
Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
First Published: 2018-04-27

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883



THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1721R)

© 2018 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/go/trademarks


C O N T E N T S

Full Cisco Trademarks with Software License ?

Preface vP R E F A C E

Audience v

Conventions v

Related Documentation vii

Documentation Feedback vii

Obtaining Documentation and Submitting a Service Request vii

New and Changed Information for This Release 1C H A P T E R 1

New and Changed Information for This Release 1

Overview of Custom Tasks 3C H A P T E R 2

Why Use Custom Tasks 3

How Custom Tasks Work 3

How to Use Custom Tasks 3

Changes to CloupiaScript due to JDK Upgrade 4

Guidelines for Using API Operations from CloupiaScript 7

CloupiaScript Interpreter 11C H A P T E R 3

About the CloupiaScript Interpreter 11

Starting the CloupiaScript Interpreter 11

Starting the CloupiaScript Interpreter with a Context 12

Example: Using the CloupiaScript Interpreter 12

Creating Custom Workflow Tasks 15C H A P T E R 4

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
iii



About Custom Workflow Inputs 15

Prerequisites 15

Creating a Custom Workflow Input 16

Custom Input Validation 16

Cloning a Custom Workflow Input 17

Creating a Custom Task 17

Custom Tasks and GitHub Repositories 20

Adding a GitHub Repository in Cisco UCS Director 21

Downloading Custom Task Script Code from a GitHub Repository 21

Importing Workflows, Custom Tasks, Script Modules, and Activities 22

Exporting Workflows, Custom Tasks, Script Modules, and Activities 24

Cloning a Custom Workflow Task from the Task Library 25

Cloning a Custom Workflow Task 25

Controlling Custom Workflow Task Inputs 26

Example: Using Controllers 28

Using Output of a Previous Task in a Workflow 30

Example: Creating and Running a Custom Task 30

Managing Reports 33C H A P T E R 5

Accessing Reports 33

Emailing Reports 35

Best Practices 39C H A P T E R 6

Creating a Rollback Script 39

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
iv

Contents



Preface

• Audience, on page v
• Conventions, on page v
• Related Documentation, on page vii
• Documentation Feedback, on page vii
• Obtaining Documentation and Submitting a Service Request, on page vii

Audience
This guide is intended primarily for data center administrators who use Cisco UCS Director and who have
responsibilities and expertise in one or more of the following:

• Server administration

• Storage administration

• Network administration

• Network security

• Virtualization and virtual machines

Conventions
IndicationText Type

GUI elements such as tab titles, area names, and field labels appear in this font.

Main titles such as window, dialog box, and wizard titles appear in this font.

GUI elements

Document titles appear in this font.Document titles

In a Text-based User Interface, text the system displays appears in this font.TUI elements

Terminal sessions and information that the system displays appear in this
font.

System output

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
v



IndicationText Type

CLI command keywords appear in this font.

Variables in a CLI command appear in this font.

CLI commands

Elements in square brackets are optional.[ ]

Required alternative keywords are grouped in braces and separated by vertical
bars.

{x | y | z}

Optional alternative keywords are grouped in brackets and separated by vertical
bars.

[x | y | z]

A nonquoted set of characters. Do not use quotation marks around the string or
the string will include the quotation marks.

string

Nonprinting characters such as passwords are in angle brackets.< >

Default responses to system prompts are in square brackets.[ ]

An exclamation point (!) or a pound sign (#) at the beginning of a line of code
indicates a comment line.

!, #

Means reader take note. Notes contain helpful suggestions or references to material not covered in the
document.

Note

Means reader be careful. In this situation, you might perform an action that could result in equipment damage
or loss of data.

Caution

Means the following information will help you solve a problem. The tips information might not be
troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Tip

Means the described action saves time. You can save time by performing the action described in the paragraph.Timesaver

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work
on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard
practices for preventing accidents. Use the statement number provided at the end of each warning to locate
its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS

Warning

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
vi

Preface
Preface



Related Documentation
Cisco UCS Director Documentation Roadmap

For a complete list of Cisco UCS Director documentation, see the Cisco UCS Director Documentation
Roadmap available at the following URL: http://www.cisco.com/en/US/docs/unified_computing/ucs/
ucs-director/doc-roadmap/b_UCSDirectorDocRoadmap.html.

Cisco UCS Documentation Roadmaps

For a complete list of all B-Series documentation, see theCiscoUCS B-Series Servers Documentation Roadmap
available at the following URL: http://www.cisco.com/go/unifiedcomputing/b-series-doc.

For a complete list of all C-Series documentation, see theCiscoUCSC-Series Servers Documentation Roadmap
available at the following URL: http://www.cisco.com/go/unifiedcomputing/c-series-doc.

The Cisco UCS B-Series Servers Documentation Roadmap includes links to documentation for Cisco UCS
Manager and Cisco UCS Central. The Cisco UCS C-Series Servers Documentation Roadmap includes links
to documentation for Cisco Integrated Management Controller.

Note

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to ucs-director-docfeedback@cisco.com. We appreciate your feedback.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, see What's New in Cisco Product Documentation.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the . RSS
feeds are a free service.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
vii

Preface
Related Documentation

http://www.cisco.com/en/US/docs/unified_computing/ucs/ucs-director/doc-roadmap/b_UCSDirectorDocRoadmap.html
http://www.cisco.com/en/US/docs/unified_computing/ucs/ucs-director/doc-roadmap/b_UCSDirectorDocRoadmap.html
http://www.cisco.com/go/unifiedcomputing/b-series-doc
http://www.cisco.com/go/unifiedcomputing/c-series-doc
mailto:ucs-director-docfeedback@cisco.com
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html


Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
viii

Preface
Obtaining Documentation and Submitting a Service Request



C H A P T E R 1
New and Changed Information for This Release

• New and Changed Information for This Release, on page 1

New and Changed Information for This Release
The following table provides an overview of the significant changes to this guide for this current release. The
table does not provide an exhaustive list of all changes made to this guide or of all new features in this release.

Table 1: New Features and Changed Behavior in Cisco UCS Director, Release 6.6

Where DocumentedDescriptionFeature

Prerequisites, on page 15User must have permission to write
and execute CloupiaScript to write
and execute a custom task using
CloupiaScript.

Write/Execute CloupiaScript

Custom Input Validation, on page
16

Provides an option to validate any
input at runtime using a
customer-provided script. The
script can flag errors in the input
and can require valid input before
running a service request.

Custom Input Validation

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
1



Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
2

New and Changed Information for This Release
New and Changed Information for This Release



C H A P T E R 2
Overview of Custom Tasks

• Why Use Custom Tasks , on page 3
• How Custom Tasks Work, on page 3
• How to Use Custom Tasks, on page 3
• Changes to CloupiaScript due to JDK Upgrade, on page 4
• Guidelines for Using API Operations from CloupiaScript, on page 7

Why Use Custom Tasks
Custom tasks extend the capabilities of Cisco UCS Director Orchestrator. Custom tasks enable you to create
functionality that is not available in the predefined tasks and workflows that are supplied with Cisco UCS
Director. You can generate reports, configure physical or virtual resources, and call other tasks from within
a custom task.

How Custom Tasks Work
Once created and imported into Cisco UCS Director, custom tasks function like any other tasks in Cisco UCS
Director Orchestrator. You can modify, import, and export a custom task and you can add it to any workflow.

How to Use Custom Tasks
You write, edit, and test custom tasks fromwithin Cisco UCSDirector. You must have administrator privileges
to write custom tasks.

You write custom tasks using CloupiaScript, a version of JavaScript with Cisco UCS Director Java libraries
that enable orchestration operations. You then use your custom tasks like any other task, including them in
workflows to orchestrate work on your components.

CloupiaScript supports all JavaScript syntax. CloupiaScript also supports access to a subset of the Cisco UCS
Director Java libraries, enabling custom tasks access to CiscoUCSDirector components. Because CloupiaScript
runs only on the server, client-side objects are not supported.

CloupiaScript uses the Nashorn script engine. For more details about Nashorn, see the technical notes on
Oracle's website at https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.htm.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
3

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.htm


Implicit Variables in Custom Tasks

Three predefined top-level variables are included automatically in any custom task:

DescriptionVariable

The workflow execution context. This context object contains information about
the current workflow, the current task, and available inputs and outputs. It also
has access to the Cisco UCS Director Java APIs, with which you can perform
create, read, update, and delete (CRUD) operations, invoke other tasks, and call
other API methods. The ctxt variable is an instance of the platform API class
com.cloupia.service.cIM.inframgr.customactions.

