cisco.

IP Configuration Guide, Cisco IOS XE Fuji 16.8.x (Catalyst 9300 Switches)

First Published: 2018-04-06

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 © 2018 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1

Configuring HSRP 1

Configuring HSRP 1 Finding Feature Information 1 Information About Configuring HSRP 1 HSRP Overview 1 HSRP Versions 3 Multiple HSRP 4 SSO HSRP 4 HSRP and Switch Stacks 5 Configuring HSRP for IPv6 5 How to Configure HSRP 5 Default HSRP Configuration 5 HSRP Configuration Guidelines 5 Enabling HSRP 6 Configuring HSRP Priority 7 Configuring MHSRP **10** Configuring HSRP Authentication and Timers 16 Enabling HSRP Support for ICMP Redirect Messages 17 Configuring HSRP Groups and Clustering 18 Verifying HSRP 18 Verifying HSRP Configurations 18 Configuration Examples for Configuring HSRP 18 Enabling HSRP: Example **18** Configuring HSRP Priority: Example 19 Configuring MHSRP: Example 19 Configuring HSRP Authentication and Timer: Example 20

Configuring HSRP Groups and Clustering: Example 20 Additional References for Configuring HSRP 20 Feature Information for Configuring HSRP 21 CHAPTER 2 Configuring NHRP 23 Configuring NHRP 23 Finding Feature Information 23 Information About Configuring NHRP 23 NHRP and NBMA Network Interaction 23 Dynamically Built Hub-and-Spoke Networks 24 How to Configure NHRP 24 Enabling NHRP on an Interface 24 Configuring a GRE Tunnel for Multipoint Operation 26 Configuration Examples for NHRP 28 Physical Network Designs for Logical NBMA Examples 28 Example: GRE Tunnel for Multipoint Operation 30 Additional References for Configuring NHRP 31 Feature Information for Configuring NHRP 31

CHAPTER 3 VRRPv3 Protocol Support 33

VRRPv3 Protocol Support 33	
Finding Feature Information 33	
Restrictions for VRRPv3 Protocol Support 34	
Information About VRRPv3 Protocol Support 34	
VRRPv3 Benefits 34	
VRRP Device Priority and Preemption 35	
VRRP Advertisements 36	
How to Configure VRRPv3 Protocol Support 36	
Creating and Customizing a VRRP Group 36	
Configuring the Delay Period Before FHRP Client Initialization 38	
Configuration Examples for VRRPv3 Protocol Support 39	
Example: Enabling VRRPv3 on a Device 39	
Example: Creating and Customizing a VRRP Group 40	
Example: Configuring the Delay Period Before FHRP Client Initialization 4	0
	-

Example: VRRP Status, Configuration, and Statistics Details 40 Additional References 41 Feature Information for VRRPv3 Protocol Support 42 Glossary 42

CHAPTER 4

Configuring WCCP 45

Introduction 45 Prerequisites for WCCP 45 Restrictions for WCCP **45** Information About WCCP 47 WCCP Overview 47 WCCP Mask Assignment 47 WCCPv2 Configuration 47 WCCPv2 Support for Services Other Than HTTP 49 WCCPv2 Support for Multiple Devices 49 WCCPv2 MD5 Security 49 WCCPv2 Web Cache Packet Return 49 WCCPv2 Load Distribution 50 WCCP Bypass Packets 50 WCCP Closed Services and Open Services 50 WCCP Outbound ACL Check 50 WCCP Service Groups 51 WCCP—Check All Services 52 WCCP Troubleshooting Tips 52 How to Configure WCCP 53 How to Configure WCCP 53 Configuring WCCP 53 Configuring Closed Services 54 Registering a Device to a Multicast Address 56 Using Access Lists for a WCCP Service Group 57 Enabling the WCCP Outbound ACL Check 59 Verifying and Monitoring WCCP Configuration Settings 60 Configuration Examples for WCCP 61 Example: Configuring a General WCCPv2 Session 61

CHAPTER 5

Example: Setting a Password for a Device and Content Engines 61	
Example: Configuring a Web Cache Service 61	
Example: Running a Reverse Proxy Service 62	
Example: Registering a Device to a Multicast Address 62	
Example: Using Access Lists 62	
Example: WCCP Outbound ACL Check Configuration 63	
Example: Verifying WCCP Settings 63	
Feature Information for WCCP 65	
_	
Configuring Enhanced Object Tracking 67	
Finding Feature Information 67	
Information About Enhanced Object Tracking 67	
Enhanced Object Tracking Overview 67	
Tracking Interface Line-Protocol or IP Routing State 68	
Tracked Lists 68	
Tracking Other Characteristics 68	
IP SLAs Object Tracking 69	
Static Route Object Tracking 69	
How to Configure Enhanced Object Tracking 69	
Configuring Tracking for Line State Protocol or IP Routing State on an Interface	69
Configuring Tracked Lists 71	
Configuring a Tracked List with a Weight Threshold 71	
Configuring a Tracked List with a Percentage Threshold 72	
Configuring HSRP Object Tracking 74	

Configuring IP SLAs Object Tracking **76**

Configuring Static Route Object Tracking **77**

Configuring a Primary Interface for Static Routing **77**

Configuring a Primary Interface for DHCP **78**

Configuring IP SLAs Monitoring Agent **79**

Configuring a Routing Policy and a Default Route **80**

Monitoring Enhanced Object Tracking 82

Additional References 82

Feature Information for Enhanced Object Tracking 83

CHAPTER 6	Configuring TCP MSS Adjustment 85
	Information about TCP MSS Adjustment 85
	Configuring the MSS Value for Transient TCP SYN Packets 86
	Configuring the MSS Value for IPv6 Traffic 87
	Example: Configuring the TCP MSS Adjustment 88
	Example: Configuring the TCP MSS Adjustment for IPv6 traffic 88
	Feature History and Information for TCP MSS Adjustment 88
CHAPTER 7	Enhanced IPv6 Neighbor Discovery Cache Management 89
	Enhanced IPv6 Neighbor Discovery Cache Management 89
	Customizing the Parameters for IPv6 Neighbor Discovery 90
	Examples: Customizing Parameters for IPv6 Neighbor Discovery 91
	Additional References 91
	Feature Information for IPv6 Neighbor Discovery 91

Contents

CHAPTER

Configuring HSRP

• Configuring HSRP, on page 1

Configuring HSRP

This chapter describes how to use Hot Standby Router Protocol (HSRP) to provide routing redundancy for routing IP traffic without being dependent on the availability of any single router.

You can also use a version of HSRP in Layer 2 mode to configure a redundant command switch to take over cluster management if the cluster command switch fails. This feature is not supported on the C9500-12Q, C9500-16X, C9500-24Q, C9500-40X models of the Cisco Catalyst 9500 Series Switches.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring HSRP

HSRP Overview

HSRP is Cisco's standard method of providing high network availability by providing first-hop redundancy for IP hosts on an IEEE 802 LAN configured with a default gateway IP address. HSRP routes IP traffic without relying on the availability of any single router. It enables a set of router interfaces to work together to present the appearance of a single virtual router or default gateway to the hosts on a LAN. When HSRP is configured on a network or segment, it provides a virtual Media Access Control (MAC) address and an IP address that is shared among a group of configured routers. HSRP allows two or more HSRP-configured routers to use the MAC address and IP network address of a virtual router. The virtual router does not exist; it represents the common target for routers that are configured to provide backup to each other. One of the routers is selected to be the active router and another to be the standby router, which assumes control of the group MAC address and IP address should the designated active router fail.

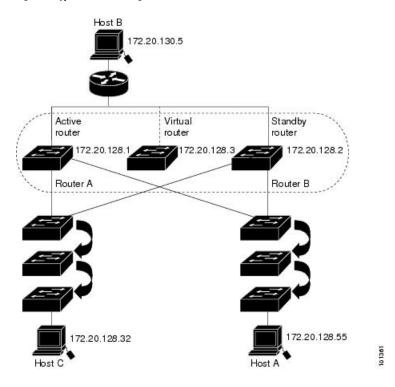
Note

Routers in an HSRP group can be any router interface that supports HSRP, including routed ports and switch virtual interfaces (SVIs).

HSRP provides high network availability by providing redundancy for IP traffic from hosts on networks. In a group of router interfaces, the active router is the router of choice for routing packets; the standby router is the router that takes over the routing duties when an active router fails or when preset conditions are met.

HSRP is useful for hosts that do not support a router discovery protocol and cannot switch to a new router when their selected router reloads or loses power. When HSRP is configured on a network segment, it provides a virtual MAC address and an IP address that is shared among router interfaces in a group of router interfaces running HSRP. The router selected by the protocol to be the active router receives and routes packets destined for the group's MAC address. For n routers running HSRP, there are n +1 IP and MAC addresses assigned.

HSRP detects when the designated active router fails, and a selected standby router assumes control of the Hot Standby group's MAC and IP addresses. A new standby router is also selected at that time. Devices running HSRP send and receive multicast UDP-based hello packets to detect router failure and to designate active and standby routers. When HSRP is configured on an interface, Internet Control Message Protocol (ICMP) redirect messages are automatically enabled for the interface.


You can configure multiple Hot Standby groups among switches and switch stacks that are operating in Layer 3 to make more use of the redundant routers.

Note Catalyst 9500-H Series Switches do not support stacking.

To do so, specify a group number for each Hot Standby command group you configure for an interface. For example, you might configure an interface on switch 1 as an active router and one on switch 2 as a standby router and also configure another interface on switch 2 as an active router with another interface on switch 1 as its standby router.

The following figure shows a segment of a network configured for HSRP. Each router is configured with the MAC address and IP network address of the virtual router. Instead of configuring hosts on the network with the IP address of Router A, you configure them with the IP address of the virtual router as their default router. When Host C sends packets to Host B, it sends them to the MAC address of the virtual router. If for any reason, Router A stops transferring packets, Router B responds to the virtual IP address and virtual MAC address and becomes the active router, assuming the active router duties. Host C continues to use the IP address of the virtual router to address packets destined for Host B, which Router B now receives and sends to Host B. Until Router A resumes operation, HSRP allows Router B to provide uninterrupted service to users on Host C's segment that need to communicate with users on Host B's segment and also continues to perform its normal function of handling packets between the Host A segment and Host B.

Figure 1: Typical HSRP Configuration

HSRP Versions

Cisco IOS XE Everest 16.5.1a and later support these Hot Standby Router Protocol (HSRP) versions:

The switch supports these HSRP versions:

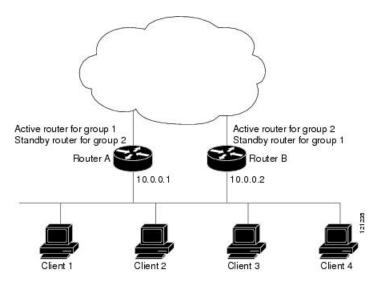
- HSRPv1- Version 1 of the HSRP, the default version of HSRP. It has these features:
 - The HSRP group number can be from 0 to 255.
 - HSRPv1 uses the multicast address 224.0.0.2 to send hello packets, which can conflict with Cisco Group Management Protocol (CGMP) leave processing. You cannot enable HSRPv1 and CGMP at the same time; they are mutually exclusive.
- HSRPv2- Version 2 of the HSRP has these features:
 - HSRPv2 uses the multicast address 224.0.0.102 to send hello packets. HSRPv2 and CGMP leave processing are no longer mutually exclusive, and both can be enabled at the same time.
 - HSRPv2 has a different packet format than HRSPv1.

A switch running HSRPv1 cannot identify the physical router that sent a hello packet because the source MAC address of the router is the virtual MAC address.

HSRPv2 has a different packet format than HSRPv1. A HSRPv2 packet uses the type-length-value (TLV) format and has a 6-byte identifier field with the MAC address of the physical router that sent the packet.

If an interface running HSRPv1 gets an HSRPv2 packet, the type field is ignored.

Multiple HSRP


The switch supports Multiple HSRP (MHSRP), an extension of HSRP that allows load sharing between two or more HSRP groups. You can configure MHSRP to achieve load-balancing and to use two or more standby groups (and paths) from a host network to a server network.

In the figure below, half the clients are configured for Router A, and half the clients are configured for Router B. Together, the configuration for Routers A and B establishes two HSRP groups. For group 1, Router A is the default active router because it has the assigned highest priority, and Router B is the standby router. For group 2, Router B is the default active router because it has the assigned highest priority, and Router A is the standby router. During normal operation, the two routers share the IP traffic load. When either router becomes unavailable, the other router becomes active and assumes the packet-transfer functions of the router that is unavailable.

Note For MHSRP, you need to enter the **standby preempt** interface configuration command on the HSRP interfaces so that if a router fails and then comes back up, preemption restores load sharing.

Figure 2: MHSRP Load Sharing

SSO HSRP

This feature is not supported on the C9500-12Q, C9500-16X, C9500-24Q, C9500-40X models of the Cisco Catalyst 9500 Series Switches. SSO HSRP alters the behavior of HSRP when a device with redundant Route Processors (RPs) is configured for stateful switchover (SSO) redundancy mode. When an RP is active and the other RP is standby, SSO enables the standby RP to take over if the active RP fails.

With this functionality, HSRP SSO information is synchronized to the standby RP, allowing traffic that is sent using the HSRP virtual IP address to be continuously forwarded during a switchover without a loss of data or a path change. Additionally, if both RPs fail on the active HSRP device, then the standby HSRP device takes over as the active HSRP device.

The feature is enabled by default when the redundancy mode of operation is set to SSO.

HSRP and Switch Stacks

HSRP hello messages are generated by the active switch. If HSRP fails on the active switch, a flap in the HSRP active state might occur. This is because HSRP hello messages are not generated while a new active switch is elected and initialized, and the standby switch might become active after the active switch fails.

Configuring HSRP for IPv6

Switches running the Network Advantage license support the Hot Standby Router Protocol (HSRP) for IPv6. HSRP provides routing redundancy for routing IPv6 traffic not dependent on the availability of any single router. IPv6 hosts learn of available routers through IPv6 neighbor discovery router advertisement messages. These messages are multicast periodically or are solicited by hosts.

An HSRP IPv6 group has a virtual MAC address that is derived from the HSRP group number and a virtual IPv6 link-local address that is, by default, derived from the HSRP virtual MAC address.

Periodic messages are sent for the HSRP virtual IPv6 link-local address when the HSRP group is active. These messages stop after a final one is sent when the group leaves the active state.

Note When configuring HSRP for IPv6, you must enable HSRP version 2 (HSRPv2) on the interface.

How to Configure HSRP

Default HSRP Configuration

Feature	Default Setting
HSRP version	Version 1
HSRP groups	None configured
Standby group number	0
Standby MAC address	System assigned as: 0000.0c07.acXX, where XX is the HSRP group number
Standby priority	100
Standby delay	0 (no delay)
Standby track interface priority	10
Standby hello time	3 seconds
Standby holdtime	10 seconds

Table 1: Default HSRP Configuration

HSRP Configuration Guidelines

• HSRPv2 and HSRPv1 are mutually exclusive. HSRPv2 is not interoperable with HSRPv1 on an interface and the reverse.

- In the procedures, the specified interface must be one of these Layer 3 interfaces:
 - Routed port: A physical port configured as a Layer 3 port by entering the **no switchport** command in interface configuration mode.
 - SVI: A VLAN interface created by using the **interface vlan** *vlan_id* in global configuration mode, and by default a Layer 3 interface.
 - Etherchannel port channel in Layer 3 mode: A port-channel logical interface created by using the **interface port-channel** *port-channel-number* in global configuration mode, and binding the Ethernet interface into the channel group.

• All Layer 3 interfaces must have IP addresses assigned to them.

Note HSRP millisecond timers are not supported.

Enabling HSRP

The **standby ip** interface configuration command activates HSRP on the configured interface. If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the address is learned through the standby function. You must configure at least one Layer 3 port on the LAN with the designated address. Configuring an IP address always overrides another designated address currently in use.

When the **standby ip** command is enabled on an interface and proxy ARP is enabled, if the interface's Hot Standby state is active, proxy ARP requests are answered using the Hot Standby group MAC address. If the interface is in a different state, proxy ARP responses are suppressed.

