpdu rx distsak>91</mkpdu stat mkpdu rx distsak>
            </ROW ca stats>
           </TABLE ca stats>
          </ROW mka intf stats>
         </TABLE_mka_intf_stats>
        </__readonly__>
       </__XML__OPT_Cmd_some_macsec_mka_statistics___readonly__>
       <interface>
        < XML INTF ifname>
         < XML PARAM value>
          <__XML__INTF_output>Ethernet4/31</__XML__INTF_output>
        </_XML__PARAM_value
</_XML__INTF_ifname>
                  PARAM value>
       </interface>
       < XML OPT Cmd some macsec mka statistics readonly >
```

```
readonly
         <TABLE_mka_intf_stats>
          <ROW mka intf stats>
           <TABLE idb stats>
            <ROW idb stats>
             <ca stat pairwise cak rekey>0</ca stat pairwise cak rekey>
             <sa stat sak generated>0</sa stat sak generated>
             <sa stat sak rekey>0</sa stat sak rekey>
             <sa stat sak received>91</sa stat sak received>
             <sa_stat_sak_response_rx>0</sa_stat_sak_response_rx>
             <mkpdu stat mkpdu tx>2808</mkpdu stat mkpdu tx>
             <mkpdu stat mkpdu tx distsak>0</mkpdu stat mkpdu tx distsak>
             <mkpdu stat mkpdu rx>2714</mkpdu stat mkpdu rx>
             <mkpdu stat mkpdu rx distsak>91</mkpdu stat mkpdu rx distsak>
             <idb stat mkpdu tx success>2808</idb stat mkpdu tx success>
             <idb_stat_mkpdu_tx_fail>0</idb_stat_mkpdu_tx_fail>
             <idb stat mkpdu tx pkt build fail>0</idb stat mkpdu tx pkt build fail>
             <idb_stat_mkpdu_no_tx_on_intf_down>0</idb_stat_mkpdu_no_tx_on_intf_down>
             <idb stat mkpdu no rx on intf down>0</idb stat mkpdu no rx on intf down>
             <idb stat mkpdu rx ca notfound>0</idb stat mkpdu rx ca notfound>
             <idb_stat_mkpdu_rx_error>0</idb_stat_mkpdu_rx_error>
             <idb_stat_mkpdu_rx_success>2714</idb_stat_mkpdu_rx_success>
             <idb stat mkpdu failure rx integrity check error>0</idb stat mkpdu</pre>
failure rx integrity check error>
             <idb stat mkpdu failure invalid peer mn error>0</idb stat mkpdu fai
lure invalid peer mn error>
             <idb_stat_mkpdu_failure_nonrecent_peerlist_mn_error>1</idb_stat_mkp</pre>
du failure nonrecent peerlist mn error>
             <idb_stat_mkpdu_failure_sakuse_kn_mismatch_error>0</idb_stat_mkpdu_
failure sakuse kn mismatch error>
<idb stat mkpdu failure sakuse rx not set error>0</idb stat mkpdu f
ailure sakuse rx not set error>
             <idb_stat_mkpdu_failure_sakuse_key_mi_mismatch_error>0</idb_stat_mk
pdu_failure_sakuse_key_mi_mismatch_error>
             <idb_stat_mkpdu_failure_sakuse_an_not_in_use_error>0</idb_stat_mkpd</pre>
u failure sakuse an not in use error>
             <idb_stat_mkpdu_failure_sakuse_ks_rx_tx_not_set_error>0</idb_stat_m</pre>
kpdu_failure_sakuse_ks_rx_tx_not_set_error>
             <idb stat mkpdu failure sakuse eapol ethertype mismatch error>0</id
b stat mkpdu failure sakuse eapol ethertype mismatch error>
             <idb_stat_sak_failure_sak_generate_error>0</idb_stat_sak_failure_sa</pre>
k generate error>
             <idb stat sak failure hash generate error>0</idb stat sak failure h
ash generate error>
             <idb_stat_sak_failure_sak_encryption_error>0</idb_stat_sak_failure_</pre>
sak_encryption_error>
             <idb stat sak failure sak decryption error>0</idb stat sak failure
sak decryption error>
             <idb_stat_sak_failure_ick_derivation_error>0</idb_stat_sak_failure_
ick derivation error>
             <idb stat sak failure kek derivation error>0</idb stat sak failure
kek derivation error>
             <idb stat sak failure invalid macsec capability error>0</idb stat s
ak failure invalid macsec capability error>
             <idb_stat_macsec_failure_rx sa create error>0</idb stat macsec fail
ure rx sa create error>
             <idb_stat_macsec_failure_tx_sa_create_error>0</idb_stat_macsec_fail
ure tx sa create error>
            </ROW idb stats>
           </TABLE_idb_stats>
          </ROW mka intf stats>
         </TABLE mka intf stats>
        </ readonly
       </ XML OPT Cmd some macsec mka statistics readonly >
```

Example 4: Displays the MACsec MKA configuration.