CustomActionTriggerContext.

ctxt

The workflow logger object. The workflow logger writes to the service request
(SR) log. The logger variable is an instance of the platform API class
com.cloupia.service.cIM.inframgr.customactions.CustomActionLogger.

logger

An object that provides access to utility methods. The util variable is an instance
of the platform API class
com.cloupia.lib.util.managedreports.APIFunctions.

util

For more information about the API classes of the implicit variables, see the CloupiaScript Javadoc included
in the Cisco UCS Director script bundle.

Changes to CloupiaScript due to JDK Upgrade
From Cisco UCS Director Release 5.4, the JDK version has been upgraded from 1.6 to 1.8. While the JDK
1.6 version was based on the Rhino JavaScript engine, the JDK 1.8 version ships with a newNashorn Javascript
engine. The Nashorn JavaScript engine has changes in syntax and usage of certain functions and classes in
the script.

Following are changes to be aware of when you script custom tasks for Cisco UCS Director, Release 5.5:

• Converting an object to a map for retrieving the values of the object property

Up through Cisco UCSDirector Release 5.3, use the following code snippet to get values of each property
of an object (for example, vminfo) using the for loop:
importPackage(com.cloupia.service.cIM.inframgr);
importPackage(com.cloupia.model.cIM);
importPackage(com.cloupia.lib.util);
importPackage(java.util);
importPackage(java.lang);
var vmSummary ="";
var vminfo = ctxt.getAPI().getVMwareVMInfo(306);//306 is vmId
for(var x in vminfo){
//escaping getter and setter methods
if(x.match(/get*/) == null && x.match(/set*/) == null && x.match(/jdo*/) == null &&
x.match(/is*/)
== null && x.match(/hashCode/) == null && x.match(/equals/) == null)
{
vmSummary += x +":"+ vminfo[x] + '#';
};
};
logger.addInfo("VMSUMMARY="+vmSummary);

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
4

Overview of Custom Tasks
Changes to CloupiaScript due to JDK Upgrade



Beginning with Cisco UCS Director Release 5.4, convert the object (for example, vminfo) into a map
using the convertObjectToMap () method of the ObjectToMap class and then use the object in the for
loop to retrieve the object values. The following code snippet shows how to get the value of each property
of an object:
importPackage(com.cloupia.service.cIM.inframgr);
importPackage(com.cloupia.model.cIM);
importPackage(com.cloupia.lib.util);
importPackage(java.lang);
importPackage(java.util);

var vmSummary = "";
var vminfo = ctxt.getAPI().getVMwareVMInfo(4);//4 is vmId
var vminfo = ObjectToMap.convertObjectToMap(vminfo);
for (var x in vminfo) {
vmSummary += x +":"+ vminfo[x] + '#';
}
logger.addInfo("VMSUMMARY="+vmSummary);

The ObjectToMap.convertObjectToMap(vminfo) class can be used only when
the object (for example, vminfo) contains properties of primitive or string type.
The best practice is to use the standard getter methods such as getVmId() and
getVmName() to retrieve the attributes of an object.

Note

• Using the print( ) function

Use print( ) instead of println( ).

JDK 1.8 still supports println( ) for backward compatibility.Note

• Change in syntax for passing a class<T> parameter to a method or constructor

The syntax for passing a Class<T> parameter to a method or constructor has changed. In JDK1.6, the
following syntax was valid:
var fml = new FormManagedList(PrivateCloudNetworkPolicyNICPortGroup);

However, in JDK1.8, you must append .class to pass the PrivateCloudNetworkPolicyNICPortGroup
Java class as an argument, like this:
var fml = new FormManagedList(PrivateCloudNetworkPolicyNICPortGroup.class);

• Change in syntax to import classes and packages

The syntax to import classes and packages has changed. The newer import statement improves localizing
the usage of the class or package. The earlier import statement made the class or package available in
the global space of the javascript execution, which was not always required.

Here is an example of an import statement in the Rhino JavaScript Engine:

importPackage(com.cloupia.model.cIM);
importClass(java.util.ArrayList);

Here is an example of import statement in the Nashorn JavaScript Engine:

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
5

Overview of Custom Tasks
Changes to CloupiaScript due to JDK Upgrade



var CollectionsAndFiles = new JavaImporter( java.util, java.io, java.nio);
with (CollectionsAndFiles) {
var files = new LinkedHashSet();
files.add(new File("Filename1"));
files.add(new File("Filename2"));
}

The with statement defines the scope of the variable given as its argument with respect to the duration
of time the object(s) are loaded in its memory. For example, sometimes it is useful to import many Java
packages at a time. Using the JavaImporter class along with the with statement, all class files from the
imported packages are accessible within the local scope of the with statement.

Importing Java packages:
var imports = new JavaImporter(java.io, java.lang);
with (imports) {

var file = new File(__FILE__);
System.out.println(file.getAbsolutePath());
// /path/to/my/script.js

}

The older importPackage() and importClass() statements are still supported
in Cisco UCSDirector 5.5 for backward compatibility. The engine at the back-end
calls load('nashorn:Mozilla_compat.js') before executing a custom task script.

Note

• Accessing Static Methods

The flexibility of accessing static methods is reduced in the Nashorn engine. In Rhino's version of the
engine, a static method can be accessed not only through the class name (using the same syntax as in
Java), but also from any instance of that class (unlike Java).

Accessing Static Methods in Rhino:

var myRBUtil = new com.cloupia.service.cIM.inframgr.i18n.RBUtil();
myRBUtil.getString();// No error
com.cloupia.service.cIM.inframgr.i18n.RBUtil.getString();// No error

Accessing static methods in Nashorn:

var myRBUtil = new com.cloupia.service.cIM.inframgr.i18n.RBUtil();
myRBUtil.getString();// Error
com.cloupia.service.cIM.inframgr.i18n.RBUtil.getString();// No error

• Comparison of the native JSON object with com.cloupia.lib.util.JSON

The Nashorn environment consists of a native JSON object which has built-in functions to convert objects
to JSON format and vice versa. Cisco UCS Director has its own version of the JSON object called
com.cloupia.lib.util.JSON.

A library of JSON payloads is available in Cisco UCS Director. Load the JSON payload library by
running the following command in CloupiaScript:
loadLibrary("JSON-JS-Module/JSON-JS-ModuleLibrary");

The following methods are available:

• JSON2.parse—The JSON2.parse method converts a JSON string to a JavaScript object.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
6

Overview of Custom Tasks
Changes to CloupiaScript due to JDK Upgrade



• JSON2.stringify—The JSON2.stringify method converts a JavaScript object to a JSON string.

If the Cisco UCS Director class is imported, access to the native JSON object is lost because the same
object name is in use. To enable use of both the Cisco UCS Director and native JSON objects, Cisco
UCS Director stores the native class using the name NativeJSON. So, for example, the following are
static method calls of the native object:
NativeJSON.stringify(object myObj);
NativeJSON.parse(String mystr);

• Using the new operator for strings

Explicitly add the keyword new when creating an object.

For example:

var customName = new java.lang.String(input.name);
var ai = new CMDB.AdditionalInfo();// static class

Guidelines for Using API Operations from CloupiaScript
Executing the XML REST API

The following table provides a list of methods that are used to execute the XML REST API operations:

MethodAPI Operation

getMoResourceAsJson(resourcePath);Get

createMoResource(resourcePath, payload);Create

updateMoResource(resourcePath, payload);Update

deleteMoResource(resourcePath, payload);Delete

To execute a method, you must pass at least one of the following parameters:

• resourcePath—The resourcePath can be taken from theResource URL field of theRESTAPI Browser.
Pass the resourcePath as a string for all API operations (get, create, update, and delete). For example,
/cloupia/api-v2/user.

• payload—Construct the payload as a JSON string and pass it as the payload to the API operation.