SUMMARY STEPS

- 1. configure terminal
- **2. interface** *interface-id*
- **3.** standby version { 1 | 2 }
- 4. standby [group-number] ip [ip-address [secondary]]
- 5. end
- **6.** show standby [interface-id [group]]
- 7. copy running-config startup-config

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Switch(config)# configure terminal	
Step 2	interface interface-id	Enters interface configuration mode, and enter the Layer 3
	Example:	interface on which you want to enable HSRP.
	<pre>Switch(config)# interface gigabitethernet1/0/1</pre>	

	Command or Action	Purpose
Step 3	<pre>standby version { 1 2 } Example: Switch(config-if)# standby version 1</pre>	 (Optional) Configures the HSRP version on the interface. 1- Selects HSRPv1. 2- Selects HSRPv2. If you do not enter this command or do not specify a keyword, the interface runs the default HSRP version, HSRP v1.
Step 4	<pre>standby [group-number] ip [ip-address [secondary]] Example: Switch(config-if)# standby 1 ip</pre>	 Creates (or enable) the HSRP group using its number and virtual IP address. (Optional) group-number- The group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number. (Optional on all but one interface) ip-address- The virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces. (Optional) secondary- The IP address is a secondary hot standby router interface. If neither router is designated as a secondary or standby router and no priorities are set, the primary IP addresses are compared and the higher IP address is the active router, with the next highest as the standby router.
Step 5	end Example: Switch(config-if)# end	Returns to privileged EXEC mode
Step 6	<pre>show standby [interface-id [group]] Example: Switch # show standby</pre>	Verifies the configuration of the standby groups.
Step 7	copy running-config startup-config Example: Switch# copy running-config startup-config	(Optional) Saves your entries in the configuration file.

Configuring HSRP Priority

The **standby priority**, **standby preempt**, and **standby track** interface configuration commands are all used to set characteristics for finding active and standby routers and behavior regarding when a new active router takes over.

When configuring HSRP priority, follow these guidelines:

- Assigning a priority allows you to select the active and standby routers. If preemption is enabled, the router with the highest priority becomes the active router. If priorities are equal, the current active router does not change.
- The highest number (1 to 255) represents the highest priority (most likely to become the active router).
- When setting the priority, preempt, or both, you must specify at least one keyword (**priority**, **preempt**, or both)
- The priority of the device can change dynamically if an interface is configured with the **standby track** command and another interface on the router goes down.
- The **standby track** interface configuration command ties the router hot standby priority to the availability of its interfaces and is useful for tracking interfaces that are not configured for HSRP. When a tracked interface fails, the hot standby priority on the device on which tracking has been configured decreases by 10. If an interface is not tracked, its state changes do not affect the hot standby priority of the configured device. For each interface configured for hot standby, you can configure a separate list of interfaces to be tracked
- The **standby track** *interface-priority* interface configuration command specifies how much to decrement the hot standby priority when a tracked interface goes down. When the interface comes back up, the priority is incremented by the same amount.
- When multiple tracked interfaces are down and *interface-priority* values have been configured, the configured priority decrements are cumulative. If tracked interfaces that were not configured with priority values fail, the default decrement is 10, and it is noncumulative.
- When routing is first enabled for the interface, it does not have a complete routing table. If it is configured to preempt, it becomes the active router, even though it is unable to provide adequate routing services. To solve this problem, configure a delay time to allow the router to update its routing table.

Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP priority characteristics on an interface:

SUMMARY STEPS

1. configure terminal

- 2. interface interface-id
- **3.** standby [group-number] prioritypriority
- 4. standby [group-number] preempt [delay [minimumseconds] [reloadseconds] [syncseconds]]
- **5.** standby [group-number] track type number [interface-priority]
- 6. end
- 7. show running-config
- 8. copy running-config startup-config

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Switch # configure terminal	
Step 2	interface interface-id	Enters interface configuration mode, and enter the HSRP
	Example:	interface on which you want to set priority.
	<pre>Switch(config)# interface gigabitethernet1/0/1</pre>	

	Command or Action	Purpose
Step 3	<pre>standby [group-number] prioritypriority Example: Switch(config-if)# standby 120 priority 50</pre>	 Sets a priority value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority. (Optional) group-number—The group number to which the command applies. Use the no form of the command to restore the default
		values.
Step 4	<pre>standby [group-number] preempt [delay [minimumseconds] [reloadseconds] [syncseconds]]</pre>	Configures the router to preempt , which means that when the local router has a higher priority than the active router, it becomes the active router.
	Example: Switch(config-if)# standby 1 preempt delay 300	 (Optional) group-number-The group number to which the command applies. (Optional) delay minimum—Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over). (Optional) delay reload—Set to cause the local router to postpone taking over the active role after a reload for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over). (Optional) delay reload—Set to cause the local router to postpone taking over the active role after a reload for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over after a reload). (Optional) delay sync—Set to cause the local router to postpone taking over the active role so that IP redundancy clients can reply (either with an ok or wait reply) for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over). Use the no form of the command to restore the default values.
Step 5	<pre>standby [group-number] track type number [interface-priority] Example: Switch(config-if)# standby track interface ciachitethesest1/1/1/2</pre>	Configures an interface to track other interfaces so that if one of the other interfaces goes down, the device's Hot Standby priority is lowered. • (Optional) group-number- The group number to which the command applies.
	gigabitethernet1/1/1	 type- Enter the interface type (combined with interface number) that is tracked. number- Enter the interface number (combined with interface type) that is tracked. (Optional) interface-priority- Enter the amount by which the hot standby priority for the router is decremented or incremented when the interface goes down or comes back up. The default value is 10.

	Command or Action	Purpose
Step 6	end	Returns to privileged EXEC mode.
	Example:	
	Switch(config-if)# end	
Step 7	show running-config	Verifies the configuration of the standby groups.
Step 8	copy running-config startup-config	(Optional) Saves your entries in the configuration file.

Configuring MHSRP

To enable MHSRP and load-balancing, you configure two routers as active routers for their groups, with virtual routers as standby routers as shown in the *MHSRP Load Sharing* figure in the Multiple HSRP section. You need to enter the **standby preempt** interface configuration command on each HSRP interface so that if a router fails and comes back up, the preemption occurs and restores load-balancing.

Router A is configured as the active router for group 1, and Router B is configured as the active router for group 2. The HSRP interface for Router A has an IP address of 10.0.0.1 with a group 1 standby priority of 110 (the default is 100). The HSRP interface for Router B has an IP address of 10.0.0.2 with a group 2 standby priority of 110.

Group 1 uses a virtual IP address of 10.0.0.3 and group 2 uses a virtual IP address of 10.0.0.4.

Configuring Router A

SUMMARY STEPS

1. configure terminal

- **2. interface** *type number*
- 3. no switchport
- 4. ip address ip-address mask
- 5. standby [group-number] ip [ip-address [secondary]]
- 6. standby [group-number] priority priority
- 7. standby [group-number] preempt [delay [minimum seconds] [reload seconds] [sync seconds]]
- 8. standby [group-number] ip [ip-address [secondary]]
- **9. standby** [group-number] **preempt** [**delay** [**minimum** seconds] [**reload** seconds] [**sync** seconds]]
- 10. end
- **11**. show running-config
- 12. copy running-config startup-config

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Switch # configure terminal	

I

	Command or Action	Purpose
Step 2	<pre>interface type number Example: Switch (config)# interface gigabitethernet1/0/1</pre>	Configures an interface type and enters interface configuration mode.
Step 3	<pre>no switchport Example: Switch (config)# no switchport</pre>	Switches an interface that is in Layer 2 mode into Layer 3 mode for Layer 3 configuration.
Step 4	<pre>ip address ip-address mask Example: Switch (config-if)# ip address 10.0.0.1 255.255.255.0</pre>	Specifies an IP address for an interface.
Step 5	<pre>standby [group-number] ip [ip-address [secondary]] Example: Switch (config-if)# standby 1 ip 10.0.0.3</pre>	 Creates the HSRP group using its number and virtual IP address. (Optional) group-number- The group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number. (Optional on all but one interface) <i>ip-address</i>- The virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces. (Optional) secondary- The IP address is a secondary hot standby router interface. If neither router is designated as a secondary or standby router and no priorities are set, the primary IP address is the active router, with the next highest as the standby router.
Step 6	<pre>standby [group-number] priority priority Example: Switch(config-if)# standby 1 priority 110</pre>	 Sets a priority value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority. (Optional) group-number—The group number to which the command applies. Use the no form of the command to restore the default values.
Step 7	<pre>standby [group-number] preempt [delay [minimum seconds] [reload seconds] [sync seconds]] Example: Switch(config-if)# standby 1 preempt delay 300</pre>	 Configures the router to preempt, which means that when the local router has a higher priority than the active router, it becomes the active router. (Optional) group-number-The group number to which the command applies. (Optional) delay minimum—Set to cause the local router to postpone taking over the active role for the

	Command or Action	Purpose
		 number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over). (Optional) delay reload—Set to cause the local router to postpone taking over the active role after a reload for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over after a reload). (Optional) delay sync—Set to cause the local router to postpone taking over the active role so that IP redundancy clients can reply (either with an ok or wait reply) for the number of seconds (1 hour); the default is 0 (no delay before taking over). Use the no form of the command to restore the default values.
Step 8	standby [group-number] ip [ip-address [secondary]]	Creates the HSRP group using its number and virtual IP address.
	Example: Switch (config-if)# standby 2 ip 10.0.0.4	 (Optional) group-number- The group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number. (Optional on all but one interface) <i>ip-address</i>- The virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces. (Optional) secondary- The IP address is a secondary hot standby router interface. If neither router is designated as a secondary or standby router and no priorities are set, the primary IP address is the active router, with the next highest as the standby router.
Step 9	standby [group-number] preempt [delay [minimum seconds] [reload seconds] [sync seconds]] Example:	Configures the router to preempt , which means that when the local router has a higher priority than the active router, it becomes the active router.
	Switch(config-if)# standby 2 preempt delay 300	 (Optional) group-number-The group number to which the command applies. (Optional) delay minimum—Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over). (Optional) delay reload—Set to cause the local router to postpone taking over the active role after a reload for the number of seconds shown. The range is 0 to

	Command or Action	Purpose
		3600 seconds (1 hour); the default is 0 (no delay before taking over after a reload).
		• (Optional) delay sync —Set to cause the local router to postpone taking over the active role so that IP redundancy clients can reply (either with an ok or wait reply) for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over).
		Use the no form of the command to restore the default values.
Step 10	end	Returns to privileged EXEC mode.
	Example:	
	Switch(config-if)# end	
Step 11	show running-config	Verifies the configuration of the standby groups.
Step 12	copy running-config startup-config	(Optional) Saves your entries in the configuration file.

Configuring Router B

SUMMARY STEPS

1. configure terminal

- **2. interface** *type number*
- 3. no switchport
- 4. ip address ip-address mask
- 5. standby [group-number] ip [ip-address [secondary]]
- **6. standby** [group-number] **priority** priority
- 7. standby [group-number] preempt [delay [minimum seconds] [reload seconds] [sync seconds]]
- 8. standby [group-number] ip [ip-address [secondary]]
- **9. standby** [group-number] **preempt** [**delay** [**minimum** seconds] [**reload** seconds] [**sync** seconds]]
- 10. end
- **11**. show running-config
- 12. copy running-config startup-config

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Switch # configure terminal	
Step 2	interface type number	Configures an interface type and enters interface
	Example:	configuration mode.
	Switch (config) # interface gigabitethernet1/0/1	

I

	Command or Action	Purpose
Step 3	no switchport Example:	Switches an interface that is in Layer 2 mode into Layer 3 mode for Layer 3 configuration.
	Switch (config) # no switchport	
Step 4	ip address ip-address mask	Specifies an IP address for an interface.
	Example:	
	Switch (config-if)# 10.0.0.2 255.255.255.0	
Step 5	standby [group-number] ip [ip-address [secondary]] Example:	Creates the HSRP group using its number and virtual IP address.
	Switch (config-if)# standby 1 ip 10.0.0.3	 (Optional) group-number- The group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number. (Optional on all but one interface) <i>ip-address</i>- The virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces. (Optional) secondary- The IP address is a secondary hot standby router interface. If neither router is designated as a secondary or standby router and no priorities are set, the primary IP address is the active router, with the next highest as the standby router.
Step 6	standby [group-number] priority priority	Sets a priority value used in choosing the active router.
•	Example:	The range is 1 to 255; the default priority is 100. The highest number represents the highest priority.
	<pre>Switch(config-if)# standby 2 priority 110</pre>	• (Optional) <i>group-number</i> —The group number to which the command applies.
		Use the no form of the command to restore the default values.
Step 7	standby [group-number] preempt [delay [minimum seconds] [reload seconds] [sync seconds]]	Configures the router to preempt , which means that when the local router has a higher priority than the active router, it becomes the active router.
	Example:	• (Optional) group-number-The group number to which
	Switch(config-if)# standby 1 preempt delay 300	 (Optional) group number The group number to which the command applies. (Optional) delay minimum—Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over). (Optional) delay reload—Set to cause the local router to postpone taking over the active role after a reload

	Command or Action	Purpose
		 for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over after a reload). (Optional) delay sync—Set to cause the local router to postpone taking over the active role so that IP redundancy clients can reply (either with an ok or wait reply) for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over).
		Use the no form of the command to restore the default values.
Step 8	<pre>standby [group-number] ip [ip-address [secondary]] Example:</pre>	Creates the HSRP group using its number and virtual IP address.
	Switch (config-if)# standby 2 ip 10.0.0.4	 (Optional) group-number- The group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number. (Optional on all but one interface) <i>ip-address</i>- The virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces. (Optional) secondary- The IP address is a secondary hot standby router interface. If neither router is designated as a secondary or standby router and no priorities are set, the primary IP address is the active router, with the next highest as the standby router.
Step 9	standby[group-number]preempt[delay[minimumseconds][reloadseconds][syncseconds]	Configures the router to preempt , which means that when the local router has a higher priority than the active router, it becomes the active router.
	<pre>Example: Switch(config-if)# standby 2 preempt delay 300</pre>	 (Optional) group-number-The group number to which the command applies. (Optional) delay minimum—Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over). (Optional) delay reload—Set to cause the local router to postpone taking over the active role after a reload for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over the active role after a reload for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over after a reload). (Optional) delay sync—Set to cause the local router to postpone taking over the active role so that IP redundancy clients can reply (either with an ok or

	Command or Action	Purpose
		wait reply) for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over).
		Use the no form of the command to restore the default values.
Step 10	end	Returns to privileged EXEC mode.
	Example:	
	Switch(config-if)# end	
Step 11	show running-config	Verifies the configuration of the standby groups.
Step 12	copy running-config startup-config	(Optional) Saves your entries in the configuration file.

Configuring HSRP Authentication and Timers

You can optionally configure an HSRP authentication string or change the hello-time interval and hold-time.

When configuring these attributes, follow these guidelines:

- The authentication string is sent unencrypted in all HSRP messages. You must configure the same authentication string on all routers and access servers on a cable to ensure interoperation. Authentication mismatch prevents a device from learning the designated Hot Standby IP address and timer values from other routers configured with HSRP.
- Routers or access servers on which standby timer values are not configured can learn timer values from the active or standby router. The timers configured on an active router always override any other timer settings.
- All routers in a Hot Standby group should use the same timer values. Normally, the *holdtime* is greater than or equal to 3 times the *hellotime*.

Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP authentication and timers on an interface:

SUMMARY STEPS

- 1. configure terminal
- **2. interface** *interface-id*
- **3.** standby [group-number] authentication string
- 4. standby [group-number] timers hellotime holdtime
- 5. end
- 6. show running-config
- 7. copy running-config startup-config

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	Switch # configure terminal		
Step 2	interface interface-id	Enters interface configuration mode, and enter the HSRP	
	Example:	interface on which you want to set priority.	
	<pre>Switch(config) # interface gigabitethernet1/0/1</pre>		
Step 3	standby [group-number] authentication string	(Optional) authentication <i>string</i> —Enter a string to be carried in all HSRP messages. The authentication string can be up to eight characters in length; the default string is cisco .	
	Example:		
	Switch(config-if) # standby 1 authentication word		
		(Optional) <i>group-number</i> —The group number to which the command applies.	
Step 4	standby [group-number] timers hellotime holdtime	(Optional) Configure the time interval to send and receive	
	Example:	hello packets.	
	<pre>Switch(config-if) # standby 1 timers 5 15</pre>	• <i>group-number</i> —The group number to which the command applies.	
		• <i>hellotime</i> —Set the interval between successive hello packets in seconds. The range is 1 to 255 seconds. The default is 3.	
		• <i>holdtime</i> —Set the interval to wait for a hello packet from a neighbor device before declaring the neighbor device as inactive. The range is 1 to 255 seconds. The default is 10.	
Step 5	end	Returns to privileged EXEC mode.	
	Example:		
	Switch(config-if) # end		
Step 6	show running-config	Verifies the configuration of the standby groups.	
Step 7	copy running-config startup-config	(Optional) Saves your entries in the configuration file.	