```
switch# show macsec mka summary | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w</pre>
ww.cisco.com/nxos:1.0">
 <nf:data>
 <show>
  <macsec>
   <mka>
    < XML OPT Cmd some macsec summary>
     <__XML__OPT_Cmd_some_macsec___readonly__>
       __readonly__>
      <TABLE mka summary>
       <ROW mka_summary>
        <ifname>Ethernet2/1</ifname>
        <policy>am2</policy>
00000000</keychain>
       </ROW mka summary>
       <ROW mka summary>
        <ifname>Ethernet3/1</ifname>
        <policy>am2</policy>
        00000000</keychain>
       </ROW mka summary>
[TRUNCATED FOR READABILITY]
<ROW mka summary>
        <ifname>Ethernet3/32</ifname>
        <policy>am2</policy>
        00000000</keychain>
       </ROW mka_summary>
      </TABLE_mka_summary>
     </__readonly
    </ XML OPT Cmd some macsec readonly >
    </ XML OPT Cmd some macsec summary>
   </mka>
  </macsec>
 </show>
</nf:data>
</nf:rpc-reply>
11>11>
```

Example 5: Displays the configuration for a specific MACsec policy.

```
<macsec>
    <policv>
     < XML OPT Cmd some macsec policy name>
      <policy name>am2</policy name>
      <__XML__OPT_Cmd_some_macsec___readonly__>
         readonly >
        <TABLE macsec policy>
        <ROW macsec policy>
          <name>am2</name>
          <cipher suite>GCM-AES-XPN-256</cipher suite>
          <keyserver priority>0</keyserver priority>
          <window size>512</window size>
          <conf offset>0</conf offset>
          <security policy>must-secure</security policy>
          <sak-expiry-time>60</sak-expiry-time>
         </ROW macsec policy>
        </TABLE macsec policy>
       </__readonly__>
      </__XML__OPT_Cmd_some_macsec___readonly__>
     </ XML OPT Cmd some macsec policy name>
    </policy>
   </macsec>
 </show>
</nf:data>
</nf:rpc-reply>
]]>]]>
```

Example 6: Displays MACsec security statistics.

```
switch# show macsec secy statistics interface ethernet 4/31 | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w</pre>
ww.cisco.com/nxos:1.0">
 <nf:data>
  <show>
   <macsec>
   <secy>
     <statistics>
      <interface>
       < XML INTF ifname>
        XML PARAM value>
         <__XML__INTF_output>Ethernet4/31</__XML__INTF_output>
        </__XML__PARAM_value>
        <__XML__OPT_Cmd_some_macsec_secy_statistics___readonly__>
           readonly
          <TABLE statistics>
           <ROW statistics>
            <in pkts unicast uncontrolled>0</in pkts unicast uncontrolled>
            <in_pkts_multicast_uncontrolled>42</in_pkts_multicast_uncontrolled>
            <in pkts broadcast uncontrolled>0</in pkts broadcast uncontrolled>
            <in rx drop pkts uncontrolled>0</in rx drop pkts uncontrolled>
            <in rx err pkts uncontrolled>0</in rx err pkts uncontrolled>
            <in pkts unicast controlled>0</in pkts unicast controlled>
            <in_pkts_multicast_controlled>2</in_pkts_multicast_controlled>
            <in_pkts_broadcast_controlled>0</in_pkts_broadcast_controlled>
            <in_rx_drop_pkts_controlled>0</in_rx_drop_pkts_controlled>
            <in_rx_err_pkts_controlled>0</in_rx_err_pkts_controlled>
            <in octets uncontrolled>7230</in octets uncontrolled>
            <in octets controlled>470</in octets controlled>
            <input_rate_uncontrolled_pps>0</input_rate_uncontrolled_pps>
            <input rate uncontrolled bps>9</input rate uncontrolled bps>
            <input rate controlled pps>0</input rate controlled pps>
