
Configuring Wireshark

• Finding Feature Information, on page 1
• Prerequisites for Wireshark, on page 1
• Restrictions for Wireshark, on page 1
• Information About Wireshark, on page 3
• How to Configure Wireshark, on page 12
• Monitoring Wireshark, on page 22
• Configuration Examples for Wireshark, on page 22
• Additional References, on page 37
• Feature History and Information for WireShark, on page 38

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not
required.

Prerequisites for Wireshark
• Wireshark is supported on Supervisor Engine 7-E, Supervisor Engine 7L-E, Catalyst 3850, Catalyst 3650,
Wireless LAN Controller 5700 Series, Catalyst 4500X-16, and Catalyst 4500X-32.

Restrictions for Wireshark
• Starting in Cisco IOS Release XE 3.3.0(SE), global packet capture on Wireshark is not supported.

• Capture filters are not supported.

Configuring Wireshark
1

http://www.cisco.com/go/cfn

• The CLI for configuringWireshark requires that the feature be executed only from EXECmode. Actions
that usually occur in configuration submode (such as defining capture points), are handled at the EXEC
mode instead. All key commands are not NVGEN’d and are not synchronized to the standby supervisor
in NSF and SSO scenarios.

• Packets captured in the output direction of an interface might not reflect the changes made by switch
rewrite (includes TTL, VLAN tag, CoS, checksum, MAC addresses, DSCP, precedent, UP, etc.).

• Limiting circular file storage by file size is not supported.

Wireless Packet Capture

• The only form of wireless capture is a CAPWAP tunnel capture.

• When capturing CAPWAP tunnels, no other interface types can be used as attachment points on the same
capture point.

• Capturing multiple CAPWAP tunnels is supported.

• Core filters are not applied and should be omitted when capturing a CAPWAP tunnel.

• To capture a CAPWAP data tunnel, each CAPWAP tunnel is mapped to a physical port and an appropriate
ACL will be applied to filter the traffic.

• To capture a CAPWAP non-data tunnel, the switch is set to capture traffic on all ports and apply an
appropriate ACL to filter the traffic.

Configuration Limitations

• Multiple capture points can be defined, but only one can be active at a time. You need to stop one before
you can start the other.

• Neither VRFs, management ports, nor private VLANs can be used as attachment points.

• Only one ACL of each type (IPv4, IPv6, MAC) is allowed in a Wireshark class map. There can be a
maximum of three ACLs in a class map: one for IPv4, one for IPv6, and the other for MAC.

• Wireshark cannot capture packets on a destination SPAN port.

• Wireshark will stop capturing when one of the attachment points (interfaces) attached to a capture point
stops working. For example, if the device that is associated with an attachment point is unplugged from
the switch. To resume capturing, the capture must be restarted manually.

• CPU-injected packets are considered control plane packets. Therefore, these types of packets will not be
captured on an interface egress capture.

• MAC ACL is only used for non-IP packets such as ARP. It will not be supported on a Layer 3 port or
SVI.

• IPv6-based ACLs are not supported in VACL.

• Layer 2 and Layer 3 EtherChannels are not supported.

• ACL logging and Wireshark are incompatible. Once Wireshark is activated, it takes priority. All traffic,
including that being captured by ACL logging on any ports, will be redirected to Wireshark. We

Configuring Wireshark
2

Configuring Wireshark
Restrictions for Wireshark

recommended that you deactivate ACL logging before starting Wireshark. Otherwise, Wireshark traffic
will be contaminated by ACL logging traffic.

• Wireshark does not capture packets dropped by floodblock.

• If you capture both PACL and RACL on the same port, only one copy is sent to the CPU. If you capture
a DTLS-encrypted CAPWAP interface, two copies are sent to Wireshark, one encrypted and the other
decrypted. The same behavior will occur if we capture a Layer 2 interface carrying DTLS-encrypted
CAPWAP traffic. The core filter is based on the outer CAPWAP header.

Information About Wireshark

Wireshark Overview
Wireshark is a packet analyzer program, formerly known as Ethereal, that supports multiple protocols and
presents information in a text-based user interface.

The ability to capture and analyze traffic provides data on network activity. Prior to Cisco IOS Release XE
3.3.0(SE), only two features addressed this need: SPAN and debug platform packet. Both have limitations.
SPAN is ideal for capturing packets, but can only deliver them by forwarding them to some specified local
or remote destination; it provides no local display or analysis support. The debug platform packet command
is specific to the Catalyst 4500 series and only works on packets that come from the software process-forwarding
path. Also, the debug platform packet command has limited local display capabilities and no analysis support.

So the need exists for a traffic capture and analysis mechanism that is applicable to both hardware and software
forwarded traffic and that provides strong packet capture, display, and analysis support, preferably using a
well known interface.

Wireshark dumps packets to a file using a well known format called .pcap, and is applied or enabled on
individual interfaces. You specify an interface in EXEC mode along with the filter and other parameters. The
Wireshark application is applied only when you enter a start command, and is removed only whenWireshark
stops capturing packets either automatically or manually.

Capture Points
A capture point is the central policy definition of the Wireshark feature. The capture point describes all of the
characteristics associated with a given instance ofWireshark: which packets to capture, where to capture them
from, what to do with the captured packets, and when to stop. Capture points can be modified after creation,
and do not become active until explicitly activated with a start command. This process is termed activating
the capture point or starting the capture point. Capture points are identified by name and can also be manually
or automatically deactivated or stopped.

Multiple capture points can be defined, but only one can be active at a time. You need to stop one before you
can start the other.

Attachment Points
An attachment point is a point in the logical packet process path associated with a capture point. An attachment
point is an attribute of the capture point. Packets that impact an attachment point are tested against capture
point filters; packets that match are copied and sent to the associated Wireshark instance of the capture point.

Configuring Wireshark
3

Configuring Wireshark
Information About Wireshark

A specific capture point can be associated with multiple attachment points, with limits on mixing attachment
points of different types. Some restrictions apply when you specify attachment points of different types.
Attachment points are directional (input or output or both) with the exception of the Layer 2 VLAN attachment
point, which is always bidirectional.

Filters
Filters are attributes of a capture point that identify and limit the subset of traffic traveling through the
attachment point of a capture point, which is copied and passed to Wireshark. To be displayed by Wireshark,
a packet must pass through an attachment point, as well as all of the filters associated with the capture point.

A capture point has the following types of filters:

• Core system filter—The core system filter is applied by hardware, and its match criteria is limited by
hardware. This filter determines whether hardware-forwarded traffic is copied to software for Wireshark
purposes.

• Display filter—The display filter is applied by Wireshark. Packets that fail the display filter are not
displayed.

Core System Filter

You can specify core system filter match criteria by using the class map or ACL, or explicitly by using the
CLI.

When specifying CAPWAP as an attachment point, the core system filter is not used.Note

In some installations, you need to obtain authorization to modify the switch configuration, which can lead to
extended delays if the approval process is lengthy. This can limit the ability of network administrators to
monitor and analyze traffic. To address this situation,Wireshark supports explicit specification of core system
filter match criteria from the EXECmode CLI. The disadvantage is that the match criteria that you can specify
is a limited subset of what class map supports, such as MAC, IP source and destination addresses, ether-type,
IP protocol, and TCP/UDP source and destination ports.

If you prefer to use configuration mode, you can define ACLs or have class maps refer capture points to them.
Explicit and ACL-based match criteria are used internally to construct class maps and policy maps.

Note The ACL and class map configuration are part of the system and not aspects of the Wireshark feature.

Display Filter

With the display filter, you can direct Wireshark to further narrow the set of packets to display when decoding
and displaying from a .pcap file.

Related Topics
Additional References, on page 37

Actions
Wireshark can be invoked on live traffic or on a previously existing .pcap file. When invoked on live traffic,
it can perform four types of actions on packets that pass its display filters:

Configuring Wireshark
4

Configuring Wireshark
Filters

• Captures to buffer in memory to decode and analyze and store

• Stores to a .pcap file

• Decodes and displays

• Stores and displays

When invoked on a .pcap file only, only the decode and display action is applicable.

Storage of Captured Packets to Buffer in Memory
Packets can be stored in the capture buffer in memory for subsequent decode, analysis, or storage to a .pcap
file.

The capture buffer can be in linear or circular mode. In linear mode, new packets are discarded when the
buffer is full. In circular mode, if the buffer is full, the oldest packets are discarded to accommodate the new
packets. Although the buffer can also be cleared when needed, this mode is mainly used for debugging network
traffic.