Enabling HSRP Support for ICMP Redirect Messages

ICMP redirect messages are automatically enabled on interfaces configured with HSRP. ICMP is a network layer Internet protocol that provides message packets to report errors and other information relevant to IP processing. ICMP provides diagnostic functions, such as sending and directing error packets to the host. This feature filters outgoing ICMP redirect messages through HSRP, in which the next hop IP address might be changed to an HSRP virtual IP address. For more information, see the Cisco IOS IP Configuration Guide, Release 12.4.

Configuring HSRP Groups and Clustering

This feature is not supported on the C9500-12Q, C9500-16X, C9500-24Q, C9500-40X models of the Cisco Catalyst 9500 Series Switches. When a device is participating in an HSRP standby routing and clustering is enabled, you can use the same standby group for command switch redundancy and HSRP redundancy. Use the **cluster standby-group** *HSRP-group-name* [**routing-redundancy**] global configuration command to enable the same HSRP standby group to be used for command switch and routing redundancy. If you create a cluster with the same HSRP standby group name without entering the **routing-redundancy** keyword, HSRP standby routing is disabled for the group.

Verifying HSRP

Verifying HSRP Configurations

From privileged EXEC mode, use this command to display HSRP settings:

show standby [interface-id [group]] [brief] [detail]

You can display HSRP information for the whole switch, for a specific interface, for an HSRP group, or for an HSRP group on an interface. You can also specify whether to display a concise overview of HSRP information or detailed HSRP information. The default display is **detail**. If there are a large number of HSRP groups, using the **show standby** command without qualifiers can result in an unwieldy display.

Example

```
Switch #show standby
VLAN1 - Group 1
Local state is Standby, priority 105, may preempt
Hellotime 3 holdtime 10
Next hello sent in 00:00:02.182
Hot standby IP address is 172.20.128.3 configured
Active router is 172.20.128.1 expires in 00:00:09
Standby router is local
Standby virtual mac address is 0000.0c07.ac01
Name is bbb
VLAN1 - Group 100
Local state is Standby, priority 105, may preempt
Hellotime 3 holdtime 10
Next hello sent in 00:00:02.262
Hot standby IP address is 172.20.138.51 configured
Active router is 172.20.128.1 expires in 00:00:09
Active router is local
Standby router is unknown expired
Standby virtual mac address is 0000.0c07.ac64
Name is test
```

Configuration Examples for Configuring HSRP

Enabling HSRP: Example

This example shows how to activate HSRP for group 1 on an interface. The IP address used by the hot standby group is learned by using HSRP.

Note This procedure is the minimum number of steps required to enable HSRP. Other configurations are optional.

```
Switch # configure terminal
Switch(config) # interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 ip
Switch(config-if)# end
Switch # show standby
```

Configuring HSRP Priority: Example

This example activates a port, sets an IP address and a priority of 120 (higher than the default value), and waits for 300 seconds (5 minutes) before attempting to become the active router:

```
Switch # configure terminal
Switch(config) # interface gigabitethernet1/0/1
Switch(config-if) # no switchport
Switch(config-if) # standby ip 172.20.128.3
Switch(config-if) # standby priority 120 preempt delay 300
Switch(config-if) # end
Switch # show standby
```

Configuring MHSRP: Example

This example shows how to enable the MHSRP configuration shown in the figure MHSRP Load Sharing

Router A Configuration

```
Switch # configure terminal
Switch(config) # interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.0.0.1 255.255.255.0
Switch(config-if)# standby ip 10.0.0.3
Switch(config-if)# standby 1 priority 110
Switch(config-if)# standby 1 preempt
Switch(config-if)# standby 2 ip 10.0.0.4
Switch(config-if)# standby 2 preempt
Switch(config-if)# end
```

Router B Configuration

```
Switch # configure terminal
Switch(config) # interface gigabitethernet1/0/1
Switch(config-if) # no switchport
Switch(config-if) # ip address 10.0.0.2 255.255.255.0
Switch(config-if) # standby ip 10.0.0.3
Switch(config-if) # standby 1 preempt
Switch(config-if) # standby 2 ip 10.0.0.4
Switch(config-if) # standby 2 priority 110
Switch(config-if) # standby 2 preempt
Switch(config-if) # standby 2 preempt
Switch(config-if) # standby 2 preempt
Switch(config-if) # end
```

Configuring HSRP Authentication and Timer: Example

This example shows how to configure word as the authentication string required to allow Hot Standby routers in group 1 to interoperate:

```
Switch # configure terminal
Switch(config) # interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 authentication word
Switch(config-if)# end
```

This example shows how to set the timers on standby group 1 with the time between hello packets at 5 seconds and the time after which a router is considered down to be 15 seconds:

```
Switch # configure terminal
Switch(config) # interface gigabitethernet1/0/1
Switch(config-if) # no switchport
Switch(config-if) # standby 1 ip
Switch(config-if) # standby 1 timers 5 15
Switch(config-if) # end
```

Configuring HSRP Groups and Clustering: Example

This example shows how to bind standby group my_hsrp to the cluster and enable the same HSRP group to be used for command switch redundancy and router redundancy. The command can only be executed on the cluster command switch. If the standby group name or number does not exist, or if the switch is a cluster member switch, an error message appears.

```
Switch # configure terminal
Switch(config) # cluster standby-group my_hsrp routing-redundancy
Switch(config-if)# end
```

Additional References for Configuring HSRP

Standards and RFCs

Standard/RFC	Title
RFC 2281	Cisco Hot Standby Router Protocol

MIBs

MIB	MIBs Link
All the supported MIBs for this release.	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/support
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for Configuring HSRP

Table 2: Feature Information for Configuring HSRP

Release	Feature Information
Cisco IOS XE Everest 16.5.1a	This feature was introduced.

Configuring NHRP

• Configuring NHRP, on page 23

Configuring NHRP

The Next Hop Resolution Protocol (NHRP) is an Address Resolution Protocol (ARP)-like protocol that dynamically maps a nonbroadcast multiaccess (NBMA) network, instead of manually configuring all the tunnel end points. With NHRP, systems attached to an NBMA network can dynamically learn the NBMA (physical) address of the other systems that are part of that network, allowing these systems to directly communicate. This protocol provides an ARP-like solution which allows stations' data-link addresses to be dynamically determined

NHRP is a client and server protocol where the hub is the Next Hop Server (NHS) and the spokes are the Next Hop Clients (NHCs). The hub maintains an NHRP database of the public interface addresses of each spoke. Each spoke registers its non-NBMA (real) address when it boots and queries the NHRP database for addresses of the destination spokes to build direct tunnels.

This module explains how to configure NHRP with generic routing encapsulation (GRE). In Cisco IOS XE Denali 16.3.1, the NHRP supports only spoke configurations.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Information About Configuring NHRP

NHRP and NBMA Network Interaction

Most WAN networks are a collection of point-to-point links. Virtual tunnel networks (for example Generic Routing Encapsulation [GRE] tunnels) are also a collection of point-to-point links. To effectively scale the connectivity of these point-to-point links, they are usually grouped into a single or multilayer hub-and-spoke

network. Multipoint interfaces (for example, GRE tunnel interfaces) can be used to reduce the configuration on a hub router in such a network. This resulting network is a NBMA network.

Because there are multiple tunnel endpoints that are reachable through a single multipoint interface, there needs to be a mapping from the logical tunnel endpoint IP address to the physical tunnel endpoint IP address, to forward packets out of the tunnel interfaces over this NBMA network. This mapping could be statically configured, but it is preferable if the mapping can be discovered or learned dynamically.

NHRP is an ARP-like protocol that alleviates these NBMA network problems. With NHRP, systems attached to an NBMA network dynamically learn the NBMA address of other systems that are part of the network, allowing these systems to directly communicate without requiring traffic to use an intermediate hop.

Routers, access servers, and hosts can use NHRP to discover the addresses of other routers and hosts connected to an NBMA network. Partially-meshed NBMA networks typically have multiple logical networks behind the NBMA network. In such configurations, packets traversing the NBMA network might have to make several hops over the NBMA network before arriving at the exit router (the router nearest the destination network).

NHRP Registration helps support these NBMA networks:

 NHRP Registration—NHRP allows Next Hop Clients (NHCs) to dynamically register with Next Hop Servers (NHSs). This registration function allows the NHCs to join the NBMA network without configuration changes on the NHSs, especially in cases where the NHC has a dynamic physical IP address or is behind a Network Address Translation (NAT) router that dynamically changes the physical IP address. In these cases, it would be impossible to preconfigure the logical (VPN IP address) to physical (NBMA IP) mapping for the NHC on the NHS.

Dynamically Built Hub-and-Spoke Networks

With NHRP, the NBMA network is initially laid out as a hub-and-spoke network that can have multiple hierarchical layers of NHCs as spokes and NHSs as hubs. The NHCs are configured with static mapping information to reach their NHSs and will connect to their NHS and send an NHRP registration to the NHS. This configuration allows the NHS to dynamically learn the mapping information for the spoke, reducing the configuration needed on the hub and allowing the spoke to obtain a dynamic NBMA (physical) IP address.

How to Configure NHRP

Enabling NHRP on an Interface

Perform this task to enable NHRP for an interface on a switch. In general, all NHRP stations within a logical NBMA network should be configured with the same network identifier.

The NHRP network ID is used to define the NHRP domain for an NHRP interface and differentiate between multiple NHRP domains or networks, when two or more NHRP domains (GRE tunnel interfaces) are available on the same NHRP node (switch). The NHRP network ID helps keep two NHRP networks (clouds) separate when both are configured on the same switch.

The NHRP network ID is a local-only parameter. It is significant only to the local switch and is not transmitted in NHRP packets to other NHRP nodes. For this reason the actual value of the NHRP network ID configured on a switch need not match the same NHRP network ID on another switch where both of these switches are in the same NHRP domain. As NHRP packets arrive on a GRE interface, they are assigned to the local NHRP domain in the NHRP network ID that is configured on that interface. I

We recommend that the same NHRP network ID be used on the GRE interfaces on all switches that are in the same NHRP network. It is then easier to track which GRE interfaces are members of which NHRP network.

NHRP domains (network IDs) can be unique on each GRE tunnel interface on a switch. NHRP domains can span across GRE tunnel interfaces on a route. In this case the effect of using the same NHRP network ID on the GRE tunnel interfaces is to merge the two GRE interfaces into a single NHRP network.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** interface *type number*
- 4. ip address ip-address network-mask
- 5. ip nhrp network-id number
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Switch> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Switch# configure terminal	
Step 3	interface type number	Configures an interface and enters interface configuration
	Example:	mode.
	Switch(config)# interface tunnel 100	
Step 4	ip address ip-address network-mask	Enables IP and gives the interface an IP address.
	Example:	
	Switch(config-if)# ip address 10.0.0.1 255.255.255.0	
Step 5	ip nhrp network-id number	Enables NHRP on the interface.
	Example:	
	Switch(config-if)# ip nhrp network-id 1	
Step 6	end	Exits interface configuration mode and returns to privileged
	Example:	EXEC mode.
	Switch(config)# end	

Configuring a GRE Tunnel for Multipoint Operation

Perform this task to configure a GRE tunnel for multipoint (NMBA) operation.

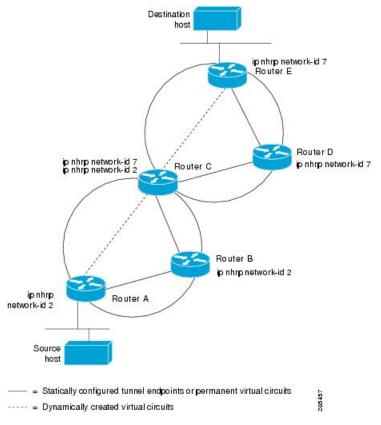
A tunnel network of multipoint tunnel interfaces can be considered of as an NBMA network. When multiple GRE tunnels are configured on the same switch, they must either have unique tunnel ID keys or unique tunnel source addresses.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3. interface** *type number*
- 4. ip address *ip*-address
- 5. ip mtu bytes
- 6. ip pim sparse-dense-mode
- 7. ip nhrp map ip-address nbma-address
- 8. ip nhrp map multicast nbma-address
- 9. ip nhrp network-id number
- 10. ip nhrp nhs nhs-address
- **11. tunnel source vlan** *interface-number*
- 12. tunnel destination *ip-address*
- 13. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Switch> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Switch# configure terminal	
Step 3	interface type number	Configures an interface and enters interface configuration
	Example:	mode.
	Switch(config)# interface tunnel 100	
Step 4	ip address ip-address	Configures an IP address for the interface.
	Example:	
	Switch(config-if)# ip address 172.16.1.1 255.255.255.0	


	Command or Action	Purpose
Step 5	ip mtu bytes Example:	Sets the maximum transmission unit (MTU) size of IP packets sent on an interface.
	Switch(config-if)# ip mtu 1400	
Step 6	ip pim sparse-dense-mode	Enables Protocol Independent Multicast (PIM) on an
	Example:	interface and treats the interface in either sparse mode or dense mode of operation, depending on which mode the multicast group operates in.
	Switch(config-if)# ip pim sparse-dense-mode	
Step 7	ip nhrp map ip-address nbma-address	Statically configures the IP-to-nonbroadcast multiaccess
	Example:	(NBMA) address mapping of IP destinations connected to an NBMA network.
	Switch(config-if)# ip nhrp map 172.16.1.2 10.10.10.2	• <i>ip-address</i> —IP address of the destinations reachable through the NBMA network. This address is mapped to the NBMA address.
		• <i>nbma-address</i> —NBMA address that is directly reachable through the NBMA network. The address format varies depending on the medium used. For example, ATM has a Network Service Access Point (NSAP) address, Ethernet has a MAC address, and Switched Multimegabit Data Service (SMDS) has an E.164 address. This address is mapped to the IP address.
Step 8	ip nhrp map multicast nbma-address	Configures nonbroadcast multiaccess (NBMA) addresses used as destinations for broadcast or multicast packets to
	Example:	be sent over a tunnel network.
	Switch(config-if)# ip nhrp map multicast 10.10.10.2	
Step 9	ip nhrp network-id number	Enable the Next Hop Resolution Protocol (NHRP) on an
	Example:	interface.
	Switch(config-if)# ip nhrp network-id 1	• <i>number</i> —Globally unique, 32-bit network ID from a nonbroadcast multiaccess (NBMA) network. The range is from 1 to 4294967295.
Step 10	ip nhrp nhs nhs-address	Specifies the address of one or more NHRP servers.
	Example:	• <i>nhs-address</i> —Address of the next-hop server being
	Switch(config-if)# ip nhrp nhs 172.16.1.2	specified.
Step 11	tunnel source vlan interface-number	Sets the source address for a tunnel interface
	Example:	
	Switch(config-if)# tunnel source vlan 1	

	Command or Action	Purpose
Step 12	tunnel destination <i>ip-address</i>	Sets the destination address for a tunnel interface.
	Example:	
	Switch(config-if)# tunnel destination 10.10.10.2	
Step 13	end	Exits interface configuration mode and returns to privileged
	Example:	EXEC mode.
	Switch(config-if)# end	

Configuration Examples for NHRP

Physical Network Designs for Logical NBMA Examples

A logical NBMA network is considered the group of interfaces and hosts participating in NHRP and having the same network identifier. The figure below illustrates two logical NBMA networks (shown as circles) configured over a single physical NBMA network. Router A can communicate with routers B and C because they share the same network identifier (2). Router C can also communicate with routers D and E because they share network identifier 7. After address resolution is complete, router A can send IP packets to router C in one hop, and router C can send them to router E in one hop, as shown by the dotted lines.

Figure 3: Two Logical NBMA Networks over One Physical NBMA Network

The physical configuration of the five routers in the figure above might actually be that shown in the figure below. The source host is connected to router A and the destination host is connected to router E. The same switch serves all five routers, making one physical NBMA network.

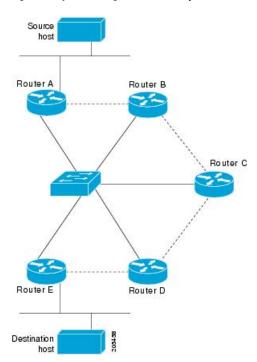


Figure 4: Physical Configuration of a Sample NBMA Network

Refer again to the first figure above. Initially, before NHRP has resolved any NBMA addresses, IP packets from the source host to the destination host travel through all five routers connected to the switch before reaching the destination. When router A first forwards the IP packet toward the destination host, router A also generates an NHRP request for the IP address of the destination host. The request is forwarded to router C, whereupon a reply is generated. Router C replies because it is the egress router between the two logical NBMA networks.

Similarly, router C generates an NHRP request of its own, to which router E replies. In this example, subsequent IP traffic between the source and the destination still requires two hops to traverse the NBMA network, because the IP traffic must be forwarded between the two logical NBMA networks. Only one hop would be required if the NBMA network were not logically divided.