            <input rate controlled bps>23</input rate controlled bps>
            <out pkts unicast uncontrolled>0</out pkts unicast uncontrolled>
```

```
<out pkts multicast uncontrolled>41</out pkts multicast uncontrolled>
            <out_pkts_broadcast_uncontrolled>0</out_pkts_broadcast_uncontrolled>
            <out rx drop pkts uncontrolled>0</out rx drop pkts uncontrolled>
            <out rx err pkts uncontrolled>0</out rx err pkts uncontrolled>
            <out_pkts_unicast_controlled>0</out_pkts_unicast_controlled>
            <out_pkts_multicast_controlled>2</out_pkts_multicast_controlled>
            <out pkts broadcast controlled>0</out pkts broadcast controlled>
            <out rx drop pkts controlled>0</out rx drop pkts controlled>
            <out rx err pkts controlled>0</out rx err pkts controlled>
            <out_octets_uncontrolled>6806</out_octets_uncontrolled>
            <out octets controlled>470</out octets controlled>
            <out octets common>7340</out octets common>
            <output rate uncontrolled pps>2598190092</output rate uncontrolled pps>
            <output rate uncontrolled bps>2598190076/output rate uncontrolled bps>
            <output_rate_controlled_pps>0</output_rate_controlled_pps>
            <output_rate_controlled_bps>23</output_rate_controlled bps>
            <in_pkts_transform_error>0</in_pkts_transform_error>
            <in_pkts_control>40</in_pkts_control>
            <in_pkts_untagged>0</in_pkts_untagged>
            <in pkts no tag>0</in pkts no tag>
            <in_pkts_badtag>0</in_pkts_badtag>
            <in_pkts_no_sci>0</in_pkts_no_sci>
            <in pkts unknown sci>0</in pkts unknown sci>
            <in pkts tagged ctrl>0</in pkts tagged ctrl>
            <out pkts transform error>0</out pkts transform error>
            <out_pkts_control>41</out_pkts_control>
            <out_pkts_untagged>0</out_pkts_untagged>
            <rx sa an>1</rx sa an>
            <in pkts unchecked>0</in pkts unchecked>
            <in pkts delayed>0</in_pkts_delayed>
            <in pkts late>0</in pkts late>
            <in pkts ok>1</in pkts ok>
            <in_pkts_invalid>0</in_pkts_invalid>
            <in pkts not valid>0</in pkts not valid>
            <in_pkts_not_using_sa>0</in_pkts_not_using_sa>
            <in pkts unused sa>0</in pkts unused sa>
            <in_octets_decrypted>223</in_octets_decrypted>
            <in_octets_validated>0</in_octets_validated>
            <tx sa an>1</tx sa an>
            <out pkts encrypted protected>1</out pkts encrypted protected>
            <out_pkts_too_long>0</out_pkts_too_long>
            <out pkts sa not inuse>0</out pkts sa not inuse>
            <out octets encrypted protected>223</out octets encrypted protected>
           </ROW statistics>
          </TABLE_statistics>
         </__readonly__>
           XML OPT Cmd some macsec secy statistics readonly >
       </ XML INTF ifname>
      </interface>
     </statistics>
    </secv>
   </macsec>
  </show>
 </nf:data>
</nf:rpc-reply>
]]>]]>
```

Example 7: Displays the running configuration information for MACsec.

```
switch# show running-config macsec | xml
!Command: show running-config macsec
!Time: Fri Jan 20 07:12:34 2017
```

```
version 7.0(3)I4(6)
This may take time. Please be patient.
**********
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://www.cis</pre>
co.com/nxos:7.0.3.I4.6.:configure " xmlns:m="http://www.cisco.com/nxos:7.0.3.I4.