By default, execution of these methods are controlled based on user role. If the task developer (system admin)
wants to allow non-admin user to execute any of these methods with admin role, the admnistrator has to pass
an additional argument as True as follows:
getMoResourceAsJson(resourcePath, true)

Note

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
7

Overview of Custom Tasks
Guidelines for Using API Operations from CloupiaScript



Read operations are shown in the following examples. All the JSON operations (Create, Read, Update, and
Delete) are executed in a similar manner.

Note

Example 1: Using the get method to retrieve a list of users
//retrieve users in JSON string format
var userRes = ctxt.getAPI().getMoResourceAsJson("/user");

Example 2: Using the get method to retrieve the details of a user
//retrieve a specific user (admin) in the JSON string format
var userRes = ctxt.getAPI().getMoResourceAsJson("/user/admin");
//convert a JSON string to a JavaScript object using the JSON2 library
var jsUserObj = JSON2.parse(userRes);
//get the access level and login name of the user from the JavaScript object and use those
values in CloupiaScript
var accessLevel = jsUserObj.cuicOperationResponse.response.user.access.accessLevel;
var loginName = jsUserObj.cuicOperationResponse.response.user.access.loginName;

Example 3: Using the create method to create a user
var resourcePath = "/user";
//To create a payload, create a JavaScript object as shown below:
var cuicRequest ={};
var requestPayloadObj = {};
var addUserConfigObj = {};
addUserConfigObj.userType = "AdminAllPolicy";
addUserConfigObj.loginName = "apadmin";
addUserConfigObj.password = "cloupia123";
addUserConfigObj.confirmPassword = "cloupia123";
addUserConfigObj.userContactEmail = "apadmin@cisco.com";

var payloadObj = {};
payloadObj.AddUserConfig = addUserConfigObj;
requestPayloadObj.payload = payloadObj;
cuicRequest.cuicOperationRequest = requestPayloadObj;
//Convert the JavaScript object to a JSON string using the stringify JSON2 library.
var cuicRequestStr = JSON2.stringify(cuicRequest);
var apiResponse = ctxt.getAPI().createMoResource(resourcePath, cuicRequestStr);

Example 4: Using the update method to update the user details
var resourcePath = "/group";
//To create a payload, create JavaScript object as shown below:
var requestPayload = {};
var modifyGroupConfigObject = {};
modifyGroupConfigObject.groupId = "16";
modifyGroupConfigObject.groupDescription = "description updated";
modifyGroupConfigObject.groupContact = "sdk-group@cisco.com";
var payloadObj = {};
payloadObj.ModifyGroupConfig = modifyGroupConfigObject;
var cuicReq = {};
cuicReq.payload = payloadObj;
requestPayload.cuicOperationRequest = cuicReq;
//Convert the JavaScript object to a JSON string using the stringify JSON2 library.
var requestPayloadStr = JSON2.stringify(requestPayload);
var apiResponse = ctxt.getAPI().updateMoResource(resourcePath, requestPayloadStr);

Example 5: Using the delete method to delete a user
var resourcePath = "/datacenter/Default Pod/cloud/cloud_95/vmComputingPolicy/sdk_cp";

//Some delete APIs do not require payload, in such cases, pass the payload as empty string

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
8

Overview of Custom Tasks
Guidelines for Using API Operations from CloupiaScript



or null.
//If the delete API requires the payload data, form the JSON string payload as explained
in the create and update method examples.
var payload = "";
var apiResponse = ctxt.getAPI().deleteMoResource(resourcePath, payload);

Executing the JSON API

Use the performOperationOnJSONPayload method to execute the JSON API.

To execute the method, you must pass one of the following parameters:

• OperationName—Name of the JSON REST API operation, which starts with userAPI.

• OperationData—Data of the JSONRESTAPI, which is used as a request parameter to fetch the response.

Example 1: Retrieving data without passing any variable in the OpData parameter
REST API URL is :
/app/api/rest?formatType=json&opName=userAPIGetMyLoginProfile&opData={}

var payload = {};
var payloadString = JSON2.stringify(payload);
var response = ctxt.getAPI().performOperationOnJSONPayload('userAPIGetMyLoginProfile',
payloadString);

Example 2: Retrieving data by passing a variable in the OpData parameter
/app/api/rest?formatType=json&opName=userAPIGetGroupByName&opData={param0:"Default Group"}

var payload = {};
payload.param0 = 'Default Group';
var payloadString = JSON2.stringify(payload);
var response = ctxt.getAPI().performOperationOnJSONPayload('userAPIGetGroupByName',
payloadString);

The other JSON operations (Create, Update, and Delete) are executed in a manner similar to that shown for
the preceding Read examples.

Note

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
9

Overview of Custom Tasks
Guidelines for Using API Operations from CloupiaScript



Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
10

Overview of Custom Tasks
Guidelines for Using API Operations from CloupiaScript



C H A P T E R 3
CloupiaScript Interpreter

• About the CloupiaScript Interpreter, on page 11
• Starting the CloupiaScript Interpreter, on page 11
• Starting the CloupiaScript Interpreter with a Context, on page 12
• Example: Using the CloupiaScript Interpreter, on page 12

About the CloupiaScript Interpreter
The CloupiaScript interpreter is a JavaScript interpreter populated with built-in libraries and APIs. You can
use the CloupiaScript interpreter to test CloupiaScript code without having to create and run a workflow task.

Built-in Functions of the CloupiaScript Interpreter

• PrintObj()—Takes an object as an argument and prints out all the properties and methods in the object.
The printed result provides the names and values for variables in the object and the names of all the
object's functions. You can then call toString() on any of the method names to examine the method
signature.

• Upload()—Takes a filename as an argument and uploads the file's contents to the CloupiaScript interpreter.

Starting the CloupiaScript Interpreter
To open the CloupiaScript interpreter, do the following:

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Tasks.
Step 3 Click Launch Interpreter.

The Cloupia Script Interpreter screen appears.
Step 4 Enter a line of JavaScript code in the text input field at the bottom of the Cloupia Script Interpreter field.
Step 5 Press Enter.

The code is executed and the result is displayed. If there is a syntax error in the code, the error is displayed.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
11



Starting the CloupiaScript Interpreter with a Context
You can evaluate JavaScript in the context of a particular a custom task. To do so, you select a custom task,
launch the CloupiaScript Interpreter, and supply the context variables that are defined for executing that
custom task.

When you launch the interpreter, it prompts you for values of the custom task input fields and populates the
input object of the task. All the variables that are available when you actually execute the custom task are
made available.

To open the CloupiaScript interpreter with a context available, do the following:

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Tasks.
Step 3 Click the row with the custom task for which you need to test the JavaScript.
Step 4 Click Launch Interpreter with Context.

The Launch Interpreter screen appears with input fields to collect input values for the custom task. The input fields are
those defined for the custom task you have selected.

Step 5 Enter input values in the screen.
Step 6 Click Submit.
Step 7 Click Submit.

The Cloupia Script Interpreter screen appears.
Step 8 Enter a line of JavaScript code in the text input field at the bottom of the Cloupia Script Interpreter field.
Step 9 Press Enter.

The code is executed and the result is displayed. If there is any syntax error in the code, the error is displayed.

Example: Using the CloupiaScript Interpreter
The printObj( ) function prints all the properties and methods it contains. Call functiontoString() to find
more details about a function. The following example shows how to examine the ReportContext class and
get details about ReportContext.setCloudName().

session started
> importPackage(com.cloupia.model.cIM);
> var ctx = new ReportContext();
> printObj(ctx);
properties =
cloudName:null
class:class com.cloupia.model.cIM.ReportContext
filterId:null
id:null
targetCuicId:null
type:0
ids:[Ljava.lang.String;@4de27bc5
methods =
setIds
jdoReplaceField

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
12

CloupiaScript Interpreter
Starting the CloupiaScript Interpreter with a Context



jdoReplaceFields
toString
getCloudName
wait
getClass
jdoReplaceFlags
hashCode
jdoNewInstance
jdoReplaceStateManager
jdoIsDetached
notify
jdoGetVersion
jdoProvideField
jdoCopyFields
jdoGetObjectId
jdoGetPersistenceManager
jdoCopyKeyFieldsToObjectId
jdoGetTransactionalObjectId
getType
getFilterId
setType
jdoIsPersistent
equals
setCloudName
jdoNewObjectIdInstance
jdoIsDeleted
getTargetCuicId
setId
setFilterId
jdoProvideFields
jdoMakeDirty
jdoIsNew
requiresCloudName
getIds
notifyAll
jdoIsTransactional
getId
jdoReplaceDetachedState
jdoIsDirty
setTargetCuicId
jdoCopyKeyFieldsFromObjectId