Example: GRE Tunnel for Multipoint Operation

With multipoint tunnels, a single tunnel interface may be connected to multiple neighboring switches. Unlike point-to-point tunnels, a tunnel destination need not be configured. In fact, if configured, the tunnel destination must correspond to an IP multicast address.

In the following example, switches A and B share an Ethernet segment. Minimal connectivity over the multipoint tunnel network is configured, thus creating a network that can be treated as a partially meshed NBMA network. Due to the static NHRP map entries, switch A knows how to reach switch B and vice versa.

The following example shows how to configure a GRE multipoint tunnel:

Switch A Configuration

```
Switch(config)# interface tunnel 100 !Tunnel interface configured for PIM traffic
Switch(config-if)# no ip redirects
Switch(config-if)# ip address 192.168.24.1 255.255.255.252
Switch(config-if)# ip mtu 1400
```

```
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# ip nhrp map 192.168.24.3 172.16.0.1 !NHRP may optionally be configured
to dynamically discover tunnel end points.
Switch(config-if)# ip nhrp map multicast 172.16.0.1
Switch(config-if)# ip nhrp network-id 1
Switch(config-if)# ip nhrp nhs 192.168.24.3
Switch(config-if)# tunnel source vlan 1
Switch(config-if)# tunnel destination 172.16.0.1
Switch(config-if)# tunnel destination 172.16.0.1
```

Switch B Configuration

```
Switch(config)# interface tunnel 100
Switch(config-if)# no ip redirects
Switch(config-if)# ip address 192.168.24.2 255.255.255.252
Switch(config-if)# ip mtu 1400
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# ip nhrp map 192.168.24.4 10.10.0.3
Switch(config-if)# ip nhrp map multicast 10.10.10.3
Switch(config-if)# ip nhrp network-id 1
Switch(config-if)# ip nhrp nhs 192.168.24.4
Switch(config-if)# tunnel source vlan 1
Switch(config-if)# tunnel destination 10.10.10.3
Switch(config-if)# end
```

Additional References for Configuring NHRP

RFCs

RFC	Title
RFC 2332	NBMA Next Hop Resolution Protocol (NHRP)

Feature Information for Configuring NHRP

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

VRRPv3 Protocol Support

• VRRPv3 Protocol Support, on page 33

VRRPv3 Protocol Support

Virtual Router Redundancy Protocol (VRRP) enables a group of devices to form a single virtual device to provide redundancy. The LAN clients can then be configured with the virtual device as their default gateway. The virtual device, representing a group of devices, is also known as a VRRP group. The VRRP version 3 (v3) Protocol Support feature provides the capability to support IPv4 and IPv6 addresses while VRRP version 2 (v2) only supports IPv4 addresses. This module explains concepts related to VRRPv3 and describes how to create and customize a VRRP group in a network. Benefits of using VRRPv3 Protocol Support include the following:

- Interoperability in multi-vendor environments.
- VRRPv3 supports usage of IPv4 and IPv6 addresses while VRRPv2 only supports IPv4 addresses
- Improved scalability through the use of VRRS Pathways.

Note

In this module, VRRP and VRRPv3 are used interchangeably.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for VRRPv3 Protocol Support

- VRRPv3 is not intended as a replacement for existing dynamic protocols. VRRPv3 is designed for use over multi-access, multicast, or broadcast capable Ethernet LANs.
- VRRPv3 is supported on Ethernet, Fast Ethernet, Bridge Group Virtual Interface (BVI), and Gigabit Ethernet interfaces, and on Multiprotocol Label Switching (MPLS) Virtual Private Networks (VPNs), VRF-aware MPLS VPNs and VLANs.
- Because of the forwarding delay that is associated with the initialization of a BVI interface, you must not configure the VRRPv3 advertise timer to a value lesser than the forwarding delay on the BVI interface. If you configure the VRRPv3 advertise timer to a value equal to or greater than the forwarding delay on the BVI interface, the setting prevents a VRRP device on a recently initialized BVI interface from unconditionally taking over the primary role. Use the **bridge forward-time** command to set the forwarding delay on the BVI interface. Use the **vrrp timers advertise** command to set the VRRP advertisement timer.
- VRRPv3 does not support Stateful Switchover (SSO).
- Full network redundancy can only be achieved if VRRP operates over the same network path as the VRRS Pathway redundant interfaces. For full redundancy, the following restrictions apply:
 - VRRS pathways should not share a different physical interface as the parent VRRP group or be configured on a sub-interface having a different physical interface as the parent VRRP group.
 - VRRS pathways should not be configured on Switch Virtual Interface (SVI) interfaces as long as the associated VLAN does not share the same trunk as the VLAN on which the parent VRRP group is configured.

Information About VRRPv3 Protocol Support

VRRPv3 Benefits

Support for IPv4 and IPv6

VRRPv3 supports IPv4 and IPv6 address families while VRRPv2 only supports IPv4 addresses.

When VRRPv3 is in use, VRRPv2 is unavailable. For VRRPv3 to be configurable, the **fhrp version vrrp v3** command must be used in global configuration mode

Redundancy

VRRP enables you to configure multiple devices as the default gateway device, which reduces the possibility of a single point of failure in a network.

Load Sharing

You can configure VRRP in such a way that traffic to and from LAN clients can be shared by multiple devices, thereby sharing the traffic load more equitably between available devices.

Multiple Virtual Devices

VRRP supports up to 255 virtual devices (VRRP groups) on a device physical interface, subject to restrictions in scaling. Multiple virtual device support enables you to implement redundancy and load sharing in your LAN topology. In scaled environments, VRRS Pathways should be used in combination with VRRP control groups.

Multiple IP Addresses

The virtual device can manage multiple IP addresses, including secondary IP addresses. Therefore, if you have multiple subnets configured on an Ethernet interface, you can configure VRRP on each subnet.

Note

To utilize secondary IP addresses in a VRRP group, a primary address must be configured on the same group.

Preemption

The redundancy scheme of VRRP enables you to preempt a virtual device backup that has taken over for a failing virtual primary device with a higher priority virtual device backup that has become available.

Note

Preemption of a lower priority primary device is enabled with an optional delay.

Advertisement Protocol

VRRP uses a dedicated Internet Assigned Numbers Authority (IANA) standard multicast address for VRRP advertisements. For IPv4, the multicast address is 224.0.0.18. For IPv6, the multicast address is FF02:0:0:0:0:0:0:12. This addressing scheme minimizes the number of devices that must service the multicasts and allows test equipment to accurately identify VRRP packets on a segment. The IANA has assigned VRRP the IP protocol number 112.

VRRP Device Priority and Preemption

An important aspect of the VRRP redundancy scheme is VRRP device priority. Priority determines the role that each VRRP device plays and what happens if the virtual primary device fails.

If a VRRP device owns the IP address of the virtual device and the IP address of the physical interface, this device will function as a virtual primary device.

Priority also determines if a VRRP device functions as a virtual device backup and the order of ascendancy to becoming a virtual primary device if the virtual primary device fails. You can configure the priority of each virtual device backup with a value of 1 through 254 using the **priority** command (use the **vrrp address-family** command to enter the VRRP configuration mode and access the **priority** option).

For example, if device A, the virtual primary device in a LAN topology, fails, an election process takes place to determine if virtual device backups B or C should take over. If devices B and C are configured with the priorities of 101 and 100, respectively, device B is elected to become virtual primary device because it has the higher priority. If devices B and C are both configured with the priority of 100, the virtual device backup with the higher IP address is elected to become the virtual primary device.

By default, a preemptive scheme is enabled whereby a higher priority virtual device backup that becomes available takes over from the virtual device backup that was elected to become virtual primary device. You

can disable this preemptive scheme using the **no preempt** command (use the **vrrp address-family** command to enter the VRRP configuration mode, and enter the **no preempt** command). If preemption is disabled, the virtual device backup that is elected to become virtual primary device remains the primary until the original virtual primary device recovers and becomes primary again.

Note Preemption of a lower priority primary device is enabled with an optional delay.

VRRP Advertisements

The virtual primary device sends VRRP advertisements to other VRRP devices in the same group. The advertisements communicate the priority and state of the virtual primary device. The VRRP advertisements are encapsulated into either IPv4 or IPv6 packets (based on the VRRP group configuration) and sent to the appropriate multicast address assigned to the VRRP group. For IPv4, the multicast address is 224.0.0.18. For IPv6, the multicast address is FF02:0:0:0:0:0:0:0:12. The advertisements are sent every second by default and the interval is configurable.

Cisco devices allow you to configure millisecond timers, which is a change from VRRPv2. You need to manually configure the millisecond timer values on both the primary and the backup devices. The primary advertisement value displayed in the **show vrrp** command output on the backup devices is always 1 second because the packets on the backup devices do not accept millisecond values.

You must use millisecond timers where absolutely necessary and with careful consideration and testing. Millisecond values work only under favorable circumstances. The use of the millisecond timer values is compatible with third party vendors, as long as they also support VRRPv3. You can specify a timer value between 100 milliseconds and 40000 milliseconds.

How to Configure VRRPv3 Protocol Support

Creating and Customizing a VRRP Group

To create a VRRP group, perform the following task. Steps 6 to 14 denote customizing options for the group, and they are optional:

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3**. fhrp version vrrp v3
- 4. interface type number
- 5. vrrp group-id address-family {ipv4 | ipv6}
- 6. address *ip-address* [primary | secondary]
- 7. description group-description
- 8. match-address
- 9. preempt delay minimum seconds
- **10. priority** *priority-level*
- **11.** timers advertise interval
- **12**. vrrpv2
- 13. vrrs leader vrrs-leader-name

14. shutdown

15. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	fhrp version vrrp v3	Enables the ability to configure VRRPv3 and VRRS.
	Example:	Note When VRRPv3 is in use, VRRPv2 is unavailable.
	Device(config)# fhrp version vrrp v3	The command fhrp version vrrp v2 is not supported though it is configurable.
Step 4	interface type number	Enters interface configuration mode.
	Example:	
	<pre>Device(config)# interface GigabitEthernet 0/0/0</pre>	
Step 5	vrrp group-id address-family {ipv4 ipv6}	Creates a VRRP group and enters VRRP configuration
	Example:	mode.
	Device(config-if)# vrrp 3 address-family ipv4	
Step 6	address ip-address [primary secondary]	Specifies a primary or secondary address for the VRRP
	Example:	group.
	Device(config-if-vrrp)# address 100.0.1.10 primary	Note VRRPv3 for IPv6 requires that a primary virtual link-local IPv6 address is configured to allow the group to operate. After the primary link-local IPv6 address is established on the group, you can add the secondary global addresses.
Step 7	description group-description	(Optional) Specifies a description for the VRRP group.
	Example:	
	Device(config-if-vrrp)# description group 3	

	Command or Action	Purpose
Step 8	match-address Example:	(Optional) Matches secondary address in the advertisement packet against the configured address.
	Device(config-if-vrrp)# match-address	• Secondary address matching is enabled by default.
Step 9	preempt delay minimum seconds Example:	(Optional) Enables preemption of lower priority primary device with an optional delay.Preemption is enabled by default.
	Device(config-if-vrrp)# preempt delay minimum 30	· ·
Step 10	priority priority-level	(Optional) Specifies the priority value of the VRRP group.
	Example:	• The priority of a VRRP group is 100 by default.
	<pre>Device(config-if-vrrp)# priority 3</pre>	
Step 11	timers advertise interval	(Optional) Sets the advertisement timer in milliseconds.
	Example:	• The advertisement timer is set to 1000 milliseconds by default.
	<pre>Device(config-if-vrrp)# timers advertise 1000</pre>	
Step 12	vrrpv2	(Optional) Enables support for VRRPv2 configured devices in compatibility mode.
	Example:	• VRRPv2 is not supported.
	<pre>Device(config-if-vrrp)# vrrpv2</pre>	
Step 13	vrrs leader vrrs-leader-name	(Optional) Specifies a leader's name to be registered with
	Example:	VRRS and to be used by followers.A registered VRRS name is unavailable by default.
	Device(config-if-vrrp)# vrrs leader leader-1	A registered vicks name is unavariable by default.
Step 14	shutdown	(Optional) Disables VRRP configuration for the VRRP
	Example:	group.
	<pre>Device(config-if-vrrp)# shutdown</pre>	• VRRP configuration is enabled for a VRRP group by default.
Step 15	end	Returns to privileged EXEC mode.
	Example:	
	Device(config)# end	

Configuring the Delay Period Before FHRP Client Initialization

To configure the delay period before the initialization of all FHRP clients on an interface, perform the following task:

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3**. fhrp version vrrp v3
- **4.** interface type number
- 5. fhrp delay {[minimum] [reload] seconds}
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	fhrp version vrrp v3	Enables the ability to configure VRRPv3 and VRRS.
	Example:	Note When VRRPv3 is in use, VRRPv2 is unavailable.
	Device(config)# fhrp version vrrp v3	
Step 4	interface type number	Enters interface configuration mode.
	Example:	
	Device(config)# interface GigabitEthernet 0/0/0	
Step 5	<pre>fhrp delay {[minimum] [reload] seconds}</pre>	Specifies the delay period for the initialization of FHRP
	Example:	clients after an interface comes up.
	Device(config-if)# fhrp delay minimum 5	• The range is 0-3600 seconds.
Step 6	end	Returns to privileged EXEC mode.
	Example:	
	Device(config)# end	

Configuration Examples for VRRPv3 Protocol Support

Example: Enabling VRRPv3 on a Device

The following example shows how to enable VRRPv3 on a device:

```
Device> enable
Device# configure terminal
Device(config)# fhrp version vrrp v3
Device(config-if-vrrp)# end
```

Example: Creating and Customizing a VRRP Group

The following example shows how to create and customize a VRRP group:

```
Device> enable
Device# configure terminal
Device(config)# fhrp version vrrp v3
Device(config)# interface GigabitEthernet 1/0/1
Device(config-if)# vrrp 3 address-family ipv4
Device(config-if-vrrp)# address 100.0.1.10 primary
Device(config-if-vrrp)# description group 3
Device(config-if-vrrp)# match-address
Device(config-if-vrrp)# preempt delay minimum 30
Device(config-if-vrrp)# end
```

```
Note
```

In the above example, the **fhrp version vrrp v3** command is used in the global configuration mode.

Example: Configuring the Delay Period Before FHRP Client Initialization

The following example shows how to configure the delay period before FHRP client initialization :

```
Device> enable
Device# configure terminal
Device(config)# fhrp version vrrp v3
Device(config)# interface GigabitEthernet 1/0/1
Device(config-if)# fhrp delay minimum 5
Device(config-if-vrrp)# end
```

Note In the above example, a five-second delay period is specified for the initialization of FHRP clients after the interface comes up. You can specify a delay period between 0 and 3600 seconds.

Example: VRRP Status, Configuration, and Statistics Details

The following is a sample output of the status, configuration and statistics details for a VRRP group:

```
Device> enable
Device# show vrrp detail
GigabitEthernet1/0/1 - Group 3 - Address-Family IPv4
Description is "group 3"
State is MASTER
State duration 53.901 secs
Virtual IP address is 100.0.1.10
```

```
Virtual MAC address is 0000.5E00.0103
 Advertisement interval is 1000 msec
 Preemption enabled, delay min 30 secs (0 msec remaining)
 Priority is 100
 Master Router is 10.21.0.1 (local), priority is 100
 Master Advertisement interval is 1000 msec (expires in 832 msec)
 Master Down interval is unknown
 VRRPv3 Advertisements: sent 61 (errors 0) - rcvd 0
 VRRPv2 Advertisements: sent 0 (errors 0) - rcvd 0
 Group Discarded Packets: 0
   VRRPv2 incompatibility: 0
    IP Address Owner conflicts: 0
   Invalid address count: 0
   IP address configuration mismatch : 0
   Invalid Advert Interval: 0
   Adverts received in Init state: 0
   Invalid group other reason: 0
 Group State transition:
   Init to master: 0
   Init to backup: 1 (Last change Sun Mar 13 19:52:56.874)
   Backup to master: 1 (Last change Sun Mar 13 19:53:00.484)
   Master to backup: 0
   Master to init: 0
   Backup to init: 0
Device# exit
```

Additional References

Related Documents

Related Topic	Document Title
FHRP commands	First Hop Redundancy Protocols Command Reference
Configuring VRRPv2	Configuring VRRP
VRRPv3 Commands	For complete syntax and usage information for the commands used in this chapter.
	Command Reference (Catalyst 9300 Series Switches)

Standards and RFCs

Standard/RFC	Title	
RFC5798	Virtual Router Redundancy Protocol	

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for VRRPv3 Protocol Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
VRRPv3 Protocol Support	Cisco IOS XE Everest 16.6.1	VRRP enables a group of devices to form a single virtual device to provide redundancy. The LAN clients can then be configured with the virtual device as their default gateway. The virtual device, representing a group of devices, is also known as a VRRP group. The VRRPv3 Protocol Support feature provides the capability to support IPv4 and IPv6 addresses. This feature was introduced.