If you have more than one capture that is storing packets in a buffer, clear the buffer before starting a new
capture to avoid memory loss.

Note

Storage of Captured Packets to a .pcap File

When WireShark is used on switches in a stack, packet captures can be stored only on flash or USB flash
devices connected to the active switch.

For example, if flash1 is connected to the active switch, and flash2 is connected to the secondary switch, only
flash1 can be used to store packet captures.

Attempts to store packet captures on devices other than flash or USB flash devices connected to the active
switch will probably result in errors.

Note

Wireshark can store captured packets to a .pcap file. The capture file can be located on the following storage
devices:

• Switch on-board flash storage (flash:)

• USB drive (usbflash0:)

Attempts to store packet captures on unsupported devices or devices not connected to the active switch will
probably result in errors.

Note

When configuring aWireshark capture point, you can associate a filename.When the capture point is activated,
Wireshark creates a file with the specified name and writes packets to it. If the file already exists when the

Configuring Wireshark
5

Configuring Wireshark
Storage of Captured Packets to Buffer in Memory

file is associated or the capture point is activated, Wireshark queries you as to whether the file can be
overwritten. Only one capture point may be associated with a given filename.

If the destination of the Wireshark writing process is full, Wireshark fails with partial data in the file. You
must ensure that there is sufficient space in the file system before you start the capture session. With Cisco
IOS Release IOS XE 3.3.0(SE), the file system full status is not detected for some storage devices.

You can reduce the required storage space by retaining only a segment, instead of the entire packet. Typically,
you do not require details beyond the first 64 or 128 bytes. The default behavior is to store the entire packet.

To avoid possible packet drops when processing and writing to the file system, Wireshark can optionally use
a memory buffer to temporarily hold packets as they arrive. Memory buffer size can be specified when the
capture point is associated with a .pcap file.

Packet Decoding and Display
Wireshark can decode and display packets to the console. This functionality is possible for capture points
applied to live traffic and for capture points applied to a previously existing .pcap file.

Decoding and displaying packets may be CPU intensive.Note

Wireshark can decode and display packet details for a wide variety of packet formats. The details are displayed
by entering themonitor capture name start command with one of the following keyword options, which
place you into a display and decode mode:

• brief—Displays one line per packet (the default).

• detailed—Decodes and displays all the fields of all the packets whose protocols are supported. Detailed
modes require more CPU than the other two modes.

• (hexadecimal) dump—Displays one line per packet as a hexadecimal dump of the packet data and the
printable characters of each packet.

When you enter the capture command with the decode and display option, the Wireshark output is returned
to Cisco IOS and displayed on the console unchanged.

Live Traffic Display

Wireshark receives copies of packets from the core system. Wireshark applies its display filters to discard
uninteresting packets, and then decodes and displays the remaining packets.

.pcap File Display

Wireshark can decode and display packets from a previously stored .pcap file and direct the display filter to
selectively displayed packets.

Packet Storage and Display
Functionally, this mode is a combination of the previous two modes. Wireshark stores packets in the specified
.pcap file and decodes and displays them to the console. Only the core filters are applicable here.

Configuring Wireshark
6

Configuring Wireshark
Packet Decoding and Display

Wireshark Capture Point Activation and Deactivation
After aWireshark capture point has been defined with its attachment points, filters, actions, and other options,
it must be activated. Until the capture point is activated, it does not actually capture packets.

Before a capture point is activated, some functional checks are performed. A capture point cannot be activated
if it has neither a core system filter nor attachment points defined. Attempting to activate a capture point that
does not meet these requirements generates an error.*

*When performing a wireless capture with a CAPWAP tunneling interface, the core system filter is not required
and cannot be used.

Note

The display filters are specified as needed.

After Wireshark capture points are activated, they can be deactivated in multiple ways. A capture point that
is storing only packets to a .pcap file can be halted manually or configured with time or packet limits, after
which the capture point halts automatically.

When a Wireshark capture point is activated, a fixed rate policer is applied automatically in the hardware so
that the CPU is not flooded with Wireshark-directed packets. The disadvantage of the rate policer is that you
cannot capture contiguous packets beyond the established rate even if more resources are available.

Wireshark Features
This section describes how Wireshark features function in the switch environment:

• If port security andWireshark are applied on an ingress capture, a packet that is dropped by port security
will still be captured by Wireshark. If port security is applied on an ingress capture, and Wireshark is
applied on an egress capture, a packet that is dropped by port security will not be captured byWireshark.

• Packets dropped by Dynamic ARP Inspection (DAI) are not captured by Wireshark.

• If a port that is in STP blocked state is used as an attachment point and the core filter is matched,Wireshark
will capture the packets that come into the port, even though the packets will be dropped by the switch.

• Classification-based security features—Packets that are dropped by input classification-based security
features (such as ACLs and IPSG) are not caught by Wireshark capture points that are connected to
attachment points at the same layer. In contrast, packets that are dropped by output classification-based
security features are caught by Wireshark capture points that are connected to attachment points at the
same layer. The logical model is that the Wireshark attachment point occurs after the security feature
lookup on the input side, and symmetrically before the security feature lookup on the output side.

On ingress, a packet goes through a Layer 2 port, a VLAN, and a Layer 3 port/SVI. On egress, the packet
goes through a Layer 3 port/SVI, a VLAN, and a Layer 2 port. If the attachment point is before the point
where the packet is dropped, Wireshark will capture the packet. Otherwise, Wireshark will not capture
the packet. For example, Wireshark capture policies connected to Layer 2 attachment points in the input
direction capture packets dropped by Layer 3 classification-based security features. Symmetrically,
Wireshark capture policies attached to Layer 3 attachment points in the output direction capture packets
dropped by Layer 2 classification-based security features.

• Routed ports and switch virtual interfaces (SVIs)—Wireshark cannot capture the output of an SVI because
the packets that go out of an SVI's output are generated by CPU. To capture these packets, include the
control plane as an attachment point.

Configuring Wireshark
7

Configuring Wireshark
Wireshark Capture Point Activation and Deactivation

• VLANs—When a VLAN is used as a Wireshark attachment point, packets are captured in the input
direction only.

• Redirection features—In the input direction, features traffic redirected by Layer 3 (such as PBR and
WCCP) are logically later than Layer 3 Wireshark attachment points. Wireshark captures these packets
even though they might later be redirected out another Layer 3 interface. Symmetrically, output features
redirected by Layer 3 (such as egress WCCP) are logically prior to Layer 3Wireshark attachment points,
and Wireshark will not capture them.

• SPAN—Wireshark and SPAN sources are compatible. You can configure an interface as a SPAN source
and as aWireshark attachment point simultaneously. Configuring a SPAN destination port as aWireshark
attachment point is not supported.

• You can capture packets from a maximum of 1000 VLANs at a time, if no ACLs are applied. If ACLs
are applied, the hardware will have less space for Wireshark to use. As a result, the maximum number
of VLANs than can be used for packet capture at a time will be lower. Using more than 1000 VLANs
tunnels at a time or extensive ACLs might have unpredictable results. For example, mobility may go
down.

Capturing an excessive number of attachment points at the same time is strongly
discouraged because it may cause excessive CPU utilization and unpredictable
hardware behavior.

Note

Wireless Packet Capture in Wireshark

• Wireless traffic is encapsulated inside CAPWAP packets. However, capturing only a particular wireless
client's traffic inside a CAPWAP tunnel is not supported when using the CAPWAP tunnel as an attachment
point. To capture only a particular wireless client's traffic, use the client VLAN as an attachment point
and formulate the core filter accordingly.

• Limited decoding of inner wireless traffic is supported. Decoding of inner wireless packets inside encrypted
CAPWAP tunnels is not supported.

• No other interface type can be used with the CAPWAP tunneling interface on the same capture point. A
CAPWAP tunneling interface and a Level 2 port cannot be attachment points on the same capture point.

• You cannot specify a core filter when capturing packets forWireshark via the CAPWAP tunnel. However,
you can use the Wireshark display filters for filtering wireless client traffic against a specific wireless
client.

• You can capture packets from a maximum of 135 CAPWAP tunnels at a time if no ACLs are applied.
If ACLs are applied, the hardware memory will have less space for Wireshark to use. As a result, the
maximum number of CAPWAP tunnels than can be used for packet capture at a time will be lower.
Using more than 135 CAPWAP tunnels at a time or unsing extensive ACLs might have unpredictable
results. For example, mobility may go down.

Capturing an excessive number of attachment points at the same time is strongly
discouraged because it may cause excessive CPU utilization and unpredictable
hardware behavior.