> var func = ctx.setCloudName;
> func
void setCloudName(java.lang.String)
> func.toString();
function setCloudName() {/*
void setCloudName(java.lang.String)
*/}

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
13

CloupiaScript Interpreter
Example: Using the CloupiaScript Interpreter



Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
14

CloupiaScript Interpreter
Example: Using the CloupiaScript Interpreter



C H A P T E R 4
Creating Custom Workflow Tasks

• About Custom Workflow Inputs, on page 15
• Prerequisites, on page 15
• Creating a Custom Workflow Input, on page 16
• Custom Input Validation, on page 16
• Cloning a Custom Workflow Input, on page 17
• Creating a Custom Task, on page 17
• Custom Tasks and GitHub Repositories, on page 20
• Importing Workflows, Custom Tasks, Script Modules, and Activities, on page 22
• Exporting Workflows, Custom Tasks, Script Modules, and Activities, on page 24
• Cloning a Custom Workflow Task from the Task Library, on page 25
• Cloning a Custom Workflow Task, on page 25
• Controlling Custom Workflow Task Inputs, on page 26
• Example: Using Controllers, on page 28
• Using Output of a Previous Task in a Workflow, on page 30
• Example: Creating and Running a Custom Task, on page 30

About Custom Workflow Inputs
Cisco UCSDirector Orchestrator offers a list of well-defined input types for custom tasks. Cisco UCSDirector
also enables you to create a customized workflow input for a custom workflow task. You can create a new
input type by cloning and modifying an existing input type.

Prerequisites
Before writing custom tasks, you must meet the following prerequisites:

• Cisco UCS Director is installed and running on your system. For more information about how to install
Cisco UCS Director, refer to the Cisco UCS Director Installation and Configuration Guide.

• You have a login with administrator privileges. You must use this login when you create and modify
custom tasks.

• You must have the write CloupiaScript permission to write a custom task using CloupiaScript.

• Youmust have the execute CloupiaScript permission to execute a custom task created using CloupiaScript.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
15

https://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-installation-guides-list.html


Creating a Custom Workflow Input
You can create a custom input for a custom workflow task. The input is displayed in the list of input types
that you can map to custom task inputs when you create a custom workflow task.

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Inputs.
Step 3 Click Add.
Step 4 On the Add Custom Workflow Input screen, complete the following fields:

• Custom Input Type Name—A unique name for the custom input type.

• Input Type—Check a type of input and click Select. Based on the selected input, other fields appear. For example,
when you choose Email Address as the input type, a list of values (LOV) appears. Use the new fields to limit the
values of the custom input.

Step 5 Click Submit.
The custom workflow input is added to Cisco UCS Director and is available in the list of input types.

Custom Input Validation
Customers may need to validate workflow inputs using external resources. Out of the box, Cisco UCSDirector
cannot meet every customer’s validation needs. To fill this gap, Cisco UCS Director provides an option to
validate any input at runtime using a customer-provided script. The script can flag errors in the input and can
require valid input before running a service request. The script can be written in any language, can access any
external resource, and has access to all the workflow input values.

You can write custom validation scripts using JavaScript, Python, a bash shell script, or any other scripting
language.

The following example validation scripts can be found in Cisco UCS Director in Orchestration > Custom
Workflow Inputs:

• example-bash-script-validator

• example-javascript-validator

• example-python-validator

You can copy or clone the example scripted workflow inputs to create a new validated input. You can also
use the example scripted workflow inputs as a guide for developing your own scripts.

Regardless of the scripting language, the following features and rules apply to scripted custom input validation:

• All scripted validation is run in a separate process, so that a failing validation process does not affect the
Cisco UCS Director process.

• Only generic text inputs can be validated using scripts.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
16

Creating Custom Workflow Tasks
Creating a Custom Workflow Input



• Validation scripts are run one at a time, in sequence, in the same order in which the inputs appear in the
workflow inputs page. A separate process is launched for each validated input.

• A nonzero return value from the script indicates a failed validation. Optionally, you can pass an error
message back to the workflow input form.

• All workflow inputs are passed to the validation script in two ways:

• As arguments to the script in the form "key"="value".

• As environment variables to the script process. The variable names are the input labels.

For example, if the workflow has an input labeled as Product-Code and the input value is AbC123,
the variable is passed to the validator script as "Product-Code"="AbC123".

These input variables can be used by the script if necessary to implement the validation. Exception: Table
values contain only the row number of the table selection, and are therefore probably useless.

• The Edit Custom Workflow Input page makes the script available in the Custom Task editor. Syntax is
highlighted for all languages. Syntax errors are checked only for JavaScript validators.

Cloning a Custom Workflow Input
You can use an existing custom workflow input in Cisco UCS Director to create a custom workflow input.

Before you begin

A custom workflow input must be available in Cisco UCS Director.

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Inputs.
Step 3 Click the row with the custom workflow input to be cloned.

The Clone icon appears at the top of the custom workflow inputs table.
Step 4 Click Clone.
Step 5 Enter the custom input type name.
Step 6 Use the other controls in the Clone Custom Workflow Input screen to customize the new input.
Step 7 Click Submit.

The custom workflow task input is cloned after confirmation and is available for use in the custom workflow task.

Creating a Custom Task
To create a custom task, do the following:

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Tasks.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
17

Creating Custom Workflow Tasks
Cloning a Custom Workflow Input



Step 3 Click Add.
Step 4 On the Add Custom Workflow Task screen, complete the following fields:

• Task Name field—A unique name for the custom workflow task.

• Task Label field—A label to identify the custom workflow task.

• Register Under Category field—The workflow category under which the custom workflow task has to be
registered.

• Activate Task check box—If checked, the customworkflow task is registered with Orchestrator and is immediately
usable in workflows.

• Brief Description field—A description of the custom workflow task.

• Detailed Description field—A detailed description of the custom workflow task.

Step 5 Click Next.
The Custom Task Inputs screen appears.

Step 6 Click Add.
Step 7 On the Add Entry to Inputs screen, complete the following fields:

• Input Field Name field—A unique name for the field. The name must start with analphabetic character and must
not contain spaces or special characters.

• Input Field Label field—A label to identify the input field.

• Input Field Type drop-down list—Choose the data type of the input parameter.

• Map to Input Type (No Mapping) field—Choose a type of input to which this field can be mapped, if this field
that can be mapped from another task output or global workflow input.

• Mandatory check box— If checked, user must provide a value for this field.

• RBID field—Enter the RBID string for the field.

• Input Field Size drop-down list—Choose the field size for text and tabular inputs.

• Input Field Help field—(Optional) A description that is shown on when you hover the mouse over the field.

• Input Field Annotation field—(Optional) Hint text for the input field.

• Field Group Name field—If specified, all the fields with matching group names are put into the field group.

• TEXT FIELD ATTRIBUTES area—Complete the following fields when the input field type is text.

• Multiple Input check box—If checked, the input field accepts multiple values based on the input field type:

• For an LOV—The input field accepts multiple input values.

• For a text field—The input field becomes multi-line text field.

• Maximum Length of Input field—Specify the maximum number of characters that you can enter in the
input field.

• LOV ATTRIBUTES area—Complete the following fields when the input type is List of Values (LOV) or LOV
with Radio buttons.

• List of Values field—A comma-separated list of values for embedded LOVs.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
18

Creating Custom Workflow Tasks
Creating a Custom Task



• LOV Provider Name field—The name of the LOV provider for non-embedded LOVs.

• TABLE ATTRIBUTES area—Complete the following fields when the input field type is Table, Popup Table,
or Table with selection check box.

• Table Name field—A name of the tabular report for the table field types.

• FIELD INPUTVALIDATION area—One or more of the following fields is displayed depending on your selected
data type. Complete the fields to specify how the input fields are validated.

• Input Validator drop-down list—Choose a validator for the user input.

• Regular Expression field—A regular expression pattern to match the input value against.

• Regular Expression Message field—A message that displays when the regular expression validation fails.

• Minimum Value field—A minimum numeric value.

• Maximum Value field—A maximum numeric value.

