

# CHAPTER

# **Configuring Wireshark**

Beginning with Cisco IOS Release XE 3.3.0SG in the IP Base and Enterprise Services feature sets, the Catalyst 4500 series switch supports Wireshark.

- Finding Feature Information, page 1-1
- Prerequisites for Wireshark, page 1-2
- Guidelines for Wireshark, page 1-2
- Restrictions for Wireshark, page 1-4
- Information about Wireshark, page 1-5
- How to Configure Wireshark, page 1-11
- Monitoring Wireshark, page 1-14
- Configuration Examples for Wireshark, page 1-14
- Usage Examples for Wireshark, page 1-18
- VSS Specific Examples, page 1-31



For complete syntax and usage information for the switch commands used in this chapter, see the *Cisco Catalyst 4500 Series Switch Command Reference* and related publications at this location:

http://www.cisco.com/en/US/products/hw/switches/ps4324/index.html

If a command is not in the *Catalyst 4500 Series Switch Command Reference*, you can locate it in the Cisco IOS library. See the *Cisco IOS Command Reference* and related publications at this location:

http://www.cisco.com/en/US/products/ps6350/index.html

# **Finding Feature Information**

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to

#### http://www.cisco.com/go/cfn

An account on Cisco.com is not required.

# **Prerequisites for Wireshark**

For general packet filtering, you will require Wireshark display filters. Refer to http://wiki.wireshark.org/DisplayFilters

# **Guidelines for Wireshark**

- During Wireshark packet capture, hardware forwarding happens concurrently.
- Before starting a Wireshark capture process, ensure that CPU usage is moderate and that sufficient memory (at least 200 MB) is available.
- If you plan to store packets to a storage file, ensure that sufficient space is available before beginning a Wireshark capture process.
- The CPU usage during Wireshark capture depends on how many packets match the specified conditions and on the intended actions for the matched packets (store, decode and display, or both).
- Where possible, keep the capture to the minimum (limit by packets, duration) to avoid high CPU usage and other undesirable conditions.
- Because packet forwarding typically occurs in hardware, packets are not copied to the CPU for software processing. For Wireshark packet capture, packets are copied and delivered to the CPU, which causes an increase in CPU usage.

To avoid high CPU, do the following:

- Attach only relevant ports.
- Use a class map, and secondarily, an access list to express match conditions. If neither is viable, use an explicit, in-line filter.
- Adhere closely to the filter rules. Restrict the traffic type (such as, IPv4 only) with a restrictive, rather than relaxed ACL, which elicits unwanted traffic.
- Always limit packet capture to either a shorter duration or a smaller packet number. The parameters of the **capture** command enable you to specify the following:
  - Capture duration
  - Number of packets captured
  - File size
  - Packet segment size
- Run a capture session without limits if you know that very little traffic matches the core filter.
- You might experience high CPU (or memory usage) if:
  - You leave a capture session enabled and unattended for a long period of time, resulting in unanticipated bursts of traffic.
  - You launch a capture session with ring files or capture buffer and leave it unattended for a long time, resulting in performance or system health issues.
- During a capture session, watch for high CPU usage and memory consumption due to Wireshark that may impact switch performance or health. If these situations arise, stop the Wireshark session immediately.
- Avoid decoding and displaying packets from a .pcap file for a large file. Instead, transfer the .pcap file to a PC and run Wireshark on the PC.

• Limit the number of Wireshark instances to two or less to avoid CPU or memory resource drain.

You can use up to eight Wireshark instances. An active **show** command that decodes and displays packets from a .pcap file or capture buffer counts as one instance.

- Whenever an ACL is installed or modified on a switch in the ingress direction, for the first 15 seconds, the software ignores packet classification details sent by the hardware. Instead, it uses software-based classification for the packets received by CPU. So, during this period, the system can only capture fewer packets (compared to the time after the first 15 seconds) and CPU usage will be high.
- To avoid packet loss, consider the following:
  - Use store-only (when you do not specify the display option) while capturing live packets rather than decode and display, which is an CPU-intensive operation (especially in detailed mode).
  - If you use the default buffer size, packets may be dropped. Increase buffer size and avoid packet loss.
  - Writing to flash disk is a CPU-intensive operation, so the capture rate may not be sufficient.
  - The Wireshark capture session operates normally in streaming mode where packets are both captured and processed. However, when you specify a buffer size of at least 32 MB but less than 80MB, the session automatically turns on lock-step mode in which a Wireshark capture session is split into two phases: capture and process. In the capture phase, the packets are stored in the temporary buffer. The duration parameter in lock-step mode serves as capture duration rather than session duration. When the buffer is full or the capture duration has ended, a session transitions to the process phase, wherein it stops accepting packets and starts processing packets in the buffer. With the second approach (lock-step mode), a higher capture throughput can be achieved. Last, when you specify a buffer size of at least 80MB, the session turns on lock-step mode with high-speed capture. This is similar to lock-step mode except that it captures the packets directly from the hardware queue and passes the packet to the wireshark packet queue.
  - The streaming capture mode supports approximately 1500 pps; lock-step mode supports approximately 45 Mbps (measured with 256-byte packets); lock-step mode with high speed capture supports roughly 750Mbps (measure with 256-byte packets). When the matching traffic rate exceeds this number, you may experience packet loss. Only one session can be started when using high-speed capture mode.
- If you want to decode and display live packets in the console window, ensure that the Wireshark session is bounded by a short capture duration.



A Wireshark session with either a longer duration limit or no capture duration (using a terminal with no auto-more support using the term len 0 command) may make the console or terminal unusable.

- When using Wireshark to capture live traffic that leads to high CPU, usage, consider applying a QoS policy temporarily to limit the actual traffic until the capture process concludes.
- All Wireshark-related commands are in EXEC mode; no configuration commands exist for Wireshark.

If you need to use access list or class-map in the Wireshark CLI, you must define an access list and class map with configuration commands.

• No specific order applies when defining a capture point; you can define capture point parameters in any order, provided that CLI allows this. The Wireshark CLI allows as many parameters as possible on a single line. This limits the number of commands required to define a capture point.

- All parameters except attachment points take a single value. Generally, you can replace the value with a new one by reentering the command. After user confirmation, the system accepts the new value and overrides the older one. A **no** form of the command is unnecessary to provide a new value; it is necessary to remove a parameter.
- Wireshark allows you to specify one or more attachment points. To add more than one attachment point, reenter the command with the new attachment point. To remove an attachment point, use the **no** form. You can specify an interface range as an attachment point.

For example, monitor capture mycap int gi 3/1 in, where interface gi 3/1 is an attachment point.

If you also need to attach gi 3/2, you specify it in another line, as follows:

monitor capture mycap int gi 3/2 in

- You cannot modify any parameters of a capture point while a session is active. To modify any parameter, stop the session, make the changes, and restart the session. Because an access list is generic to a switch and unrelated to the Wireshark process, it is alterable during a Wireshark session.
- The action you want to perform determines which parameters are mandatory. The Wireshark CLI allows you to specify or modify any parameter prior to entering the **start** command. When you issue the **start** command, Wireshark will start only after determining that all mandatory parameters have been provided.
- If the capture file already exists, it provides a warning and receives confirmation before proceeding. This prevents you from mistakenly overwriting a file.
- The core filter can be an explicit filter, access list, or class map. Specifying a newer filter of these types replaces the existing one.
- You can terminate a Wireshark session with an explicit **stop** command or by entering **q** in automore mode. The session could terminate itself automatically when a stop condition such as duration or packet capture limit is met.

# **Restrictions for Wireshark**

- The CLI for configuring Wireshark requires that the feature be executed only from EXEC mode. Actions that usually occur in configuration submode (such as defining capture points), are handled at the EXEC mode instead. All key commands are not NVGEN'd and are not synchronized to the standby supervisor in NSF and SSO scenarios.
- When packet capture is enabled in the input direction, the matching packets undergo software-based lookup in the CPU for the first 15 seconds. During this time, CPU usage is high and capture rate is low.
- Packets captured in the output direction of an interface might not reflect the changes made by switch rewrite (includes TTL, VLAN tag, CoS, checksum, and MAC addresses).
- Capturing at a physical port that belongs to another logical port may not be supported. For example, capturing at EtherChannel member ports is not supported.
- Limiting circular file storage by file size is not supported.
- Wireshark cannot capture IPv6 packets if the capture point's class-map filter is attempting to match one of the following:
  - Extension headers followed by Hop-by-hop header (as per CSCtt16385)
  - DSCP values (as per CSCtx75765)

# Information about Wireshark

Note

Wireshark is only supported on Supervisor Engine 7-E, Supervisor Engine 7L-E, Catalyst 4500X-16, and Catalyst 4500X-32.

Note

Wireshark is supported on VSS and the functionality is the same as a standalone switch except for a few configuration differences as detailed in the "Configuring Wireshark on VSS" section on page 1-14.

Wireshark is a packet analyzer program, formerly known as Ethereal, which supports multiple protocols and presents information in a text-based user interface.

To understand what happens inside a network requires the ability to capture and analyze traffic. Prior to Cisco IOS Release XE 3.3.0SG, the Catalyst 4500 series switch offered only two features to address this need: SPAN and **debug platform packet**. Both are limited. SPAN is ideal for capturing packets, but can only deliver them by forwarding them to some specified local or remote destination; it provides no local display or analysis support. The **debug platform packet** command is specific to the Catalyst 4500 series switch and only works on packets that stem from the software process-forwarding path. Although it has limited local display capabilities, it has no analysis support.

So the need exists for a traffic capture and analysis mechanism that is applicable to both hardware and software forwarded traffic and that provides strong packet capture, display and analysis support, preferably using a well known interface.

Wireshark dumps packets to a file using a well known format called .pcap, and is applied or enabled on individual interfaces. You specify an interface in EXEC mode along with the filter and other parameters. The Wireshark application is applied only when you enter a **start** command and is removed only when Wireshark stops capturing packets either automatically or manually.



In Cisco IOS Release XE 3.3.0SG, global packet capture on Wireshark is not supported.

These sections describe some key concepts for Wireshark:

- Capture Points, page 1-6
- Attachment Points, page 1-6
- Filters, page 1-6
- Input and Output Classification, page 1-7
- Actions, page 1-8
- Storing Captured Packets to Buffer in Memory, page 1-8
- Decoding and Displaying Packets, page 1-9
- Activating and Deactivating Wireshark Capture Points, page 1-9
- Wireshark Features used in Switches, page 1-10
- Wireshark on VSS, page 1-11

# **Capture Points**

A capture point is the central policy definition of the Wireshark feature. The point describes all the characteristics associated with a given instance of Wireshark: what packets to capture, where to capture them from, what to do with the captured packets, and when to stop. Capture points can be modified after creation and do not become active until explicitly activated with a **start** command. This process is termed *activating the capture point* or *starting the capture point*. Capture points are identified by name and may also be manually or automatically deactivated or stopped.

Multiple capture points may be defined and activated simultaneously.

# **Attachment Points**

An attachment point is a point in the logical packet process path associated with a capture point. Consider an attachment point as an attribute of the capture point. Packets that impact an attachment point are tested against the capture point's filters; packets that match are copied and sent to the capture point's associated Wireshark instance. A specific capture point can be associated with multiple attachment points, with limits on mixing attachment points of different types. Some restrictions apply when you specify attachment points of different types. Attachment points are directional (input or output or both) with the exception of the Layer 2 VLAN attachment point, which is always bidirectional.

# **Filters**

Filters are attributes of a capture point that identify and limit the subset of traffic traveling through the attachment point of a capture point, which is copied and passed to Wireshark. To be displayed by Wireshark, a packet must pass through an attachment point, as well as all of the filters associated with the capture point.