Note

Configuring Wireshark
8

Configuring Wireshark
Wireshark Features

Guidelines for Wireshark
• During Wireshark packet capture, hardware forwarding happens concurrently.

• Before starting a Wireshark capture process, ensure that CPU usage is moderate and that sufficient
memory (at least 200 MB) is available.

• If you plan to store packets to a storage file, ensure that sufficient space is available before beginning a
Wireshark capture process.

• The CPU usage during Wireshark capture depends on how many packets match the specified conditions
and on the intended actions for the matched packets (store, decode and display, or both).

• Where possible, keep the capture to the minimum (limit by packets, duration) to avoid high CPU usage
and other undesirable conditions.

• Because packet forwarding typically occurs in hardware, packets are not copied to the CPU for software
processing. For Wireshark packet capture, packets are copied and delivered to the CPU, which causes
an increase in CPU usage.

To avoid high CPU usage, do the following:

• Attach only relevant ports.

• Use a class map, and secondarily, an access list to express match conditions. If neither is viable,
use an explicit, in-line filter.

• Adhere closely to the filter rules. Restrict the traffic type (such as, IPv4 only) with a restrictive,
rather than relaxed ACL, which elicits unwanted traffic.

• Always limit packet capture to either a shorter duration or a smaller packet number. The parameters of
the capture command enable you to specify the following:

• Capture duration

• Number of packets captured

• File size

• Packet segment size

• Run a capture session without limits if you know that very little traffic matches the core filter.

• You might experience high CPU (or memory) usage if:

• You leave a capture session enabled and unattended for a long period of time, resulting in
unanticipated bursts of traffic.

• You launch a capture session with ring files or capture buffer and leave it unattended for a long
time, resulting in performance or system health issues.

• During a capture session, watch for high CPU usage and memory consumption due to Wireshark that
may impact switch performance or health. If these situations arise, stop theWireshark session immediately.

• Avoid decoding and displaying packets from a .pcap file for a large file. Instead, transfer the .pcap file
to a PC and run Wireshark on the PC.

Configuring Wireshark
9

Configuring Wireshark
Guidelines for Wireshark

• You can define up to eight Wireshark instances. An active show command that decodes and displays
packets from a .pcap file or capture buffer counts as one instance. However, only one of the instances
can be active.

• Whenever an ACL that is associated with a running capture is modified, you must restart the capture for
the ACL modifications to take effect. If you do not restart the capture, it will continue to use the original
ACL as if it had not been modified.

• To avoid packet loss, consider the following:

• Use store-only (when you do not specify the display option) while capturing live packets rather than
decode and display, which is an CPU-intensive operation (especially in detailed mode).

• If you have more than one capture that is storing packets in a buffer, clear the buffer before starting
a new capture to avoid memory loss.

• If you use the default buffer size and see that you are losing packets, you can increase the buffer
size to avoid losing packets.

• Writing to flash disk is a CPU-intensive operation, so if the capture rate is insufficient, you may
want to use a buffer capture.

• TheWireshark capture session operates normally in streamingmode where packets are both captured
and processed. However, when you specify a buffer size of at least 32MB, the session automatically
turns on lock-step mode in which a Wireshark capture session is split into two phases: capture and
process. In the capture phase, the packets are stored in the temporary buffer. The duration parameter
in lock-step mode serves as capture duration rather than session duration. When the buffer is full
or the capture duration or packet limit has been attained, a session transitions to the process phase,
wherein it stops accepting packets and starts processing packets in the buffer. You can also stop the
capture manually. You will see a message in the output when the capture stops. With this second
approach (lock-step mode), a higher capture throughput can be achieved.

If you are capturing packets to a buffer, there is no file storage defined. Hence,
you must export your capture from the buffer to a static storage file. Use the
monitor capture capture-name export file-location : file-name command.

Note

• The streaming capture mode supports approximately 1000 pps; lock-step mode supports
approximately 2 Mbps (measured with 256-byte packets). When the matching traffic rate exceeds
this number, you may experience packet loss.

• If you want to decode and display live packets in the console window, ensure that the Wireshark session
is bounded by a short capture duration.

Warning: A Wireshark session with either a longer duration limit or no capture duration (using a terminal
with no auto-more support using the term len 0 command) may make the console or terminal unusable.

Note

• When using Wireshark to capture live traffic that leads to high CPU, usage, consider applying a QoS
policy temporarily to limit the actual traffic until the capture process concludes.

• All Wireshark-related commands are in EXEC mode; no configuration commands exist for Wireshark.

Configuring Wireshark
10

Configuring Wireshark
Guidelines for Wireshark

If you need to use access list or class-map in the Wireshark CLI, you must define an access list and class
map with configuration commands.

• No specific order applies when defining a capture point; you can define capture point parameters in any
order, provided that CLI allows this. The Wireshark CLI allows as many parameters as possible on a
single line. This limits the number of commands required to define a capture point.

• All parameters except attachment points take a single value. Generally, you can replace the value with
a new one by reentering the command. After user confirmation, the system accepts the new value and
overrides the older one. A no form of the command is unnecessary to provide a new value, but it is
necessary to remove a parameter.

• Wireshark allows you to specify one or more attachment points. To add more than one attachment point,
reenter the command with the new attachment point. To remove an attachment point, use the no form
of the command. You can specify an interface range as an attachment point. For example, entermonitor
capturemycap interfaceGigabitEthernet1/0/1 inwhere interface GigabitEthernet1/0/1 is an attachment
point.

If you also need to attach interface GigabitEthernet1/0/2, specify it in another line as follows:

monitor capture mycap interface GigabitEthernet1/0/2 in

• You can modify any of the parameters of a capture point while a session is active, but you must restart
the session for the modifications to take effect.

• The action you want to perform determines which parameters are mandatory. The Wireshark CLI allows
you to specify or modify any parameter prior to entering the start command. When you enter the start
command,Wireshark will start only after determining that all mandatory parameters have been provided.

• If the capture file already exists, it provides a warning and receives confirmation before proceeding. This
prevents you from mistakenly overwriting a file.

• The core filter can be an explicit filter, access list, or class map. Specifying a newer filter of these types
replaces the existing one.

A core filter is required except when using a CAPWAP tunnel interface as a
capture point attachment point.

Note

• You can terminate a Wireshark session with an explicit stop command or by entering q in automore
mode. The session could terminate itself automatically when a stop condition such as duration or packet
capture limit is met.

Default Wireshark Configuration
The table below shows the default Wireshark configuration.

Default SettingFeature

No limitDuration

No limitPackets

No limit (full packet)Packet-length

Configuring Wireshark
11

Configuring Wireshark
Default Wireshark Configuration

Default SettingFeature

No limitFile size

NoRing file storage

LinearBuffer storage mode

How to Configure Wireshark
To configure Wireshark, perform these basic steps.

1. Define a capture point.

2. (Optional) Add or modify the capture point's parameters.

3. Activate or deactivate a capture point.

4. Delete the capture point when you are no longer using it.

Related Topics
Defining a Capture Point, on page 12
Adding or Modifying Capture Point Parameters, on page 17
Deleting Capture Point Parameters, on page 18
Deleting a Capture Point, on page 19
Activating and Deactivating a Capture Point, on page 20
Clearing the Capture Point Buffer, on page 21

Defining a Capture Point
The example in this procedure defines a very simple capture point. If you choose, you can define a capture
point and all of its parameters with one instance of themonitor capture command.

You must define an attachment point, direction of capture, and core filter to have a functional capture point.

An exception to needing to define a core filter is when you are defining a wireless capture point using a
CAPWAP tunneling interface. In this case, you do not define your core filter. It cannot be used.

Note

In privileged EXEC mode, follow these steps to define a capture point.

Procedure

PurposeCommand or Action

Displays the CAPWAP tunnels available as
attachment points for a wireless capture.

show capwap summary

Example:

Step 1

Configuring Wireshark
12

Configuring Wireshark
How to Configure Wireshark

PurposeCommand or Action
Device# show capwap summary Use this command only if you are

using a CAPWAP tunnel as an
attachment point to perform a
wireless capture. See the CAPWAP
example in the examples section.

Note

Defines the capture point, specifies the
attachment point with which the capture point

monitor capture {capture-name}{interface
interface-type interface-id |
control-plane}{in | out | both}

Step 2

is associated, and specifies the direction of the
capture.

Example:
The keywords have these meanings:Device# monitor capture mycap interface

GigabitEthernet1/0/1 in • capture-name—Specifies the name of the
capture point to be defined (mycap is used
in the example).

