- BGP Support for 4-byte ASN
- BGP Support for Dual AS Configuration for Network AS Migrations
- BGP Dynamic Neighbors
- BGP Graceful Restart per Neighbor
- BGP Support for Next-Hop Address Tracking
- BGP Support for the L2VPN Address Family
- BGP Event-Based VPN Import
- BGP VPLS Auto Discovery Support on Route Reflector
BGP Dynamic Neighbors
BGP dynamic neighbor support allows BGP peering to a group of remote neighbors that are defined by a range of IP addresses. Each range can be configured as a subnet IP address. BGP dynamic neighbors are configured using a range of IP addresses and BGP peer groups.
Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About BGP Dynamic Neighbors
BGP Dynamic Neighbors
Support for the BGP Dynamic Neighbors feature was introduced in Cisco IOS Release 12.2(33)SXH on the Cisco Catalyst 6500 series switches. BGP dynamic neighbor support allows BGP peering to a group of remote neighbors that are defined by a range of IP addresses. Each range can be configured as a subnet IP address. BGP dynamic neighbors are configured using a range of IP addresses and BGP peer groups.
After a subnet range is configured for a BGP peer group and a TCP session is initiated by another router for an IP address in the subnet range, a new BGP neighbor is dynamically created as a member of that group. After the initial configuration of subnet ranges and activation of the peer group (referred to as a listen range group ), dynamic BGP neighbor creation does not require any further CLI configuration on the initial router. Other routers can establish a BGP session with the initial router, but the initial router need not establish a BGP session to other routers if the IP address of the remote peer used for the BGP session is not within the configured range.
To support the BGP Dynamic Neighbors feature, the output for the show ip bgp neighbors, show ip bgp peer-group, and show ip bgp summary commands was updated to display information about dynamic neighbors.
A dynamic BGP neighbor will inherit any configuration for the peer group. In larger BGP networks, implementing BGP dynamic neighbors can reduce the amount and complexity of CLI configuration and save CPU and memory usage. Only IPv4 peering is supported.
How to Configure BGP Dynamic Neighbors
Implementing BGP Dynamic Neighbors Using Subnet Ranges
In Cisco IOS Release 12.2(33)SXH, support for BGP dynamic neighbors was introduced. Perform this task to implement the dynamic creation of BGP neighbors using subnet ranges.
In this task, a BGP peer group is created on Router B in the figure below, a global limit is set on the number of dynamic BGP neighbors, and a subnet range is associated with a peer group. Configuring the subnet range enables the dynamic BGP neighbor process. The peer group is added to the BGP neighbor table of the local router, and an alternate autonomous system number is also configured. The peer group is activated under the IPv4 address family.
The next step is to move to another router--Router E in the figure below--where a BGP session is started and the neighbor router, Router B, is configured as a remote BGP peer. The peering configuration opens a TCP session and triggers Router B to create a dynamic BGP neighbor because the IP address that starts the TCP session (192.168.3.2) is within the configured subnet range for dynamic BGP peers. The task moves back to the first router, Router B, to run three show commands that have been modified to display dynamic BGP peer information.
Figure 1 | BGP Dynamic Neighbor Topology |
This task requires Cisco IOS Release 12.2(33)SXH, or a later release, to be running.
Note |
This task supports only IPv4 BGP peering. |
DETAILED STEPS
Examples
The following output examples were taken from Router B in the figure above after the appropriate configuration steps in this task were completed on both Router B and Router E.
The following output from the show ip bgp summary command shows that the BGP neighbor 192.168.3.2 was dynamically created and is a member of the listen range group, group192. The output also shows that the IP prefix range of 192.168.0.0/16 is defined for the listen range named group192.
Router# show ip bgp summary
BGP router identifier 192.168.3.1, local AS number 45000
BGP table version is 1, main routing table version 1
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
*192.168.3.2 4 50000 2 2 0 0 0 00:00:37 0
* Dynamically created based on a listen range command
Dynamically created neighbors: 1/(200 max), Subnet ranges: 1
BGP peergroup group192 listen range group members:
192.168.0.0/16
The following output from the show ip bgp peer-group command shows information about the listen range group, group192 that was configured in this task:
Router# show ip bgp peer-group group192
BGP peer-group is group192, remote AS 40000
BGP peergroup group192 listen range group members:
192.168.0.0/16
BGP version 4
Default minimum time between advertisement runs is 30 seconds
For address family: IPv4 Unicast
BGP neighbor is group192, peer-group external, members:
*192.168.3.2
Index 0, Offset 0, Mask 0x0
Update messages formatted 0, replicated 0
Number of NLRIs in the update sent: max 0, min 0
The following sample output from the show ip bgp neighbors command shows that the neighbor 192.168.3.2 is a member of the peer group, group192, and belongs to the subnet range group 192.168.0.0/16, which shows that this peer was dynamically created:
Router# show ip bgp neighbors 192.168.3.2
BGP neighbor is *192.168.3.2, remote AS 50000, external link
Member of peer-group group192 for session parameters
Belongs to the subnet range group: 192.168.0.0/16
BGP version 4, remote router ID 192.168.3.2
BGP state = Established, up for 00:06:35
Last read 00:00:33, last write 00:00:25, hold time is 180, keepalive intervals
Neighbor capabilities:
Route refresh: advertised and received(new)
Address family IPv4 Unicast: advertised and received
Message statistics:
InQ depth is 0
OutQ depth is 0
Sent Rcvd
Opens: 1 1
Notifications: 0 0
Updates: 0 0
Keepalives: 7 7
Route Refresh: 0 0
Total: 8 8
Default minimum time between advertisement runs is 30 seconds
For address family: IPv4 Unicast
BGP table version 1, neighbor version 1/0
Output queue size : 0
Index 1, Offset 0, Mask 0x2
1 update-group member
group192 peer-group member
.