A capture point has three types of filters:

- Core system filter—The core system filter is applied by hardware, and its match criteria is limited by hardware. This filter determines whether hardware-forwarded traffic is copied to software for Wireshark purposes.
- Capture filter—The capture filter is applied by Wireshark. The match criteria are more granular than those supported by the core system filter. Packets that pass the core filter but fail the capture filter are still copied and sent to the CPU/software, but are discarded by the Wireshark process. The capture filter syntax matches that of the display filter.



Wireshark on the Catalyst 4500 series switch does not use the syntax of the capture filter.

• Display filter—The display filter is applied by Wireshark, and its match criteria are similar to those of the capture filter. Packets that fail the display filter are not displayed.

#### **Core System Filter**

You can specify core system filter match criteria by using the class map or ACL, or explicitly by using the CLI.

In some installations, you need to obtain authorization to modify the switch configuration, which can lead to extended delays if the approval process is lengthy. This would limit the ability of network administrators to monitor and analyze traffic. To address this situation, Wireshark supports explicit specification of core system filter match criteria from the EXEC mode CLI. The disadvantage is that the match criteria that you can specify is a limited subset of what class map supports, such as MAC, IP source and destination addresses, ether-type, IP protocol, and TCP/UDP source and destination ports.

If you prefer to use configuration mode, you can define ACLs or have class maps refer capture points to them. Explicit and ACL-based match criteria are used internally to construct class maps and policy maps. These implicitly constructed class maps are not reflected in the switch running-config and are not NVGEN'd.



The ACL and class map configuration are part of the system and not aspects of the Wireshark feature.

#### **Capture Filter**

The capture filter allows you to direct Wireshark to further filter incoming packets based on various conditions. Wireshark applies the capture filter immediately on receipt of the packet; packets that fail the capture filter are neither stored nor displayed.

A switch receives this parameter and passes it unchanged to Wireshark. Because Wireshark parses the application filter definition, the defining syntax is the one provided by the Wireshark display filter. This syntax and that of standard Cisco IOS differ, which allows you to specify ACL match criteria that cannot be expressed with standard syntax.



The capture filter syntax matches that of the Wireshark display filter. The syntax for capture and display filters are identical in the Wireshark implementation on the Catalyst 4500 series switch.

#### **Display Filter**

With the display filter, you can direct Wireshark to further narrow the set of packets to display when decoding and displaying from a .pcap file. Because the syntax of the display filter is identical to the capture filter, the display filter is superfluous if a capture filter is also defined.

For more details on the syntax of capture and display filters, go to

http://wiki.wireshark.org/DisplayFilters

## Input and Output Classification

There are four classification results for input and output classification. In the input direction, they are ordered role-based, security, QoS, and forwarding override. In the output direction they are ordered forwarding override, role-based, security, and QoS.

On the input side, the Wireshark capture feature is placed in the forwarding override result type, prioritized above the other FO features (such as multicast local source capture, PBR and ingress WCCP). The packets captured by Wireshark are before any redirection by PBR or WCCP. Because security ACLs are applied ahead of FO-related features, packets that are dropped by security ACLs are not captured by Wireshark.

On the output side, the Wireshark capture feature is placed in the forwarding override result type, prioritized below the other FO features (such as egress WCCP). Wireshark captures packets only if the other egress FO features do not apply.

## Actions

Wireshark can be invoked on live traffic or on a previously existing .pcap file. When invoked on live traffic, it can perform four types of actions on packets that pass its capture and display filters:

- Captures to buffer in memory to decode and analyze and store
- Stores to a .pcap file
- Decodes and displays
- Stores and displays

When invoked on a .pcap file only, only the decode and display action is applicable.

### Storing Captured Packets to Buffer in Memory

Packets can be stored in the capture buffer in memory for subsequent decode, analysis, or storage to a .pcap file.

The capture buffer can be linear or circular mode. In linear mode, new packets are discarded when the buffer is full. In circular mode, if the buffer is full, the oldest packet are discarded to accommodate the new packet. Although the buffer can also be cleared when needed, this mode is mainly used for debugging network traffic.

#### Storing Captured Packets to a .pcap File

Wireshark can store captured packets to a .pcap file. The capture file can be located on the following storage devices:

- Catalyst 4500 series switch on-board flash storage (bootflash:)
- external flash disk (slot:)
- USB drive (usb0:)



Do not attempt to use Wireshark with any other devices.

When configuring a Wireshark capture point, you can associate a filename. When the capture point is activated, Wireshark creates a file with the specified name and writes packets to it. If the file already exists when the file is associated or the capture point is activated, Wireshark queries you as to whether the file can be overwritten. Only one capture point may be associated with a given filename.

If the destination of the Wireshark writing process is full, Wireshark fails with partial data in the file. You must ensure that there is sufficient space in the file system before you start the capture session. With Cisco IOS Release IOS XE 3.3.0SG, the file system full status is not detected for some storage devices.

You can reduce the required storage space by retaining only a segment, instead of the entire packet. Typically, you do not require details beyond the first 64 or 128 bytes. The default behavior is to store the entire packet. To avoid possible packet drops when processing and writing to the file system, Wireshark can optionally use a memory buffer to temporarily hold packets as they arrive. Memory buffer size can be specified when the capture point is associated with a .pcap file.

# **Decoding and Displaying Packets**

Wireshark can decode and display packets to the console. This functionality is possible for capture points applied to live traffic and for capture points applied to a previously existing .pcap file.



Decoding and displaying packets may be CPU intensive.

Wireshark can decode and display packet details for a wide variety of packet formats. The details are displayed by entering the **monitor capture name start** command with one of the following keyword options, which place you into a display and decode mode:

- brief—Displays one line per packet (the default).
- detailed—Decodes and displays all the fields of all the packets whose protocols are supported. Detailed mode require more CPU than the other two modes.
- (hexadecimal) dump—Displays one line per packet as a hexadecimal dump of the packet data and the printable characters of each packet.

When we enter the **capture** command with the decode and display option, the Wireshark output is returned to Cisco IOS and displayed on the console unchanged.

#### **Displaying Live Traffic**

Wireshark receives copies of packets from the Catalyst 4500 series switch core system. Wireshark applies its capture and display filters to discard uninteresting packets, and then decodes and displays the remaining packets.

#### **Displaying from the .pcap File**

Wireshark can decode and display packets from a previously stored .pcap file and direct the display filter to selectively displayed packets. A capture filter is not applicable in this situation.

### **Storing and Displaying Packets**

Functionally, this mode is a combination of the previous two modes. Wireshark stores packets in the specified .pcap file and decodes and displays them to the console. Only the core and capture filters are applicable here.

### Activating and Deactivating Wireshark Capture Points

After a Wireshark capture point has been defined with its attachment points, filters, actions, and other options, it must be activated. Until the capture point is activated, it does not actually capture packets.

Before a capture point is activated, some sanity checks are performed. A capture point cannot be activated if it has neither a core system filter nor attachment points defined. Attempting to activate a capture point that generates an error.

The capture and display filters are specified as needed.

After Wireshark capture points are activated, they can be deactivated in multiple ways. A capture point that is storing only packets to a .pcap file can be halted manually or configured with time or packet limits, after which the capture point halts automatically. Only packets that pass the Wireshark capture filter are counted against the packet limit threshold.

When a Wireshark capture point is activated, a fixed rate filter is applied automatically in the hardware so that the CPU is not flooded with Wireshark-directed packets. The disadvantage of the rate filter is that you cannot capture contiguous packets beyond the established rate even if more resources are available.

### Wireshark Features used in Switches

This section describes how Wireshark features function in the Catalyst 4500 series switch environment:

- Layer 2 security features—Packets that are dropped by Layer 2 security features (such as port security, MAC address filtering, and spanning tree) are not captured by Wireshark. This differs from the behavior of SPAN.
- Classification-based security features—Packets that are dropped by input classification-based security features (such as ACLs and IPSG) are not caught by Wireshark capture points that are connected to attachment points at the same layer. In contrast, packets that are dropped by output classification-based security features are caught by Wireshark capture points that are connected to attachment points at the same layer. The logical model is that the Wireshark attachment point occurs after the security feature lookup on the input side, and symmetrically before the security feature lookup on the output side.

Wireshark capture policies connected to Layer 2 attachment points in the input direction capture packets dropped by Layer 3 classification-based security features. Symmetrically, Wireshark capture policies attached to Layer 3 attachment points in the output direction capture packets dropped by Layer 2 classification-based security features.

- Routed ports and Layer 3 port channels—When a routed port or Layer 3 port channel is used as a Wireshark attachment point, the The policy that is applied to capture the packets is treated as attached at Layer 3. Wireshark only captures packets that are being routed by the interface.
- VLANs—When a VLAN is used as a Wireshark attachment point, packets are captured in both input and output directions. A packet that is bridged in the VLAN generates two copies, one on input and one on output.
- Private VLANs—Secondary PVLANs are disallowed as Wireshark attachment points. Using a primary PVLAN as a Wireshark attachment point enables capture of packets in the primary PVLAN and all associated secondary PVLANs. The entire PV domain becomes the attachment point.
- Redirection features—In the input direction, features traffic redirected by Layer 3 (such as PBR and WCCP), are logically later than Layer 3 Wireshark attachment points. Wireshark captures these packets even though they might later be redirected out another Layer 3 interface. Symmetrically, output features redirected by Layer 3 (such as egress WCCP) are logically prior to Layer 3 Wireshark attachment points, and Wireshark will not capture them.
- Classification copy features—Features that generate copies of packets from the role-based and Security lookup types are compatible with Wireshark. Multiple copies of these packets are generated.
- SPAN—Wireshark cannot capture packets on an interface configured as a SPAN source or destination.

# Wireshark on VSS

Wireshark is supported on the VSS, and usage differs slightly from the Standalone switch. Depending on whether the attachment points are in the VSS active switch, the VSS standby switch, or both, you need to take specific actions.

You need to create and delete capture points separately in the VSS active and VSS standby switches. Although you also need to start and stop capture operations separately in these switches, you can issue the same set of attachment points for a capture session in both switches. The individual switches ignore attachments points that are not local to the switch.

In the VSS active switch, the operation is identical to that of the standalone switch. In the VSS standby, hardware copies the relevant packets and sends them to the CPU where they are packets are software-tunneled to the VSS active switch via the VSL link. In the VSS active switch, these packets are sent to software as if the packets came from local hardware. Packets from the local switch and those from the standby switch are processed by the Wireshark session in the VSS active switch. The Wireshark session in the VSS active switch. The Wireshark session in the VSS active switch.

If the attachment points are only in the VSS active switch, then the operations are similar to those on the Standalone switch. If the attachment points are either only in VSS standby switch or in both the switches, then you must start and stop the session both in VSS active switch and in VSS standby switch.

Note

Your Wireshark session in VSS standby only helps in packet capture and does not participate otherwise. Do not start the Wireshark session on the VSS standby with the **display** and any related parameters.

# **How to Configure Wireshark**

To configure Wireshark, follow these general steps:

**Step 1** Define, modify or delete a capture point.

Step 2 Activate or deactivate a capture point.