• (Optional) interface interface-type
interface-id—Specifies the attachment
point with which the capture point is
associated (GigabitEthernet1/0/1 is used
in the example).

Optionally, you can define
multiple attachment points and
all of the parameters for this
capture point with this one
command instance. These
parameters are discussed in the
instructions for modifying
capture point parameters.
Range support is also available
both for adding and removing
attachment points.

Note

Use one of the following for
interface-type:

• GigabitEthernet—Specifies the
attachment point as GigabitEthernet.

• vlan—Specifies the attachment point
as a VLAN.

Only ingress capture (in)
is allowed when using this
interface as an attachment
point.

Note

• capwap—Specifies the attachment
point as a CAPWAP tunnel.

Configuring Wireshark
13

Configuring Wireshark
Defining a Capture Point

PurposeCommand or Action

When using this interface
as an attachment point, a
core filter cannot be used.

Note

• (Optional) control-plane—Specifies the
control plane as an attachment point.

• in | out | both—Specifies the
direction of capture.

Defines the core system filter.monitor capture {capture-name}[match
{any | ipv4 any any | ipv6} any
any}]

Step 3

When using the CAPWAP tunneling
interface as an attachment point, do
not perform this step because a core
filter cannot be used.

Note

Example:
Device# monitor capture mycap interface
GigabitEthernet1/0/1 in match any

The keywords have these meanings:

• capture-name—Specifies the name of the
capture point to be defined (mycap is used
in the example).

• match—Specifies a filter. The first filter
defined is the core filter.

A capture point cannot be
activated if it has neither a core
system filter nor attachment
points defined. Attempting to
activate a capture point that
does not meet these
requirements generates an error.

Note

• ipv4—Specifies an IP version 4 filter.

• ipv6—Specifies an IP version 6 filter.

Displays the capture point parameters that you
defined in Step 1 and confirms that you defined
a capture point.

show monitor capture {capture-name}[
parameter]

Example:

Step 4

Device# show monitor capture mycap
parameter

monitor capture mycap interface
GigabitEthernet1/0/1 in

monitor capture mycap match any

Example

To define a capture point with a CAPWAP attachment point:

Configuring Wireshark
14

Configuring Wireshark
Defining a Capture Point

Device# show capwap summary

CAPWAP Tunnels General Statistics:
Number of Capwap Data Tunnels = 1
Number of Capwap Mobility Tunnels = 0
Number of Capwap Multicast Tunnels = 0

Name APName Type PhyPortIf Mode McastIf
------ -------------------------------- ---- --------- --------- -------
Ca0 AP442b.03a9.6715 data Gi3/0/6 unicast -

Name SrcIP SrcPort DestIP DstPort DtlsEn MTU Xact
------ --------------- ------- --------------- ------- ------ ----- ----
Ca0 10.10.14.32 5247 10.10.14.2 38514 No 1449 0

Device# monitor capture mycap interface capwap 0 both
Device# monitor capture mycap file location flash:mycap.pcap
Device# monitor capture mycap file buffer-size 1
Device# monitor capture mycap start

*Aug 20 11:02:21.983: %BUFCAP-6-ENABLE: Capture Point mycap enabled.on

Device# show monitor capture mycap parameter
monitor capture mycap interface capwap 0 in
monitor capture mycap interface capwap 0 out
monitor capture mycap file location flash:mycap.pcap buffer-size 1

Device#
Device# show monitor capture mycap

Status Information for Capture mycap
Target Type:
Interface: CAPWAP,
Ingress:

0
Egress:

0
Status : Active
Filter Details:
Capture all packets

Buffer Details:
Buffer Type: LINEAR (default)
File Details:
Associated file name: flash:mycap.pcap
Size of buffer(in MB): 1
Limit Details:
Number of Packets to capture: 0 (no limit)
Packet Capture duration: 0 (no limit)
Packet Size to capture: 0 (no limit)
Packets per second: 0 (no limit)
Packet sampling rate: 0 (no sampling)

Device#
Device# show monitor capture file flash:mycap.pcap
1 0.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
2 0.499974 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
3 2.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
4 2.499974 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
5 3.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........

Configuring Wireshark
15

Configuring Wireshark
Defining a Capture Point

6 4.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
7 4.499974 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
8 5.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
9 5.499974 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
10 6.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
11 8.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
12 9.225986 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
13 9.225986 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
14 9.225986 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
15 9.231998 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
16 9.231998 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
17 9.231998 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
18 9.236987 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
19 10.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
20 10.499974 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
21 12.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
22 12.239993 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
23 12.244997 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
24 12.244997 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
25 12.250994 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
26 12.256990 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
27 12.262987 10.10.14.2 -> 10.10.14.32 DTLSv1.0 Application Data
28 12.499974 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........
29 12.802012 10.10.14.3 -> 10.10.14.255 NBNS Name query NB WPAD.<00>
30 13.000000 00:00:00:00:00:00 -> 3c:ce:73:39:c6:60 IEEE 802.11 Probe Request, SN=0, FN=0,
Flags=........

What to do next

You can add additional attachment points, modify the parameters of your capture point, then activate it, or if
you want to use your capture point just as it is, you can now activate it.

You cannot change a capture point's parameters using the methods presented in this topic.Note

Related Topics
How to Configure Wireshark, on page 12
Adding or Modifying Capture Point Parameters, on page 17
Deleting Capture Point Parameters, on page 18
Deleting a Capture Point, on page 19
Activating and Deactivating a Capture Point, on page 20

Configuring Wireshark
16

Configuring Wireshark
Defining a Capture Point

Adding or Modifying Capture Point Parameters
Although listed in sequence, the steps to specify values for the parameters can be executed in any order. You
can also specify them in one, two, or several lines. Except for attachment points, which can be multiple, you
can replace any value with a more recent value by redefining the same option.

In privileged EXEC mode, follow these steps to modify a capture point's parameters.

Before you begin

A capture point must be defined before you can use these instructions.

Procedure

PurposeCommand or Action

Defines the core system filter (ipv4 any any),
defined either explicitly, through ACL or
through a class map.

monitor capture {capture-name} match
{any | mac mac-match-string | ipv4
{any | host | protocol}{any | host}

Step 1

| ipv6 {any | host | protocol}{any |
host}}

If you are defining a wireless capture
point using a CAPWAP tunneling
interface, this command will have
no effect, so it should not be used.

Note

Example:
Device# monitor capture mycap match ipv4
any any

Specifies the session limit in seconds (60),
packets captured, or the packet segment length
to be retained by Wireshark (400).

monitor capture {capture-name} limit
{[duration seconds][packet-length
size][packets num]}

Example:

Step 2

Device# monitor capture mycap limit
duration 60 packet-len 400

Specifies the file association, if the capture point
intends to capture packets rather than only
display them.

monitor capture {capture-name} file
{location filename}

Example:

Step 3

Device# monitor capture mycap file
location flash:mycap.pcap

Specifies the size of the memory buffer used
by Wireshark to handle traffic bursts.

monitor capture {capture-name} file
{buffer-size size}

Example:

Step 4

Device# monitor capture mycap file
buffer-size 100

Displays the capture point parameters that you
defined previously.

show monitor capture {capture-name}[
parameter]

Example:

Step 5

Device# show monitor capture mycap
parameter

monitor capture mycap interface
GigabitEthernet1/0/1 in

Configuring Wireshark
17

Configuring Wireshark
Adding or Modifying Capture Point Parameters

PurposeCommand or Action
monitor capture mycap match ipv4 any

any
monitor capture mycap limit duration

60 packet-len 400
monitor capture point mycap file

location bootdisk:mycap.pcap
monitor capture mycap file buffer-size

100

Examples

Modifying Parameters

Associating or Disassociating a Capture File
Device# monitor capture point mycap file location flash:mycap.pcap
Device# no monitor capture mycap file

Specifying a Memory Buffer Size for Packet Burst Handling
Device# monitor capture mycap buffer size 100

Defining an Explicit Core System Filter to Match Both IPv4 and IPv6
Device# monitor capture mycap match any

What to do next

if your capture point contains all of the parameters you want, activate it.

Related Topics
How to Configure Wireshark, on page 12
Defining a Capture Point, on page 12
Deleting Capture Point Parameters, on page 18
Deleting a Capture Point, on page 19

Deleting Capture Point Parameters
Although listed in sequence, the steps to delete parameters can be executed in any order. You can also delete
them in one, two, or several lines. Except for attachment points, which can be multiple, you can delete any
parameter.