6.: exec" xmlns:m1="http://www.cisco.com/nxos:7.0.3.I4.6.:configure macsec-poli
cy" xmlns:m2="http://www.cisco.com/nxos:7.0.3.I4.6.:configure if-eth-non-member
" message-id="1">
  <nf:get-config>
    <nf:source>
     <nf:running/>
    </nf:source>
    <nf:filter>
     <m:configure>
        <m:terminal>
          <feature>
           <macsec/>
          </feature>
          <macsec>
            <policy>
              < XML PARAM policy name>
                < XML value>am2</__XML__value>
                <m1:cipher-suite>
                 <ml: XML PARAM suite>
                   <ml:__XML__value>GCM-AES-XPN-256</ml:__XML__value>
                  </m1:
                        XML PARAM suite>
                </m1:cipher-suite>
                <m1:key-server-priority>
                  <ml: XML PARAM pri>
                   <m1:__XML__value>0</m1:__XML__value>
                  </ml:__XML__PARAM__pri>
                </ml:key-server-priority>
<ml:window-size>
<ml: XML PARAM size>
                   <m1:__XML__value>512</m1:__XML__value>
                  </ml:_XML_PARAM_size>
                </ml:window-size>
                <ml:conf-offset>
                 <ml: XML PARAM offset>
                   <m1:__XML__value>CONF-OFFSET-0</m1:__XML__value>
                  </ml>
</ml: XML PARAM offset>
                </ml:conf-offset>
                <ml:security-policy>
                 <ml: XML_PARAM_policy>
                    <m1:__XML__value>must-secure</m1:__XML__value>
                  </ml>
</ml: XML PARAM policy>
                </ml:security-policy>
                <ml:sak-expiry-time>
                  <ml: XML PARAM ts>
                   <ml: XML value>60</ml: XML value>
                 </ml>
</ml: XML PARAM ts>
               </ml:sak-expiry-time>
              </_
                 XML PARAM policy name>
            </policy>
          </macsec>
          <interface>
            < XML PARAM interface>
              <__XML__value>Ethernet2/1</__XML__value>
              <m2:macsec>
                <m2:keychain>
                 <m2: XML PARAM keychain name>
                   <m2: XML value>kc2</m2: XML value>
```

```
<m2:policy>
                      <m2: XML__PARAM__policy_name>
                        <m2:__XML__value>am2</m2:__XML__value>
                      </m2: XML PARAM policy name>
                    </m2:policy>
                  </m2: XML PARAM keychain name>
                </m2:keychain>
              </m2:macsec>
            </ XML PARAM interface>
          </interface>
[TRUNCATED FOR READABILITY]
<interface>
            <__XML__PARAM__interface>
              <__XML__value>Ethernet4/31</__XML__value>
              <m2:macsec>
                <m2:keychain>
                  <m2: XML PARAM keychain name>
                    <m2: XML value>kc2</m2: XML value>
                    <m2:policy>
                      <m2:__XML__PARAM__policy_name>
                      <m2: XML value>am2</m2: XML value>
</m2: XML PARAM policy name>
                    </m2:policy>
                  </m2:__XML__PARAM__keychain_name>
                </m2:keychain>
              </m2:macsec>
            </ XML__PARAM__interface>
          </interface>
        </m:terminal>
      </m:configure>
    </nf:filter>
  </nf:get-config>
</nf:rpc>
]]>]]>
```

MIBs

MACsec supports the following MIBs:

- IEEE8021-SECY-MIB
- CISCO-SECY-EXT-MIB

To locate and download supported MIBs, go to the following URL: http://ftp.cisco.com/pub/mibs/supportlists/nexus9000/Nexus9000MIBSupportList.html.

Related Documentation

Related Topic	Document Title
Keychain management	Cisco Nexus 9000 Series NX-OS Security Configuration Guide
System messages	Cisco Nexus 9000 Series NX-OS System Messages References

INDEX

802.1X 163, 166–167, 169–170, 186–187	aaa group server ldap 10/	
authenticator PAEs 166	aaa group server radius 50	
configuring 170	aaa group server tacacs+ 75	
default settings 169	aaa user default-role 24	
description 163	absolute end 255	
enabling feature 170	absolute start 255	
example configuration 187	accept-lifetime 394	
guidelines 167	acllog match-log-level 238	
limitations 167	action {drop forward redirect} 272	
multiple host support 167	authentication 164	
prerequisites 167	802.1X 164	
single host support 167	authentication (bind-first compare) 107	
supported topologies 167	authenticator PAEs 166, 173	
verifying configuration 186	creating on an interface 173	
802.1X authentication 164, 166, 184	description 166	
authorization states for ports 166	removing from an interface 173	
enabling RADIUS accounting 184		
initiation 164	В	
802.1X reauthentication 185	.	