# **Default Wireshark Configuration**

Table 1-1 shows the default Wireshark configuration.

| Table 1-1 | Default Wireshark Configuration |
|-----------|---------------------------------|
|-----------|---------------------------------|

| Feature             | Default Setting        |
|---------------------|------------------------|
| Duration            | No limit               |
| Packets             | No limit               |
| Packet-length       | No limit (full packet) |
| File size           | No limit               |
| Ring file storage   | No                     |
| Buffer storage mode | Linear                 |

# Defining, Modifying, or Deleting a Capture Point

Although listed in sequence, the steps to specify values for the options can be executed in any order. You can also specify them in one, two, or several lines. Except for attachment points, which can be multiple, you can replace any value with a more recent value by redefining the same option, in the following order:

| Step 1 | Define the name that identifies the capture point.                                                                           |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| Step 2 | Specify the attachment point with which the capture point is associated.                                                     |
|        | Multiple attachment points can be specified. Range support is also available both for adding and removing attachment points. |
| Step 3 | Define the core system filter, defined either explicitly, through ACL or through a class map.                                |
| Step 4 | Specify the session limit (in seconds or packets captured).                                                                  |
| Step 5 | Specify the packet segment length to be retained by Wireshark.                                                               |
| Step 6 | Specify the file association, if the capture point intends to capture packets rather than merely display them.               |
| Step 7 | Specify the size of the memory buffer used by Wireshark to handle traffic bursts.                                            |
|        |                                                                                                                              |

To filter the capture point, use the following commands:

| Command                                                                                                                                                                                                                             | Purpose                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| [no] monitor capture mycap match { any   mac<br>mac-match-string   ipv4 ipv4-match-string   ipv6<br>ipv6-match-string }                                                                                                             | Defines an explicitly in-line core filter.<br>To remove the filter, use the <b>no</b> form of this command.                 |
| [no] monitor capture mycap match mac {src-mac-addr<br>src-mac-mask   any   host src-mac-addr}   {dest-mac-addr<br>dest-mac-mask   any   host dest-mac-addr}                                                                         | Specifies use of a filter for MAC.<br>To remove the filter, use the <b>no</b> form of this command.                         |
| <pre>[no] monitor capture mycap match {ipv4   ipv6}<br/>[src-prefix/length   any   host src-ip-addr] [dest-prefix/length<br/>  any   host dest-ip-addr]</pre>                                                                       | Specifies a filter for IPv4/IPv6, use one of the formats.<br>To remove the filters, use the <b>no</b> form of this command. |
| [no] monitor capture mycap match {ipv4   ipv6} proto<br>{tcp   udp} [src-prefix/length   any   host src-ip-addr] [eq  <br>gt   lt   neq <0-65535>] [dest-prefix/length   any   host<br>dest-ip-addr] [eq   gt   lt   neq <0-65535>] |                                                                                                                             |

To define a capture point, use the following commands:

| Command                                                                                | Purpose                                                                                                                               |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| monitor capture name [{interface name   vlan num  <br>control-plane} {in   out   both} | Specifies one or more attachment points with direction.<br>To remove the attachment point, use the <b>no</b> form of this<br>command. |

Software Configuration Guide—Release IOS XE 3.5.0E and IOS 15.2(1)E

| Command                                                                                                                                             | Purpose                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>monitor capture</b> <i>name</i> [[file location filename [buffer-size <1-100>] [ring <2-10>] [size <1-100>]]   [buffer [circular] size <1-100>]] | Specifies the capture destination.<br>To remove the details, use the <b>no</b> form of this command. |
| [no] monitor capture name limit {duration seconds]<br>[packet-length size] [packets num]                                                            | Specifies capture limits.<br>To remove the limits, use the <b>no</b> form of this command.           |

To clear the buffer contents, use the following command

| Command                                   | Purpose                                                         |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------|--|--|--|
| monitor capture [clear   export filename] | Clears capture buffer contents or stores the packets to a file. |  |  |  |

To start and stop a capture point, use the following command:

| Command                                                                                                                                   | Purpose                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| monitor capture name start [capture-filter filter-string]<br>[display [display-filter filter-string]] [brief   detailed  <br>dump   stop] | To start or stop a capture point, use the <b>monitor capture</b> command. |

### **Examples**

#### Associating or Disassociating a Capture File

Switch# monitor capture point mycap file location bootdisk:mycap.pcap

Switch# no monitor capture mycap file

#### Specifying a Memory Buffer Size for Packet Burst Handling

Switch# monitor capture mycap buffer-size 1000000

#### Defining an Explicit Core System Filter to Match Both IPv4 and IPv6 TCP Traffic

Switch# monitor capture mycap match any protocol tcp

#### Defining a Core System Filter Using an Existing ACL or Class Map

Switch# monitor capture mycap match access-list myacl

Switch# monitor capture mycap match class-map mycm

# **Activating and Deactivating a Capture Point**

A capture point cannot be activated unless an attachment point and a core system filter have been defined and the associated filename (if any) does not already exist. A capture point with no associated filename can only be activated to display. If no capture or display filters are specified, all of the packets captured by the core system filter are displayed. The default display mode is **brief**. To activate or deactivate a capture point, perform these tasks:

| Command                                                                                                                                                   | Purpose                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| monitor capture <i>name</i> start [capture-filter <i>filter-string</i> ]<br>[display [display-filter <i>filter-string</i> ]] [brief   detailed  <br>dump] | Activates a capture point.   |
| monitor capture name stop                                                                                                                                 | Deactivates a capture point. |
| Example:                                                                                                                                                  |                              |
| Switch# monitor capture mycap start capture-filter<br>"net 10.1.1.0 0.0.0.255 and port 80"                                                                |                              |
| Switch# monitor capture mycap start display<br>display-filter "net 10.1.1.0 0.0.0.255 and port<br>80"                                                     |                              |

# **Configuring Wireshark on VSS**

To configure Wireshark in the VSS standby switch, use the remote login command:

```
Switch_VSS# remote login module 11
Connecting to standby virtual console
Type "exit" or "quit" to end this session
Switch_VSS-standby-console# monitor capture mycap match any interface gi2/1/1 in file
location bootflash:text.pcap
```

# **Monitoring Wireshark**

The commands in the following table are used to monitor Wireshark.

Table 1-2Wireshark Monitoring Commands

| Command                                                                                            | Purpose                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| show monitor capture point name                                                                    | Displays the capture point state so that you can see what capture points are defined, what their attributes are, and whether they are active. When capture point <i>name</i> is specified, it displays specific capture point's details. |
| <pre>show monitor capture file name [display-filter filter-string] [brief   detailed   dump]</pre> | Activates Wireshark using an existing .pcap file as the source for packets. If no display filter is specified, all of the packets in the file are displayed. The default display mode is <b>brief</b> .                                  |

# **Configuration Examples for Wireshark**

# Example: Displaying a Brief Output from a .pcap File

You can display the output from a .pcap file by entering:

Switch# show monitor capture file bootflash:mycap.pcap

| 1  | 0 000000  | 10 1 1 140 - | > 2 | 0 1 1 2 | TIDP  | Source     | nort. | 20001 | Destination | nort. | 20002 |
|----|-----------|--------------|-----|---------|-------|------------|-------|-------|-------------|-------|-------|
| -  | 1 000000  | 10.1.1.141   | 2   | 0.1.1.2 | UDI   | Generation | port. | 20001 | Destination | port. | 20002 |
| 2  | 1.000000  | 10.1.1.141 - | > 2 | 0.1.1.2 | UDP   | source     | port: | 20001 | Descination | port: | 20002 |
| 3  | 2.000000  | 10.1.1.142 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 4  | 3.000000  | 10.1.1.143 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 5  | 4.000000  | 10.1.1.144 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 6  | 5.000000  | 10.1.1.145 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 7  | 6.000000  | 10.1.1.146 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 8  | 7 000000  | 10 1 1 147 - | ~ 2 | 0 1 1 2 | ם חוז | Source     | port. | 20001 | Dectination | port. | 20002 |
| 0  | 000000    | 10.1.1.140   | 2   | 0.1.1.2 |       | Cource     | port. | 20001 | Destination | port. | 20002 |
| 10 | 8.000000  | 10.1.1.140 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Descination | port: | 20002 |
| 10 | 9.000000  | 10.1.1.149 - | > 2 | 0.1.1.2 | UDP   | source     | port: | 20001 | Destination | port: | 20002 |
| 11 | 10.000000 | 10.1.1.150 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 12 | 11.000000 | 10.1.1.151 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 13 | 12.000000 | 10.1.1.152 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 14 | 13.000000 | 10.1.1.153 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 15 | 14.000000 | 10.1.1.154 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 16 | 15 000000 | 10 1 1 155 - | > 2 | 0 1 1 2 | TIDP  | Source     | port. | 20001 | Destination | port. | 20002 |
| 17 | 16 000000 | 10 1 1 156 - | 2   | 0 1 1 2 | מסוו  | Sourco     | port. | 20001 | Doctination | port. | 20002 |
| 10 | 17.000000 | 10.1.1.150 - | 2   | 0.1.1.2 | UDF   | Source     | port. | 20001 | Destination | port: | 20002 |
| 18 | 17.000000 | 10.1.1.157 - | > 2 | 0.1.1.2 | UDP   | source     | port: | 20001 | Descination | port: | 20002 |
| 19 | 18.000000 | 10.1.1.158 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 20 | 19.000000 | 10.1.1.159 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 21 | 20.000000 | 10.1.1.160 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 22 | 21.000000 | 10.1.1.161 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 23 | 22.000000 | 10.1.1.162 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 24 | 23 000000 | 10 1 1 163 - | > 2 | 0 1 1 2 | TIDP  | Source     | port. | 20001 | Destination | port. | 20002 |
| 25 | 24 000000 | 10 1 1 164 - | 2   | 0 1 1 2 | ם חוז | Source     | port. | 20001 | Dectination | port. | 20002 |
| 20 | 24.000000 | 10.1.1.104   | 2   | 0.1.1.2 | UDI   | Generation | port. | 20001 | Destination | port. | 20002 |
| 26 | 25.000000 | 10.1.1.165 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Descination | port: | 20002 |
| 27 | 26.000000 | 10.1.1.166 - | > 2 | 0.1.1.2 | UDP   | source     | port: | 20001 | Destination | port: | 20002 |
| 28 | 27.000000 | 10.1.1.167 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 29 | 28.000000 | 10.1.1.168 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 30 | 29.000000 | 10.1.1.169 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 31 | 30.000000 | 10.1.1.170 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 32 | 31.000000 | 10.1.1.171 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 23 | 32 000000 | 10 1 1 172 - | ~ 2 | 0 1 1 2 |       | Source     | port. | 20001 | Destination | port. | 20002 |
| 34 | 33 000000 | 10.1.1.172   | 2   | 0 1 1 2 |       | Source     | port. | 20001 | Destination | port. | 20002 |
| 24 | 33.000000 | 10.1.1.173 - | 2   | 0.1.1.2 | UDF   | Source     | port. | 20001 | Destination | port: | 20002 |
| 35 | 34.000000 | 10.1.1.1/4 - | > 2 | 0.1.1.2 | UDP   | source     | port: | 20001 | Descination | port: | 20002 |
| 36 | 35.000000 | 10.1.1.175 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 37 | 36.000000 | 10.1.1.176 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 38 | 37.000000 | 10.1.1.177 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 39 | 38.000000 | 10.1.1.178 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 40 | 39.000000 | 10.1.1.179 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 41 | 40.000000 | 10.1.1.180 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 42 | 41 000000 | 10 1 1 181 - | 2   | 0 1 1 2 | TIDP  | Source     | port. | 20001 | Destination | port. | 20002 |
| 12 | 12.000000 | 10.1.1.101   | 5 2 | 0.1.1.2 |       | Course     | port. | 20001 | Destination | port. | 20002 |
| 45 | 42.000000 | 10.1.1.102 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Descination | port: | 20002 |
| 44 | 43.000000 | 10.1.1.183 - | > 2 | 0.1.1.2 | UDP   | source     | port: | 20001 | Destination | port: | 20002 |
| 45 | 44.000000 | 10.1.1.184 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 46 | 45.000000 | 10.1.1.185 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 47 | 46.000000 | 10.1.1.186 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 48 | 47.000000 | 10.1.1.187 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 49 | 48.000000 | 10.1.1.188 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 50 | 49 000000 | 10 1 1 189 - | > 2 | 0 1 1 2 | TIDP  | Source     | port. | 20001 | Destination | port. | 20002 |
| 51 | 50 000000 | 10 1 1 190 - | 5 2 | 0 1 1 2 |       | Source     | port. | 20001 | Destination | port. | 20002 |
| 57 | E1 000000 | 10 1 1 101   | 2   | 0 1 1 0 |       | COURCE     | POTC: | 20001 | Dogtination | POTC: | 20002 |
| 54 | 51.000000 | 10 1 1 100   | > 2 | 0.1.1.2 | UDP   | Source     | bour: | 20001 | Destination | bour: | 20002 |
| 53 | 52.000000 | 10.1.1.192 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 54 | 53.000000 | 10.1.1.193 - | > 2 | ∪.⊥.1.2 | UDP   | source     | port: | 20001 | Destination | port: | 20002 |
| 55 | 54.000000 | 10.1.1.194 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 56 | 55.000000 | 10.1.1.195 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 57 | 56.000000 | 10.1.1.196 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 58 | 57.000000 | 10.1.1.197 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
| 59 | 58.000000 | 10.1.1.198 - | > 2 | 0.1.1.2 | UDP   | Source     | port: | 20001 | Destination | port: | 20002 |
|    |           |              |     |         |       |            |       |       |             |       |       |