In privileged EXEC mode, follow these steps to delete a capture point's parameters.

Before you begin

A capture point parameter must be defined before you can use these instructions to delete it.

Configuring Wireshark
18

Configuring Wireshark
Deleting Capture Point Parameters

Procedure

PurposeCommand or Action

Deletes all filters defined on capture point
(mycap).

nomonitor capture {capture-name} match

Example:

Step 1

Device# no monitor capture mycap match

Deletes the session time limit and the packet
segment length to be retained by Wireshark. It
leaves other specified limits in place.

no monitor capture {capture-name} limit
[duration][packet-length][packets]

Example:

Step 2

Deletes all limits on Wireshark.Device# no monitor capture mycap limit
duration packet-len
Device# no monitor capture mycap limit

Deletes the file association. The capture point
will no longer capture packets. It will only
display them.

no monitor capture {capture-name} file
[location] [buffer-size]

Example:

Step 3

Deletes the file location association. The file
location will no longer be associated with the

Device# no monitor capture mycap file
Device# no monitor capture mycap file
location capture point. However, other defined fille

association will be unaffected by this action.

Displays the capture point parameters that
remain defined after your parameter deletion

show monitor capture {capture-name}[
parameter]

Step 4

operations. This command can be run at any
Example: point in the procedure to see what parameters

are associated with a capture point.Device# show monitor capture mycap
parameter

monitor capture mycap interface
GigabitEthernet1/0/1 in

What to do next

If your capture point contains all of the parameters you want, activate it.

Related Topics
How to Configure Wireshark, on page 12
Defining a Capture Point, on page 12
Adding or Modifying Capture Point Parameters, on page 17

Deleting a Capture Point
In privileged EXEC mode, follow these steps to delete a capture point.

Before you begin

A capture point must be defined before you can use these instructions to delete it.

Configuring Wireshark
19

Configuring Wireshark
Deleting a Capture Point

Procedure

PurposeCommand or Action

Deletes the specified capture point (mycap).no monitor capture {capture-name}

Example:

Step 1

Device# no monitor capture mycap

Displays a message indicating that the specified
capture point does not exist because it has been
deleted.

show monitor capture {capture-name}[
parameter]

Example:

Step 2

Device# show monitor capture mycap
parameter

Capture mycap does not exist

What to do next

You can define a new capture point with the same name as the one you deleted. These instructions are usually
performed when one wants to start over with defining a capture point.

Related Topics
How to Configure Wireshark, on page 12
Defining a Capture Point, on page 12
Adding or Modifying Capture Point Parameters, on page 17

Activating and Deactivating a Capture Point
In privileged EXEC mode, follow these steps to activate or deactivate a capture point.

Before you begin

A capture point cannot be activated unless an attachment point and a core system filter have been defined and
the associated filename (if any) does not already exist. A capture point with no associated filename can only
be activated to display. If no capture or display filters are specified, all of the packets captured by the core
system filter are displayed. The default display mode is brief.

When using a CAPWAP tunneling interface as an attachment point, core filters are not used, so there is no
requirement to define them in this case.

Note

Procedure

PurposeCommand or Action

Activates a capture point and filters the display,
so only packets containing "stp" are displayed.

monitor capture {capture-name}
start[display [display-filter
filter-string]][brief | detailed | dump]

Step 1

Example:

Configuring Wireshark
20

Configuring Wireshark
Activating and Deactivating a Capture Point

PurposeCommand or Action
Device# monitor capture mycap start
display display-filter "stp"

Deactivates a capture point.monitor capture {capture-name} stop

Example:

Step 2

Device# monitor capture name stop

Related Topics
How to Configure Wireshark, on page 12
Defining a Capture Point, on page 12

Clearing the Capture Point Buffer
In privileged EXEC mode, follow these steps to clear the buffer contents or save them to an external file for
storage.

If you have more than one capture that is storing packets in a buffer, clear the buffer before starting a new
capture to avoid memory loss.

Note

Procedure

PurposeCommand or Action

Clears capture buffer contents or stores the
packets to a file.

monitor capture {capture-name} [clear |
export filename]

Example:

Step 1

Device# monitor capture mycap clear

Examples: Capture Point Buffer Handling

Exporting Capture to a File
Device# monitor capture mycap export flash:mycap.pcap

Storage configured as File for this capture

Clearing Capture Point Buffer
Device# monitor capture mycap clear

Capture configured with file options

Related Topics
How to Configure Wireshark, on page 12

Configuring Wireshark
21

Configuring Wireshark
Clearing the Capture Point Buffer

Monitoring Wireshark
The commands in this table are used to monitor Wireshark.

PurposeCommand

Displays the capture point state so that you can see
what capture points are defined, what their attributes
are, and whether they are active. When capture point
name is specified, it displays specific capture point's
details.

show monitor capture [capture-name]

Displays the capture point parameters.show monitor capture [capture-name
parameter]

Displays all the CAPWAP tunnels on the switch. Use
this command to determine which CAPWAP tunnels
are available to use for a wireless capture.

show capwap summary

Configuration Examples for Wireshark

Example: Displaying a Brief Output from a .pcap File

You can display the output from a .pcap file by entering:

Device# show monitor capture file flash:mycap.pcap

1 0.000000 10.1.1.140 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

2 1.000000 10.1.1.141 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

3 2.000000 10.1.1.142 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

4 3.000000 10.1.1.143 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

5 4.000000 10.1.1.144 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

6 5.000000 10.1.1.145 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

7 6.000000 10.1.1.146 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

8 7.000000 10.1.1.147 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

9 8.000000 10.1.1.148 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

10 9.000000 10.1.1.149 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

11 10.000000 10.1.1.150 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

12 11.000000 10.1.1.151 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

13 12.000000 10.1.1.152 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Configuring Wireshark
22

Configuring Wireshark
Monitoring Wireshark

14 13.000000 10.1.1.153 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

15 14.000000 10.1.1.154 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

16 15.000000 10.1.1.155 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

17 16.000000 10.1.1.156 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

18 17.000000 10.1.1.157 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

19 18.000000 10.1.1.158 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

20 19.000000 10.1.1.159 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

21 20.000000 10.1.1.160 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

22 21.000000 10.1.1.161 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

23 22.000000 10.1.1.162 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

24 23.000000 10.1.1.163 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

25 24.000000 10.1.1.164 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

26 25.000000 10.1.1.165 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

27 26.000000 10.1.1.166 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

28 27.000000 10.1.1.167 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

29 28.000000 10.1.1.168 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

30 29.000000 10.1.1.169 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

31 30.000000 10.1.1.170 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

32 31.000000 10.1.1.171 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

33 32.000000 10.1.1.172 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

34 33.000000 10.1.1.173 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

35 34.000000 10.1.1.174 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

36 35.000000 10.1.1.175 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

37 36.000000 10.1.1.176 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

38 37.000000 10.1.1.177 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

39 38.000000 10.1.1.178 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

40 39.000000 10.1.1.179 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

41 40.000000 10.1.1.180 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

42 41.000000 10.1.1.181 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

43 42.000000 10.1.1.182 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

44 43.000000 10.1.1.183 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

45 44.000000 10.1.1.184 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Configuring Wireshark
23

Configuring Wireshark
Example: Displaying a Brief Output from a .pcap File

46 45.000000 10.1.1.185 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

47 46.000000 10.1.1.186 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

48 47.000000 10.1.1.187 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

49 48.000000 10.1.1.188 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

50 49.000000 10.1.1.189 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

51 50.000000 10.1.1.190 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

52 51.000000 10.1.1.191 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

53 52.000000 10.1.1.192 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

54 53.000000 10.1.1.193 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

55 54.000000 10.1.1.194 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

56 55.000000 10.1.1.195 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

57 56.000000 10.1.1.196 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

58 57.000000 10.1.1.197 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

59 58.000000 10.1.1.198 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Example: Displaying Detailed Output from a .pcap File

You can display the detailed .pcap file output by entering:
Device# show monitor capture file flash:mycap.pcap detailed

Frame 1: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits)
Arrival Time: Mar 21, 2012 14:35:09.111993000 PDT
Epoch Time: 1332365709.111993000 seconds
[Time delta from previous captured frame: 0.000000000 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.000000000 seconds]
Frame Number: 1
Frame Length: 256 bytes (2048 bits)
Capture Length: 256 bytes (2048 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ip:udp:data]

Ethernet II, Src: 00:00:00:00:03:01 (00:00:00:00:03:01), Dst: 54:75:d0:3a:85:3f
(54:75:d0:3a:85:3f)