• HIDE ON FIELD CONDITION area—Complete the following fields to set the condition to hide the field in a
form.

• Hide On Field Name field—An internal name to the field so the program that handles the form can identify
the field.

• Hide On Field Value field—The value that has to be sent once the form is submitted.

• Hide On Field Condition drop-down list—Choose a condition at which the field has to be hidden.

• HTML Help field—The help instructions for the hidden field.

Step 8 Click Submit.
The input entry is added to the table.

Step 9 Click Add to add more entry to inputs.
Step 10 When you are done adding inputs, click Next.

The Custom Workflow Tasks Outputs screen appears.
Step 11 Click Add.
Step 12 On the Add Entry to Outputs screen, complete the following fields:

• Output Field Name field —A unique name for the output field. It must start with an alphabetic character and
must not contain spaces or special characters.

• Output Field Description field —A description of the output field.

• Output Field Type field—Check a type of output. This type determines how the output can be mapped to other
task inputs.

Step 13 Click Submit.
The output entry is added to the table.

Step 14 Click Add to add more entry to outputs.
Step 15 Click Next

The Controller screen appears.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
19

Creating Custom Workflow Tasks
Creating a Custom Task



Step 16 (Optional) Click Add to add a controller.
Step 17 On the Add Entry to Controller screen, complete the following fields:

• Method drop-down list—Choose either a marshalling or unmarshalling method to customize the inputs and/or
outputs for the custom workflow task. The method can be one of the following:

• beforeMarshall—Use this method to add or set an input field and dynamically create and set the LOV on a
page (form).

• afterMarshall—Use this method to hide or unhide an input field.

• beforeUnmarshall—Use this method to convert an input value from one form to another form—for example,
when you want to encrypt a password before sending it to the database.

• afterUnmarshall—Use this method to validate a user input and set the error message on the page.

See Example: Using Controllers, on page 28.

• Script text area—For the method you chose from theMethod drop-down list, add the code for the GUI
customization script.

Click Add if you want to add code for more methods.Note

Step 18 Click Submit.
The controller is added to the table.

Step 19 Click Next.
The Script screen appears.

Step 20 From the Execution Language drop-down list, choose a language.
Step 21 In the Script field, enter the CloupiaScript code for the custom workflow task.

The CloupiaScript code is validated when you enter the code. If there is any error in the code, an error icon
(red cross) is displayed next to the line number. Hover the mouse over the error icon to view the error message
and the solution.

Note

Step 22 Click Save Script.
Step 23 Click Submit.

The custom workflow task is created and is available for use in the workflow.

Custom Tasks and GitHub Repositories
When you create a custom task, rather than typing in the custom task code into the script window or cutting
and pasting code from a text editor, you can import the code from a file stored in a GitHub repository. To do
this, you:

1. Create one or more text files in a GitHub repository, either in github.com or a private enterprise GitHub
repository.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
20

Creating Custom Workflow Tasks
Custom Tasks and GitHub Repositories

github.com


Cisco UCS Director supports only GitHub (github.com or an enterprise GitHub instance). It does not support
other Git hosting services including BitBucket, GitLab, Perforce, or Codebase.

Note

2. Register the repository in Cisco UCS Director. See Adding a GitHub Repository in Cisco UCS Director,
on page 21.

3. Select the repository and specify the text file that contains the custom task script. See Downloading Custom
Task Script Code from a GitHub Repository, on page 21.

Adding a GitHub Repository in Cisco UCS Director
To register a GitHub repository in Cisco UCS Director, do the following:

Before you begin

Create a GitHub repository. The repository can be on any GitHub server, public or private that is accessible
from your Cisco UCS Director.

Check in one or more files containing JavaScript code for your custom tasks into your repository.

Step 1 Choose Administration > Integration.
Step 2 On the Integration page, clickManage Repositories.
Step 3 Click Add.
Step 4 On the Add Repository page, complete the required fields, including the following:

a) In the Repository Nickname field, enter a name to identify the repository within Cisco UCS Director.
b) In the Repository URL field, enter the URL of the GitHub repository.
c) In theBranch Name field, enter the name of the repository branch you want to use. The default name ismain branch.
d) In the Repository User field, enter the username for your GitHub account.
e) In the Repository Password field, enter the password for your GitHub account. (The password characters are not

shown.)
f) To default to this repository when you create a new custom task, checkMake this my default repository.
g) To test whether Cisco UCS Director can access the repository, click Test Connectivity.

The state of connectivity with the repository is displayed in a banner at the top of the page.

If you are unable to connect and communicate with the GitHub repository from Cisco UCS Director, update
Cisco UCS Director to access the Internet through a proxy server. See the Cisco UCS Director Administration
Guide.

Note

Step 5 When you are satisfied that the repository information is correct, click Submit.

Downloading Custom Task Script Code from a GitHub Repository
To create a new custom task by importing text from a GitHub repository, do the following:

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
21

Creating Custom Workflow Tasks
Adding a GitHub Repository in Cisco UCS Director

github.com
http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-maintenance-guides-list.html
http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-maintenance-guides-list.html


Before you begin

Create a GitHub repository and check in one or more text files containing the JavaScript code for your custom
tasks into your repository.

Add the GitHub repository to Cisco UCS Director. See Adding a GitHub Repository in Cisco UCS Director,
on page 21.

Step 1 On the Orchestration page, click Custom Workflow Tasks.
Step 2 Click Add.
Step 3 Complete the required fields on the Custom Task Information page. See Creating a Custom Task, on page 17.
Step 4 Complete the required fields on the Custom Task Inputs page. See Creating a Custom Task, on page 17.
Step 5 Complete the required fields on the Custom Task Outputs page. See Creating a Custom Task, on page 17.
Step 6 Complete the required fields on the Controller page. See Creating a Custom Task, on page 17.
Step 7 On the Script page, complete the required fields:

a) From the Execution Language drop-down list, select JavaScript.
b) Check Use Repository for Scripts to enable the custom task to use a script file from a repository. This enables you

to select the repository and specify the script file to use.
c) From the Select Repository drop-down list, select the GitHub repository containing the script files. For details on

how to add repositories, see Adding a GitHub Repository in Cisco UCS Director, on page 21.
d) Enter the full path to the script file in the Script filename text field.
e) To download the script, click Load Script.

The text from the file is copied in the Script text edit area.
f) Optionally, make changes to the downloaded script in the Script text edit area.
g) To save the script as it appears in the Script text edit area, click Save Script.

When you press Save Script, the script is saved to your current work session. You must click Submit to
save the script to the custom task that you are editing.

Note

Step 8 To save the custom task, click Submit.

If you made changes to the downloaded script in the Script text edit area, the changes are saved to the custom
task. No changes are saved to the GitHub repository. If you would like to discard the loaded script and enter
your own script, click Discard Script to clear the script window.

Note

What to do next

You can use the new custom task in a workflow.

Importing Workflows, Custom Tasks, Script Modules, and
Activities

To import artifacts into Cisco UCS Director, do the following:

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
22

Creating Custom Workflow Tasks
Importing Workflows, Custom Tasks, Script Modules, and Activities



Step 1 Choose Orchestration.
Step 2 On the Orchestration page, clickWorkflows.
Step 3 Click Import.
Step 4 On the Import screen, click Select a File.
Step 5 On the Choose File to Upload screen, choose the file to be imported. Cisco UCS Director import and export files have

a .wfdx file extension.
Step 6 Click Open.

When the file is uploaded, the File Upload screen displays File ready for use.
Step 7 Click Next.

The Import screen displays a list of Cisco UCS Director objects contained in the uploaded file.
Step 8 (Optional) Specify how objects are handled if they duplicate names already in the workflow folder. On the Import screen,

complete the following fields:

DescriptionName

Choose from the following options to specify how identically named workflows
are handled:

• Replace—Replace the existing workflow with the imported workflow.

• Keep Both—Import the workflow as a new version.

• Skip—Do not import the workflow.

Workflows

Choose from the following options to specify how identically named custom
tasks are handled:

• Replace

• Keep Both

• Skip

Custom Tasks

Choose from the following options to specify how identically named script
modules are handled:

• Replace

• Keep Both

• Skip

Script Modules

Choose from the following options to specify how identically named activities
are handled:

• Replace

• Keep Both

• Skip

Activities

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
23

Creating Custom Workflow Tasks
Importing Workflows, Custom Tasks, Script Modules, and Activities



DescriptionName

Check Import Workflows to Folder to import the workflows. If you do not
check Import Workflows to Folder and if no existing version of a workflow
exists, that workflow is not imported.