# Example: Displaying Detailed Output from a .pcap File

You can display the detailed .pcap file output by entering:

Switch# show monitor capture file bootflash:mycap.pcap detailed
Frame 1: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits)
Arrival Time: Mar 21, 2012 14:35:09.111993000 PDT
Epoch Time: 1332365709.111993000 seconds
[Time delta from previous captured frame: 0.000000000 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.00000000 seconds]
Frame Number: 1
Frame Length: 256 bytes (2048 bits)
Capture Length: 256 bytes (2048 bits)

```
[Frame is marked: False]
    [Frame is ignored: False]
    [Protocols in frame: eth:ip:udp:data]
Ethernet II, Src: 00:00:00:00:03:01 (00:00:00:00:03:01), Dst: 54:75:d0:3a:85:3f
(54:75:d0:3a:85:3f)
    Destination: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
        Address: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
        .... = IG bit: Individual address (unicast)
        .... .0. .... .... = LG bit: Globally unique address (factory default)
    Source: 00:00:00:00:03:01 (00:00:00:00:03:01)
        Address: 00:00:00:00:03:01 (00:00:00:00:03:01)
        ..... ....0 ..... ..... = IG bit: Individual address (unicast)
        .... .0. .... .... = LG bit: Globally unique address (factory default)
    Type: IP (0x0800)
    Frame check sequence: 0x03b07f42 [incorrect, should be 0x08fcee78]
Internet Protocol, Src: 10.1.1.140 (10.1.1.140), Dst: 20.1.1.2 (20.1.1.2)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
        0000 00.. = Differentiated Services Codepoint: Default (0x00)
        .... ..0. = ECN-Capable Transport (ECT): 0
        \ldots \ldots 0 = \text{ECN-CE:} 0
    Total Length: 238
    Identification: 0x0000 (0)
    Flags: 0x00
        0... = Reserved bit: Not set
        .0.. .... = Don't fragment: Not set
        ..... = More fragments: Not set
    Fragment offset: 0
    Time to live: 64
    Protocol: UDP (17)
    Header checksum: 0x5970 [correct]
        [Good: True]
        [Bad: False]
    Source: 10.1.1.140 (10.1.1.140)
    Destination: 20.1.1.2 (20.1.1.2)
User Datagram Protocol, Src Port: 20001 (20001), Dst Port: 20002 (20002)
    Source port: 20001 (20001)
    Destination port: 20002 (20002)
    Length: 218
    Checksum: 0x6e2b [validation disabled]
        [Good Checksum: False]
        [Bad Checksum: False]
Data (210 bytes)
0000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
                                                         . . . . . . . . . . . . . . . .
0010
      10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
                                                          . . . . . . . . . . . . . . . . .
0020
      20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
                                                          !"#$%&'()*+,-./
0030 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
                                                        0123456789:;<=>?
0040 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
                                                         @ABCDEFGHIJKLMNO
0050 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
                                                         PQRSTUVWXYZ [\] ^
0060 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
                                                         `abcdefghijklmno
0070 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
                                                         pqrstuvwxyz{|}~.
0080 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
                                                          . . . . . . . . . . . . . . . .
0090 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
                                                          . . . . . . . . . . . . . . . .
      a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
00a0
                                                          . . . . . . . . . . . . . . . .
00b0
      b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf
                                                          . . . . . . . . . . . . . . . .
00c0 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
                                                          . . . . . . . . . . . . . . . . .
00d0 d0 d1
    Data: 000102030405060708090a0b0c0d0e0f1011121314151617...
    [Length: 210]
```

Frame 2: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits)
Arrival Time: Mar 21, 2012 14:35:10.111993000 PDT

# Example: Displaying a Hexadecimal Dump Output from a .pcap File

You can display the hexadecimal dump output by entering:

```
Switch# show monitor capture file bootflash:mycap.pcap dump
      0.000000
                 10.1.1.140 -> 20.1.1.2
                                              UDP Source port: 20001 Destination port:
 1
20002
      54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00
0000
                                                          Tu.:.?....E.
      00 ee 00 00 00 00 40 11 59 70 0a 01 01 8c 14 01
0010
                                                           ....qY.....
0020
      01 02 4e 21 4e 22 00 da 6e 2b 00 01 02 03 04 05
                                                           ..N!N"..n+....
      06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0030
                                                           . . . . . . . . . . . . . . . . .
                                                           ....!"#$%
      16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
0040
0050
      26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
                                                           &'()*+,-./012345
0060
      36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45
                                                           6789:;<=>?@ABCDE
0070
      46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55
                                                           FGHIJKLMNOPQRSTU
                                                           VWXYZ[\]^_`abcde
0080
     56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65
      66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75
0090
                                                           fghijklmnopqrstu
      76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85
00a0
                                                           vwxyz{ | }~....
00b0
      86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
                                                           . . . . . . . . . . . . . . . .
      96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
00c0
                                                           . . . . . . . . . . . . . . . .
00d0
      a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
                                                            . . . . . . . . . . . . . . . .
      b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00e0
                                                           . . . . . . . . . . . . . . . .
      c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 03 b0 7f 42
00f0
                                                           ....B
 2
      1.000000
                 10.1.1.141 -> 20.1.1.2
                                              UDP Source port: 20001 Destination port:
20002
0000
      54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00
                                                           Tu.:.?....E.
      00 ee 00 00 00 00 40 11 59 6f 0a 01 01 8d 14 01
0010
                                                           ....@.Yo....
0020
      01 02 4e 21 4e 22 00 da 6e 2a 00 01 02 03 04 05
                                                           ..N!N"..n*....
0030
      06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
                                                           . . . . . . . . . . . . . . . .
      16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
                                                           ....!"#$%
0040
0050
      26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
                                                           &'()*+,-./012345
0060
      36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45
                                                           6789:;<=>?@ABCDE
0070
      46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55
                                                           FGHIJKLMNOPORSTU
                                                           VWXYZ[\]^_`abcde
      56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65
0080
0090
      66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75
                                                           fghijklmnopqrstu
00a0
      76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85
                                                           vwxyz{|}~....
      86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
00b0
                                                           . . . . . . . . . . . . . . . .
00c0
      96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
                                                           . . . . . . . . . . . . . . . .
      a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
0000
                                                           . . . . . . . . . . . . . . . .
     b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00e0
                                                           . . . . . . . . . . . . . . . .
00f0
     c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 95 2c c3 3f
                                                           3
      2.000000
                 10.1.1.142 -> 20.1.1.2
                                              UDP Source port: 20001 Destination port:
20002
0000
      54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00
                                                           Tu.:.?....E.
0010
      00 ee 00 00 00 00 40 11 59 6e 0a 01 01 8e 14 01
                                                           ....@.Yn....
      01 02 4e 21 4e 22 00 da 6e 29 00 01 02 03 04 05
                                                           ..N!N"..n).....
0020
      06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
0030
                                                           . . . . . . . . . . . . . . . .
0040
      16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
                                                           ....!"#$%
      26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
                                                           &'()*+,-./012345
0050
0060
      36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45
                                                           6789:;<=>?@ABCDE
      46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55
                                                           FGHIJKLMNOPORSTU
0070
      56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65
                                                           VWXYZ[\]^_`abcde
0080
0090
      66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75
                                                           fghijklmnopqrstu
00a0
      76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85
                                                           vwxyz{|}~....
00b0
      86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
                                                           . . . . . . . . . . . . . . . .
      96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
00c0
                                                           . . . . . . . . . . . . . . . .
00d0
     a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
                                                           . . . . . . . . . . . . . . . .
     b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
00e0
                                                           . . . . . . . . . . . . . . . .
```

Software Configuration Guide—Release IOS XE 3.5.0E and IOS 15.2(1)E

00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 6c f8 dc 14  $\,$ 3.000000  $10.1.1.143 \rightarrow 20.1.1.2$ UDP Source port: 20001 Destination port: 4 20002 0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?.....E. 00 ee 00 00 00 00 40 11 59 6d 0a 01 01 8f 14 01 0010 ....@.Ym..... 01 02 4e 21 4e 22 00 da 6e 28 00 01 02 03 04 05 0020 ..N!N"..n(.... 0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 . . . . . . . . . . . . . . . . 0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 ....!"#\$% 0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()\*+,-./012345

### Example: Displaying Packets from a .pcap File with a Display Filter

You can display the .pcap file packets output by entering:

```
Switch# show monitor capture file bootflash:mycap.pcap display-filter "ip.src ==
10.1.1.140" dump
 1
     0.000000
                 10.1.1.140 -> 20.1.1.2
                                             UDP Source port: 20001 Destination port:
20002
0000
      54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00
                                                         Tu.:.?....E.
      00 ee 00 00 00 00 40 11 59 70 0a 01 01 8c 14 01
0010
                                                         .....@.Yp.....
0020
      01 02 4e 21 4e 22 00 da 6e 2b 00 01 02 03 04 05
                                                          ..N!N"..n+....
0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15
                                                          . . . . . . . . . . . . . . . .
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
                                                          ....!"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 & ()*+,-./012345
0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45
                                                          6789:;<=>?@ABCDE
0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55
                                                         FGHIJKLMNOPQRSTU
                                                          VWXYZ[\]^ `abcde
0080
      56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65
      66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75
                                                          fghijklmnopqrstu
0090
00a0
      76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85
                                                          vwxyz{|}~....
      86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95
00b0
                                                          . . . . . . . . . . . . . . . .
00c0
      96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5
                                                          . . . . . . . . . . . . . . . .
      a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5
00d0
                                                          . . . . . . . . . . . . . . . .
00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5
                                                          . . . . . . . . . . . . . . . .
00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 03 b0 7f 42
                                                          ....B
```

# **Usage Examples for Wireshark**

## **Example: Simple Capture and Display**

This example shows how to monitor traffic in the Layer 3 interface Gigabit 3/1:

| Step 1 | Define a capture point to match on the relevant traffic by entering:                                                                |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|        | Switch# monitor capture mycap interface gi 3/1 in match ipv4 any any<br>Switch# monitor capture mycap limit duration 60 packets 100 |  |  |  |  |  |
|        | <b>Note</b> To avoid high CPU utilization, a low packet count and duration as limits has been set.                                  |  |  |  |  |  |
| Step 2 | Confirm that the capture point has been correctly defined by entering:                                                              |  |  |  |  |  |
|        | Switch# <b>show monitor capture mycap parameter</b><br>monitor capture mycap interface GigabitEthernet3/1 in                        |  |  |  |  |  |

```
monitor capture mycap match ipv4 any any
  monitor capture mycap limit packets 100 duration 60
Switch# show monitor capture mycap
Status Information for Capture mycap
  Target Type:
  Interface: GigabitEthernet3/1, Direction: in
  Status : Inactive
  Filter Details:
   TPv4
   Source IP: anv
   Destination IP: any
  Protocol: anv
  File Details:
  File not associated
  Buffer Details:
  Buffer Type: LINEAR (default)
  Limit Details:
  Number of Packets to capture: 100
   Packet Capture duration: 60
```

**Step 3** Start the capture process and display the results.

```
Switch# monitor capture mycap start display
 0.000000
            10.1.1.30 -> 20.1.1.2
                                     UDP Source port: 20001 Destination port: 20002
                                     UDP Source port: 20001 Destination port: 20002
 1.000000
            10.1.1.31 -> 20.1.1.2
                                   UDP Source port: 20001 Destination port: 20002
           10.1.1.32 -> 20.1.1.2
 2.000000
           10.1.1.33 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 3.000000
           10.1.1.34 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 4.000000
 5.000000
            10.1.1.35 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 6.000000
            10.1.1.36 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
            10.1.1.37 -> 20.1.1.2
 7.000000
                                     UDP Source port: 20001 Destination port: 20002
```

**Step 4** Delete the capture point by entering:

Switch# no monitor capture mycap

### **Example: Simple Capture and Store**

8.000000

9.000000

This example shows how to capture packets to a filter.

