IPv6 Multicast: PIM Source-Specific Multicast
|
|||||||||||||
Contents
IPv6 Multicast: PIM Source-Specific MulticastLast Updated: July 17, 2012
The PIM source-specific multicast (SSM) routing protocol supports SSM implementation and is derived from PIM-SM. However, unlike PIM-SM data from all multicast sources are sent when there is a PIM join, the SSM feature forwards datagram traffic to receivers from only those multicast sources that the receivers have explicitly joined, thus optimizing bandwidth utilization and denying unwanted Internet broadcast traffic.
Finding Feature InformationYour software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Information About IPv6 Multicast: PIM Source-Specific MulticastIPv6 Multicast Routing ImplementationCisco software supports the following protocols to implement IPv6 multicast routing:
The figure below shows where MLD and PIM-SM operate within the IPv6 multicast environment. Protocol Independent MulticastProtocol Independent Multicast (PIM) is used between devices so that they can track which multicast packets to forward to each other and to their directly connected LANs. PIM works independently of the unicast routing protocol to perform send or receive multicast route updates like other protocols. Regardless of which unicast routing protocols are being used in the LAN to populate the unicast routing table, Cisco IOS PIM uses the existing unicast table content to perform the Reverse Path Forwarding (RPF) check instead of building and maintaining its own separate routing table. You can configure IPv6 multicast to use either a PIM- Sparse Mode (SM) or PIM-Source Specific Multicast (SSM) operation, or you can use both PIM-SM and PIM-SSM together in your network. PIM-Source Specific MulticastPIM-SSM is the routing protocol that supports the implementation of SSM and is derived from PIM-SM. However, unlike PIM-SM where data from all multicast sources are sent when there is a PIM join, the SSM feature forwards datagram traffic to receivers from only those multicast sources that the receivers have explicitly joined, thus optimizing bandwidth utilization and denying unwanted Internet broadcast traffic. Further, instead of the use of RP and shared trees, SSM uses information found on source addresses for a multicast group. This information is provided by receivers through the source addresses relayed to the last-hop devices by MLD membership reports, resulting in shortest-path trees directly to the sources. In SSM, delivery of datagrams is based on (S, G) channels. Traffic for one (S, G) channel consists of datagrams with an IPv6 unicast source address S and the multicast group address G as the IPv6 destination address. Systems will receive this traffic by becoming members of the (S, G) channel. Signaling is not required, but receivers must subscribe or unsubscribe to (S, G) channels to receive or not receive traffic from specific sources. MLD version 2 is required for SSM to operate. MLD allows the host to provide source information. Before SSM will run with MLD, SSM must be supported in the Cisco IPv6 device, the host where the application is running, and the application itself. PIM Shared Tree and Source Tree (Shortest-Path Tree)By default, members of a group receive data from senders to the group across a single data distribution tree rooted at the RP. This type of distribution tree is called shared tree or rendezvous point tree (RPT), as illustrated in the figure below. Data from senders is delivered to the RP for distribution to group members joined to the shared tree. If the data threshold warrants, leaf devices on the shared tree may initiate a switch to the data distribution tree rooted at the source. This type of distribution tree is called a shortest path tree or source tree. By default, the software switches to a source tree upon receiving the first data packet from a source. The following process details the move from shared tree to source tree:
Join and prune messages are sent for sources and RPs. They are sent hop-by-hop and are processed by each PIM device along the path to the source or RP. Register and register-stop messages are not sent hop-by-hop. They are sent by the designated router (DR) that is directly connected to a source and are received by the RP for the group. Reverse Path ForwardingReverse-path forwarding is used for forwarding multicast datagrams. It functions as follows:
PIM uses both source trees and RP-rooted shared trees to forward datagrams; the RPF check is performed differently for each, as follows:
Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes. (S, G) joins (which are source-tree states) are sent toward the source. (*, G) joins (which are shared-tree states) are sent toward the RP. How to Configure IPv6 Multicast: PIM Source-Specific Multicast
Configuring PIM OptionsSUMMARY STEPS
DETAILED STEPS Resetting the PIM Traffic CountersIf PIM malfunctions, or in order to verify that the expected number of PIM packets are received and sent, clear PIM traffic counters. Once the traffic counters are cleared, you can verify that PIM is functioning correctly and that PIM packets are being received and sent correctly. DETAILED STEPS Clearing the PIM Topology Table to Reset the MRIB ConnectionNo configuration is necessary to use the MRIB. However, users may in certain situations want to clear the PIM topology table in order to reset the MRIB connection and verify MRIB information. DETAILED STEPS Configuration Examples for IPv6 Multicast: PIM Source-Specific Multicast
Example: Displaying IPv6 PIM Topology InformationDevice# show ipv6 pim topology
IP PIM Multicast Topology Table
Entry state:(*/S,G)[RPT/SPT] Protocol Uptime Info
Entry flags:KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive,
RA - Really Alive, LH - Last Hop, DSS - Don't Signal Sources,
RR - Register Received, SR - Sending Registers, E - MSDP External,
DCC - Don't Check Connected
Interface state:Name, Uptime, Fwd, Info
Interface flags:LI - Local Interest, LD - Local Dissinterest,
II - Internal Interest, ID - Internal Dissinterest,
LH - Last Hop, AS - Assert, AB - Admin Boundary
(*,FF05::1)
SM UP:02:26:56 JP:Join(now) Flags:LH
RP:2001:DB8:1:1:2
RPF:Ethernet1/1,FE81::1
Ethernet0/1 02:26:56 fwd LI LH
(2001:DB8:1:1:200,FF05::1)
SM UP:00:00:07 JP:Null(never) Flags:
RPF:Ethernet1/1,FE80::30:1:4
Ethernet1/1 00:00:07 off LI
Example: Displaying Information About PIM Traffic
Device# show ipv6 pim traffic
PIM Traffic Counters
Elapsed time since counters cleared:00:05:29
Received Sent
Valid PIM Packets 22 22
Hello 22 22
Join-Prune 0 0
Register 0 0
Register Stop 0 0
Assert 0 0
Bidir DF Election 0 0
Errors:
Malformed Packets 0
Bad Checksums 0
Send Errors 0
Packet Sent on Loopback Errors 0
Packets Received on PIM-disabled Interface 0
Packets Received with Unknown PIM Version 0
Additional ReferencesRelated DocumentsMIBsTechnical Assistance
Feature Information for IPv6 Multicast: PIM Source-Specific MulticastThe following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. © 2012 Cisco Systems, Inc. All rights reserved.
|
|||||||||||||