Destination: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
Address: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
.... ...0 = IG bit: Individual address (unicast)
.... ..0. = LG bit: Globally unique address (factory default)

Source: 00:00:00:00:03:01 (00:00:00:00:03:01)
Address: 00:00:00:00:03:01 (00:00:00:00:03:01)
.... ...0 = IG bit: Individual address (unicast)
.... ..0. = LG bit: Globally unique address (factory default)

Type: IP (0x0800)
Frame check sequence: 0x03b07f42 [incorrect, should be 0x08fcee78]

Internet Protocol, Src: 10.1.1.140 (10.1.1.140), Dst: 20.1.1.2 (20.1.1.2)
Version: 4

Configuring Wireshark
24

Configuring Wireshark
Example: Displaying Detailed Output from a .pcap File

Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.... ..0. = ECN-Capable Transport (ECT): 0
.... ...0 = ECN-CE: 0

Total Length: 238
Identification: 0x0000 (0)
Flags: 0x00

0... = Reserved bit: Not set
.0.. = Don't fragment: Not set
..0. = More fragments: Not set

Fragment offset: 0
Time to live: 64
Protocol: UDP (17)
Header checksum: 0x5970 [correct]

[Good: True]
[Bad: False]

Source: 10.1.1.140 (10.1.1.140)
Destination: 20.1.1.2 (20.1.1.2)

User Datagram Protocol, Src Port: 20001 (20001), Dst Port: 20002 (20002)
Source port: 20001 (20001)
Destination port: 20002 (20002)
Length: 218
Checksum: 0x6e2b [validation disabled]

[Good Checksum: False]
[Bad Checksum: False]

Data (210 bytes)

0000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0020 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f !"#$%&'()*+,-./
0030 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 0123456789:;<=>?
0040 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
0050 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f PQRSTUVWXYZ[\]^_
0060 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f `abcdefghijklmno
0070 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f pqrstuvwxyz{|}~.
0080 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
0090 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
00a0 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
00b0 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf
00c0 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
00d0 d0 d1 ..

Data: 000102030405060708090a0b0c0d0e0f1011121314151617...
[Length: 210]

Frame 2: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits)
Arrival Time: Mar 21, 2012 14:35:10.111993000 PDT

Example: Displaying a Hexadecimal Dump Output from a .pcap File
You can display the hexadecimal dump output by entering:
Switch# show monitor capture file bootflash:mycap.pcap dump
1 0.000000 10.1.1.140 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?........E.
0010 00 ee 00 00 00 00 40 11 59 70 0a 01 01 8c 14 01@.Yp......
0020 01 02 4e 21 4e 22 00 da 6e 2b 00 01 02 03 04 05 ..N!N"..n+......
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE
0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKLMNOPQRSTU
0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\]^_`abcde
0090 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 fghijklmnopqrstu
00a0 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 vwxyz{|}~.......
00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95

Configuring Wireshark
25

Configuring Wireshark
Example: Displaying Detailed Output from a .pcap File

00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 03 b0 7f 42B

2 1.000000 10.1.1.141 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?........E.
0010 00 ee 00 00 00 00 40 11 59 6f 0a 01 01 8d 14 01@.Yo......
0020 01 02 4e 21 4e 22 00 da 6e 2a 00 01 02 03 04 05 ..N!N"..n*......
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE
0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKLMNOPQRSTU
0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\]^_`abcde
0090 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 fghijklmnopqrstu
00a0 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 vwxyz{|}~.......
00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 95 2c c3 3f,.?

3 2.000000 10.1.1.142 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?........E.
0010 00 ee 00 00 00 00 40 11 59 6e 0a 01 01 8e 14 01@.Yn......
0020 01 02 4e 21 4e 22 00 da 6e 29 00 01 02 03 04 05 ..N!N"..n)......
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE
0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKLMNOPQRSTU
0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\]^_`abcde
0090 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 fghijklmnopqrstu
00a0 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 vwxyz{|}~.......
00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 6c f8 dc 14l...

4 3.000000 10.1.1.143 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?........E.
0010 00 ee 00 00 00 00 40 11 59 6d 0a 01 01 8f 14 01@.Ym......
0020 01 02 4e 21 4e 22 00 da 6e 28 00 01 02 03 04 05 ..N!N"..n(......
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
Example: Displaying Packets from a .pcap File with a Display Filter
You can display the .pcap file packets output by entering:
Switch# show monitor capture file bootflash:mycap.pcap display-filter "ip.src == 10.1.1.140"
dump
1 0.000000 10.1.1.140 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?........E.
0010 00 ee 00 00 00 00 40 11 59 70 0a 01 01 8c 14 01@.Yp......
0020 01 02 4e 21 4e 22 00 da 6e 2b 00 01 02 03 04 05 ..N!N"..n+......
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE

Configuring Wireshark
26

Configuring Wireshark
Example: Displaying Detailed Output from a .pcap File

0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKLMNOPQRSTU
0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\]^_`abcde
0090 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 fghijklmnopqrstu
00a0 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 vwxyz{|}~.......
00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 03 b0 7f 42B

Example: Simple Capture and Display

This example shows how to monitor traffic in the Layer 3 interface Gigabit Ethernet 1/0/1:

Step 1: Define a capture point to match on the relevant traffic by entering:
Device# monitor capture mycap interface GigabitEthernet1/0/1 in
Device# monitor capture mycap match ipv4 any any
Device# monitor capture mycap limit duration 60 packets 100
Device# monitor capture mycap buffer size 100

To avoid high CPU utilization, a low packet count and duration as limits has been set.

Step 2: Confirm that the capture point has been correctly defined by entering:
Device# show monitor capture mycap parameter

monitor capture mycap interface GigabitEthernet1/0/1 in
monitor capture mycap match ipv4 any any
monitor capture mycap buffer size 100
monitor capture mycap limit packets 100 duration 60

Device# show monitor capture mycap

Status Information for Capture mycap
Target Type:
Interface: GigabitEthernet1/0/1, Direction: in
Status : Inactive
Filter Details:
IPv4
Source IP: any
Destination IP: any
Protocol: any
Buffer Details:
Buffer Type: LINEAR (default)
Buffer Size (in MB): 100
File Details:
File not associated
Limit Details:
Number of Packets to capture: 100
Packet Capture duration: 60
Packet Size to capture: 0 (no limit)
Packets per second: 0 (no limit)
Packet sampling rate: 0 (no sampling)

Step 3: Start the capture process and display the results.
Device# monitor capture mycap start display
0.000000 10.1.1.30 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.31 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.32 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.33 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.34 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Configuring Wireshark
27

Configuring Wireshark
Example: Simple Capture and Display

5.000000 10.1.1.35 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.36 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.37 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.38 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.39 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 4: Delete the capture point by entering:

Device# no monitor capture mycap

Example: Simple Capture and Store

This example shows how to capture packets to a filter:

Step 1: Define a capture point to match on the relevant traffic and associate it to a file by entering:
Device# monitor capture mycap interface GigabitEthernet1/0/1 in
Device# monitor capture mycap match ipv4 any any
Device# monitor capture mycap limit duration 60 packets 100
Device# monitor capture mycap file location flash:mycap.pcap

Step 2: Confirm that the capture point has been correctly defined by entering:
Device# show monitor capture mycap parameter

monitor capture mycap interface GigabitEthernet1/0/1 in
monitor capture mycap match ipv4 any any
monitor capture mycap file location flash:mycap.pcap
monitor capture mycap limit packets 100 duration 60

Device# show monitor capture mycap

Status Information for Capture mycap
Target Type:
Interface: GigabitEthernet1/0/1, Direction: in
Status : Inactive
Filter Details:
IPv4
Source IP: any
Destination IP: any
Protocol: any
Buffer Details:
Buffer Type: LINEAR (default)
File Details:
Associated file name: flash:mycap.pcap
Limit Details:
Number of Packets to capture: 100
Packet Capture duration: 60
Packet Size to capture: 0 (no limit)
Packets per second: 0 (no limit)
Packet sampling rate: 0 (no sampling)

Step 3: Launch packet capture by entering:
Device# monitor capture mycap start

Step 4: After sufficient time has passed, stop the capture by entering:
Device# monitor capture mycap stop

Configuring Wireshark
28

Configuring Wireshark
Example: Simple Capture and Store

Alternatively, you could allow the capture operation stop automatically after the time has elapsed or
the packet count has been met.

The mycap.pcap file now contains the captured packets.