.
.
Configuration Examples for BGP Dynamic Neighbors
Example: Implementing BGP Dynamic Neighbors Using Subnet Ranges
In the following example, two BGP peer groups are created on Router B in the figure below, a global limit is set on the number of dynamic BGP neighbors, and a subnet range is associated with a peer group. Configuring the subnet range enables the dynamic BGP neighbor process. The peer groups are added to the BGP neighbor table of the local router, and an alternate autonomous system number is also configured for one of the peer groups, group192. The subnet range peer groups and a standard BGP peer are then activated under the IPv4 address family.
The configuration moves to another router--Router A in the figure below--where a BGP session is started and the neighbor router, Router B, is configured as a remote BGP peer. The peering configuration opens a TCP session and triggers Router B to create a dynamic BGP neighbor because the IP address that starts the TCP session (192.168.1.2) is within the configured subnet range for dynamic BGP peers.
A third router--Router E in the figure below--also starts a BGP peering session with Router B. Router E is in the autonomous system 50000, which is the configured alternate autonomous system. Router B responds to the resulting TCP session by creating another dynamic BGP peer.
This example concludes with the output of the show ip bgp summary command entered on Router B.
Figure 2 | BGP Dynamic Neighbor Topology |
Router B
enable configure terminal router bgp 45000 bgp log-neighbor-changes bgp listen limit 200 bgp listen range 172.21.0.0/16 peer-group group172 bgp listen range 192.168.0.0/16 peer-group group192 neighbor group172 peer-group neighbor group172 remote-as 45000 neighbor group192 peer-group neighbor group192 remote-as 40000 alternate-as 50000 neighbor 172.16.1.2 remote-as 45000 address-family ipv4 unicast neighbor group172 activate neighbor group192 activate neighbor 172.16.1.2 activate end
Router A
enable configure terminal router bgp 40000 neighbor 192.168.1.1 remote-as 45000 exit
Router E
enable configure terminal router bgp 50000 neighbor 192.168.3.1 remote-as 45000 exit
After both Router A and Router E are configured, the show ip bgp summary command is run on Router B. The output displays the regular BGP neighbor, 172.16.1.2, and the two BGP neighbors that were created dynamically when Router A and Router E initiated TCP sessions for BGP peering to Router B. The output also shows information about the configured listen range subnet groups.
BGP router identifier 192.168.3.1, local AS number 45000 BGP table version is 1, main routing table version 1 Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 172.16.1.2 4 45000 15 15 1 0 0 00:12:20 0 *192.168.1.2 4 40000 3 3 1 0 0 00:00:37 0 *192.168.3.2 4 50000 6 6 1 0 0 00:04:36 0 * Dynamically created based on a listen range command Dynamically created neighbors: 2/(200 max), Subnet ranges: 2 BGP peergroup group172 listen range group members: 172.21.0.0/16 BGP peergroup group192 listen range group members: 192.168.0.0/16
Additional References
Related Documents
Related Topic | Document Title |
---|---|
Cisco IOS commands |
|
BGP commands |
Standards and RFCs
Standard/RFC | Title |
---|---|
RFC 2918 |
Route Refresh Capability for BGP-4 |
Technical Assistance
Description | Link |
---|---|
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |
Feature Information for BGP Dynamic Neighbors
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1 | Feature Information for BGP Dynamic Neighbors |
Feature Name | Releases | Feature Information |
---|---|---|
BGP Dynamic Neighbors |
12.2(33)SXH 15.1(2)T 15.0(1)S 15.1(1)SG Cisco IOS XE Release 3.1S Cisco IOS XE Release 3.3SG |
BGP dynamic neighbor support allows BGP peering to a group of remote neighbors that are defined by a range of IP addresses. Each range can be configured as a subnet IP address. BGP dynamic neighbors are configured using a range of IP addresses and BGP peer groups. After a subnet range is configured for a BGP peer group and a TCP session is initiated for an IP address in the subnet range, a new BGP neighbor is dynamically created as a member of that group. The new BGP neighbor will inherit any configuration for the peer group. The following commands were introduced or modified by this feature: bgp listen, debug ip bgp range, neighbor remote-as, show ip bgp neighbors, show ip bgp peer-group, and show ip bgp summary. |
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.