Table 3: Feature Information for VRRPv3 Protocol Support

Glossary

Virtual IP address owner—The VRRP device that owns the IP address of the virtual device. The owner is the device that has the virtual device address as its physical interface address.

Virtual device—One or more VRRP devices that form a group. The virtual device acts as the default gateway device for LAN clients. The virtual device is also known as a VRRP group.

Virtual device backup—One or more VRRP devices that are available to assume the role of forwarding packets if the virtual primary device fails.

Virtual primary device—The VRRP device that is currently responsible for forwarding packets sent to the IP addresses of the virtual device. Usually, the virtual primary device also functions as the IP address owner.

VRRP device—A device that is running VRRP.

Glossary

I

Configuring WCCP

This section provides information about configuring WCCP.

- Introduction, on page 45
- Prerequisites for WCCP, on page 45
- Restrictions for WCCP, on page 45
- Information About WCCP, on page 47
- How to Configure WCCP, on page 53
- Configuration Examples for WCCP, on page 61
- Feature Information for WCCP, on page 65

Introduction

The Web Cache Communication Protocol (WCCP) is a Cisco-developed content-routing technology that intercepts IP packets and redirects those packets to a destination other than that specified in the IP packet. Typically the packets are redirected from their destination web server on the Internet to a content engine that is local to the client. In some WCCP deployment scenarios, redirection of traffic may also be required from the web server to the client. WCCP enables you to integrate content engines into your network infrastructure.

The tasks in this document assume that you have already configured content engines on your network.

Prerequisites for WCCP

- To use WCCP, IP must be configured on the interface connected to the Internet and another interface must be connected to the content engine.
- The interface connected to the content engine must be a Fast Ethernet or Gigabit Ethernet interface.

Restrictions for WCCP

General

The following limitations apply to Web Cache Communication Protocol Version 2 (WCCPv2):

• WCCP works only with IPv4 networks.

- WCCP bypasses Network Address Translation (NAT) when Cisco Express Forwarding is enabled.
- WCCP does not interoperate with NAT and the zone-based firewall configured together in a network.
- Service groups can comprise up to 32 content engines and 32 switches.
- For switches servicing a multicast cluster, the Time To Live (TTL) value must be set at 15 or fewer.
- All content engines in a cluster must be configured to communicate with all devices servicing the cluster.
- Multicast addresses must be from 224.0.0.0 to 239.255.255.255.
- Up to eight service groups are supported at the same time on the same client interface.
- The Layer 2 rewrite forwarding method is supported, but generic routing encapsulation (GRE) is not.
- Direct Layer 2 connectivity to content engines is required; Layer 3 connectivity of one or more hops away is not supported.
- Ternary content addressable memory (TCAM) friendly mask-based assignment is supported, but the hash bucket-based method is not.
- When TCAM space is exhausted, traffic is not redirected; it is forwarded normally.
- The WCCP version 2 standard allows for support of up to 256 distinct masks. However, a Cisco Catalyst 9000 series switch supports only mask assignment tables with a single mask.
- A content engine configured for mask assignment that tries to join a farm where the selected assignment method is hash remains out of the farm as long as the cache engine assignment method does not match that of the existing farm.

Catalyst 9000 Series Switches Access Control Lists

When WCCP is using the mask assignment, any redirect list is merged with the mask information from the appliance and the resulting merged ACL is passed down to the Catalyst 9000 series switch hardware. Only Permit or Deny ACL entries from the redirect list in which the protocol is IP or exactly matches the service group protocol are merged with the mask information from the appliance.

The following restrictions apply to the redirect-list ACL:

- The ACL must be an IPv4 extended ACL.
- Only individual source or destination port numbers may be specified; port ranges cannot be specified.
- The only valid matching criteria in addition to individual source or destination port numbers are **dscp** or **tos**.
- The use of fragments, time-range, or options keywords, or any TCP flags is not permitted.
- If the redirect ACL does not meet the restrictions shown, the system will log the following error message:

WCCP-3-BADACE: Service <service group>, invalid access-list entry (seq:<sequence>, reason:<reason>)

Information About WCCP

WCCP Overview

WCCP uses Cisco Content Engines (or other content engines running WCCP) to localize traffic patterns in the network, enabling content requests to be fulfilled locally. Traffic localization reduces transmission costs and download time.

WCCP enables Cisco IOS XE platforms to transparently redirect content requests. With transparent redirection, users can fulfill content requests locally without configuring their browsers to use a web proxy. Instead, they can use the target URL to request content, and have their requests automatically redirected to a content engine. The word "transparent" in this case means that the end user does not know that a requested file (such as a web page) came from the content engine instead of from the originally specified server.

A content engine receiving a request attempts to service it from its own local cache. If the requested information is not present, the content engine issues its own request to the originally targeted server to get the required information. A content engine retrieving the requested information forwards it to the requesting client and caches it to fulfill future requests, thus maximizing download performance and substantially reducing transmission costs.

WCCP enables a series of content engines, called a content engine cluster, to provide content to a device or multiple devices. Network administrators can easily scale their content engines to manage heavy traffic loads through these clustering capabilities. Cisco clustering technology enables each cluster member to work in parallel, resulting in linear scalability. Clustering content engines greatly improves the scalability, redundancy, and availability of your caching solution. You can cluster up to 32 content engines to scale to your desired capacity.

WCCP Mask Assignment

The WCCP Mask Assignment feature enables mask assignment as the load-balancing method (instead of the default hash assignment method) for a WCCP service.

For content engines running Application and Content Networking System (ACNS) software, use the **wccp custom-web-cache** command with the **mask-assign** keyword to configure mask assignment. For content engines running Cisco Wide Area Application Services (WAAS) software, use the **wccp tcp-promiscuous** command with the **mask-assign** keyword to configure mask assignment.

WCCPv2 Configuration

Multiple devices can use WCCPv2 to service a content engine cluster. The figure below illustrates a sample configuration using multiple devices.

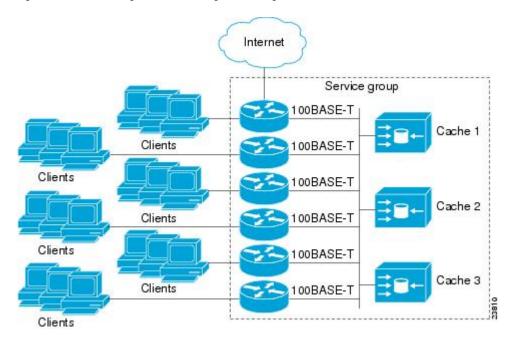


Figure 5: Cisco Content Engine Network Configuration Using WCCPv2

The subset of content engines within a cluster and devices connected to the cluster that are running the same service is known as a service group. Available services include TCP and UDP redirection.

WCCPv2 requires that each content engine be aware of all the devices in the service group. To specify the addresses of all the devices in a service group, choose one of the following methods:

- Unicast—A list of device addresses for each of the devices in the group is configured on each content engine. In this case, the address of each device in the group must be explicitly specified for each content engine during configuration.
- Multicast—A single multicast address is configured on each content engine. In the multicast address
 method, the content engine sends a single-address notification that provides coverage for all switches in
 the service group. For example, a content engine could indicate that packets should be sent to a multicast
 address of 224.0.0.100, which would send a multicast packet to all devices in the service group configured
 for group listening using WCCP (see the **ip wccp group-listen** interface configuration command for
 details).

The multicast option is easier to configure because you need only specify a single address on each content engine. This option also allows you to add and remove routers from a service group dynamically, without needing to reconfigure the content engines with a different list of addresses each time.

The following sequence of events details how WCCPv2 configuration works:

- **1.** Each content engine is configured with a list of devices.
- 2. Each content engine announces its presence and a list of all devices with which it has established communications. The routers reply with their view (list) of content engines in the group.
- **3.** When the view is consistent across all content engines in the cluster, one content engine is designated as the lead and sets the policy that the devices need to deploy in redirecting packets.

WCCPv2 Support for Services Other Than HTTP

WCCPv2 allows redirection of traffic other than HTTP (TCP port 80 traffic), including a variety of UDP and TCP traffic. WCCPv2 supports the redirection of packets intended for other ports, including those used for proxy-web cache handling, File Transfer Protocol (FTP) caching, FTP proxy handling, web caching for ports other than 80, and Real Audio, video, and telephony applications.

To accommodate the various types of services available, WCCPv2 introduced the concept of multiple *service groups*. Service information is specified in the WCCP configuration commands using dynamic services identification numbers (such as 98) or a predefined service keyword (such as **web-cache**). This information is used to validate that service group members are all using or providing the same service.

The content engines in a service group specify traffic to be redirected by protocol (TCP or UDP) and up to eight source or destination ports. Each service group has a priority status assigned to it. The priority of a dynamic service is assigned by the content engine. The priority value is in the range of 0 to 255 where 0 is the lowest priority. The predefined web-cache service has an assigned priority of 240.

WCCPv2 Support for Multiple Devices

WCCPv2 allows multiple devices to be attached to a cluster of cache engines. The use of multiple devices in a service group allows for redundancy, interface aggregation, and distribution of the redirection load. WCCPv2 supports up to 32 devices per service group. Each service group is established and maintained independently.

WCCPv2 MD5 Security

WCCPv2 provides optional authentication that enables you to control which switches and content engines become part of the service group using passwords and the Hashed Message Authentication Code—Message Digest (HMAC MD5) standard. Shared-secret MD5 one-time authentication (set using the **ip wccp password** *password* global configuration command) enables messages to be protected against interception, inspection, and replay.

WCCPv2 Web Cache Packet Return

If a content engine is unable to provide a requested object it has cached due to error or overload, the content engine will return the request to the device for onward transmission to the originally specified destination server. WCCPv2 provides a check on packets that determines which requests have been returned from the content engine unserviced. Using this information, the device can then forward the request to the originally targeted server (rather than attempting to resend the request to the content engine cluster). This process provides error handling transparency to clients.

Typical reasons why a content engine would reject packets and initiate the packet return feature include the following:

- Instances when the content engine is overloaded and has no room to service the packets
- Instances when the content engine is filtering for certain conditions that make caching packets counterproductive (for example, when IP authentication has been turned on)

WCCPv2 Load Distribution

WCCPv2 can be used to adjust the load being offered to individual content engines to provide an effective use of the available resources while helping to ensure high quality of service (QoS) to the clients. WCCPv2 allows the designated content engine to adjust the load on a particular content engine and balance the load across the content engines in a cluster. WCCPv2 uses three techniques to perform load distribution:

- Hot spot handling—Allows an individual hash bucket to be distributed across all the content engines. Prior to WCCPv2, information from one hash bucket could go to only one content engine.
- Load balancing—Allows the set of hash buckets assigned to a content engine to be adjusted so that the load can be shifted from an overwhelmed content engine to other members that have available capacity.
- Load shedding—Enables the switch to selectively redirect the load to avoid exceeding the capacity of a content engine.

The use of these hashing parameters prevents one content engine from being overloaded and reduces the potential for bottlenecking.

WCCP Bypass Packets

WCCP intercepts IP packets and redirects those packets to a destination other than the destination that is specified in the IP header. Typically the packets are redirected from a web server on the Internet to a web cache that is local to the destination.

Occasionally a web cache cannot manage the redirected packets appropriately and returns the packets unchanged to the originating device. These packets are called bypass packets and are returned to the originating device using Layer 2 forwarding without encapsulation (L2). The device decapsulates and forwards the packets normally. The VRF associated with the ingress interface (or the global table if there is no VRF associated) is used to route the packet to the destination.

WCCP Closed Services and Open Services

In applications where packets are intercepted and redirected by a Cisco switch or a router to external WCCP client devices, it may be necessary to block the packets for the application when a WCCP client device is not available. This blocking is achieved by configuring a WCCP closed service. When a WCCP service is configured as closed, the packets that fulfill the services, but do not have an active client device, are discarded.

By default, WCCP operates as an open service, wherein communication between clients and servers proceeds normally in the absence of an intermediary device.

The **ip wccp service-list** command can be used for both closed-mode and open-mode services. Use the **service-list** keyword and *service-access-list* argument to register an application protocol type or port number. Use the **mode** keyword to select an open or closed service.

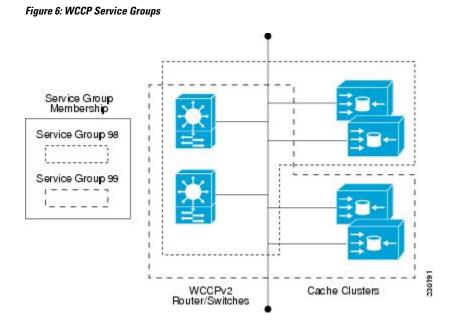
WCCP Outbound ACL Check

When WCCP is enabled for redirection on an ingress interface, the packets are redirected by WCCP and instead egress on an interface other than the destination that is specified in the IP header. The packets are still subject to ACLs configured on the ingress interface. However, redirection can cause the packets to bypass the ACL configured on the original egress interface. Packets that would have been dropped because of the ACL configured on the original egress interface can be sent out on the redirect egress interface, which poses

a possible security problem. Enabling the WCCP Outbound ACL check feature ensures that redirected packets are subject to any ACL conditions configured on the original egress interface.

WCCP Service Groups

WCCP is a component of Cisco IOS XE software that redirects traffic with defined characteristics from its original destination to an alternative destination. The typical application of WCCP is to redirect traffic bound for a remote web server to a local web cache to improve response time and optimize network resource usage.


The nature of the selected traffic for redirection is defined by service groups (see figure below) specified on content engines and communicated to switches or routers using WCCP.

WCCPv2 supports up to 32 switches per service group. Each service group is established and maintained independently.

WCCPv2 uses service groups based on logical redirection services, deployed for intercepting and redirecting traffic. The standard service is web cache, which intercepts TCP port 80 (HTTP) traffic and redirects that traffic to the content engines. This service is referred to as a *well-known service*, because the characteristics of the web cache service are known by both the switch and content engines. A description of a well-known service is not required beyond a service identification. To specify the standard web cache service, use the **ip wccp** command with the **web-cache** keyword.

Note More than one service can run on a switch at the same time, and switches and content engines can be part of multiple service groups at the same time.

The dynamic services are defined by the content engines; the content engine instructs the switch which protocol or ports to intercept, and how to distribute the traffic. The switch itself does not have information on the characteristics of the dynamic service group's traffic, because this information is provided by the first content engine to join the group. In a dynamic service, up to eight ports can be specified within a single protocol.

51

Cisco Content Engines, for example, use dynamic service 99 to specify a reverse-proxy service. However, other content engine devices may use this service number for some other service.

WCCP—Check All Services

An interface may be configured with more than one WCCP service. When more than one WCCP service is configured on an interface, the precedence of a service depends on the relative priority of the service compared to the priority of the other configured services. Each WCCP service has a priority value as part of its definition. When an interface is configured with more than one WCCP service, the precedence of the packets is matched against service groups in priority order.

Note

The priority of a WCCP service group cannot be configured via Cisco IOS XE software.

With the **ip wccp check services all** command, WCCP can be configured to check all configured services for a match and perform redirection for those services if appropriate. The caches to which packets are redirected can be controlled by a redirect ACL and by the service priority. The **ip wccp check services all** commands must be configured at global level to support multiple WCCP services.

If no WCCP services are configured with a redirect ACL, the services are considered in priority order until a service is found that matches the IP packet. If no services match the packet, the packet is not redirected. If a service matches the packet and the service has a redirect ACL configured, then the IP packet will be checked against the ACL. If the packet is rejected by the ACL, the packet will not be passed down to lower priority services unless the **ip wccp check services all** command is configured. When the **ip wccp check services all** command is configured, WCCP will continue to attempt to match the packet against any remaining lower priority services configured on the interface.

WCCP Troubleshooting Tips

CPU usage may be very high when WCCP is enabled. The WCCP counters enable a determination of the bypass traffic directly on the switch and can indicate whether the cause is high CPU usage due to enablement of WCCP. In some situations, 10 percent bypass traffic may be normal; in other situations, 10 percent may be high. However, any figure above 25 percent should prompt a closer investigation of what is occurring in the web cache.

If the counters suggest that the level of bypass traffic is high, the next step is to examine the bypass counters in the content engine and determine why the content engine is choosing to bypass the traffic. You can log in to the content engine console and use the CLI to investigate further. The counters allow you to determine the percent of traffic being bypassed.