Note

Step 5: Display the packets by entering:
Device# show monitor capture file flash:mycap.pcap

0.000000 10.1.1.30 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.31 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.32 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.33 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.34 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.35 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.36 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.37 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.38 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.39 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 6: Delete the capture point by entering:

Device# no monitor capture mycap

Example: Using Buffer Capture

This example shows how to use buffer capture:

Step 1: Launch a capture session with the buffer capture option by entering:
Device# monitor capture mycap interface GigabitEthernet1/0/1 in
Device# monitor capture mycap match ipv4 any any
Device# monitor capture mycap buffer circular size 1
Device# monitor capture mycap start

Step 2: Determine whether the capture is active by entering:
Device# show monitor capture mycap

Status Information for Capture mycap
Target Type:
Interface: GigabitEthernet1/0/1, Direction: in
Status : Active
Filter Details:
IPv4
Source IP: any
Destination IP: any
Protocol: any
Buffer Details:
Buffer Type: CIRCULAR
Buffer Size (in MB): 1
File Details:
File not associated
Limit Details:
Number of Packets to capture: 0 (no limit)
Packet Capture duration: 0 (no limit)
Packet Size to capture: 0 (no limit)

Configuring Wireshark
29

Configuring Wireshark
Example: Using Buffer Capture

Packets per second: 0 (no limit)
Packet sampling rate: 0 (no sampling)

Step 3: Display the packets in the buffer by entering:
Device# show monitor capture mycap buffer brief

0.000000 10.1.1.215 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.216 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.217 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.218 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.219 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.220 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.221 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.222 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.223 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.224 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
10.000000 10.1.1.225 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
11.000000 10.1.1.226 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
12.000000 10.1.1.227 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
13.000000 10.1.1.228 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
14.000000 10.1.1.229 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
15.000000 10.1.1.230 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
16.000000 10.1.1.231 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
17.000000 10.1.1.232 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
18.000000 10.1.1.233 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
19.000000 10.1.1.234 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
20.000000 10.1.1.235 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
21.000000 10.1.1.236 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Notice that the packets have been buffered.

Step 4: Display the packets in other display modes.
Device# show monitor capture mycap buffer detailed

Frame 1: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits)
Arrival Time: Apr 15, 2012 15:50:02.398966000 PDT
Epoch Time: 1334530202.398966000 seconds
[Time delta from previous captured frame: 0.000000000 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.000000000 seconds]
Frame Number: 1
Frame Length: 256 bytes (2048 bits)
Capture Length: 256 bytes (2048 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ip:udp:data]

Ethernet II, Src: 00:00:00:00:03:01 (00:00:00:00:03:01), Dst: 54:75:d0:3a:85:3f
(54:75:d0:3a:85:3f)

Destination: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
Address: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
.... ...0 = IG bit: Individual address (unicast)
.... ..0. = LG bit: Globally unique address (factory default)

Source: 00:00:00:00:03:01 (00:00:00:00:03:01)
Address: 00:00:00:00:03:01 (00:00:00:00:03:01)
.... ...0 = IG bit: Individual address (unicast)
.... ..0. = LG bit: Globally unique address (factory default)

…
Device# show monitor capture mycap buffer dump

0.000000 10.1.1.215 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?........E.
0010 00 ee 00 00 00 00 40 11 59 25 0a 01 01 d7 14 01@.Y%......

Configuring Wireshark
30

Configuring Wireshark
Example: Using Buffer Capture

0020 01 02 4e 21 4e 22 00 da 6d e0 00 01 02 03 04 05 ..N!N"..m.......
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE
0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKLMNOPQRSTU
0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\]^_`abcde
0090 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 fghijklmnopqrstu
00a0 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 vwxyz{|}~.......
00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 03 3e d0 33>.3

Step 5a: Clear the buffer by entering:
Device# monitor capture mycap clear

Step 5b: Wait for 10 seconds.

Step 5c: Stop the traffic by entering:
Device# monitor capture mycap stop

Step 6: Confirm that the same set of packets are displayed after this time gap by entering:
Device# show monitor capture mycap buffer brief

0.000000 10.1.1.2 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.3 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.4 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.5 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.6 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.7 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.8 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.9 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.10 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.11 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 7: Wait for 10 seconds, then confirm that the same set of packets are displayed after this time
gap by entering:
Device# show monitor capture mycap buffer brief

0.000000 10.1.1.2 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.3 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.4 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.5 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.6 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.7 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.8 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.9 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.10 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.11 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 8: Repeat Step 7.

Step 9: Clear the buffer by entering:
Device# monitor capture mycap clear

Step 10: Confirm that the buffer is now empty by entering:

Configuring Wireshark
31

Configuring Wireshark
Example: Using Buffer Capture

Device# show monitor capture mycap buffer brief

Step 11: Wait about 10 seconds, then display the buffer contents by entering:
Device# show monitor capture mycap buffer brief

Step 12: Restart the traffic, wait for 10 seconds, then display the buffer contents by entering:
Device# monitor capture mycap start
wait for 10 seconds...
Device# show monitor capture mycap buffer brief

0.000000 10.1.1.2 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.3 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.4 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.5 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.6 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.7 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.8 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.9 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.10 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.11 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 13: Store the buffer contents to the mycap1.pcap file in the internal flash: storage device by
entering:
Device# monitor capture mycap export flash:mycap1.pcap
Exported Successfully

Step 14: Check that the file has been created and that it contains the packets by entering:
Device# dir flash:mycap1.pcap
Directory of flash:/mycap1.pcap

14758 -rw- 20152 Apr 15 2012 16:00:28 -07:00 mycap1.pcap

831541248 bytes total (831340544 bytes free)
Device# show monitor capture file flash:mycap1.pcap brief
1 0.000000 10.1.1.2 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

2 1.000000 10.1.1.3 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

3 2.000000 10.1.1.4 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

4 3.000000 10.1.1.5 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

5 4.000000 10.1.1.6 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

6 5.000000 10.1.1.7 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

7 6.000000 10.1.1.8 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

8 7.000000 10.1.1.9 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

9 8.000000 10.1.1.10 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

10 9.000000 10.1.1.11 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

11 10.000000 10.1.1.12 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

12 11.000000 10.1.1.13 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

13 12.000000 10.1.1.14 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Configuring Wireshark
32

Configuring Wireshark
Example: Using Buffer Capture

14 13.000000 10.1.1.15 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

15 14.000000 10.1.1.16 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

16 15.000000 10.1.1.17 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 15: Stop the packet capture and display the buffer contents by entering:
Device# monitor capture mycap stop
Device# show monitor capture mycap buffer brief

0.000000 10.1.1.2 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.3 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.4 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.5 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.6 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.7 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.8 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.9 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.10 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.11 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
10.000000 10.1.1.12 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
11.000000 10.1.1.13 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 16: Clear the buffer and then try to display packets from the buffer by entering:
Device# monitor capture mycap clear
Device# show monitor capture mycap buffer brief

Step 17: Delete the capture point by entering:
Device# no monitor capture mycap

Example: Capture Sessions
Device# monitor capture mycap start display display-filter "stp"
0.000000 20:37:06:cf:08:b6 -> 01:80:c2:00:00:00 STP Conf. Root = 32768/100/20:37:06:ce:f0:80
Cost = 0 Port = 0x8136
2.000992 20:37:06:cf:08:b6 -> 01:80:c2:00:00:00 STP Conf. Root = 32768/100/20:37:06:ce:f0:80
Cost = 0 Port = 0x8136
2.981996 20:37:06:cf:08:b6 -> 20:37:06:cf:08:b6 LOOP Reply
4.000992 20:37:06:cf:08:b6 -> 01:80:c2:00:00:00 STP Conf. Root = 32768/100/20:37:06:ce:f0:80
Cost = 0 Port = 0x8136
6.000000 20:37:06:cf:08:b6 -> 01:80:c2:00:00:00 STP Conf. Root = 32768/100/20:37:06:ce:f0:80
Cost = 0 Port = 0x8136
7.998001 20:37:06:cf:08:b6 -> 01:80:c2:00:00:00 STP Conf. Root = 32768/100/20:37:06:ce:f0:80
Cost = 0 Port = 0x8136
9.998001 20:37:06:cf:08:b6 -> 01:80:c2:00:00:00 STP Conf. Root = 32768/100/20:37:06:ce:f0:80
Cost = 0 Port = 0x8136

Capture test is not active Failed to Initiate Wireshark
Device# show monitor capture mycap parameter

monitor capture mycap control-plane both
monitor capture mycap match any
monitor capture mycap file location flash:mycap1.1 buffer-size 90
monitor capture mycap limit duration 10

