

CHAPTER 50

# **Troubleshooting**

This chapter describes how to identify and resolve software problems related to the Cisco IOS software on the Cisco ME 3800X and ME 3600X switch.

You can use the command-line interface (CLI) to identify and solve problems.

Additional troubleshooting information related to hardware is provided in the hardware installation guide.



For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the Cisco IOS Master Command List, All Releases.

• Recovering from a Lost or Forgotten Password, page 2



**Note** Recovery procedures require that you have physical access to the switch.

- Preventing Autonegotiation Mismatches, page 6
- SFP Module Security and Identification, page 7
- Monitoring SFP Module Status, page 7
- Monitoring Temperature, page 7
- Using Ping, page 8
- Using Layer 2 Traceroute, page 8
- Using IP Traceroute, page 10
- Using TDR, page 50-12
- Using Debug Commands, page 12
- Using the crashinfo File, page 14
- Using On-Board Failure Logging, page 15

## **Recovering from a Lost or Forgotten Password**

The default configuration for the switch allows an end user to recover from a lost password by interrupting the boot process during power-on and by entering a new password.



On these switches, a system administrator can disable some of the functionality of password recovery by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message shows this during the recovery process.

Disabling password recovery provides configuration file security by preventing unauthorized users from accessing the configuration file.

The Cisco ME switch boot loader uses break-key detection to stop the automatic boot sequence for the password recovery purpose.



The break key character is different for each operating system.

On a SUN work station running UNIX, Ctrl-C is the break key.

On a PC running Windows XP or 2000, Ctrl-Break is the break key.

Cisco TAC has tabulated break keys for most common operating systems and an alternative *break key sequence* for those terminal emulators that do not support the break keys. To see that list go to: http://www.cisco.com/en/US/products/hw/routers/ps133/products\_tech\_note09186a0080174a34.shtml

These sections describes how to recover a forgotten or lost switch password:

- Procedure with Password Recovery Enabled, page 3
- Procedure with Password Recovery Disabled, page 5

You enable or disable password recovery by using the **service password-recovery** global configuration command.

Follow the steps in this procedure if you have forgotten or lost the switch password.

- **Step 1** Connect a terminal or PC with terminal-emulation software to the switch console port.
- **Step 2** Set the line speed on the emulation software to 9600 baud.
- **Step 3** Power off the switch.

Reconnect the power cord to the switch.

**Step 4** After the switch performs POST, the switch begins the autoboot process. The boot loader prompts the user for a break key character during the boot-up sequence, as shown in this example:

```
**** The system will autoboot in 5 seconds ****

Send a break key to prevent autobooting.
```

You must enter the break key on the console terminal within 5 seconds of receiving the message that the system will autoboot. The System LED flashes green until the break key is accepted. After the break key is accepted, the System LED turns off until after the switch boots.

Several lines of information about the software appear with instructions, informing you if the password recovery procedure has been disabled or not.

• If you see a message that begins with this:

The system has been interrupted, or encountered an error during initializion of the flash filesystem. The following commands will initialize the flash filesystem, and finish loading the operating system software:

```
flash_init
load_helper
boot
```

proceed to the "Procedure with Password Recovery Enabled" section on page 3, and follow the steps.

• If you see a message that begins with this:

The password-recovery mechanism has been triggered, but is currently disabled.

proceed to the "Procedure with Password Recovery Disabled" section on page 5, and follow the steps.