10.1.1.38 -> 20.1.1.2

10.1.1.39 -> 20.1.1.2

```
Step 1
        Define a capture point to match on the relevant traffic and associate it to a file by entering:
        Switch# monitor capture mycap interface gi 3/1 in match ipv4 any any
        Switch# monitor capture mycap limit duration 60 packets 100
        Switch# monitor cap mycap file location bootflash:mycap.pcap
Step 2
        Confirm that the capture point has been correctly defined by entering:
        Switch# show monitor capture mycap parameter
           monitor capture mycap interface GigabitEthernet3/1 in
           monitor capture mycap match ipv4 any any
           monitor capture mycap file location bootflash:mycap.pcap
           monitor capture mycap limit packets 100 duration 60
        Switch# show monitor capture mycap
          Target Type:
           Interface: GigabitEthernet3/1, Direction: in
          Status : Inactive
          Filter Details:
```

UDP Source port: 20001 Destination port: 20002

UDP Source port: 20001 Destination port: 20002

```
IPv4
Source IP: any
Destination IP: any
Protocol: any
File Details:
Associated file name: bootflash:mycap.pcap
Buffer Details:
Buffer Type: LINEAR (default)
Limit Details:
Number of Packets to capture: 100
Packet Capture duration: 60
```

**Step 3** Launch packet capture by entering:

Switch# monitor capture mycap start

**Step 4** After sufficient time has passed, stop the capture by entering:

Switch# monitor capture mycap stop

Note

Alternatively, you could let the capture operation stop automatically after the time has elapsed or the packet count has been met.

The mycap.pcap file now contains the captured packets.

**Step 5** Display the packets by entering:

```
Switch# show monitor capture file bootflash:mycap.pcap
  0.000000 10.1.1.30 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
  1.000000
              10.1.1.31 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
  2.000000
            10.1.1.32 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
  3.000000
            10.1.1.33 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
  4.000000
              10.1.1.34 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
              10.1.1.35 -> 20.1.1.2UDP Source port: 20001Destination port: 2000210.1.1.36 -> 20.1.1.2UDP Source port: 20001Destination port: 2000210.1.1.37 -> 20.1.1.2UDP Source port: 20001Destination port: 20002
  5.000000
  6.000000
  7.000000
               10.1.1.38 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
  8.000000
  9.000000
               10.1.1.39 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
```

```
Step 6 Delete the capture point by entering:
```

```
Switch# no monitor capture mycap
```

### Example: Using Buffer Capture

This example shows how to use buffer capture:

**Step 1** Launch a capture session with the buffer capture option by entering:

Switch# monitor capture mycap interface gi 3/1 in Switch# monitor capture mycap match ipv4 any any Switch# monitor capture mycap buffer circular size 1 Switch# monitor capture mycap start

**Step 2** Determine whether the capture is active by entering:

Switch# show monitor capture mycap

Status Information for Capture mycap Target Type:

Software Configuration Guide—Release IOS XE 3.5.0E and IOS 15.2(1)E

```
Interface: GigabitEthernet3/1, Direction: in
Status : Active
Filter Details:
    IPv4
    Source IP: any
    Destination IP: any
    Protocol: any
File Details:
    File not associated
Buffer Details:
    Buffer Type: CIRCULAR
    Buffer Size (in MB): 1
Limit Details:
    limit not set
```

**Step 3** Display the packets in the buffer by entering:

#### Switch# show monitor capture mycap buffer brief

| 0.000000  | 10.1.1.215 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
|-----------|------------|-----|----------|-----|--------|-------|-------|-------------|-------|-------|
| 1.000000  | 10.1.1.216 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 2.000000  | 10.1.1.217 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 3.000000  | 10.1.1.218 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 4.000000  | 10.1.1.219 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 5.000000  | 10.1.1.220 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 6.000000  | 10.1.1.221 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 7.000000  | 10.1.1.222 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 8.000000  | 10.1.1.223 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 9.000000  | 10.1.1.224 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 10.000000 | 10.1.1.225 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 11.000000 | 10.1.1.226 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 12.000000 | 10.1.1.227 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 13.000000 | 10.1.1.228 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 14.000000 | 10.1.1.229 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 15.000000 | 10.1.1.230 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 16.000000 | 10.1.1.231 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 17.000000 | 10.1.1.232 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 18.000000 | 10.1.1.233 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 19.000000 | 10.1.1.234 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 20.000000 | 10.1.1.235 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 21.000000 | 10.1.1.236 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |

Notice that the packets have been buffered.

**Step 4** Display the packets in other display modes.

```
Switch# show monitor capture mycap buffer detailed
Frame 1: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits)
   Arrival Time: Apr 15, 2012 15:50:02.398966000 PDT
    Epoch Time: 1334530202.398966000 seconds
    [Time delta from previous captured frame: 0.000000000 seconds]
    [Time delta from previous displayed frame: 0.000000000 seconds]
    [Time since reference or first frame: 0.000000000 seconds]
   Frame Number: 1
   Frame Length: 256 bytes (2048 bits)
    Capture Length: 256 bytes (2048 bits)
    [Frame is marked: False]
    [Frame is ignored: False]
    [Protocols in frame: eth:ip:udp:data]
Ethernet II, Src: 00:00:00:00:03:01 (00:00:00:03:01), Dst: 54:75:d0:3a:85:3f
(54:75:d0:3a:85:3f)
   Destination: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
       Address: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
        ..... ....0 ..... ..... = IG bit: Individual address (unicast)
       .... .0. .... .... = LG bit: Globally unique address (factory default)
    Source: 00:00:00:00:03:01 (00:00:00:00:03:01)
```

Address: 00:00:00:00:03:01 (00:00:00:00:03:01) .... = IG bit: Individual address (unicast) .... .0. .... .... = LG bit: Globally unique address (factory default) Switch# show monitor capture mycap buffer dump 0.000000 10.1.1.215 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?.....E. 0010 00 ee 00 00 00 00 40 11 59 25 0a 01 01 d7 14 01 ....@.Y%..... 0020 01 02 4e 21 4e 22 00 da 6d e0 00 01 02 03 04 05 ..N!N"..m..... 0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 . . . . . . . . . . . . . . . . 0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 ....!"#\$% 0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 & ()\*+,-./012345 0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE 0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKLMNOPQRSTU VWXYZ[\]^\_`abcde 0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 0090 fghijklmnopqrstu 00a0 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 vwxyz{|}~.... 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95 00b0 . . . . . . . . . . . . . . . . 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 00c0 . . . . . . . . . . . . . . . . 0040 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5 . . . . . . . . . . . . . . . . 00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5 . . . . . . . . . . . . . . . . 00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 03 3e d0 33 

#### Step 5 Clear the buffer once, wait for 10 seconds, then stop the traffic by entering:

Switch# monitor capture mycap clear

Wait for 10 seconds and stop the traffic.

Confirm that the same set of packets are displayed after this time gap by entering:

Switch# show monitor capture mycap buffer brief

| 0.000000 | 10.1.1.2 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
|----------|-----------------------|-----|--------------|-------|-------------------|-------|
| 1.000000 | 10.1.1.3 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
| 2.000000 | 10.1.1.4 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
| 3.000000 | 10.1.1.5 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
| 4.000000 | 10.1.1.6 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
| 5.000000 | 10.1.1.7 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
| 6.000000 | 10.1.1.8 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
| 7.000000 | 10.1.1.9 -> 20.1.1.2  | UDP | Source port: | 20001 | Destination port: | 20002 |
| 8.000000 | 10.1.1.10 -> 20.1.1.2 | UDP | Source port: | 20001 | Destination port: | 20002 |
| 9.000000 | 10.1.1.11 -> 20.1.1.2 | UDP | Source port: | 20001 | Destination port: | 20002 |

[Wait for about 10 secs]

| Switch# <b>show</b> | monitor captur | e mycap buff | er bi | rief   |       |       |             |       |       |
|---------------------|----------------|--------------|-------|--------|-------|-------|-------------|-------|-------|
| 0.000000            | 10.1.1.2 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 1.000000            | 10.1.1.3 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 2.000000            | 10.1.1.4 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 3.000000            | 10.1.1.5 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 4.000000            | 10.1.1.6 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 5.000000            | 10.1.1.7 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 6.000000            | 10.1.1.8 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 7.000000            | 10.1.1.9 ->    | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 8.000000            | 10.1.1.10 ->   | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |
| 9.00000             | 10.1.1.11 ->   | 20.1.1.2     | UDP   | Source | port: | 20001 | Destination | port: | 20002 |

[Wait for about 10 secs]

Switch# show monitor capture mycap buffer brief

| 0.00000  | 10.1.1.2 -> | 20.1.1.2 | UDP | Source port: | 20001 | Destination port: | 20002 |
|----------|-------------|----------|-----|--------------|-------|-------------------|-------|
| 1.000000 | 10.1.1.3 -> | 20.1.1.2 | UDP | Source port: | 20001 | Destination port: | 20002 |
| 2.000000 | 10.1.1.4 -> | 20.1.1.2 | UDP | Source port: | 20001 | Destination port: | 20002 |
| 3.000000 | 10.1.1.5 -> | 20.1.1.2 | UDP | Source port: | 20001 | Destination port: | 20002 |

| 4.000000 | 10.1.1.6 -> 20.1.1.2  | UDP Sour | ce port: | 20001 | Destination | port: | 20002 |
|----------|-----------------------|----------|----------|-------|-------------|-------|-------|
| 5.000000 | 10.1.1.7 -> 20.1.1.2  | UDP Sour | ce port: | 20001 | Destination | port: | 20002 |
| 6.000000 | 10.1.1.8 -> 20.1.1.2  | UDP Sour | ce port: | 20001 | Destination | port: | 20002 |
| 7.000000 | 10.1.1.9 -> 20.1.1.2  | UDP Sour | ce port: | 20001 | Destination | port: | 20002 |
| 8.000000 | 10.1.1.10 -> 20.1.1.2 | UDP Sour | ce port: | 20001 | Destination | port: | 20002 |
| 9.000000 | 10.1.1.11 -> 20.1.1.2 | UDP Sour | ce port: | 20001 | Destination | port: | 20002 |

**Step 6** Clear the packets from the buffer by entering:

Switch# monitor capture mycap clear

**Step 7** Confirm that the buffer is now empty by entering:

Switch# show monitor capture mycap buffer brief

Wait about 10 seconds.