setting maximum retry count on interfaces 185	BGP 408	
802.1X supplicants 175	using with Unicast RPF 408	
manually reauthenticating 175		
	C	
A	U	
•	chgrp 121	
aaa accounting default 15	chown 121	
aaa accounting default group 30	cipher-suite 472	
aaa accounting default local 30	class 443	
aaa accounting dot1x default group 185	class class-default 443	
aaa authentication dot1x default group 171	class insert-before 443	
aaa authentication login {mschap mschapv2} enable 29	class-map 437	
aaa authentication login ascii-authentication 85	class-map type control-plane {match-all match-any} 441	
aaa authentication login chap enable 28	clear access-list ipsg stats 380	
aaa authentication login console 15, 20–21	clear accounting log 37	
aaa authentication login console group 20–21	clear copp statistics 451	
aaa authentication login console local 20–21	clear hardware rate-limiter {all access-list-log bfd exception fex	
aaa authentication login console none 20–21	layer-3 glean layer-3 multicast local-groups	
aaa authentication login default 15	span-egress} 460	
aaa authentication login error-enable 25	clear hardware rate-limiter module 460	
aaa authorization {commands config-commands} {console default}	clear ip access-list counters 243	
{group} 87	clear ip arp inspection log 369	
aaa authorization {group local} 114	clear ip arp inspection statistics 369	
aaa authorization {ssh-certificate ssh-publickey} 114	clear ip dhcp global statistics 335	
aaa authorization default 114	clear ip dhcp relay statistics interface 335	
aaa authorization ssh-certificate default 86	clear in dhen snooning hinding interface ethernet 334	

clear ip dhep snooping binding interface port-channel 334	dot1x port-control {auto force-authorized forced-unauthorized} 1/2	
clear ip dhcp snooping binding vlan 334	dot1x re-authentication 174	
clear ip dhcp snooping statistics 335	dot1x timeout quiet-period 176	
clear ip dhcp snooping statistics vlan 335	dot1x timeout ratelimit-period 177	
clear ipv6 access-list counters 243	dot1x timeout re-authoriod 174	
clear ipv6 dhcp relay statistics interface 335	dot1x timeout server-timeout 177	
clear ldap-server statistics 116	dot1x timeout supp-timeout 177	
clear line 136, 138	dot1x timeout tx-period 177	
clear mac access-list counters 267	40000 mm F 4000 m	
clear port-security dynamic 291	_	
clear port-security dynamic address 290	E	
clear radius-server statistics 63	11 C (D) (1 400	
clear ssh hosts 134	enable Cert-DN-match 108	
clear tacacs-server statistics 95	enable secret 91	
conf-offset 472	enable user-server-group 108	
	encryption decrypt type6 384	
control-plane 437, 445–446	encryption delete type6 384	
copp copy profile {strict moderate lenient dense 447	encryption re-encrypt obfuscated 383–384, 391	
copp copy profile prefix suffix} 447		
copp profile 447	F	
copp profile dense 447	•	
copp profile lenient 447	feature 155	
copp profile moderate 447	feature dhcp 310	
copp profile strict 447	feature dot1x 170	
copy scp 141	feature Idap 104	
copy scp: 127	feature macsec 467–468	
copy sftp 141	feature password encryption aes 383, 391	
crypto ca authenticate 131	feature port-security 285	
crypto ca crl request 132	feature privilege 90–91	
crypto ca trustpoint 131	feature scp-server 130	
cryptographic-algorithm {HMAC-SHA-1 HMAC-SHA-256	feature stp-server 130	
HMAC-SHA-384 HMAC-SHA-512 MD5 } 396	feature ssh 123	
	feature tacacs+ 71	
D		
ע	feature telnet 137	
deadtime 51	fragments {permit-all deny-all} 209, 211	
deafult settings 283		
port security 283	G	
default settings 169		
802.1X 169	generate type7_encrypted_secret 36, 48–49, 73–74	
	guidelines 284	
denial-of-service attacks 409	port security 284	
IP address spoofing, mitigating 409		
deny 209–212	Н	
description 154	П	
device roles 163	hardware access-list team region 215	
description for 802.1X 163	hardware access-list team region ing-ifact qualify udf 232	
DHCP client relay on orphan ports 343	hardware profile team resource service-template 225	
description 343	hardware profile team resource template 224	
DHCP relay on VPC Leg 342	hardware rate-limiter access-list-log 238, 458	
description 342	-	
DHCP relay on-stack 341	hardware rate-limiter bfd 458	
description 341	hardware rate-limiter exception 458	
DoS attacks 409	hardware rate-limiter fex 458	
Unicast RPF, deploying 409	hardware rate-limiter layer-3 glean 458	
dot1x default 181	hardware rate-limiter layer-3 multicast local-groups 458	
dot1x host-mode {multi-host single-host} 178	hardware rate-limiter span-egress 459	
dot1x max-req 182–183	host 248–249	

I	key chain 389, 392, 394–395, 469
	key-chain macsec-psk no-show 468