Import Workflows to Folder

Choose a folder into which to import the workflows. If you chose [New Folder..]
in the drop-down list, the New Folder field appears.

Select Folder

Enter the name of the new folder to create as your import folder.New Folder

Step 9 Click Import.

Exporting Workflows, Custom Tasks, Script Modules, and
Activities

To export artifacts from Cisco UCS Director, do the following:

Step 1 Click Export.
Step 2 On the Select Workflows screen, choose the workflows that you want to export.

Custom workflows, tasks, and scripts created in Cisco UCS Director before version 6.6 can fail to import if
they contain XML data.

Note

Step 3 Click Next.
Step 4 On the Select Custom Tasks screen, choose the custom tasks that you want to export.

The exported custom task contains all custom inputs that are used by that custom task.Note

Step 5 Click Next.
Step 6 On the Export: Select Script Modules screen, choose the script modules that you want to export.
Step 7 Click Next.
Step 8 On the Export: Select Activities screen, choose the activities that you want to export.
Step 9 Click Next.
Step 10 On the Export: Confirmation screen, complete the following fields:

DescriptionName

Your name or a note on who is responsible for the export.Exported By

Comments about this export.Comments

The name of the file on your local system. Type only the base filename; the file
type extension (.wfdx) is appended automatically.

Exported File Name

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
24

Creating Custom Workflow Tasks
Exporting Workflows, Custom Tasks, Script Modules, and Activities



Step 11 Click Export.

You are prompted to save the file.

Cloning a Custom Workflow Task from the Task Library
You can clone tasks in the task library to use in creating custom tasks. You can also clone a custom task to
create a custom task.

The cloned task is a framework with the same task inputs and outputs as the original task. However, the cloned
task is a framework only. This means that you must write all the functionality for the new task in CloupiaScript.

Note also that selection values for list inputs, such as dropdown lists and lists of values, are carried over to
the cloned task only if the list values are not system-dependent. Such things as names and IP addresses of
existing systems are system-dependent; such things as configuration options supported by Cisco UCSDirector
are not. For example, user groups, cloud names, and port groups are system-dependent; user roles, cloud types,
and port group types are not.

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Tasks.
Step 3 Click Clone From Task Library.
Step 4 On the Clone from Task Library screen, check the row with the task that you want to clone.
Step 5 Click Select.

A custom workflow task is created from the task library. The new custom task is the last custom task in the Custom
Workflow Tasks report. The new custom task is named after the cloned task, with the date appended.

Step 6 Click Submit.

What to do next

Edit the custom workflow task to ensure that the proper name and description are in place for the cloned task.

Cloning a Custom Workflow Task
You can use an existing custom workflow task in Cisco UCS Director to create a custom workflow task.

Before you begin

A custom workflow task must be available in Cisco UCS Director.

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Tasks.
Step 3 Click the row with the custom workflow task that you want to clone.

The Clone icon appears at the top of the custom workflow tasks table.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
25

Creating Custom Workflow Tasks
Cloning a Custom Workflow Task from the Task Library



Step 4 Click Clone.
Step 5 On the Clone Custom Workflow Task screen, update the required fields.
Step 6 Click Next.

The inputs defined for the custom workflow tasks appear.
Step 7 Click the row with the task input that you want to edit and click Edit to edit the task inputs.
Step 8 Click Add to add a task input entry.
Step 9 Click Next.

Edit the task outputs.
Step 10 Click Add to add a new output entry.
Step 11 Click Next.
Step 12 Edit the controller scripts. See Controlling Custom Workflow Task Inputs, on page 26.
Step 13 Click Next.
Step 14 To customize the custom task, edit the task script.
Step 15 Click Submit.

Controlling Custom Workflow Task Inputs
Using Controllers

You can modify the appearance and behavior of custom task inputs using the controller interface available in
Cisco UCS Director.

When to Use Controllers

Use controllers in the following scenarios:

• To implement complex show and hide GUI behavior including finer control of lists of values, tabular
lists of values, and other input controls displayed to the user.

• To implement complex user input validation logic.

With input controllers you can do the following:

• Show or hide GUI controls:You can dynamically show or hide various GUI fields such as checkboxes,
text boxes, drop-down lists, and buttons, based on conditions. For example, if a user selects UCSM from
a drop-down list, you can prompt for user credentials for Cisco UCSManager or change the list of values
(LOVs) in the drop-down list to shown only available ports on a server.

• Form field validation: You can validate the data entered by a user when creating or editing workflows
in theWorkflow Designer. For invalid data entered by the user, errors can be shown. The user input
data can be altered before it is persisted in the database or before it is persisted to a device.

• Dynamically retrieve a list of values: You can dynamically fetch a list of values from Cisco UCS
Director objects and use them to populate GUI form objects.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
26

Creating Custom Workflow Tasks
Controlling Custom Workflow Task Inputs



Marshalling and Unmarshalling GUI Form Objects

Controllers are always associated with a form in theWorkflow Designer's task inputs interface. There is a
one-to-one mapping between a form and a controller. Controllers work in two stages, marshalling and
unmarshalling. Both stages have two substages, before and after. To use a controller, you marshall (control
UI form fields) and/or unmarshall (validate user inputs) the related GUI form objects using the controller's
scripts.

The following table summarizes these stages.

Sub-stageStage

beforeMarshall—Used to add or set an input field
and dynamically create and set the LOV on a page
(form).

afterMarshall —Used to hide or unhide an input
field.

Marshalling—Used to hide and unhide form fields
and for advanced control of LOVs and tabular LOVs.

beforeUnmarshall—Used to convert an input value
from one form to another form, for example, to
encrypt the password before sending it to the database.

afterUnmarshall —Used to validate a user input
and set the error message on the page.

Unmarshalling - Used for form user input validation.

Building Controller Scripts

Controllers do not require any additional packages to be imported.

You do not pass parameters to the controller methods. Instead, the Cisco UCS Director framework makes the
following parameters available for use in marshalling and unmarshalling:

ExampleDescriptionParameter

page.setHidden(id + ".portList", true);
page.setValue(id + ".status", "No Port
is up. Port List is Hidden");

The page or form that contains all the task
inputs. You can use this parameter to do
the following:

• Get or set the input values in a GUI
form.

• Show or hide the inputs in a GUI
form.

Page

page.setValue(id + ".status", "No Port
is up. Port List is Hidden");// here
‘status’ is the name of the input
field.

The unique identifier of the form input
field. An id is generated by the framework
and can be used with the form input field
name.

id

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
27

Creating Custom Workflow Tasks
Controlling Custom Workflow Task Inputs



ExampleDescriptionParameter

pojo.setLunSize(asciiValue); //set the
value of the input field 'lunSize'

POJO (plain old Java object) is a Java bean
representing an input form. EveryGUI page
must have a corresponding POJO holding
the values from the form. The POJO is used
to persist the values to the database or to
send the values to an external device.

Pojo

See Example: Using Controllers, on page 28 for a working code sample that demonstrates the controller
functionality.

Example: Using Controllers
The following code example demonstrates how to implement the controller functionality in custom workflow
tasks using the various methods — beforeMarshall, afterMarshall, beforeUnmarshall and afterUnmarshall.

/*
Method Descriptions:

Before Marshall: Use this method to add or set an input field and dynamically create and
set the LOV on a page(form).
After Marshall: Use this method to hide or unhide an input field.
Before UnMarshall: Use this method to convert an input value from one form to another form,
for example, when you want to encrypt the password before sending it to the database.
After UnMarshall: Use this method to validate a user input and set the error message on the
page.