**Step 8** Display the buffer contents.

Switch# show monitor capture mycap buffer brief

**Step 9** Restart the traffic, wait about 10 seconds, then display buffer contents by entering:

```
Switch# show monitor capture mycap buffer brief
```

| 0.000000  | 10.1.1.2 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
|-----------|--------------|------------|-----|----------|-------|-------|-------------|-------|-------|
| 1.000000  | 10.1.1.3 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 2.000000  | 10.1.1.4 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 3.000000  | 10.1.1.5 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 4.000000  | 10.1.1.6 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 5.000000  | 10.1.1.7 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 6.000000  | 10.1.1.8 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 7.000000  | 10.1.1.9 -:  | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 8.000000  | 10.1.1.10 -: | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 9.000000  | 10.1.1.11 -: | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
| 10.000000 | 10.1.1.12 -: | > 20.1.1.2 | UDP | Source p | port: | 20001 | Destination | port: | 20002 |
|           |              |            |     |          |       |       |             |       |       |

**Step 10** Store the buffer contents to the mycap1.pcap file in the internal bootflash: storage device.

Switch# monitor capture mycap export bootflash:mycap1.pcap Exported Successfully

**Step 11** Check that the file has been created and that it contains the packets by entering:

```
Switch# dir bootflash:mycap1.pcap
Directory of bootflash:/mycap1.pcap
```

14758 -rw- 20152 Apr 15 2012 16:00:28 -07:00 mycap1.pcap

```
831541248 bytes total (831340544 bytes free)
Switch# show monitor capture file bootflash:mycap1.pcap brief
```

| 1     | 0.000000 | 10.1.1.2 . | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
|-------|----------|------------|-------------|-----|--------|-------|-------|-------------|-------|
| 20002 |          |            |             |     |        |       |       |             |       |
| 2     | 1.000000 | 10.1.1.3   | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
| 20002 |          |            |             |     |        |       |       |             |       |
| 3     | 2.000000 | 10.1.1.4   | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
| 20002 |          |            |             |     |        |       |       |             |       |
| 4     | 3.000000 | 10.1.1.5   | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
| 20002 |          |            |             |     |        |       |       |             |       |
| 5     | 4.000000 | 10.1.1.6   | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
| 20002 |          |            |             |     |        |       |       |             |       |
| 6     | 5.000000 | 10.1.1.7 . | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
| 20002 |          |            |             |     |        |       |       |             |       |
| 7     | 6.000000 | 10.1.1.8   | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
| 20002 |          |            |             |     |        |       |       |             |       |
| 8     | 7.000000 | 10.1.1.9   | -> 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: |
| 20002 |          |            |             |     |        |       |       |             |       |

| 9    | 8 000000  | 10 1 1 10 -> 20 1 1 | 2 נחזז | Source | nort. | 20001 | Destination | nort. |
|------|-----------|---------------------|--------|--------|-------|-------|-------------|-------|
|      | 0.000000  | 10.1.1.10 -> 20.1.1 | .2 ODF | Source | port. | 20001 | Descinacion | port. |
| 2000 | 2         |                     |        |        |       |       |             |       |
| 10   | 9.000000  | 10.1.1.11 -> 20.1.1 | .2 UDP | Source | port: | 20001 | Destination | port: |
| 2000 | 2         |                     |        |        |       |       |             |       |
| 11   | 10.000000 | 10.1.1.12 -> 20.1.1 | .2 UDP | Source | port: | 20001 | Destination | port: |
| 2000 | 2         |                     |        |        |       |       |             |       |
| 12   | 11.000000 | 10.1.1.13 -> 20.1.1 | .2 UDP | Source | port: | 20001 | Destination | port: |
| 2000 | 2         |                     |        |        |       |       |             |       |
| 13   | 12.000000 | 10.1.1.14 -> 20.1.1 | .2 UDP | Source | port: | 20001 | Destination | port: |
| 2000 | 2         |                     |        |        |       |       |             |       |
| 14   | 13.000000 | 10.1.1.15 -> 20.1.1 | .2 UDP | Source | port: | 20001 | Destination | port: |
| 2000 | 2         |                     |        |        |       |       |             |       |
| 15   | 14.000000 | 10.1.1.16 -> 20.1.1 | .2 UDP | Source | port: | 20001 | Destination | port: |
| 2000 | 2         |                     |        |        | -     |       |             | -     |
| 16   | 15.000000 | 10.1.1.17 -> 20.1.1 | .2 UDP | Source | port: | 20001 | Destination | port: |
| 2000 | 2         |                     |        |        | E     |       |             | 1     |

**Step 12** Stop the packet capture and display the buffer contents by entering:

```
Switch# monitor capture mycap stop
Switch# show monitor capture mycap buffer brief
             10.1.1.2 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 0.000000
  1.000000
             10.1.1.3 -> 20.1.1.2
                                     UDP Source port: 20001 Destination port: 20002
 2.000000
             10.1.1.4 -> 20.1.1.2
                                     UDP Source port: 20001 Destination port: 20002
             10.1.1.5 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 3.000000
            10.1.1.6 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 4.000000
 5.000000
            10.1.1.7 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
            10.1.1.8 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 6.000000
 7.000000
             10.1.1.9 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 8.000000
            10.1.1.10 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
            10.1.1.11 -> 20.1.1.2
                                    UDP Source port: 20001 Destination port: 20002
 9.000000
             10.1.1.12 -> 20.1.1.2
 10.000000
                                     UDP Source port: 20001 Destination port: 20002
 11.000000
             10.1.1.13 -> 20.1.1.2
                                     UDP Source port: 20001 Destination port: 20002
```

**Step 13** Clear the buffer and then try to display packets from the buffer by entering:

Switch# monitor capture mycap clear Switch# show monitor capture mycap buffer brief

**Step 14** Delete the capture point by entering:

Switch# no monitor capture mycap

### **Example: Capture Sessions**

The following examples shows how to start or stop a capture session in various modes:

```
Switch# monitor capture mycap int gi 3/1 in match ipv4 any any
Switch# monitor capture mycap file location bootflash:mycap.pcap
Switch# monitor capture mycap limit packets 100 duration 60
Switch# monitor capture mycap start
Switch#
Switch# monitor capture mycap stop
Switch# monitor capture mycap start capture-filter "udp.port == 20001"
Switch# monitor capture mycap stop
Switch# monitor capture mycap start capture-filter "udp.port == 20001" display
A file by the same capture file name already exists, overwrite?[confirm]
  0.00000
              10.1.1.9 -> 20.1.1.2
                                       UDP Source port: 20001 Destination port: 20002
  0.00000
             10.1.1.10 -> 20.1.1.2
                                       UDP Source port: 20001 Destination port: 20002
```

| 0.000000 | 10.1.1.11 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
|----------|--------------|----------|-----|--------|-------|-------|-------------|-------|-------|
| 0.000000 | 10.1.1.12 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.13 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.14 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.15 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.16 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.17 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.18 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.19 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.20 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.21 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.22 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.23 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.24 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.25 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.26 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.27 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.28 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.29 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.30 -> | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |

Switch# monitor capture mycap start capture-filter "udp.port == 20001" display display-filter "udp.port == 20002"

%Display-filter cannot be specified when capture is associated to a file. Ignoring display filter%

A file by the same capture file name already exists, overwrite?[confirm]

| 0.000000 | 10.1.1.96  | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
|----------|------------|-----|----------|-----|--------|-------|-------|-------------|-------|-------|
| 0.000000 | 10.1.1.97  | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.98  | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.99  | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.100 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.101 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.102 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.103 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.104 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.105 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.106 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.107 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.108 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 0.000000 | 10.1.1.109 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |

Switch# monitor capture mycap start capture-filter "udp.port == 20001" display display-filter "udp.port == 20002" detailed

%Display-filter cannot be specified when capture is associated to a file. Ignoring display filter%

A file by the same capture file name already exists, overwrite?[confirm]

Frame 1: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits) Arrival Time: Dec 31, 1969 17:00:00.00000000 PDT Epoch Time: 0.00000000 seconds [Time delta from previous captured frame: 0.000000000 seconds] [Time delta from previous displayed frame: 0.000000000 seconds] [Time since reference or first frame: 0.00000000 seconds] Frame Number: 1 Frame Length: 256 bytes (2048 bits) Capture Length: 256 bytes (2048 bits) [Frame is marked: False] [Frame is ignored: False] [Protocols in frame: eth:ip:udp:data] Ethernet II, Src: 00:00:00:00:03:01 (00:00:00:00:03:01), Dst: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f) Destination: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f) Address: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)

0.000000

.... = IG bit: Individual address (unicast) .... .0. .... .... = LG bit: Globally unique address (factory default) Source: 00:00:00:00:03:01 (00:00:00:00:03:01) Address: 00:00:00:00:03:01 (00:00:00:00:03:01) .... 0 .... . .... = IG bit: Individual address (unicast) .... ..0. .... .... = LG bit: Globally unique address (factory default)

Switch# monitor capture mycap start capture-filter "udp.port == 20001" display dump A file by the same capture file name already exists, overwrite?[confirm]

10.1.1.6 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?.....E. 0010 00 ee 00 00 00 00 40 11 59 f6 0a 01 01 06 14 01 .....@.Y..... 0020 01 02 4e 21 4e 22 00 da 6e b1 00 01 02 03 04 05 ..N!N"..n..... 0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 . . . . . . . . . . . . . . . . 0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 ....!"#\$% 0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()\*+,-./012345 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 0060 6789:;<=>?@ABCDE 0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKLMNOPQRSTU 0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\]^ `abcde 0090 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 fqhijklmnopqrstu 00a0 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 vwxyz{|}~.... 00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95 . . . . . . . . . . . . . . . . 00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 . . . . . . . . . . . . . . . . 00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5 . . . . . . . . . . . . . . . . 00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5 . . . . . . . . . . . . . . . . 00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 ac 69 6e fd ....in.

0.00000 10.1.1.7 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Switch# monitor capture mycap start display display-filter "udp.port == 20002" \*Display-filter cannot be specified when capture is associated to a file. Iqnoring display filter%

A file by the same capture file name already exists, overwrite?[confirm]

0.00000 10.1.1.41 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 10.1.1.42 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 1.000000 2.000000 10.1.1.43 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 UDP Source port: 20001 Destination port: 20002 10.1.1.44 -> 20.1.1.2 3.000000 10.1.1.45 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 4.000000 5.000000 10.1.1.46 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 5.998993 10.1.1.47 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 6.998993 10.1.1.48 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 10.1.1.49 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 7,998993 UDP Source port: 20001 Destination port: 20002 10.1.1.50 -> 20.1.1.2 8.998993 9.998993 10.1.1.51 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002 10.998993 10.1.1.52 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Switch# monitor capture mycap start display display-filter "udp.port == 20002" dump %Display-filter cannot be specified when capture is associated to a file. Ignoring display filter%

A file by the same capture file name already exists, overwrite?[confirm]

0.000000 10.1.1.117 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

0000 54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 Tu.:.?.....E. 0010 00 ee 00 00 00 00 40 11 59 87 0a 01 01 75 14 01 ....u.. 0020 01 02 4e 21 4e 22 00 da 6e 42 00 01 02 03 04 05 ..N!N"..nB..... 0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 . . . . . . . . . . . . . . . . ....!"#\$% 0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()\*+,-./012345 0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE 0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 FGHIJKIMNOPORSTU

0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\] ^ `abcde 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 0090 fghijklmnopqrstu 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 00a0 vwxyz{ | }~.... 00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95 . . . . . . . . . . . . . . . . 00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 . . . . . . . . . . . . . . . . 00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5 . . . . . . . . . . . . . . . . 00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5 . . . . . . . . . . . . . . . . 00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 41 0c b4 5d 1.000000 10.1.1.118 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

#### Switch# no monitor capture mycap file

#### Switch# monitor capture mycap start display display-filter "udp.port == 20002" dump

0.000000 10.1.1.160 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

54 75 d0 3a 85 3f 00 00 00 00 03 01 08 00 45 00 0000 Tu.:.?....E. 00 ee 00 00 00 00 40 11 59 5c 0a 01 01 a0 14 01 0010 ....@.Y\.... 0020 01 02 4e 21 4e 22 00 da 6e 17 00 01 02 03 04 05 ..N!N"..n.... 0030 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 . . . . . . . . . . . . . . . . 0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 ....!"#\$% 0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()\*+,-./012345 0060 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 6789:;<=>?@ABCDE FGHIJKLMNOPQRSTU 0070 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 0080 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 VWXYZ[\]^\_`abcde 0090 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 fqhijklmnopqrstu 76 77 78 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 00a0 vwxyz{|}~.... 00b0 86 87 88 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95 . . . . . . . . . . . . . . . . 00c0 96 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 . . . . . . . . . . . . . . . . 00d0 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5 . . . . . . . . . . . . . . . . 00e0 b6 b7 b8 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5 . . . . . . . . . . . . . . . . 00f0 c6 c7 c8 c9 ca cb cc cd ce cf d0 d1 9f 20 8a e5 . . . . . . . . . . . . . . . .