interface policy dent 156	key-octet-string 469
ip access-class 212	key-server-priority 472
ip access-group 234, 237	key-string 392
ip access-list 209–210, 212, 233, 239	
ip arp inspection log-buffer entries 367	L
ip arp inspection trust 365	_
ip arp inspection validate 367	ldap search-map 111
ip arp inspection validate dst-mac 367	ldap-server deadtime 113–114
ip arp inspection validate ip 367	ldap-server host 105, 110, 113
ip arp inspection validate src-mac 367	ldap-server host idle-time 113
ip arp inspection vlan 364, 368	ldap-server host password 106, 113
ip dhcp packet strict-validation 302, 315	ldap-server host port 106, 110
ip dhcp relay 319, 322	ldap-server host rootDN 106
ip dhcp relay address 323	ldap-server host test rootDN 113
ip dhcp relay address use-vrf 323	ldap-server host timeout 106, 110
ip dhep relay information option 320	ldap-server host username 113
ip dhcp relay information option trust 316	ldap-server timeout 109
ip dhcp relay information option vpn 322	licensing 409
ip dhcp relay information trust-all 319	Unicast RPF 409
ip dhcp relay information trusted 318	limitations 284
ip dhcp relay source-interface 324	port security 284
ip dhcp relay sub-option circuit-id customized 320	line vty 212
ip dhcp relay sub-option circuit-id format-type string 320	logging drop threshold 443
ip dhcp relay sub-option type cisco 322	logging ip access-list cache entries 237
ip dhcp smart-relay 326	logging ip access-list cache interval 237
ip dhcp smart-relay global 325	logging ip access-list cache threshold 238
ip dhcp snooping information option 313	logging ip access-list detailed 238
ip dhcp snooping ipsg-excluded vlan 379	login block-for 33
ip dhcp snooping trust 316	login block-for attempts 33
ip dhcp snooping verify mac-address 312	login on-failure log 26
ip dhep snooping vlan 311	login on-success log 26
ip port access group 236	login quiet-mode access-class 33
ip radius source-interface 52	•
ip source binding 378	М
ip tacaes source-interface 76	IVI
ip verify source dhcp-snooping-vlan 378	mac access-list 261–262
ip verify unicast source reachable-via 412	MAC addresses 277
ip verify unicast source reachable-via any 411	learning 277
ipv6 access-class 212	mac packet-classify 266
ipv6 access-list 209–210, 212	mac port access-group 265
ipv6 address use-link-local-only 332	macsec policy 472
ipv6 dhcp relay 327	match {ip ipv6} address 272
ipv6 dhcp relay address 329	match access-group name 441
ipv6 dhcp relay option type cisco 328	match exception {ip ipv6} icmp redirect 441
ipv6 dhcp relay option vpn 328	match exception {ip ipv6} icmp unreachable 441
ipv6 dhcp relay source-interface 330	match exception {ip ipv6} option 441
ipv6 port traffic-filter 236	match mac address 272
ipv6 traffic-filter 234	match protocol arp 441
ipv6 verify unicast source reachable-via 412	inate protocol ap
ipv6 verify unicast source reachable-via any 411	N
K	no {periodic absolute} 255
key 392, 394, 396, 469	, ,

no aaa authentication login {console default fallback error local 16,	R
no aaa authentication login ascii-authentication 27, 29	RADIUS accounting 184
no dot1x system-auth-control 179	enabling for 802.1X authentication 184
no feature dot1x 180	radius-server deadtime 57, 59–60
no feature ssh 123, 134–135	radius-server directed-request 53
no feature tacacs+ 94	radius-server host 36, 47, 49, 51, 55–56, 59
no host 248, 250	radius-server host accounting 56
no ip access-list 214	radius-server host acct-port 56
no ipv6 access-list 214	radius-server host auth-port 56
no key chain 390	radius-server host authentication 56
no mac access-list 263	radius-server host idle-time 59
no object-group {ip address ipv6 address ip port} 252	radius-server host password 59
no ssh key dsa 135	radius-server host retransmit 55
no ssh key rsa 135	radius-server host test 59
no time-range 256	radius-server host timeout 55
no vlan access-map 273	radius-server host username 59
no vian access-map 273	radius-server key 36, 48
	radius-server retransmit 54
0	radius-server test {idle-time} 57
	, ,
object-group ip address 248	radius-server test {password} 57 radius-server test {username} 57
object-group ip port 250	()
object-group ipv6 address 249	radius-server timeout 54
	reload 221, 225, 233
p	resequence {ip ipv6} access-list 213
	resequence mac access-list 263
password prompt username 35	resequence time-range 256
password strength-check 150	role commit 154, 156–159
periodic 254	role feature-group name 155
permit 209–212	role name 153, 156, 158–159
permit deny 261	role name priv 92
permit http-method 239	rule {deny permit) command 153
permit interface 156	rule {deny permit} {read read-write} 153