*/

//Before Marshall:

/*
Use the beforeMarshall method when there is a change in the input field or to dynamically
create LOVs and to set the new input field on the form before it gets loaded.
In the example below, a new input field 'portList' is added on the page before the form
is displayed in a browser.
*/
importPackage(com.cloupia.model.cIM);
importPackage(java.util);
importPackage(java.lang);

var portList = new ArrayList();
var lovLabel = "eth0";
var lovValue = "eth0";

var portListLOV = new Array();
portListLOV[0] = new FormLOVPair(lovLabel, lovValue);//create the lov input field
//the parameter 'page' is used to set the input field on the form
page.setEmbeddedLOVs(id + ".portList", portListLOV);// set the input field on the form
=============================================================================================================

//After Marshall :
/*
Use this method to hide or unhide an input field.
*/
page.setHidden(id + ".portList", true); //hide the input field 'portList'.
page.setValue(id + ".status", "No Port is up. Port List is Hidden");

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
28

Creating Custom Workflow Tasks
Example: Using Controllers



page.setEditable(id + ".status", false);

=============================================================================================================

//Before Unmarshall :

/*
Use the beforeUnMarshall method to read the user input and convert it to another form

before inserting into the database. For example, you can read the password and store the
password in the database after converting it into base64 encoding, or read the employee
name and convert to the employee Id when the employee name is sent to the database.

In the code example below the lun size is read and converted into an ASCII value.

*/
importPackage(org.apache.log4j);
importPackage(java.lang);
importPackage(java.util);

var size = page.getValue(id + ".lunSize");
var logger = Logger.getLogger("my logger");

if(size != null){
logger.info("Size value "+size);
if((new java.lang.String(size)).matches("\\d+")){

var byteValue = size.getBytes("US-ASCII"); //convert the
lun size and get the ASCII character array

var asciiValueBuilder = new StringBuilder();
for (var i = 0; i < byteValue.length; i++) {

asciiValueBuilder.append(byteValue[i]);
}
var asciiValue = asciiValueBuilder.toString()+" - Ascii

value"
//id + ".lunSize" is the identifier of the input field
page.setValue(id + ".lunSize",asciiValue); //the parameter

'page' is used to set the value on the input field .
pojo.setLunSize(asciiValue); //set the value on the pojo.

This pojo will be send to DB or external device.
}

}

=============================================================================================================
// After unMarshall :

/*
Use this method to validate and set an error message.
*/
importPackage(org.apache.log4j);
importPackage(java.lang);
importPackage(java.util);

//var size = pojo.getLunSize();
var size = page.getValue(id + ".lunSize");
var logger = Logger.getLogger("my logger");
logger.info("Size value "+size);
if (size > 50) { //validate the size

page.setError(id+".lunSize", "LUN Size can not be more than 50MB "); //set
the error message on the page

page.setPageMessage("LUN Size can not be more than 50MB");
//page.setPageStatus(2);

}

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
29

Creating Custom Workflow Tasks
Example: Using Controllers



Using Output of a Previous Task in a Workflow
You can use the output of a previous task as an input for an another task in a workflow directly from the script
of a custom task and an Execute Cloupia Script task of the task library.

To access this output, you can use one of the following ways:

• Retrieve the variable from the workflow context using the getInput() method.

• Refer to the output using system variable notation.

To retrieve an output using the context getInput() method, use:
var name = ctxt.getInput("PreviousTaskName.outputFieldName");

For example:
var name = ctxt.getInput("custom_task1_1684.NAME"); // NAME is the name of the task1 output
field that you want to access

To retrieve an output using system variable notation, use:
var name = "${PreviousTaskName.outputFieldName}";

For example:
var name = "${custom_task1_1684.NAME}"; // NAME is the name of the task1 output field that
you want to access

Example: Creating and Running a Custom Task
To create a custom task, do the following:

Step 1 Choose Orchestration.
Step 2 Click Custom Workflow Tasks.
Step 3 Click Add and key in the custom task information.
Step 4 Click Next.
Step 5 Click + and add the input details.
Step 6 Click Submit.
Step 7 Click Next.

The Custom Task Outputs screen is displayed.
Step 8 Click + and add the output details for the custom task.
Step 9 Click Next.

The Controller screen is displayed.
Step 10 Click + and add the controller details for the custom task.
Step 11 Click Next.

The Script screen is displayed.
Step 12 Select JavaScript as the execution language and enter the following script to execute.

logger.addInfo("Hello World!");
logger.addInfo("Message "+input.message);

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
30

Creating Custom Workflow Tasks
Using Output of a Previous Task in a Workflow



wheremessage is the input field name.

Step 13 Click Save Script.
Step 14 Click Submit.

The custom task is defined and added to the custom tasks list.
Step 15 On the Orchestration page, clickWorkflows.
Step 16 Click Add to define a workflow, and define the workflow inputs and outputs.

Once the workflow inputs and outputs are defined, use the Workflow Designer to add a workflow task to the workflow.
Step 17 Double-click a workflow to open the workflow in theWorkflow Designer screen.
Step 18 On the left side of the Workflow Designer, expand the folders and choose a custom task (for example, 'Hello world

custom task').
Step 19 Drag and drop the chosen task to the workflow designer.
Step 20 Complete the fields in the Add Task (<Task Name>) screen.
Step 21 Connect the task to the workflow. See Cisco UCS Director Orchstration Guide.
Step 22 Click Validate workflow.
Step 23 Click Execute Now and click Submit.
Step 24 See the log messages in the Service Request log window.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
31

Creating Custom Workflow Tasks
Example: Creating and Running a Custom Task



Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
32

Creating Custom Workflow Tasks
Example: Creating and Running a Custom Task



C H A P T E R 5
Managing Reports

• Accessing Reports, on page 33
• Emailing Reports, on page 35

Accessing Reports
You can access reports using CloupiaScript. You can use the report data to make dynamic decisions for
subsequent tasks.

For example, to allocate an unassociated Cisco UCS B-Series Blade Server that is greater than 32GB, use the
following script to query the list of all Cisco UCS servers that are managed by a specific Cisco UCSManager.
The script shows how to filter a subset of values selectively. The getReportView(reportContext, reportName)

function takes reportContext and reportName as arguments and returns the TableView object which displays
the content in a table format.
importPackage(java.lang);
importPackage(java.util);
importPackage(com.cloupia.lib.util.managedreports);

function getReport(reportContext, reportName)
{

var report = null;
try
{

report = ctxt.getAPI().getConfigTableReport(reportContext, reportName);
} catch(e)
{
}

if (report == null)
{

return ctxt.getAPI().getTabularReport(reportName, reportContext);
} else
{

var source = report.getSourceReport();
return ctxt.getAPI().getTabularReport(source, reportContext);

}
}

function getReportView(reportContext, reportName)
{

var report = getReport(reportContext, reportName);

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
33



if (report == null)
{

logger.addError("No such report exists for the specified context "+reportName);

return null;
}

return new TableView(report);
}

// following are only sample values and need to be modified based on actual UCSM account
name
var ucsmAccountName = "ucs-account-1";

// report name is obtained from Report Meta. No need to change unless you need to access a
different report
var reportName = "UcsController.allservers.table_config";

var repContext = util.createContext("ucsm", null, ucsmAccountName);
// Enable Developer Menu in UCSD and find reportName in the Report Metadata for the specific
report
// Creating a ReportContext
// @param contextName
// Refer to UCSD API Guide for the available contexts
// @param cloud
// should be null unless contextName is "cloud" or "host node"

// @param value
// identifier of the object that is going to be referenced

Report var report = getReportView(repContext, reportName);

// Get only the rows for which Server Type column value is B-Series
report = report.filterRowsByColumn("Server Type", "B-Series", false);

// now look for unassociated servers only
report = report.filterRowsByColumn("Operation State", "unassociated", false);

// Make sure servers are actually in available state
report = report.filterRowsByColumn("Availability", "available", false);

var matchingIds = [];
var count = 0;

// Now look for Servers with memory of 32 GB or more
for (var i=0; i<report.rowCount(); i++)
{

var memory = Integer.parseInt(report.getColumnValue(i, "Total Memory (MB)"));

logger.addDebug("Possible Server "+report.getColumnValue(i, "ID")+", mem="+memory);

if (memory >= 32*1024)
{

matchingIds[count++] = report.getColumnValue(i, "ID");
}

}

if (count == 0)
{

ctxt.setFailed("No servers matched the criteria");
ctxt.exit();

}

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
34

Managing Reports
Accessing Reports



// Now randomly pick one of the item from the filtered list
var id = matchingIds[Math.round(Math.random()*count)];
logger.addInfo("Allocated server "+id);

// Save the Server-ID to the global inputs
ctxt.updateInput("SELECTED_UCS_SERVER_ID", id);

Accessing Tabular Reports

If you use the getTabularReport(reportName, reportContext) API to access a tabular report, you can
view the report details in the user interface (UI) in one of the following ways:

• Reports Customization—To access the reports customization tab, choose Administration > User
Interface Settings and click Reports Customization. The customization report displays the report
details such as menu, context, report type, and so on. To customize the table columns, click the down
arrow that appears on the column header when you place the cursor. From the drop-down menu, choose
Cloumns and check the columns to be shown. For example, to display the report ID, check ID.