**Step 5** After recovering the password, reload the switch:

```
Switch> reload
Proceed with reload? [confirm] y
```

#### **Procedure with Password Recovery Enabled**

If the password-recovery mechanism is enabled, this message appears:

The system has been interrupted, or encountered an error during initializion of the flash filesystem. The following commands will initialize the flash filesystem, and finish loading the operating system software:

```
flash_init
load_helper
boot
```

**Step 1** Initialize the flash file system:

```
switch: flash_init
```

- **Step 2** If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.
- Step 3 Load any helper files:

```
switch: load_helper
```

**Step 4** Display the contents of flash memory:

```
switch: dir flash:
```

The switch file system appears:

```
Directory of flash:

13 drwx 192 Mar 01 1993 22:30:48 image-name-mz.122-50-EX

11 -rwx 5825 Mar 01 1993 22:31:59 config.text

18 -rwx 720 Mar 01 1993 02:21:30 vlan.dat
```

16128000 bytes total (10003456 bytes free)

**Step 5** Rename the configuration file to config.text.old.

This file contains the password definition.

switch: rename flash:config.text flash:config.text.old

**Step 6** Boot the system:

switch: boot

You are prompted to start the setup program. Enter N at the prompt:

Continue with the configuration dialog? [yes/no]: N

**Step 7** At the switch prompt, enter privileged EXEC mode:

Switch> enable

**Step 8** Rename the configuration file to its original name:

Switch# rename flash:config.text.old flash:config.text

**Step 9** Copy the configuration file into memory:

```
Switch# copy flash:config.text system:running-config
Source filename [config.text]?
Destination filename [running-config]?
```

Press **Return** in response to the confirmation prompts.

The configuration file is now reloaded, and you can change the password.

**Step 10** Enter global configuration mode:

Switch# configure terminal

**Step 11** Change the password:

```
Switch (config) # enable secret password
```

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

**Step 12** Return to privileged EXEC mode:

```
Switch (config)# exit
Switch#
```

**Step 13** Write the running configuration to the startup configuration file:

```
Switch# copy running-config startup-config
```

The new password is now in the startup configuration.



This procedure is likely to leave your switch virtual interface in a shutdown state. You can identify this interface by entering the **show running-config** privileged EXEC command. To re-enable the interface, enter the **interface vlan** *vlan-id* global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the **no shutdown** command.

#### **Step 14** Reload the switch:

Switch# reload

### **Procedure with Password Recovery Disabled**

If the password-recovery mechanism is disabled, this message appears:

The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?



Returning the switch to the default configuration results in the loss of all existing configurations. We recommend that you contact your system administrator to verify if there are backup switch and VLAN configuration files.



Disabling password recovery provides configuration file security by preventing unauthorized users from accessing the configuration file.

• If you enter **n** (no), the normal boot process continues as if the **break key** had not been pressed; you cannot access the boot loader prompt, and you cannot enter a new password. You see the message:

Press Enter to continue.....

- If you enter **y** (yes), the configuration file in flash memory and the VLAN database file are deleted. When the default configuration loads, you can reset the password.
- **Step 1** Elect to continue with password recovery and lose the existing configuration:

Would you like to reset the system back to the default configuration (y/n)?  $\boldsymbol{Y}$ 

**Step 2** Load any helper files:

Switch: load\_helper

**Step 3** Display the contents of flash memory:

switch: dir flash:

The switch file system appears:

```
Directory of flash:

13 drwx 192 Mar 01 1993 22:30:48 image-name-mz.122-50-SE

16128000 bytes total (10003456 bytes free)
```

#### **Step 4** Boot the system:

Switch: boot

You are prompted to start the setup program. To continue with password recovery, enter N at the prompt:

Continue with the configuration dialog? [yes/no]: N

**Step 5** At the switch prompt, enter privileged EXEC mode:

Switch> enable

**Step 6** Enter global configuration mode:

Switch# configure terminal

**Step 7** Change the password:

```
Switch (config) # enable secret password
```

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

**Step 8** Return to privileged EXEC mode:

```
Switch (config)# exit
Switch#
```

**Step 9** Write the running configuration to the startup configuration file:

```
Switch# copy running-config startup-config
```

The new password is now in the startup configuration.



This procedure is likely to leave your switch virtual interface in a shutdown state. You can identify this interface by entering the **show running-config** privileged EXEC command. To re-enable the interface, enter the **interface vlan** *vlan-id* global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the **no shutdown** command.

**Step 10** You must now reconfigure the switch. If the system administrator has the backup switch and VLAN configuration files available, you should use those.