permit ip 233	rule {deny permit} {read read-write} feature 153
permit udf 233	rule {deny permit} {read read-write} feature-group 153
permit vlan 158	rule {deny permit} {read read-write} oid 154
permit vrf 159	rule {deny permit} command 93
police 443	
police cir 443	S
policy-map 437	
policy-map type control-plane 442	sak-expiry-time 472
port security 277, 280, 283–284	scale-factor 446
default settings 283	secure MAC addresses 277
description 277	learning 277
guidelines 284	security 277
limitations 284	port 277
MAC address learning 277	MAC address learning 277
MAC move 280	security-policy 472
violations 280	send-lifetime 394, 469
ports 166	server 51, 75, 107
authorization states for 802.1X 166	service-policy 437
authorization states for 602.1A 100	service-policy input 445
	set cos 443
	show {ip ipv6 access-lists} 252
	show as accounting 37
	show aaa accounting 31, 185

show aaa authentication 21–22, 24–25, 37	show ipv6 access-lists summary 214	
show aaa authentication login {ascii-authentication chap error-enable	show ipv6 dhcp relay 327–328, 330, 333	
mschap mschapv2} 37	show ipv6 dhcp relay interface 328	
show aaa authentication login {mschap mschapv2} 29	show ipv6 dhep relay statistics 335	
show aaa authentication login chap 28	show key chain 389–390, 393, 395–396, 470	
show aaa authorization 86, 88, 115	show key chain mode decrypt 393, 395	
show aga authorization all 86	show ldap-search-map 112, 117	
show aaa groups 37	show Idap-server 105–106, 109–111, 113–114, 116	
show aaa user default-role 24	•	
	show Idap-server groups 108, 116	
show accounting log 37	show Idap-server statistics 115–116	
show class-map type control-plane 442, 448	show logging ip access-list cache 238, 241	
show cli syntax roles network-admin 160	show logging ip access-list status 242	
show cli syntax roles network-operator 160	show login 34, 37	
show copp profile 449	show login failures 34	
show copp status 447, 450	show login on-failure log 26	
show crypto ca certificates 132, 139	show login on-successful log 26	
show crypto ca crl 132, 139	show mac access-lists 261–264 , 266–267	
show dot1x 170, 179	show macsec mka session 473	
show dot1x {all interface ethernet} 187	show macsec mka statistics 476	
show dot1x all 172, 175, 177–178, 181–184	show macsec mka summary 474	
show dot1x interface ethernet 172	show macsec policy 473–474	
show encryption service stat 383, 391	show macsec secy statistics 476	
show hardware access-list team region 221, 241	show object-group 248, 250–252	
show hardware access-list team template 225, 241	show password strength-check 150	
show hardware rate-limiter 459–460	show policy-map interface control-plane 446, 448, 450–451	
show hardware rate-limiter access-list-log 459–460	show policy-map type control-plane 444, 448	
show hardware rate-limiter bfd 459–460	show policy-map type control-plane expand 444	
show hardware rate-limiter exception 459–460	show policy-map type control-plane name 444	
show hardware rate-limiter tex 459–460		
	show port-security 286, 295	
show hardware rate-limiter layer-3 glean 459–460	show port-security address 291, 295	
show hardware rate-limiter layer-3 multicast local-groups 459–460	show port-security address interface 291	
show hardware rate-limiter module 459–460	show port-security interface 295	
show hardware rate-limiter span-egress 459–460	show privilege 91, 96	
show incompatibility nxos bootflash: 439	show radius {status pending pending-diff} 61	
show interface counters storm-control 402, 404	show radius-server 47–49, 52, 54–56, 58–60, 62, 171	
show interface ethernet counters storm-control 404	show radius-server directed-request 53	
show interface port-channel counters storm-control 404	show radius-server group 171	
show interface switchport 419	show radius-server groups 51	
show ip access-lists 209, 211–213, 240–242	show radius-server statistics 62	
show ip access-lists summary 214	show role 151, 154, 157–160	
show ip arp inspection 368	show role {pending pending-diff} 154, 156–159	
show ip arp inspection interface 365	show role feature 160	
show ip arp inspection interfaces 368	show role feature-group 155, 160	
show ip arp inspection log 368	show run interface 240	
show ip arp inspection statistics 369	show running-config aaa 38	
show ip arp inspection vlan 364, 369	show running-config acllog 242	
show ip dhcp relay 317, 320–321, 324–326, 333	show running-config aclmgr 235–236, 242, 252, 265–266, 273–275, 449	
show ip dhep relay address 333	show running-config aclmgr all 242, 266	
show ip dhep relay information trusted-sources 317–319	show running-config all i max-login 34, 38	