You can use the **clear wccp** command to remove all WCCP statistics (counts) maintained on the device for a particular service.

You can use the **show wccp** command to display all WCCP global statistics (counts).

How to Configure WCCP

How to Configure WCCP

The following configuration tasks assume that you have already installed and configured the content engines you want to include in your network. You must configure the content engines in the cluster before configuring WCCP functionality on your routers or switches. Refer to the Cisco Cache Engine User Guide for content engine configuration and setup tasks.

Configuring WCCP

Perform this task to configure WCCP.

Until you configure a WCCP service using the **ip wccp**{**web-cache** | *service-number*} global configuration command, WCCP is disabled on the device. The first use of a form of the **ip wccp** command enables WCCP.

Use the **ip wccp web-cache password** command to set a password for a device and the content engines in a service group. MD5 password security requires that each device and content engine that wants to join a service group be configured with the service group password. The password must be up to eight characters in length. Each content engine or device in the service group will authenticate the security component in a received WCCP packet immediately after validating the WCCP message header. Packets failing authentication will be discarded.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** ip wccp {web-cache | *service-number*} [group-address *multicast-address*] [redirect-list *access-list*] [group-list *access-list*] [password *password* [0 | 7]]
- 4. interface type number
- 5. ip wccp {web-cache | service-number} redirect {in | out}
- 6. exit
- 7. interface *type number*
- 8. ip wccp redirect exclude in

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

	Command or Action	Purpose
Step 3	ip wccp { web-cache <i>service-number</i> } [group-address <i>multicast-address</i>] [redirect-list <i>access-list</i>] [group-list <i>access-list</i>] [password <i>password</i> [0 7]]	Specifies a web-cache or dynamic service to enable on a device, specifies the IP multicast address used by the service group, specifies any access lists to use, specifies whether to use MD5 authentication, and enables the WCCP service.
	<pre>Example: Device(config)# ip wccp web-cache password pwd</pre>	• Note The password length must not exceed 8 characters.
Step 4	interface type number Example:	Targets an interface number for which the web cache service will run, and enters interface configuration mode.
Step 5	Device (config) # interface Gigabitethernet 0/0 ip wccp {web-cache service-number} redirect {in out} Example:	Enables packet redirection on an outbound or inbound interface using WCCP. • As indicated by the out and in keyword options,
	Device(config-if)# ip wccp web-cache redirect in	redirection can be specified for outbound interfaces or inbound interfaces.
Step 6	exit Example: Device(config-if)# exit	Exits interface configuration mode.
Step 7	<pre>interface type number Example: Device(config)# interface GigabitEthernet 0/2/0</pre>	Targets an interface number on which to exclude traffic for redirection, and enters interface configuration mode.
Step 8	<pre>ip wccp redirect exclude in Example: Device(config-if)# ip wccp redirect exclude in</pre>	(Optional) Excludes traffic on the specified interface from redirection.

Configuring Closed Services

Perform this task to specify the number of service groups for WCCP, to configure a service group as a closed or open service, and to optionally specify a check of all services.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** Enter one of the following commands:
 - ip wccp service-number [service-list service-access-list mode {open | closed}]
 - or

- ip wccp web-cache mode {open | closed}
- 4. ip wccp check services all
- **5. ip wccp** {**web-cache** | *service-number*}
- 6. exit

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	
	Device> enable		
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Device# configure terminal		
Step 3	Enter one of the following commands:	Configures a dynamic WCCP service as closed or open.	
	• ip wccp service-number [service-list	or	
	<pre>service-access-list mode {open closed}] • or</pre>	Configures a web-cache service as closed or open.	
	• ip wccp web-cache mode {open closed}	Note When configuring the web-cache service as a closed service, you cannot specify a service	
	Example:	access list.	
	Device(config)# ip wccp 90 service-list 120 mode closed	Note When configuring a dynamic WCCP service as a closed service, you must specify a service	
	or	access list.	
	Device(config)# ip wccp web-cache mode closed		
Step 4	ip wccp check services all	(Optional) Enables a check of all WCCP services.	
	Example:	• Use this command to configure WCCP to check the other configured services for a match and perform redirection for those services if appropriate. The cache to which packets are redirected can be controlled by the redirect ACL and not just the service description.	
	Device(config)# ip wccp check services all		
		Note The ip wccp check services all command is a global WCCP command that applies to all services and is not associated with a single service.	
Step 5	<pre>ip wccp {web-cache service-number}</pre>	Specifies the WCCP service identifier.	
	Example:	• You can specify the standard web-cache service or a dynamic service number from 0 to 255.	
	Device(config)# ip wccp 201		

	Command or Action	Purpose
		• The maximum number of services that can be specified is 256.
Step 6	exit	Exits to privileged EXEC mode.
	Example:	
	Device(config)# exit	

Registering a Device to a Multicast Address

If you decide to use the multicast address option for your service group, you must configure the device to listen for the multicast broadcasts on an interface.

For network configurations where redirected traffic needs to traverse an intervening device, the device being traversed must be configured to perform IP multicast routing. You must configure the following two components to enable traversal over an intervening device:

- Enable IP multicast routing using the ip multicast-routing global configuration command.
- Enable the interfaces to which the cache engines will connect to receive multicast transmissions using the **ip wccp group-listen** interface configuration command.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** ip multicast-routing [vrf *vrf-name*] [distributed]
- 4. ip wccp {web-cache | service-number} group-address multicast-address
- 5. interface type number
- 6. ip pim {sparse-mode | sparse-dense-mode | dense-mode [proxy-register {list access-list | route-map map-name}]}
- 7. ip wccp {web-cache | service-number} group-listen

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

	Command or Action	Purpose	
Step 3	<pre>ip multicast-routing [vrf vrf-name] [distributed]</pre>	Enables IP multicast routing.	
	Example:		
	Device(config)# ip multicast-routing		
Step 4	ip wccp { web-cache <i>service-number</i> } group-address <i>multicast-address</i>	Specifies the multicast address for the service group.	
	Example:		
	Device(config)# ip wccp 99 group-address 239.1.1.1		
Step 5	interface type number	Enables the interfaces to which the content engines will	
	Example:	connect to receive multicast transmissions for which the web cache service will run, and enters interface configuration mode.	
	Device(config)# interface ethernet 0/0		
Step 6	ip pim {sparse-mode sparse-dense-mode dense-mode [proxy-register {list access-list route-map map-name}]}	(Optional) Enables Protocol Independent Multicast (PIM) on an interface.	
	Example:	Note To ensure correct operation of the ip wccp	
	Device(config-if)# ip pim dense-mode	group-listen command on Catalyst 9000 series switches, you must enter the ip pim command in addition to the ip wccp group-listen command.	
Step 7	ip wccp {web-cache <i>service-number</i> } group-listen Example:	Configures an interface to enable or disable the reception of IP multicast packets for WCCP.	
	Device(config-if)# ip wccp 99 group-listen		

Using Access Lists for a WCCP Service Group

Perform this task to configure the device to use an access list to determine which traffic should be directed to which content engines.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose
	Device# configure terminal	
Step 3	access-list access-list-number remark remark Example: Device(config)# access-list 1 remark Give access to user1	 (Optional) Adds a user-friendly comment about an access list entry. A remark of up to 100 characters can precede or follow an access list entry.
Step 4	<pre>access-list access-list-number permit {source [source-wildcard] any} [log] Example: Device(config)# access-list 1 permit 172.16.5.22 0.0.0.0</pre>	 Creates an access list that enables or disables traffic redirection to the cache engine and permits the specified source based on a source address and wildcard mask. Every access list needs at least one permit statement; it does not need to be the first entry. Standard IP access lists are numbered 1 to 99 or 1300 to 1999. If the <i>source-wildcard</i> is omitted, a wildcard mask of 0.0.0.0 is assumed, meaning match on all bits of the source address. Optionally use the keyword any as a substitute for the <i>source-wildcard</i> to specify the source and source wildcard of 0.0.0.0 255.255.255. In this example, host 172.16.5.22 is allowed to pass the access list.
Step 5	access-list access-list-number remark remark Example: Device(config)# access-list 1 remark Give access to user1	 (Optional) Adds a user-friendly comment about an access list entry. A remark of up to 100 characters can precede or follow an access list entry.
Step 6	<pre>access-list access-list-number deny {source [source-wildcard] any} [log] Example: Device(config)# access-list 1 deny 172.16.7.34 0.0.0.0</pre>	 Denies the specified source based on a source address and wildcard mask. If the <i>source-wildcard</i> is omitted, a wildcard mask of 0.0.0.0 is assumed, meaning match on all bits of the source address. Optionally use the abbreviation any as a substitute for the <i>source source-wildcard</i> to specify the source and source wildcard of 0.0.0.0 255.255.255.255. In this example, host 172.16.7.34 is denied passing the access list.
Step 7	Repeat some combination of Steps 3 through 6 until you have specified the sources on which you want to base your access list.	Remember that all sources not specifically permitted are denied by an implicit deny statement at the end of the access list.

	Command or Action	Purpose
Step 8	ip wccp web-cache group-list access-list Example:	Indicates to the device from which IP addresses of content engines to accept packets.
	Device(config) ip wccp web-cache group-list 1	
Step 9	ip wccp web-cache redirect-list access-list	(Optional) Disables caching for certain clients.
	Example:	
	Device(config)# ip wccp web-cache redirect-list 1	

Enabling the WCCP Outbound ACL Check

Note When all redirection is performed in the hardware, the mode of redirection will change when outbound ACL checking is enabled. The first packet is switched in software to allow the extra ACL check to be performed before a shortcut is installed.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** ip wccp {web-cache | *service-number*} [group-address *multicast-address*] [redirect-list *access-list*] [group-list *access-list*] [password *password*]
- 4. ip wccp check acl outbound
- 5. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	ip wccp {web-cache <i>service-number</i> } [group-address <i>multicast-address</i>] [redirect-list <i>access-list</i>] [group-list <i>access-list</i>] [password <i>password</i>]	Enables the support for a Cisco content engine service group or any content engine service group and configures a redirect ACL list or group ACL.
	Example:	

	Command or Action	Purpose
	Device(config)# ip wccp web-cache	NoteThe web-cache keyword is for WCCP version 1 and version 2 and the service-number argument is for WCCP version 2 only.
Step 4	ip wccp check acl outbound Example:	Checks the access control list (ACL) for egress interfaces for packets redirected by WCCP.
	Device(config)# ip wccp check acl outbound	
Step 5	exit	Exits global configuration.
	Example:	
	Device(config)# exit	

Verifying and Monitoring WCCP Configuration Settings

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	show ip wccp [web-cache service-number] [detail view]	Displays global information related to WCCP, including
	Example:	the protocol version running, the number of content engines
	Device# show ip wccp 24 detail	in the router service group, which content engine group allowed to connect to the router, and which access list is being used.
		• <i>service-number</i> —(Optional) Dynamic number of the web-cache service group being controlled by the content engine. The range is from 0 to 99. For web caches that use Cisco Content Engines, the reverse proxy service is indicated by a value of 99.
		• web-cache —(Optional) statistics for the web-cache service.
		• detail —(Optional) other members of a particular service group or web cache that have or have not been detected.
		• view—(Optional) information about a router or all web caches.

Procedure

	Command or Action	Purpose
Example: CO	show ip interface	Displays status about whether any ip wccp redirection
	commands are configured on an interface; for example, "Web Cache Redirect is enabled / disabled."	
	Device# show ip interface	
Step 4 more system:running-config Example:	more system:running-config	(Optional) Displays contents of the running configuration
	file (equivalent to the show running-config command).	
	Device# more system:running-config	

Configuration Examples for WCCP

Example: Configuring a General WCCPv2 Session

```
Device# configure terminal
Device(config)# ip wccp web-cache group-address 224.1.1.100 password password
Device(config)# ip wccp source-interface GigabitEthernet 0/1/0
Device(config)# ip wccp check services all
! Configures a check of all WCCP services.
Device(config)# interface GigabitEthernet 0/1/0
Device(config-if)# ip wccp web-cache redirect in
Device(config-if)# exit
Device(config)# interface GigabitEthernet 0/2/0
Device(config-if)# ip wccp redirect exclude in
Device(config-if)# exit
```

Example: Setting a Password for a Device and Content Engines

Device# configure terminal Device(config)# ip wccp web-cache password password1

Example: Configuring a Web Cache Service

Device# configure terminal Device(config)# ip wccp web-cache Device(config)# interface GigabitEthernet 0/1/0 Device(config-if)# ip wccp web-cache redirect in Device(config-if)# exit Device# copy running-config startup-config

The following example shows how to configure a session in which redirection of HTTP traffic arriving on Gigabit Ethernet interface 0/1/0 is enabled:

```
Device# configure terminal
Device(config)# interface GigabitEthernet 0/1/0
Device(config-if)# ip wccp web-cache redirect in
```

```
Device(config-if)# exit
Device# show ip interface GigabitEthernet 0/1/0
.
.
.
WCCP Redirect inbound is enabled
WCCP Redirect exclude is disabled
.
.
.
```

Example: Running a Reverse Proxy Service

The following example assumes that you are configuring a service group using Cisco cache engines, which use dynamic service 99 to run a reverse proxy service:

```
Device# configure terminal
Device(config)# ip wccp 99
Device(config)# interface gigabitethernet 0/1/0
Device(config-if)# ip wccp 99 redirect out
```

Example: Registering a Device to a Multicast Address

```
Device# configure terminal
Device(config)# ip wccp web-cache group-address 224.1.1.100
Device(config)# interface gigabitethernet 0/1/0
Device(config-if)# ip wccp web-cache group-listen
```

The following example shows a device configured to run a reverse proxy service, using the multicast address of 224.1.1.1. Redirection applies to packets going out through the Gigabit Ethernet interface 0/1/0:

```
Device# configure terminal
Device(config)# ip wccp 99 group-address 224.1.1.1
Device(config)# interface gigabitethernet 0/1/0
Device(config-if)# ip wccp 99 redirect out
```

Example: Using Access Lists

To achieve better security, you can use a standard access list to notify the device which IP addresses are valid addresses for a content engine attempting to register with the current device. The following example shows a standard access list configuration session where the access list number is 10 for some sample hosts:

```
Device (config) # access-list 10 permit host 10.1.1.1
Device (config) # access-list 10 permit host 10.1.1.2
Device (config) # access-list 10 permit host 10.1.1.3
Device (config) # ip wccp web-cache group-list 10
```

To disable caching for certain clients, servers, or client/server pairs, you can use WCCP access lists. The following example shows that any requests coming from 10.1.1.1 to 10.3.1.1 will bypass the cache, and that all other requests will be serviced normally:

```
Device(config) # ip wccp web-cache redirect-list 120
Device(config) # access-list 120 deny tcp host 10.1.1.1 any
```

Device (config) # access-list 120 deny top any host 10.3.1.1 Device (config) # access-list 120 permit ip any any

The following example configures a device to redirect web-related packets received via Gigabit Ethernet interface 0/1/0, destined to any host except 209.165.200.224:

Device(config)# access-list 100 deny ip any host 209.165.200.224
Device(config)# access-list 100 permit ip any any
Device(config)# ip wccp web-cache redirect-list 100
Device(config)# interface gigabitethernet 0/1/0
Device(config-if)# ip wccp web-cache redirect in

Example: WCCP Outbound ACL Check Configuration

The following configuration example shows that the access list prevents traffic from network 10.0.0.0 leaving Gigabit Ethernet interface 0/1/0. Because the outbound ACL check is enabled, WCCP does not redirect that traffic. WCCP checks packets against the ACL before they are redirected.

```
Device(config)# ip wccp web-cache
Device(config)# ip wccp check acl outbound
Device(config)# interface gigabitethernet 0/1/0
Device(config-if)# ip access-group 10 out
Device(config)# exit
Device(config)# ip wccp web-cache redirect-list redirect-out
Device(config)# access-list 10 deny 10.0.0.0 0.255.255.255
Device(config)# access-list 10 permit any
```

If the outbound ACL check is disabled, the HTTP packets from network 10.0.0.0 would be redirected to a web cache. Users with that network address could retrieve web pages even though the network administrator wanted to prevent it.