• Report Metadata—The report metadata link appears in the UI only when the developer menu is enabled.

Some of the important report details are:

• API report ID—You can use the API report ID column to get the value for the reportID parameter to use
in the REST URL when you use the userAPIGetTabularReport API. This REST API is used to retrieve
the tabular report from a web browser or other REST client application.

• ID—The ID column displays the report name. You can use the ID column to get the reportName parameter
when you use the getTabularReport API in CloupiaScript. This parameter is also applicable for the
getConfigTableReport API.

• context—To construct the ReportContext, you need two input parameters: contextName and contextValue.
For regular contexts, use util.createContext ("contextName", null, "instanceName"). For example,
util.createContext("vm",null, vmId), where vmId is the integer VM ID value to uniquely identify
a VM in UCS Director. For cloud contexts, use
util.createContext("contextName","cloudInstanceName", null) , or
util.createContext("contextName",null,"cloudInstanceName"). For example,
util.createContext("cloud","All Clouds",null) , or util.createContext("cloud", null, "All

Clouds").

Emailing Reports
You can use CloupiaScript to email a report to a user. To email this report periodically, set up a workflow
schedule for this workflow at the desired frequency.

The following script enables user to choose a report name from the report list and email the report to the
specified email address.
importPackage(java.util);
importPackage(java.lang);
importPackage(java.io);
importPackage(com.cloupia.model.cEvent.notify);
importPackage(com.cloupia.model.cIM);
importPackage(com.cloupia.lib.util.mail);
importPackage(com.cloupia.fw.objstore);
importPackage(com.cloupia.lib.util.managedreports);

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
35

Managing Reports
Emailing Reports



importPackage(com.cloupia.lib.util);
importPackage(com.cloupia.service.cIM.inframgr);
importPackage(org.apache.commons.httpclient);
importPackage(org.apache.commons.httpclient.cookie);
importPackage(org.apache.commons.httpclient.methods);
importPackage(org.apache.commons.httpclient.auth);
importPackage(com.cloupia.model.cEvent.notify);

function getMailSettings()
{

return ObjStoreHelper.getStore((new MailSettings()).getClass()).getSingleton();
}
function getReport(reportContext, reportName)
{

var report = null;
try
{

report = ctxt.getAPI().getConfigTableReport(reportContext, reportName);
} catch(e)

{
}
if (report == null)
{

return ctxt.getAPI().getTabularReport(reportName, reportContext);
} else
{

var source = report.getSourceReport();
return ctxt.getAPI().getTabularReport(source, reportContext);

}
}
function getReportView(reportContext, reportName)
{

var report = getReport(reportContext, reportName);
if (report == null)
{

logger.addError("No such report exists for the specified context "+reportName);
return null;

}
return new TableView(report);

}
var ucsmAccountName = ctxt.getInput("Account_Name");
var reportName = ctxt.getInput("REPORT_NAME");

var reportContextType=ReportContext.getDynamicContextLevel("apic_controller");
var repContext = util.createContextByType(reportContextType, null, ucsmAccountName);

var report = getReportView(repContext, reportName);
logger.addInfo("Report Context Type is ::::::::::: " + reportContextType);
//var repContext = util.createContext("apic_controller", null, ucsmAccountName);
//var report = getReportView(repContext, reportName);
var numRowsFound = report.rowCount();
logger.addInfo("Number of Rows found: " + numRowsFound);
var toEmail = [ ctxt.getInput("Email Address") ];
var message = new EmailMessageRequest();

message.setToAddrs(toEmail);
message.setSubject("APIC Report : "+ ucsmAccountName);
message.setFromAddress("no-reply@cisco.com");
var buffer = new StringWriter();
var printer = new PrintWriter(buffer);
var formatter = new com.cloupia.lib.util.managedreports.Formatter(new File("."), printer);

formatter.printTable(report);

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
36

Managing Reports
Emailing Reports



printer.close();
var body = "<head><style type='text/css'>";
body = body + "table { font-family: Verdana, Geneva, sans-serif; font-size: 12px; border:
thin solid #039; border-spacing: 0; background: #ffffff; } ";
body = body + " th { background-color: #6699FF; color: white; font-family: Verdana, Geneva,
sans-serif; font-size: 10px; font-weight: bold; border-color: #CCF; border-style: solid;
border-width: 1px 1px 0 0; margin: 0; padding: 5px; } ";
body = body + " td { font-family: Verdana, Geneva, sans-serif; font-size: 10px; border-color:
#CCF; border-style: solid; border-width: 1px 1px 0 0; margin: 0; padding: 5px; background:
#ffffff; }";
body = body + "</style></head>";
body = body+ "<body><h1>APIC Report</h1><br>" + buffer.toString();

message.setMessageBody(body);
logger.addInfo("Sending email");
MailManager.sendEmail("APIC Report", getMailSettings(), message);

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
37

Managing Reports
Emailing Reports



Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
38

Managing Reports
Emailing Reports



C H A P T E R 6
Best Practices

• Creating a Rollback Script, on page 39

Creating a Rollback Script
When you create a custom task script, it is good practice to create a corresponding rollback script. The rollback
script undoes whatever change was made in the custom task script. For example, if the custom task creates a
resource, the rollback script should remove the resource.

Of course, many rollback scenarios require information about the state of the system before the custom task
was executed. The CloupiaScript library contains a ChangeTracker API to enable you to reverse the effects
of a custom task. Using the ChangeTracker API, you create an UndoableResource object that collects state
information before creating a resource. During rollback, the UndoableResource uses this information to restore
the resource to its previous state.

The ChangeTracker API contains two methods to enable rolling back of modification and deletion of a
resource, respectively:

• ChangeTracker.undoableResourceModified()

• ChangeTracker.undoableResourceDeleted()

For an example of how to use the ChangeTracker API to create a rollback script, see the Cisco UCS Director
CloupiaScript Cookbook available at the following URL: http://www.cisco.com/c/en/us/support/
servers-unified-computing/ucs-director/products-programming-reference-guides-list.html.

Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
39

http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-programming-reference-guides-list.html
http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-programming-reference-guides-list.html


Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
40

Best Practices
Creating a Rollback Script


	Cisco UCS Director Custom Task Getting Started Guide, Release 6.6
	Full Cisco Trademarks with Software License
	Contents
	Preface
	Audience
	Conventions
	Related Documentation
	Documentation Feedback
	Obtaining Documentation and Submitting a Service Request

	New and Changed Information for This Release
	New and Changed Information for This Release

	Overview of Custom Tasks
	Why Use Custom Tasks
	How Custom Tasks Work
	How to Use Custom Tasks
	Changes to CloupiaScript due to JDK Upgrade
	Guidelines for Using API Operations from CloupiaScript

	CloupiaScript Interpreter
	About the CloupiaScript Interpreter
	Starting the CloupiaScript Interpreter
	Starting the CloupiaScript Interpreter with a Context
	Example: Using the CloupiaScript Interpreter

	Creating Custom Workflow Tasks
	About Custom Workflow Inputs
	Prerequisites
	Creating a Custom Workflow Input
	Custom Input Validation
	Cloning a Custom Workflow Input
	Creating a Custom Task
	Custom Tasks and GitHub Repositories
	Adding a GitHub Repository in Cisco UCS Director
	Downloading Custom Task Script Code from a GitHub Repository

	Importing Workflows, Custom Tasks, Script Modules, and Activities
	Exporting Workflows, Custom Tasks, Script Modules, and Activities
	Cloning a Custom Workflow Task from the Task Library
	Cloning a Custom Workflow Task
	Controlling Custom Workflow Task Inputs
	Example: Using Controllers
	Using Output of a Previous Task in a Workflow
	Example: Creating and Running a Custom Task

	Managing Reports
	Accessing Reports
	Emailing Reports

	Best Practices
	Creating a Rollback Script