show ip dhep relay statistics 335	show running-config copp 445, 447, 449	
show ip dhep snooping binding 334, 378	show running-config copp all 445	
show ip interface 411	show running-config dhcp 310, 312, 314–328, 330, 367–369, 378	
show ip ver source 379–380	show running-config interface 334, 404, 419	
show ip ver source ethernet 379–380	show running-config interface {ethernet port-channel} 404	
show ip ver source port-channel 379–380	show running-config interface ethernet 266, 333, 415, 419	
show ipv6 access-lists 210–212, 241, 243	show running-config interface mgmt 0 333	

show running-config interface port-channel 266, 419	storm-control {broadcast multicast unicast} 403
show running-config interface vlan 333	storm-control action trap 403
show running-config ip 415	storm-control-cpu arp rate 404
show running-config ipv6 415	switchport 286–287
show running-config ldap 116	switchport block {multicast unicast} 418
show running-config macsec 474	switchport block ethernet switchport 419
show running-config port-security 287–290, 293–295	switchport block port-channel switchport 419
show running-config radius 61	switchport port-security 287
show running-config security 130, 138, 160	switchport port-security aging time 294
show running-config security all 126, 138, 160	switchport port-security aging type 293
show running-config tacacs 96	switchport port-security mac-address 289
show running-config tacaes all 96	switchport port-security mac-address sticky 288, 290–291
show ssh key 123, 136, 138	switchport port-security maximum 292
show ssh key dsa 138	switchport port-security violation 295
show ssh key md5 138	system login block-for 33
show ssh key rsa 138	system login block-for attempts 33
show ssh server 135, 138	system login block-for within 33
show startup-config aaa 38	system login quiet-mode access-class 33
show startup-config acilog 242	System rogin quiet mode decess class
show startup-config aclingr 242, 267, 275, 449	_
show startup-config aclmgr all 242, 267, 275	T
show startup-config dhcp 333–334	4
show startup-config dhep all 334	tacacs-server dead-time 81, 83
show startup-config interface ethernet 415	tacacs-server deadtime 84
show startup-config ip 415	tacacs-server directed-request 77
show startup-config ldap 116	tacacs-server host 36, 72, 74–75, 78, 80, 83
show startup-config radius 62	tacacs-server host port 80
	tacacs-server host timeout 78
show startup-config security 160	tacacs-server key 36, 73
show startup-config tacacs 96	tacacs-server test 81
show system login 34	tacacs-server test idle-time 81
show system login failures 34	tacacs-server test username 81
show tacacs-server 72–74, 76, 79–80, 82–85, 96	tacacs+ commit 72, 78–80, 84–85, 88
show tacacs-server directed-request 78, 96	telnet 137
show tacacs-server groups 76, 96	telnet vrf 137
show tacacs-server sorted 96	telnet6 137
show tacacs-server statistics 95–96	telnet6 vrf 137
show tacacs+ {pending pending-diff} 72, 77, 79–80, 84–85, 88	terminal no verify-only 90
show tacacs+ {status pending pending-diff} 96	terminal no verify-only username 90
show telnet server 137–138	terminal verify-only 89
show time-range 255–256	terminal verify-only username 89
show user-account 124–125, 132, 138, 152, 160	test aaa authorization command-type {commands config-commands}
show username 128	user command 89
show username keypair 138	test aaa group 61, 94
show userpassphrase {length max-length min-length} 35, 38	test aaa server radius 61
show users 132, 136, 138	test aaa server radius vrf 61
show vlan access-map 275	test aaa server tacacs+ 93
show vlan filter 275	time-range 254
ssh 127	
ssh key 123	U
ssh key force 123	U
ssh key rsa 123	udf 232
ssh login-attempts 126	Unicast RPF 407–410, 414–415
ssh vrf 127	BGP attributes 408
ssh6 127	BOOTP and 409
ssh6 vrf 127	
statistics per-entry 209, 211, 261–262, 273	default settings 410

Unicast RPF (continued)	username keypair import (rsa dsa) 129
deploying 409	username password 131, 151
description 407	username sshkey 125
DHCP and 409	username sshkey file bootflash 124
example configurations 414	userpassphrase max-length 35
FIB 407	userpassphrase min-length 35
guidelines 409	-
implementation 408	V
licensing 409	•
limitations 409	vlan access-map 272
tunneling and 409	vlan filter 274
verifying configuration 415	vlan policy deny 158
use-vrf 51, 108	vPC First Hop Security Configuration 341
user max-logins 34	description 341
username 91, 124	vrf policy deny 159
username keypair export 128	r is is
username keypair export {rsa dsa} 128	14/
username keypair generate 128	W
username keypair import 129	window-size 472

INDEX