Example: Verifying WCCP Settings

The following example shows how to verify your configuration changes by using the **more system:running-config** command in privileged EXEC mode. The following example shows that both the web cache service and dynamic service 99 are enabled on the device:

```
Device# more system:running-config
Building configuration ...
Current configuration:
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service udp-small-servers
service tcp-small-servers
hostname router4
!
enable secret 5 $1$nSVy$faliJsVQXVPW.KuCxZNTh1
enable password password1
ip subnet-zero
ip wccp web-cache
ip wccp 99
```

```
ip domain-name cisco.com
ip name-server 10.1.1.1
ip name-server 10.1.1.2
ip name-server 10.1.1.3
1
1
interface GigabitEthernet0/1/1
ip address 10.3.1.2 255.255.255.0
no ip directed-broadcast
ip wccp web-cache redirect in
ip wccp 99 redirect in
no ip route-cache
no ip mroute-cache
1
interface GigabitEthernet0/1/0
ip address 10.4.1.1 255.255.255.0
no ip directed-broadcast
ip wccp 99 redirect in
no ip route-cache
no ip mroute-cache
1
interface Serial0
no ip address
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
shutdown
interface Serial1
no ip address
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
shutdown
!
ip default-gateway 10.3.1.1
ip classless
ip route 0.0.0.0 0.0.0.0 10.3.1.1
no ip http server
!
1
1
line con 0
transport input none
line aux O
transport input all
line vty 0 4
password password1
login
1
end
```

The following example shows how to display global statistics related to WCCP:

Device# show ip wccp web-cache detail

```
WCCP Client information:
WCCP Client ID: 10.1.1.2
Protocol Version: 2.0
State: Usable
Redirection: L2
Packet Return: L2
Packets Redirected: 0
```

Connect Time: 00:20:34 MASK Assignment: Mask SrcAddr DstAddr SrcPort DstPort ----- ------_____ ____ 0000: 0x0000000 0x00001741 0x0000 0x0000 Value SrcAddr DstAddr SrcPort DstPort CE-IP 0000: 0x0000000 0x0000000 0x0000 0x0000 0x3c010102 (10.1.1.2) 0001: 0x0000000 0x0000001 0x0000 0x0000 0x3C010102 (10.1.1.2) 0002: 0x0000000 0x0000040 0x0000 0x0000 0x3C010102 (10.1.1.2) 0003: 0x0000000 0x00000041 0x0000 0x0000 0x3c010102 (10.1.1.2) 0004: 0x0000000 0x0000100 0x0000 0x0000 0x3c010102 (10.1.1.2) 0005: 0x0000000 0x00000101 0x0000 0x0000 0x3C010102 (10.1.1.2) 0006: 0x0000000 0x00000140 0x0000 0x0000 0x3C010102 (10.1.1.2)

For more information about the **show ip wccp web-cache** command, see the *Cisco IOS IP Application Services Command Reference*.

Feature Information for WCCP

Feature Name	Releases	Feature Information
WCCP Support on Cisco Catalyst 9300 Series Swtiches	Cisco IOS XE Everest 16.6.1	The Web Cache Communication Protocol (WCCP) is a Cisco-developed content-routing technology that intercepts IP packets and redirects those packets to a destination other than that specified in the IP packet. WCCP enables you to integrate content engines into your network infrastructure.

Table 4: Feature Information for WCCP

Configuring Enhanced Object Tracking

- Finding Feature Information, on page 67
- Information About Enhanced Object Tracking, on page 67
- How to Configure Enhanced Object Tracking, on page 69
- Monitoring Enhanced Object Tracking, on page 82
- Additional References, on page 82
- Feature Information for Enhanced Object Tracking, on page 83

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Enhanced Object Tracking

Enhanced Object Tracking Overview

Before the introduction of the Enhanced Object Tracking feature, Hot Standby Router Protocol (HSRP) had a simple tracking mechanism that allowed you to track the interface line-protocol state only. If the line-protocol state of the interface went down, the HSRP priority of the router was reduced, allowing another HSRP router with a higher priority to become active.

The Enhanced Object Tracking feature separates the tracking mechanism from HSRP and creates a separate standalone tracking process that can be used by processes other than HSRP. This feature allows the tracking of other objects in addition to the interface line-protocol state.

A client process such as HSRP, Virtual Router Redundancy Protocol (VRRP), or Gateway Load Balancing Protocol (GLBP), can register its interest in tracking objects and then be notified when the tracked object changes state.

Each tracked object has a unique number that is specified in the tracking command-line interface (CLI). Client processes use this number to track a specific object. The tracking process periodically polls the tracked object for value changes and sends any changes (as up or down values) to interested client processes, either immediately or after a specified delay. Several clients can track the same object, and can take different actions when the object changes state.

You can also track a combination of objects in a list by using either a weight threshold or a percentage threshold to measure the state of the list. You can combine objects using Boolean logic. A tracked list with a Boolean "AND" function requires that each object in the list be in an up state for the tracked object to be up. A tracked list with a Boolean "OR" function needs only one object in the list to be in the up state for the tracked object to be up.

Tracking Interface Line-Protocol or IP Routing State

You can track either the interface line protocol state or the interface IP routing state. When you track the IP routing state, these three conditions are required for the object to be up:

- IP routing must be enabled and active on the interface.
- The interface line-protocol state must be up.
- The interface IP address must be known.

If all three of these conditions are not met, the IP routing state is down.

Tracked Lists

You can configure a tracked list of objects with a Boolean expression, a weight threshold, or a percentage threshold. A tracked list contains one or more objects. An object must exist before it can be added to the tracked list.

- You configure a Boolean expression to specify calculation by using either "AND" or "OR" operators.
- When you measure the tracked list state by a weight threshold, you assign a weight number to each object in the tracked list. The state of the tracked list is determined by whether or not the threshold was met. The state of each object is determined by comparing the total weight of all objects against a threshold weight for each object.
- When you measure the tracked list by a percentage threshold, you assign a percentage threshold to all objects in the tracked list. The state of each object is determined by comparing the assigned percentages of each object to the list.

Tracking Other Characteristics

You can also use the enhanced object tracking for tracking other characteristics.

- You can track the reachability of an IP route by using the **track ip route reachability** global configuration command.
- You can use the **track ip route metric threshold** global configuration command to determine if a route is above or below threshold.

- You can use the **track resolution** global configuration command to change the metric resolution default values for routing protocols.
- You can use the **track timer tracking** configuration command to configure the tracking process to periodically poll tracked objects.

Use the show track privileged EXEC command to verify enhanced object tracking configuration.

IP SLAs Object Tracking

Cisco IOS IP Service Level Agreements (IP SLAs) is a network performance measurement and diagnostics tool that uses active monitoring by generating traffic to measure network performance. Cisco IP SLAs operations collects real-time metrics that you can use for network troubleshooting, design, and analysis.

Object tracking of IP SLAs operations allows clients to track the output from IP SLAs objects and use this information to trigger an action. Every IP SLAs operation maintains an SNMP operation return-code value, such as OK or OverThreshold, that can be interpreted by the tracking process. You can track two aspects of IP SLAs operation: state and reachability. For state, if the return code is OK, the track state is up; if the return code is not OK, the track state is down. For reachability, if the return code is OK or OverThreshold, reachability is up; if not OK, reachability is down.

Static Route Object Tracking

Static routing support using enhanced object tracking provides the ability for the device to use ICMP pings to identify when a pre-configured static route or a DHCP route goes down. When tracking is enabled, the system tracks the state of the route and informs the client when that state changes. Static route object tracking uses Cisco IP SLAs to generate ICMP pings to monitor the state of the connection to the primary gateway.

How to Configure Enhanced Object Tracking

Configuring Tracking for Line State Protocol or IP Routing State on an Interface

Follow these steps to track the line-protocol state or IP routing state of an interface:

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. track object-numberinterface interface-idline-protocol
- 4. delay { object-numberupseconds[downseconds]|[upseconds]downseconds}
- 5. exit
- 6. track object-numberinterface interface-idip routing
- 7. delay { object-numberupseconds[downseconds]|[upseconds]downseconds}
- 8. end
- 9. show trackobject-number

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	track object-numberinterface interface-idline-protocol Example:	(Optional) Creates a tracking list to track the line-protocol state of an interface and enter tracking configuration mode.
	Device(config)# track 33 interface gigabitethernet 1/0/1 line-protocol	• The object-number identifies the tracked object and can be from 1 to 500.
		• The interface interface-id is the interface being tracked.
Step 4	<pre>delay { object-numberupseconds[downseconds][[upseconds]downseconds]]</pre>	(Optional) Specifies a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.
Step 5	exit	Returns to global configuration mode.
Step 6	<pre>track object-numberinterface interface-idip routing Example: Device (config) # track 33 interface gigabitethernet 1/0/1 ip routing</pre>	(Optional) Creates a tracking list to track the IP routing state of an interface and enter tracking configuration mode. IP route tracking tracks an IP route in the routing table and the ability of an interface to route IP packets.
	1/0/1 ip fouting	• The object-number identifies the tracked object and can be from 1 to 500.
		• The interface interface-id is the interface being tracked.
Step 7	<pre>delay { object-numberupseconds[downseconds][[upseconds]downseconds]]</pre>	(Optional) Specifies a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.
Step 8	end	Returns to privileged EXEC mode.
Step 9	show trackobject-number	Verifies that the specified objects are being tracked.

Configuring Tracked Lists

Configuring a Tracked List with a Weight Threshold

To track by weight threshold, configure a tracked list of objects, specify that weight is used as the threshold, and configure a weight for each of its objects. The state of each object is determined by comparing the total weight of all objects that are up against a threshold weight for each object.

You cannot use the Boolean "NOT" operator in a weight threshold list.

Follow these steps to configure a tracked list of objects by using a weight threshold and to configure a weight for each object:

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** track *track-number*list threshold {weight}
- 4. object object-number[weightweight-number]
- **5.** threshold weight {upnumber|[downnumber]}
- 6. delay { upseconds[downseconds]|[upseconds]downseconds}
- 7. end
- 8. show trackobject-number
- 9. copy running-config startup-config

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	<pre>track track-numberlist threshold {weight} Example: Device(config)# track 4 list threshold weight</pre>	Configures a tracked list object, and enters tracking configuration mode. The track-number can be from 1 to 500. • threshold —Specifies the state of the tracked list based on a threshold. • weight — Specifies that the threshold is based on weight.

	Command or Action	Purpose
Step 4	<pre>object object-number[weightweight-number] Example: Device (config) # object 2 weight 15</pre>	Specifies the object to be tracked. The range is from 1 to500. The optionalweightweight-number specifies thethreshold weight for the object. The range is from 1 to 255.NoteAn object must exist before you can add it to a tracked list.
Step 5	<pre>threshold weight {upnumber [downnumber]}</pre>	(Optional) Specifies the threshold weight.
	Example:	• up <i>number</i> —The range is from 1 to 255.
	Device (config-track) # threshold weight up 30 down 10	• down <i>number</i> —(Optional)The range depends on the number selected for the up <i>number</i> . If you configure the up <i>number</i> as 25, the range shown for the down number is 0 to 24.
Step 6	<pre>delay { upseconds[downseconds] [upseconds]downseconds]</pre>	(Optional) Specifies a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.
Step 7	end	Returns to privileged EXEC mode.
Step 8	show trackobject-number	Verify that the specified objects are being tracked.
Step 9	copy running-config startup-config	(Optional) Saves your entries in the configuration file.
	Example:	
	Device# copy running-config startup-config	
		1

Configuring a Tracked List with a Percentage Threshold

To track by percentage threshold, configure a tracked list of objects, specify that a percentage will be used as the threshold, and specify a percentage for all objects in the list. The state of the list is determined by comparing the assigned percentage of each object to the list.

You cannot use the Boolean "NOT" operator in a percentage threshold list.

Follow these steps to configure a tracked list of objects by using a percentage threshold:

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** track *track-number*list threshold {percentage}
- 4. object object-number
- 5. threshold percentage {upnumber|[downnumber]}
- 6. delay { upseconds[downseconds] [[upseconds]downseconds]
- 7. end
- 8. show trackobject-number

9. copy running-config startup-config

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	track track-numberlist threshold {percentage}	Configures a tracked list object, and enters tracking
	Example:	configuration mode. The track-number can be from 1 to 500.
	Device (config) # track 4 list threshold percentage	
		 percentage— Specifies that the threshold is based on percentage.
Step 4	object object-number	Specifies the object to be tracked. The range is from 1 to
	Example:	500.
	Device (config) # object 1	Note An object must exist before you can add it to a tracked list.
Step 5	threshold percentage {upnumber [downnumber]}	(Optional) Specifies the threshold percentage.
	Example:	• up <i>number</i> —The range is from 1 to 100.
	Device (config) # threshold percentage up 51 down 10	• down <i>number</i> —(Optional)The range depends on the number selected for the up <i>number</i> . If you configure the up <i>number</i> as 25, the range shown for the down number is 0 to 24.
Step 6	<pre>delay { upseconds[downseconds] [upseconds]downseconds}</pre>	(Optional) Specifies a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.
Step 7	end	Returns to privileged EXEC mode.
Step 8	show trackobject-number	Verify that the specified objects are being tracked.
Step 9	copy running-config startup-config	(Optional) Saves your entries in the configuration file.
	Example:	

 Command or Action	Purpose
Device# copy running-config startup-config	

Configuring HSRP Object Tracking

Follow these steps to configure a standby HSRP group to track an object and change the HSRP priority based on the object state:

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** track *object-number*{interface *interface-id*{line-protocol|ip routing}|ip route*ip address/prefix-length*{metric
 - $-threshold | reachability \} list \{ boolean \{ and | or \} \} | \{ threshold \{ weight | percentage \} \} \}$
- 4. exit
- **5. interface** { *interface-id*
- 6. standby[group-number]ip[ip-addresssecondary]]
- 7. standby[group-number]track[object-number[decrement priority-decrement]]
- 8. end
- 9. show standby
- 10. copy running-config startup-config

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	track object-number{interface interface-id{line-protocol ip routing} ip routeip	(Optional) Create a tracking list to track the configured state and enter tracking configuration mode.
	address/prefix-length{metric thresholdpeachability}list{bookan{and/or}} {threshold{weightpercentage}}}	• The object-number identifies the tracked object and can be from 1 to 500.
		• Enter interface <i>interface-id</i> to select an interface to track.

	Command or Action	Purpose
		• Enterline-protocol to track the interface line protocol state or enter ip routing to track the interface IP routing state .
		• Enter ip route <i>ip-address/prefix-length</i> to track the state of an IP route.
		• Entermetric threshold to track the threshold metric or enter reachability to track if the route is reachable.
		The default up threshold is 254 and the default down threshold is 255.
		• Enter list to track objects grouped in a list.
		Note Repeat this step for each interface to be tracked.
Step 4	exit	Return to global configuration mode.
Step 5	interface { interface-id	Enter interface configuration mode.
Step 6	standby[group-number]ip[ip-addresssecondary]]	Creates (or enables) the HSRP group by using its number and virtual IP address.
		• (Optional) <i>group-number</i> —Enters a group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number.
		• (Optional on all but one interface) <i>ip-address</i> —Specifies the virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces.
		• (Optional) secondary —Specifies that the IP address is a secondary hot standby router interface. If this keyword is omitted, the configured address is the primary IP address.
Step 7	standby[group-number]track[object-number[decrement priority-decrement]]	Configures HSRP to track an object and change the hot standby priority based on the state of the object.
		• (Optional) <i>group-number</i> —Enters the group number to which the tracking applies.
		• <i>object-number</i> —Enters a number representing the object to be tracked. The range is from 1 to 500; the default is 1.
		• (Optional) secondary —Specifies that the IP address is a secondary hot standby router interface. If this

	Command or Action	Purpose
		keyword is omitted, the configured address is the primary IP address.
		• (Optional) decrement <i>priority-decrement</i> —Specifies the amount by which the hot standby priority for the router is decremented (or incremented) when the tracked object goes down (or comes back up). The range is from 1 to 255; the default is 10.
Step 8	end	Returns to privileged EXEC mode.
Step 9	show standby	Verifies the standby router IP address and tracking states.
Step 10	copy running-config startup-config	(Optional) Saves your entries in the configuration file.
	Example:	
	Device# copy running-config startup-config	

Configuring IP SLAs Object Tracking

Follow these steps to track the state of an IP SLAs operation or the reachability of an IP SLAs IP host:

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** track *object-number* ip sla *operation-number* {state | reachability}
- 4. delay { upseconds[downseconds]|[upseconds]downseconds}
- 5. end
- 6. show trackobject-number
- 7. copy running-config startup-config

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

	Command or Action	Purpose
Step 3	track object-number ip sla operation-number {state reachability}	Enters tracking configuration mode to track the state of an IP SLAs operation.
	Example:	• <i>object-number</i> range is from 1 to 500.
	Device (config) # track 2 ip sla 123 state	• operation-number range is from 1 to 2147483647.
Step 4	<pre>delay { upseconds[downseconds] [upseconds]downseconds}</pre>	(Optional) Specifies a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.
Step 5	end	Returns to privileged EXEC mode.
Step 6	show trackobject-number	Verifies that the specified objects are being tracked.
Step 7	copy running-config startup-config	(Optional) Saves your entries in the configuration file.
	Example:	
	Device# copy running-config startup-config	

Configuring Static Route Object Tracking

Configuring a Primary Interface for Static Routing

Follow these steps to configure a primary interface for static routing:

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interfaceinterface-id
- 4. descriptionstring
- 5. ip addressip-address mask[secondary]
- 6. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	

I

	Command or Action	Purpose
	Device# configure terminal	
Step 3	interfaceinterface-id	Selects a primary or secondary interface and enters interface configuration mode.
Step 4	descriptionstring	Adds a description to the interface.
Step 5	<pre>ip addressip-address mask[secondary]</pre>	Sets the primary or secondary IP address for the interface.
Step 6	exit	Returns to global configuration mode.