Device# monitor capture mycap start display display-filter "udp.port == 20002"
A file by the same capture file name already exists, overwrite?[confirm] [ENTER]
after a minute or so...
Capture mycap is not active Failed to Initiate Wireshark

Configuring Wireshark
33

Configuring Wireshark
Example: Capture Sessions

*Oct 13 15:00:44.649: %BUFCAP-6-ENABLE: Capture Point mycap enabled.
*Oct 13 15:00:46.657: %BUFCAP-6-DISABLE_ASYNC: Capture Point mycap disabled. Rea
son : Wireshark Session Ended

Device# monitor capture mycap start display display-filter "udp.port == 20002" dump
A file by the same capture file name already exists, overwrite?[confirm]
after a minute or so...
Capture mycap is not active Failed to Initiate Wireshark
*Oct 13 15:00:44.649: %BUFCAP-6-ENABLE: Capture Point mycap enabled.
*Oct 13 15:00:46.657: %BUFCAP-6-DISABLE_ASYNC: Capture Point mycap disabled. Rea
son : Wireshark Session Ended

Device# no monitor capture mycap file
Device# monitor capture mycap start display display-filter "udp.port == 20002" dump
Please associate capture file/buffer
Unable to activate Capture.

Device# monitor capture mycap start display display-filter "udp.port == 20002"
Please associate capture file/buffer
Unable to activate Capture.

Device# monitor capture mycap start display detailed
Please associate capture file/buffer
Unable to activate Capture.

Example: Capture and Store in Lock-step Mode

This example captures live traffic and stores the packets in lock-step mode.

The capture rate might be slow for the first 15 seconds. If possible and necessary, start the traffic 15
seconds after the capture session starts.

Note

Step 1: Define a capture point to match on the relevant traffic and associate it to a file by entering:
Device# monitor capture mycap interface GigabitEthernet1/0/1 in
Device# monitor capture mycap match ipv4 any any
Device# monitor capture mycap limit duration 60 packets 100
Device# monitor capture mycap file location flash:mycap.pcap buffer-size 64

Step 2: Confirm that the capture point has been correctly defined by entering:
Device# show monitor capture mycap parameter

monitor capture mycap interface GigabitEthernet1/0/1 in
monitor capture mycap file location flash:mycap.pcap buffer-size 64
monitor capture mycap limit packets 100 duration 60

Device# show monitor capture mycap

Status Information for Capture mycap
Target Type:
Interface: GigabitEthernet1/0/1, Direction: in
Status : Inactive
Filter Details:
Filter not attached
Buffer Details:
Buffer Type: LINEAR (default)
File Details:
Associated file name: flash:mycap.pcap
Size of buffer(in MB): 64

Configuring Wireshark
34

Configuring Wireshark
Example: Capture and Store in Lock-step Mode

Limit Details:
Number of Packets to capture: 100
Packet Capture duration: 60
Packet Size to capture: 0 (no limit)
Packets per second: 0 (no limit)
Packet sampling rate: 0 (no sampling)

Step 3: Launch packet capture by entering:
Device# monitor capture mycap start
A file by the same capture file name already exists, overwrite?[confirm]
Turning on lock-step mode

Device#
*Oct 14 09:35:32.661: %BUFCAP-6-ENABLE: Capture Point mycap enabled.

Step 4: Display the packets by entering:
Device# show monitor capture file flash:mycap.pcap
0.000000 10.1.1.30 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.31 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.32 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.33 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.34 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.35 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.36 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.37 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.38 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.39 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 5: Delete the capture point by entering:

Device# no monitor capture mycap

Example: Simple Capture and Store of Packets in Egress Direction

This example shows how to capture packets to a filter:

Step 1: Define a capture point to match on the relevant traffic and associate it to a file by entering:
Device# monitor capture mycap interface Gigabit 1/0/1 out match ipv4 any any
Device# monitor capture mycap limit duration 60 packets 100
Device# monitor capture mycap file location flash:mycap.pcap buffer-size 90

Step 2: Confirm that the capture point has been correctly defined by entering:
Device# show monitor capture mycap parameter

monitor capture mycap interface GigabitEthernet1/0/1 out
monitor capture mycap match ipv4 any any
monitor capture mycap file location flash:mycap.pcap buffer-size 90
monitor capture mycap limit packets 100 duration 60

Device# show monitor capture mycap

Status Information for Capture mycap
Target Type:
Interface: GigabitEthernet1/0/1, Direction: out
Status : Inactive
Filter Details:
IPv4
Source IP: any
Destination IP: any

Configuring Wireshark
35

Configuring Wireshark
Example: Simple Capture and Store of Packets in Egress Direction

Protocol: any
Buffer Details:
Buffer Type: LINEAR (default)
File Details:
Associated file name: flash:mycap.pcap
Size of buffer(in MB): 90
Limit Details:
Number of Packets to capture: 100
Packet Capture duration: 60
Packet Size to capture: 0 (no limit)
Packets per second: 0 (no limit)
Packet sampling rate: 0 (no sampling)

Step 3: Launch packet capture by entering:
Device# monitor capture mycap start
A file by the same capture file name already exists, overwrite?[confirm]
Turning on lock-step mode

Device#
*Oct 14 09:35:32.661: %BUFCAP-6-ENABLE: Capture Point mycap enabled.

Allow the capture operation stop automatically after the time has elapsed or the packet count has
been met. When you see the following message in the output, will know that the capture operation
has stopped:
*Oct 14 09:36:34.632: %BUFCAP-6-DISABLE_ASYNC: Capture Point mycap disabled. Rea
son : Wireshark Session Ended

The mycap.pcap file now contains the captured packets.

Note

Step 4: Display the packets by entering:
Device# show monitor capture file flash:mycap.pcap
0.000000 10.1.1.30 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
1.000000 10.1.1.31 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
2.000000 10.1.1.32 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
3.000000 10.1.1.33 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
4.000000 10.1.1.34 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
5.000000 10.1.1.35 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
6.000000 10.1.1.36 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
7.000000 10.1.1.37 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
8.000000 10.1.1.38 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
9.000000 10.1.1.39 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Step 5: Delete the capture point by entering:
Device# no monitor capture mycap

Configuring Wireshark
36

Configuring Wireshark
Example: Simple Capture and Store of Packets in Egress Direction

Additional References
Related Documents

Document TitleRelated Topic

For general packet filtering, refer to:

Display Filter Reference

General Packet Filtering

Error Message Decoder

LinkDescription

https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgiTo help you research and resolve system
error messages in this release, use the Error
Message Decoder tool.

Standards and RFCs

TitleStandard/RFC

MIBs

MIBs LinkMIB

To locate and downloadMIBs for selected platforms, Cisco IOS releases,
and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

All supported MIBs for this
release.

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Related Topics
Filters, on page 4

Configuring Wireshark
37

Configuring Wireshark
Additional References

http://www.wireshark.org/docs/dfref/
https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi
http://www.cisco.com/go/mibs
http://www.cisco.com/support

Feature History and Information for WireShark
ModificationRelease

This feature was introduced.Cisco IOS XE 3.3SE

Configuring Wireshark
38

Configuring Wireshark
Feature History and Information for WireShark

	Configuring Wireshark
	Finding Feature Information
	Prerequisites for Wireshark
	Restrictions for Wireshark
	Information About Wireshark
	Wireshark Overview
	Capture Points
	Attachment Points
	Filters
	Actions
	Storage of Captured Packets to Buffer in Memory
	Storage of Captured Packets to a .pcap File
	Packet Decoding and Display
	Packet Storage and Display
	Wireshark Capture Point Activation and Deactivation
	Wireshark Features
	Guidelines for Wireshark
	Default Wireshark Configuration

	How to Configure Wireshark
	Defining a Capture Point
	Adding or Modifying Capture Point Parameters
	Deleting Capture Point Parameters
	Deleting a Capture Point
	Activating and Deactivating a Capture Point
	Clearing the Capture Point Buffer

	Monitoring Wireshark
	Configuration Examples for Wireshark
	Example: Displaying a Brief Output from a .pcap File
	Example: Displaying Detailed Output from a .pcap File
	Example: Simple Capture and Display
	Example: Simple Capture and Store
	Example: Using Buffer Capture
	Example: Capture Sessions
	Example: Capture and Store in Lock-step Mode
	Example: Simple Capture and Store of Packets in Egress Direction

	Additional References
	Feature History and Information for WireShark