1.0000000 10.1.1.161 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002

Switch# monitor capture mycap start display display-filter "udp.port == 20002"

| 0.000000  | 10.1.1.173 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
|-----------|--------------|--------|----------|--------|-------|-------|-------------|-------|-------|
| 1.000000  | 10.1.1.174 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 2.000000  | 10.1.1.175 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 3.000000  | 10.1.1.176 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 4.000000  | 10.1.1.177 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 5.000000  | 10.1.1.178 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 6.000000  | 10.1.1.179 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 7.000000  | 10.1.1.180 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 8.000000  | 10.1.1.181 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 9.000000  | 10.1.1.182 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 10.000000 | 10.1.1.183 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 11.000000 | 10.1.1.184 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 12.000000 | 10.1.1.185 - | > 20.1 | .1.2 UDP | Source | port: | 20001 | Destination | port: | 20002 |

#### Switch# monitor capture mycap start display detailed

Frame 1: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits)
Arrival Time: Apr 12, 2012 11:46:54.245974000 PDT
Epoch Time: 1334256414.245974000 seconds
[Time delta from previous captured frame: 0.000000000 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.000000000 seconds]
Frame Number: 1
Frame Length: 256 bytes (2048 bits)
Capture Length: 256 bytes (2048 bits)

```
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ip:udp:data]
Ethernet II, Src: 00:00:00:00:03:01 (00:00:00:03:01), Dst: 54:75:d0:3a:85:3f
(54:75:d0:3a:85:3f)
Destination: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
Address: 54:75:d0:3a:85:3f (54:75:d0:3a:85:3f)
.... 0. ... = IG bit: Individual address (unicast)
.... 0. ... = LG bit: Globally unique address (factory default)
Source: 00:00:00:00:03:01 (00:00:00:03:01)
Address: 00:00:00:00:03:01 (00:00:00:03:01)
.... 0. ... = IG bit: Individual address (unicast)
.... 0. ... = IG bit: Individual address (unicast)
Switch#
```

## **Example: Capture and Store in Lock-step Mode**

This example captures live traffic and stores the packets in lock-step mode to achieve a high capture rate.

```
<u>Note</u>
```

The capture rate might be slow for the first 15 seconds. If possible and needed, start the traffic 15 seconds after the capture session has started.

**Step 1** Define a capture point to match on the relevant traffic and associate it to a file by entering:

```
Switch# monitor capture mycap interface gi 3/1 in match ipv4 any any
        Switch# monitor capture mycap limit duration 60 packets 100
        Switch# monitor cap mycap file location bootflash:mycap.pcap buffer-size 64
Step 2
        Confirm that the capture point has been correctly defined by entering:
        Switch# show monitor capture mycap parameter
           monitor capture mycap interface GigabitEthernet3/1 in
           monitor capture mycap match ipv4 any any
           monitor capture mycap file location bootflash:mycap.pcap buffer-size 64
           monitor capture mycap limit packets 100000 duration 60
        Switch# show monitor capture mycap
          Target Type:
           Interface: GigabitEthernet3/1, Direction: in
          Status : Inactive
          Filter Details:
           IPv4
            Source IP: anv
           Destination IP: any
           Protocol: any
          File Details:
           Associated file name: bootflash:mycap.pcap
          Buffer Details:
           Buffer Type: LINEAR (default)
          Limit Details:
           Number of Packets to capture: 100
           Packet Capture duration: 60
```

**Step 3** Launch packet capture by entering:

Switch# monitor capture mycap start

Let the capture operation stop automatically after the time has elapsed or the packet count has been met.

Software Configuration Guide—Release IOS XE 3.5.0E and IOS 15.2(1)E

The mycap.pcap file now contains the captured packets.

**Step 4** Display the packets by entering:

Switch# show monitor capture file bootflash:mycap.pcap

| 0.000000 | 10.1.1.30 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
|----------|-----------|-----|----------|-----|--------|-------|-------|-------------|-------|-------|
| 1.000000 | 10.1.1.31 | ->  | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 2.000000 | 10.1.1.32 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 3.000000 | 10.1.1.33 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 4.000000 | 10.1.1.34 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 5.000000 | 10.1.1.35 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 6.000000 | 10.1.1.36 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 7.000000 | 10.1.1.37 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 8.000000 | 10.1.1.38 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
| 9.000000 | 10.1.1.39 | - > | 20.1.1.2 | UDP | Source | port: | 20001 | Destination | port: | 20002 |
|          |           |     |          |     |        |       |       |             |       |       |

**Step 5** Delete the capture point by entering:

Switch# no monitor capture mycap

# Example: Simple Capture and Store in Lock-step with High-speed Mode

This example shows how to capture live traffic and store the packets in lock-step with high-speed mode to achieve high capture rate.

Note

The capture rate might be slow for the first 15 seconds. If possible and necessary, start the traffic 15 seconds after the capture session starts.

| Step 1 | Define a capture point to match on the relevant traffic and associate it to a file by entering:                                                                                                                    |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|        | Switch# monitor capture mycap interface gi 3/1 in match ipv4 any any<br>Switch# monitor capture mycap limit duration 60 packets 100<br>Switch# monitor cap mycap file location bootflash:mycap.pcap buffer-size 90 |  |  |  |  |  |  |
| Step 2 | Confirm that the capture point has been correctly defined by entering:                                                                                                                                             |  |  |  |  |  |  |
|        | Switch# show monitor capture mycap parameter                                                                                                                                                                       |  |  |  |  |  |  |

```
monitor capture mycap interface GigabitEthernet3/1 in
  monitor capture mycap match ipv4 any any
  monitor capture mycap file location bootflash:mycap.pcap buffer-size 90
  monitor capture mycap limit packets 100000 duration 60
Switch# show monitor capture mycap
 Target Type:
  Interface: GigabitEthernet3/1, Direction: in
  Status : Inactive
 Filter Details:
  TPv4
   Source IP: any
   Destination IP: any
  Protocol: any
  File Details:
  Associated file name: bootflash:mycap.pcap
 Buffer Details:
  Buffer Type: LINEAR (default)
  Limit Details:
  Number of Packets to capture: 100
  Packet Capture duration: 60
```

**Step 3** Launch packet capture by entering:

Switch# monitor capture mycap start

Let the capture operation stop automatically after the time has elapsed or the packet count has been met.

The mycap.pcap file now contains the captured packets.

**Step 4** Display the packets by entering:

```
Switch# show monitor capture file bootflash:mycap.pcap
           10.1.1.30 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 0.000000
 1.000000
           10.1.1.31 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 2.000000
           10.1.1.32 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
            10.1.1.33 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 3.000000
 4.000000
            10.1.1.34 -> 20.1.1.2
                                    UDP Source port: 20001 Destination port: 20002
            10.1.1.35 -> 20.1.1.2
                                    UDP Source port: 20001 Destination port: 20002
 5.000000
            10.1.1.36 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 6.000000
            10.1.1.37 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 7.000000
            10.1.1.38 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
 8.000000
 9.000000
            10.1.1.39 -> 20.1.1.2 UDP Source port: 20001 Destination port: 20002
```

**Step 5** Delete the capture point by entering:

Switch# no monitor capture mycap

### Example: Simple Capture and Store of Packets in Egress Direction

This example shows how to capture live traffic and store the packets in egress direction using lock-step with high-speed mode.

```
Step 1
        Define a capture point to match on the relevant traffic and associate it to a file by entering:
        Switch# monitor capture mycap interface gi 3/1 out match ipv4 any any
        Switch# monitor capture mycap limit duration 60 packets 100
        Switch# monitor cap mycap file location bootflash:mycap.pcap buffer-size 90
Step 2
        Confirm that the capture point has been correctly defined by entering:
        Switch# show monitor capture mycap parameter
           monitor capture mycap interface GigabitEthernet3/1 out
           monitor capture mycap match ipv4 any any
           monitor capture mycap file location bootflash:mycap.pcap buffer-size 90
           monitor capture mycap limit packets 100000 duration 60
        Switch# show monitor capture mycap
          Target Type:
           Interface: GigabitEthernet3/1, Direction: out
          Status : Inactive
          Filter Details:
           IPv4
            Source IP: any
            Destination IP: any
           Protocol: any
          File Details:
           Associated file name: bootflash:mycap.pcap
          Buffer Details:
           Buffer Type: LINEAR (default)
          Limit Details:
           Number of Packets to capture: 100
```

Packet Capture duration: 60

| Let the captur                   | e operation stop automaticall  | y after the time has elapsed o | r the packet count has beer |  |  |  |  |  |  |
|----------------------------------|--------------------------------|--------------------------------|-----------------------------|--|--|--|--|--|--|
| The mycap.po                     | cap file now contains the capt | ured packets.                  |                             |  |  |  |  |  |  |
| Display the packets by entering: |                                |                                |                             |  |  |  |  |  |  |
| Switch# <b>show</b>              | monitor capture file boo       | tflash:mycap.pcap              |                             |  |  |  |  |  |  |
| 0.000000                         | 10.1.1.30 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 1.000000                         | 10.1.1.31 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 2.000000                         | 10.1.1.32 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 3.000000                         | 10.1.1.33 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 4.000000                         | 10.1.1.34 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 5.000000                         | 10.1.1.35 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 6.000000                         | 10.1.1.36 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 7.000000                         | 10.1.1.37 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 8.000000                         | 10.1.1.38 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |
| 9.000000                         | 10.1.1.39 -> 20.1.1.2          | UDP Source port: 20001         | Destination port: 200       |  |  |  |  |  |  |

# VSS Specific Examples

# Example: Capturing and Storing in a file (Attachment Point in VSS Active Switch)

This example shows how to do a simple capture and store operation when the attachment point is in VSS active switch itself:

```
Step 1
        Launch a capture session by entering the following commands in VSS active switch:
        vss_dut1# monitor capture mycap interface gi 1/1/1 in
        vss\_dut1\# monitor capture mycap match ipv4 any any
        vss_dut1# monitor capture mycap file location bootflash:mycap.pcap
        {\tt vss\_dut1\#} monitor capture mycap limit packets 10 duration 10
        vss dut1# monitor capture mycap start
Step 2
        After the capture session concludes, check that the capture file has stored the packets:
        *Nov 15 00:04:08.337 PDT: %BUFCAP-6-ENABLE: Capture Point mycap enabled.
        *Nov 15 00:04:08.339 PDT: Policy name = mycap, Instance ID = 4
        vss dut1#
        *Nov 15 00:04:13.736 PDT: %BUFCAP-6-DISABLE_ASYNC: Capture Point mycap disabled. Reason :
        Wireshark Session Ended
        vss dut1# dir bootflash:mycap.pcap
        Directory of bootflash:/mycap.pcap
                           824 Nov 15 2012 00:04:13 -07:00 mycap.pcap
        72971 -rw-
        822910976 bytes total (304648192 bytes free)
```

Because the attachment point is only in the VSS active switch, you do not need to execute any commands on the VSS standby switch. The steps match those in the a standalone switch scenario.