Configuring a Primary Interface for DHCP

Follow these steps to configure a primary interface for DHCP:

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interfaceinterface-id
- 4. descriptionstring
- 5. ip dhcp client route tracknumber
- 6. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interfaceinterface-id	Selects a primary or secondary interface and enters interface configuration mode.
Step 4	descriptionstring	Adds a description to the interface.
Step 5	ip dhcp client route tracknumber	Configures the DCHP client to associate any added routes with the specified track number. Valid numbers are from 1 to 500.

	Command or Action	Purpose
Step 6	exit	Returns to global configuration mode.

Configuring IP SLAs Monitoring Agent

You can configure an IP SLAs agent to ping an IP address using a primary interface and a track object to monitor the state of the agent.

Follow these steps to configure network monitoring with Cisco IP SLAs:

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3. ip sla***operation number*
- **4.** icmp-echo{ *destination ip-address*|*destination hostname*[source ipaddr{*ip-address*|*hostname*source-interface*interface-id*]
- **5.** *timeoutmilliseconds*
- 6. frequencyseconds
- 7. threshold milliseconds
- 8. exit
- 9. ip sla schedule operation-number[life {forever|seconds}]start-timetime|pending|now|aftertime]ageoutseconds][recurring]
- **10.** track *object-number***rtr** *operation-number***statereachability**
- 11. end
- **12. show track***object-number*
- **13**. copy running-config startup-config

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	ip sla operation number	Begins configuring a Cisco IP SLAs operation and enters IP SLA configuration mode.

	Command or Action	Purpose
Step 4	<pre>icmp-echo{ destination ip-address destination hostname[source - ipaddr{ip-address hostnamesource-interfaceinterface-id]</pre>	Configures a Cisco IP SLAs end-to-end ICMP echo response time operation and enter IP SLAs ICMP echo configuration mode.
Step 5	timeoutmilliseconds	Sets the amount of time for which the operation waits for a response from its request packet.
Step 6	frequencyseconds	Sets the rate at which the operation is sent into the network.
Step 7	thresholdmilliseconds	Sets the rising threshold (hysteresis) that generates a reaction event and stores history information for the operation.
Step 8	exit	Exits IP SLAs ICMP echo configuration mode.
Step 9	ip sla schedule <i>operation-number</i> [life {forever/sconts}]start-fime/ine/pendinghow/after/ine/ageout/sconts][recurring]	Configures the scheduling parameters for a single IP SLAs operation.
	Example:	• object-number range is from 1 to 500.
	Device(config)# track 2 200 state	• <i>operation-number</i> range is from 1 to 2147483647.
Step 10	track object-numberrtr operation-numberstatereachability	Tracks the state of a Cisco IOS IP SLAs operation and enter tracking configuration mode.
Step 11	end	Returns to privileged EXEC mode.
Step 12	show trackobject-number	Verifies that the specified objects are being tracked.
Step 13	copy running-config startup-config Example: Device# copy running-config startup-config	(Optional) Saves your entries in the configuration file.

Configuring a Routing Policy and a Default Route

Follow these steps to configure a routing policy for backup static routing by using object tracking.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. access-listaccess-list-number
- 4. route-mapmap tag[permit|deny][sequence-number]
- 5. match ip address { access-list number [permit|deny][sequence-number]
- 6. set ip next-hop dynamic dhcp
- 7. set interface*interface-id*
- 8. exit
- 9. ip local policy route-mapmap tag

- **10. ip route***prefix* mask{*ip* address|*interface-id*[*ip* address]}[*distance*][*name*][**permanent**|**track***track-number*][*tag tag*]
- **11**. end
- **12**. show ip route track table
- **13**. copy running-config startup-config

Command or Action	Purpose
enable	Enables privileged EXEC mode.
Example:	• Enter your password if prompted.
Device> enable	
configure terminal	Enters global configuration mode.
Example:	
Device# configure terminal	
access-listaccess-list-number	Defines an extended IP access list. Configure any optional characteristics.
<pre>route-mapmap tag[permit deny][sequence-number]</pre>	Enters route-map configuration mode and define conditions for redistributing routes from one routing protocol to another.
match ip address { <i>access-list</i> <i>number</i> [permit deny][<i>sequence-number</i>]	Distribute any routes that have a destination network number address that is permitted by a standard or extended access list or performs policy routing on packets. You can enter multiple numbers or names.
set ip next-hop dynamic dhcp	For DHCP networks only. Sets the next hop to the gateway that was most recently learned by the DHCP client.
set interfaceinterface-id	For static routing networks only. Indicates where to send output packets that pass a match clause of a route map for policy routing.
exit	Returns to global configuration mode.
ip local policy route-mapmap tag	Identifies a route map to use for local policy routing.
ip route prefix mask {ip address interface-id[ip address]}[distance][name][permanent track track-number][tag tag]	For static routing networks only. Establishes static routes. Entering track <i>track</i> - <i>number</i> specifies that the static route is installed only if the configured track object is up.
end	Returns to privileged EXEC mode.
show ip route track table	Displays information about the IP route track table.
	enable Example: Device> enable configure terminal Example: Device# configure terminal access-listaccess-list-number route-mapmap tag[permit deny][sequence-number] match ip address {access-list number set ip next-hop dynamic dhcp set interfaceinterface-id ip local policy route-mapmap tag ip routeprefix mask{ip address interface-id[ip address]}[distance][name][permanent[tracktrack-number][tag tag] end

in the configuration file.
in the configuration file.

Monitoring Enhanced Object Tracking

Use the privileged EXEC or user EXEC commands in the table below, to display enhanced object tracking information.

Table 5: Commands for Displaying Tracking Information

Command	Purpose
show ip route track table	Displays information about the IP route the
show track [object-number]	Displays information about the all trackir
show track brief	Displays VTP status and configuration for
show track interface [brief]	Displays information about tracked interf
<pre>show track ip [object-number][brief]route</pre>	Displays information about tracked IP-ro
show track resolution	Displays the resolution of tracked parame
show track timer	Displays tracked polling interval timers.

Additional References

MIBs

MIB	MIBs Link
All the supported MIBs for this release.	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

L

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/support
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for Enhanced Object Tracking

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Table 6: Feature Information for Enhanced Object Tracking

Feature Name	Releases	Feature Information
Enhanced Object Tracking	Cisco IOS XE Everest 16.6.1	This feature was introduced.

Configuring TCP MSS Adjustment

- Information about TCP MSS Adjustment, on page 85
- Configuring the MSS Value for Transient TCP SYN Packets, on page 86
- Configuring the MSS Value for IPv6 Traffic, on page 87
- Example: Configuring the TCP MSS Adjustment, on page 88
- Example: Configuring the TCP MSS Adjustment for IPv6 traffic, on page 88
- Feature History and Information for TCP MSS Adjustment, on page 88

Information about TCP MSS Adjustment

The Transmission Control Protocol (TCP) Maximum Segment Size (MSS) Adjustment feature enables the configuration of the maximum segment size for transient packets that traverse a router, specifically TCP segments with the SYN bit set. Use the ip tcp adjust-mss command in interface configuration mode to specify the MSS value on the intermediate router of the SYN packets to avoid truncation.

When a host (usually a PC) initiates a TCP session with a server, it negotiates the IP segment size by using the MSS option field in the TCP SYN packet. The value of the MSS field is determined by the MTU configuration on the host. The default MSS value for a PC is 1500 bytes.

The PPP over Ethernet (PPPoE) standard supports an MTU of only 1492 bytes. The disparity between the host and PPPoE MTU size can cause the router in between the host and the server to drop 1500-byte packets and terminate TCP sessions over the PPPoE network. Even if the path MTU (which detects the correct MTU across the path) is enabled on the host, sessions may be dropped because system administrators sometimes disable the ICMP error messages that must be relayed from the host in order for path MTU to work.

The ip tcp adjust-mss command helps prevent TCP sessions from being dropped by adjusting the MSS value of the TCP SYN packets.

The ip tcp adjust-mss command is effective only for TCP connections passing through the router.

In most cases, the optimum value for the max-segment-size argument of the ip tcp adjust-mss command is 1452 bytes. This value plus the 20-byte IP header, the 20-byte TCP header, and the 8-byte PPPoE header add up to a 1500-byte packet that matches the MTU size for the Ethernet link.

Note TCP MSS adjustment-based traffic is always software switched.

Supported Interfaces

TCP MSS Adjust is supported only on the following interfaces:

- Physical Layer 3 interface
- SVI
- Layer 3 port channel
- Layer 3 GRE tunnel

Note

Subinterfaces do not support TCP MSS Adjust.

Configuring the MSS Value for Transient TCP SYN Packets

Before you begin

Perform this task to configure the MSS for transient packets that traverse a router, specifically TCP segments with the SYN bit set.

We recommend that you use the ip tcp adjust-mss 1452 command.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** interface *type number*
- 4. ip tcp adjust-mss max-segment-size
- 5. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted
	Device> enable	
Step 2	configure terminal	Enters the global configuration mode.
	Example:	
	Device#config terminal	
Step 3	interface type number	Configures an interface type and enters interface
	Example:	configuration mode.
	Device(config)#interface GigabitEthernet 1/0/0	

	Command or Action	Purpose
Step 4	ip tcp adjust-mss max-segment-size	Adjusts the MSS value of TCP SYN packets going through a router.
	Example:	
	Device(config-if)#ip tcp adjust-mss 1452	The max-segment-size argument is the maximum segment size, in bytes. The range is from 500 to 1460.
Step 5	end	Exits to global configuration mode.
	Example:	
	Device(config-if) # end	

Configuring the MSS Value for IPv6 Traffic

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3. interface** *type number*
- 4. ipv6 tcp adjust-mss max-segment-size
- 5. end

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	Enter your password if prompted	
	Device> enable		
Step 2	configure terminal	Enters the global configuration mode.	
	Example:		
	Device#config terminal		
Step 3	interface type number	Configures an interface type and enters interface configuration mode.	
	Example:		
	Device(config)#interface GigabitEthernet 1/0/0		
Step 4	ipv6 tcp adjust-mss max-segment-size	Adjusts the MSS value of TCP DF packets going through a device. The max-segment-size argument is the maximum segmen size, in bytes. The range is from 40 to 1440.	
	Example:		
	Device(config-if) #ipv6 tcp adjust-mss 1440		
Step 5	end	Exits interface configuration mode and returns to privilege	
	Example:	EXEC mode.	
	Device(config-if) # end		

Example: Configuring the TCP MSS Adjustment

```
Device (config) #vpdn enable
Device (config) #no vpdn logging
Device (config) #vpdn-group 1
Device (config-vpdn) #request-dialin
Device (config-vpdn-req-in) #protocol pppoe
Device (config-vpdn-req-in) #exit
Device (config-vpdn) #exit
Device (config) #interface GigabitEthernet 0/0/0
Device (config-if) #ip address 192.168.100.1.255.255.255.0
Device (config-if) #ip tcp adjust-mss 1452
Device (config-if) #ip nat inside
Device (config-if) #exit
```

Example: Configuring the TCP MSS Adjustment for IPv6 traffic

Device>enable Device#configure terminal Device(config)#interface GigabitEthernet 0/0/0 Device(config)#ipv6 tcp adjust-mss 1440 Device(config)#end

Feature History and Information for TCP MSS Adjustment

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Release	Modification
Cisco IOS XE Fuji 16.8.1a	This feature was introduced.

CHAPTER

Enhanced IPv6 Neighbor Discovery Cache Management

- Enhanced IPv6 Neighbor Discovery Cache Management, on page 89
- Customizing the Parameters for IPv6 Neighbor Discovery, on page 90
- Examples: Customizing Parameters for IPv6 Neighbor Discovery, on page 91
- Additional References, on page 91
- Feature Information for IPv6 Neighbor Discovery, on page 91

Enhanced IPv6 Neighbor Discovery Cache Management

Neighbor discovery protocol enforces the neighbor unreachability detection process to detect failing nodes, or devices, and changes to link-layer addresses. Neighbor unreachability detection process maintains the reachability information for all paths between hosts and neighboring nodes, including host-to-host, host-to-device, and device-to-host communication.

The neighbor cache maintains mapping information about the IPv6 link-local or global address to the link-layer address. The neighbor cache also maintains the reachability state of the neighbor using the neighbor unreachability detection process. Neighbors can be in one of the following five possible states:

- DELAY—Neighbor is pending re-resolution with a limited flow of traffic to this neighbor.
- INCOMPLETE—Address resolution is in progress, and the link-layer address is not yet known.
- PROBE—Neighbor re-resolution is in progress with a limited flow of traffic to this neighbor.
- REACHABLE—Neighbor detected within the last reachable time interval.
- STALE—Neighbor requires re-resolution with a limited flow of traffic to this neighbor.

Use the **ipv6** nd na glean command to configure the neighbor discovery protocol to glean an entry from an unsolicited neighbor advertisement.

Use the **ipv6 nd nud retry** command to configure the neighbor discovery protocol to maintain a neighbor discovery cache entry for a neighbor during a network disruption.

Use the **ipv6** nd cache expire refresh command to configure the neighbor discovery protocol maintain a neighbor discovery cache entry even when no traffic flows to the neighbor.

Procedure

Customizing the Parameters for IPv6 Neighbor Discovery

To customize the parameters for IPv6 neighbor discovery, perform this procedure:

Command or Action Purpose enable Enables privileged EXEC mode. Step 1 Example: Enter your password, if prompted. Device> enable Step 2 Enters global configuration mode. configure terminal Example: Device# configure terminal Step 3 Specifies an interface type and identifier. Enters the interface type number interface configuration mode. Example: Device (config) # interface gigabitethernet 1/1/4 Step 4 ipv6 nd nud retry base interval max-attempts Configures the number of times neighbor unreachability detection resends neighbor solicitations. [final-wait-time] Example: Device(config-if) # ipv6 nd nud retry 1 1000 3 Step 5 **ipv6 nd cache expire** *expire-time-in-seconds* [**refresh**] Configures the length of time before an IPv6 neighbor discovery cache entry expires. Example: Device(config-if)# ipv6 nd cache expire 7200 Step 6 Configures the length of time before an IPv6 neighbor ipv6 nd na glean discovery cache entry expires. Example: Device(config-if) # ipv6 nd na glean Step 7 end Exits interface configuration mode and returns to privileged EXEC mode. Example: Device (config-if) # end Step 8 (Optional) Displays the usability status of interfaces that show ipv6 interface are configured for IPv6 along with neighbor discovery cache Example: management. Device# show ipv6 interface

Examples: Customizing Parameters for IPv6 Neighbor Discovery

The following example shows that IPv6 neighbor advertisement gleaning is enabled and the IPv6 neighbor discovery cache expiry is set to 7200 seconds (2 hours):

```
Device> enable
Device# configure terminal
Device(config)# interface Port-channel 189
Device(config-if)# no ip address
Device(config-if)# ipv6 address 2001:BD8::/64
Device(config-if)# ipv6 nd reachable-time 2700000
Device(config-if)# ipv6 nd na glean
Device(config-if)# ipv6 nd cache expire 7200
Device(config-if)# no ipv6 redirects
Device(config-if)# end
```

Additional References

Related Documents

Related Topic	Document Title
For complete syntax and usage information for the commands used in this chapter.	See the IP Addressing Services section of Command Reference (Catalyst 9300 Series Switches)
For information on IPv6 Neighbor Discovery Inspection	See the Security section of Software Configuration Guide (Catalyst 9300 Switches)

Feature Information for IPv6 Neighbor Discovery

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 7: Feature Information	for IPv6 Neigbor Discovery
------------------------------	----------------------------

Feature Name	Releases	Feature Information
Enhanced IPv6 Neighbor Discovery Cache Management	Cisco IOS XE Everest 16.5.1a	Neighbor discovery protocol enforces neighbor unreachability detection, which can detect failing nodes or routers, and changes to link-layer addresses.