# Example: Capturing and Storing in a File with Display (Attachment Point in VSS Active Switch)

This example shows how to perform a basic capture and store operation with the display option in brief mode when the attachment point is in the VSS active switch:

**Step 1** Prepare a capture session by entering the following commands in VSS active switch:

```
vss_dut1# monitor capture mycap interface gi 1/1/1 in
vss_dut1# monitor capture mycap match ipv4 any any
vss_dut1# monitor capture mycap file location bootflash:mycap.pcap
vss_dut1# monitor capture mycap limit packets 60 duration 60
```

**Step 2** Start the capture session with display option in brief mode:

```
vss_dut1# monitor capture mycap start display
```

```
*Nov 14 23:43:20.506 PDT: Policy name = mycap, Instance ID = 3
 0.000000 20.1.1.2 -> 30.1.1.2 TCP [TCP ZeroWindow] 0 > 0 [<None>] Seq=1 Win=0
Len=6
 0.595022 20.1.1.2 -> 30.1.1.2
                                  TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seq=1 Win=0 Len=6
 1.012008 20.1.1.2 -> 30.1.1.2 TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seg=1 Win=0 Len=6
 1.500026 20.1.1.2 -> 30.1.1.2 TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seg=1 Win=0 Len=6
 2.005005 20.1.1.2 -> 30.1.1.2 TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seq=1 Win=0 Len=6
 2.500026 20.1.1.2 -> 30.1.1.2 TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seg=1 Win=0 Len=6
                                    TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
 3.000000
             20.1.1.2 -> 30.1.1.2
[<None>] Seg=1 Win=0 Len=6
```

Because the attachment point is only in VSS active switch, you do not need to execute any commands on the VSS standby switch. The steps match those in the standalone switch scenario.

# Example: Capturing and Storing in a File (Attachment point in VSS Standby Switch)

This example illustrates how to do a simple capture and store operation when the attachment point is in VSS standby switch:

```
Step 1 Prepare the capture session by entering the following commands in VSS active switch:
```

```
vss_dut1# monitor capture mycap interface gi 2/1/1 in
vss_dut1# monitor capture mycap match ipv4 any any
vss_dut1# monitor capture mycap file location bootflash:mycap.pcap
vss_dut1# monitor capture mycap limit packets 30 duration 60
```

Step 2 Identify the module number for the standby switch and login to the switch (in this case, the module number for the standby switch is 14). Prepare the capture session in VSS standby switch similar to the VSS active switch and start the capture session. Because no packets actually reach the Wireshark session in VSS standby, an empty pcap file is left in the VSS standby file system. You can safely discard it.

```
vss_dutl# remote login module 14
Connecting to standby virtual console
Type "exit" or "quit" to end this session
vss_dutl-standby-console# monitor capture mycap interface gi 2/1/1 in
vss_dutl-standby-console# monitor capture mycap match ipv4 any any
vss_dutl-standby-console# monitor capture mycap file location bootflash:mycap.pcap
vss_dutl-standby-console# monitor capture mycap limit packets 30 duration 60
vss_dutl-standby-console# monitor capture mycap start
vss_dutl-standby-console# exit
```

**Step 3** Start the session in the VSS active switch. Periodically, check that the packets are stored in the capture file.

```
vss_dut1# monitor capture mycap start
...
vss_dut1# dir bootflash:mycap.pcap
Directory of bootflash:/mycap.pcap
72971 -rw- 2424 Nov 14 2012 20:56:34 -07:00 mycap.pcap
822910976 bytes total (304648192 bytes free)
```

**Step 4** After the capture session concludes, delete the capture point if it is no longer needed.

Vss\_dut1# no monitor capture mycap

Step 5 Log in to VSS standby switch again. Stop the capture session to make sure it no longer runs, delete the capture point and exit.

```
vss_dutl# remote login mod 14
Connecting to standby virtual console
Type "exit" or "quit" to end this session
vss_dutl-standby-console# monitor capture mycap stop
Capture mycap is not activefl already stopped: so ignore
Unable to deactivate Capture
vss_dutl-standby-console# no monitor capture mycap
vss_dutl-standby-console# exit
```

These steps match those when the attachments points are in both the VSS active and standby switches.

# Example: Capturing and Storing in a File with Display (Attachment Point in VSS Standby Switch)

This example shows how to do a simple capture and store operation with display option when the attachment point is in VSS standby switch:

```
Step 1 Prepare the capture session by entering the following commands in VSS active switch:
```

```
vss_dut1# monitor capture mycap interface gi 2/1/1 in
vss_dut1# monitor capture mycap match ipv4 any any
vss_dut1# monitor capture mycap file location bootflash:mycap.pcap
vss_dut1# monitor capture mycap limit packets 30 duration 60
```

Step 2 Identify the module number for the standby switch and login to the switch (in this case, the module number for the standby switch is 14). Prepare the capture session in VSS standby switch similar to the VSS active switch but without the display option and start the capture session. Note that since no packets actually reach the wireshark session in VSS standby, this will leave an empty pcap file in VSS standby file system that can be safely discarded.

```
vss_dut1# remote login module 14
Connecting to standby virtual console
Type "exit" or "quit" to end this session
vss_dut1-standby-console# monitor capture mycap interface gi 2/1/1 in
vss_dut1-standby-console# monitor capture mycap match ipv4 any any
vss_dut1-standby-console# monitor capture mycap file location bootflash:mycap.pcap
vss_dut1-standby-console# monitor capture mycap limit packets 30 duration 60
vss_dut1-standby-console# monitor capture mycap start<- Do not use the "display" option
vss_dut1-standby-console# monitor capture mycap
```

**Step 3** Start the session in VSS active switch with display option.

| vss_    | dut1# monitor | capture mycap | start d  | lisplay |        |       |         |             |                  |
|---------|---------------|---------------|----------|---------|--------|-------|---------|-------------|------------------|
| 1       | 0.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whois++ |               |               |          |         |        |       |         |             |                  |
| 2       | 1.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2. UDP  | Source | port: | whois++ | Destination | port:            |
| whois++ |               |               |          |         |        |       |         |             |                  |
| 3       | 2.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whois++ |               |               |          |         |        |       |         |             |                  |
| 4       | 3.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whoi    | S++           |               |          |         |        |       |         |             |                  |
| 5       | 4.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whois++ |               |               |          |         |        |       |         |             |                  |
| 6       | 5.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whoi    | S++           |               |          |         |        |       |         |             |                  |
| 7       | 6.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whoi    | S++           |               |          |         |        |       |         |             |                  |
| 8       | 7.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whoi    | S++           |               |          |         |        |       |         |             |                  |
| 9       | 8.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | port:            |
| whoi    | S++           |               |          |         |        |       |         |             |                  |
| 10      | 9.000000      | 30.1.1.2 ->   | 20.1.1.2 | 2 UDP   | Source | port: | whois++ | Destination | <pre>port:</pre> |
| whoi    | _S++          |               |          |         |        |       |         |             |                  |

**Step 4** Once the capture session is over, delete the capture point if it is no longer needed.

```
Vss_dut1# no monitor capture mycap
```

**Step 5** Log in to VSS standby switch again. Stop the capture session to make sure it no longer runs, delete the capture point and exit.

```
vss_dutl# remote login mod 14
Connecting to standby virtual console
Type "exit" or "quit" to end this session
vss_dutl-standby-console# monitor capture mycap stop
Capture mycap is not activefl already stopped: so ignore
Unable to deactivate Capture
vss_dutl-standby-console# no monitor capture mycap
vss_dutl-standby-console# exit
```

These steps match those when the attachments points are in both VSS active and standby switches.

## Example: Circular Buffer Usage (Attachment Point in VSS Standby Switch)

This example shows how to do a simple capture and store operation with display option when the attachment point is in VSS standby switch:

**Step 1** Prepare the capture session by entering the following commands in VSS active switch:

```
vss_dut1# monitor capture mycap interface gi 2/1/1 in
vss_dut1# monitor capture mycap match ipv4 any any
vss_dut1# monitor capture mycap buffer size 1 circular
vss_dut1# monitor capture mycap limit packets 10
```

Step 2 Identify the module number for the standby switch and login to the switch (in this case, the module number for the standby switch is 14). Prepare the capture session in VSS standby switch similar to the VSS active switch and start the capture session.

```
vss_dutl# remote login module 14
Connecting to standby virtual console
Type "exit" or "quit" to end this session
vss_dutl-standby-console# monitor capture mycap interface GigabitEthernet2/1/1 in
vss_dutl-standby-console# monitor capture mycap match ipv4 any any
vss_dutl-standby-console# monitor capture mycap buffer size 1 circular
vss_dutl-standby-console# monitor capture mycap limit packets 10
vss_dutl-standby-console# monitor capture mycap start
vss_dutl-standby-console# monitor capture mycap start
```

**Step 3** Start the session in VSS active switch. Periodically, check that the packets are stored in the capture file.

```
vss dut1# monitor capture mycap start
vss dut1# show monitor capture mycap buffer
  0.000000
              20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] 0 > 0 [<None>] Seq=1 Win=0
Len=6
  0.497035
              20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seq=1 Win=0 Len=6
  0.997009
             20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seq=1 Win=0 Len=6
  1.497035 20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seg=1 Win=0 Len=6
  1.997009
            20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seq=1 Win=0 Len=6
  2.497035 20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seg=1 Win=0 Len=6
  2,997009
             20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seg=1 Win=0 Len=6
  3.507029
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
             20.1.1.2 -> 30.1.1.2
[<None>] Seq=1 Win=0 Len=6
  3.997009
              20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seq=1 Win=0 Len=6
  4.497035
              20.1.1.2 -> 30.1.1.2
                                       TCP [TCP ZeroWindow] [TCP Retransmission] 0 > 0
[<None>] Seq=1 Win=0 Len=6
vss_dut1# show monitor capture mycap buffer detailed
vss dut1# monitor capture mycap export bootflash:mycap_exp.pcap
vss_dut1# monitor capture mycap export bootflash:mycap_exp.pcap
```

vss\_dut1# show monitor capture mycap buffer

**Step 4** Once the capture session is over, delete the capture point if it is no longer needed.

vss\_dut1# monitor capture mycap stop
\*Nov 15 01:08:58.627 PDT: %BUFCAP-6-DISABLE: Capture Point mycap disabled

vss dut1# no monitor capture mycap

**Step 5** Log in to VSS standby switch again. Stop the capture session to make sure it no longer runs, delete the capture point and exit.

```
vss_dut1# remote login mod 14
Connecting to standby virtual console
Type "exit" or "quit" to end this session
vss_dut1-standby-console# monitor capture mycap stop
Capture mycap is not activefl already stopped: so ignore
Unable to deactivate Capture
vss_dut1-standby-console# no monitor capture mycap
vss_dut1-standby-console# exit
```

The steps match those when the attachments points are in both VSS active and standby switches.