## **Preventing Autonegotiation Mismatches**

The IEEE 802.3ab autonegotiation protocol manages the switch settings for speed (10, 100, and 1000 Mbps, excluding SFP module ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.



If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

### **SFP Module Security and Identification**

Cisco small form-factor pluggable (SFP) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When an SFP module is inserted in the switch, the switch software reads the EEPROM to verify the serial number, vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the software generates a security error message and places the interface in an error-disabled state.



The security error message references the GBIC\_SECURITY facility. The switch supports SFP modules and does not support GBIC modules. Although the error message text refers to GBIC interfaces and modules, the security messages actually refer to the SFP modules and module interfaces. For more information about error messages, see the system message guide for this release.

If you are using a non-Cisco SFP module, remove the SFP module from the switch, and replace it with a Cisco module. After inserting a Cisco SFP module, use the **errdisable recovery cause gbic-invalid** global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation. For more information about the **errdisable recovery** command, see the command reference for this release.

If the module is identified as a Cisco SFP module, but the system is unable to read vendor-data information to verify its accuracy, an SFP module error message is generated. In this case, you should remove and re-insert the SFP module. If it continues to fail, the SFP module might be defective.

# **Monitoring SFP Module Status**

You can check the physical or operational status of an SFP module by using the **show interfaces transceiver** privileged EXEC command. This command shows the operational status, such as the temperature and the current for an SFP module on a specific interface and the alarm status. You can also use the command to check the speed and the duplex settings on an SFP module. For more information, see the **show interfaces transceiver** command in the command reference for this release.

## **Monitoring Temperature**

The switch monitors the temperature conditions. The switch also uses the temperature information to control the fans. The temperature value is the temperature in the switch (not the external temperature). Enter the **show env temperature** privileged EXEC command to see if the temperature is okay or faulty.

You can use the **show env temperature status** privileged EXEC command to display the temperature value, state, and thresholds. You can configure a high and low threshold level (in Celsius) to generate an alert by using the **system env temperature alert** {**high | low**} *value* global configuration command.

The show env temperature status command displays the temperature value, state, and thresholds.

These are examples of output from the **show env temperature** and **show env temperature status** commands:

```
Switch> show env temperature
SYSTEM TEMPERATURE is GREEN

Switch> show env temperature status
SYSTEM Temperature Value: 35.5 Degree Celsius
SYSTEM Temperature State: GREEN
SYSTEM Low Temperature Alert Threshold: 0.0 Degree Celsius
SYSTEM Low Temperature Shutdown Threshold: -20.0 Degree Celsius
SYSTEM High Temperature Alert Threshold: 58.0 Degree Celsius
SYSTEM High Temperature Shutdown Threshold: 80.0 Degree Celsius
POWER SUPPLY 1 Temperature Value: 32.7500 Degree Celsius
POWER SUPPLY 1 Temperature Alert Threshold: 85.0000 Degree Celsius
POWER SUPPLY 1 Temperature Shutdown Threshold: 110.0000 Degree Celsius
FAN TRAY 2: No Temperature Information Provided
```

For more information, see the command reference for this release.

## **Using Ping**

The switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. To ping a host in a different IP subnetwork from the switch, you must have IP routing configured to route between the subnets, and a static route to the destination might also be appropriate. If you need to enable or configure IP routing, see Chapter 37, "Configuring IP Unicast Routing."

Beginning in privileged EXEC mode, use the **ping** command to ping another device on the network from the switch:

| Command               | Purpos                                                              | se                                                                                                                 |
|-----------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| ping [host   address] | Ping a remote host by supplying the hostname or IP network address. |                                                                                                                    |
|                       | Note                                                                | Though other protocol keywords are available with the <b>ping</b> command, they are not supported in this release. |

To end a ping session, simultaneously press and release the Ctrl, Shift, and 6 keys, and then press the X key.

# **Using Layer 2 Traceroute**

- Understanding Layer 2 Traceroute, page 9
- Layer 2 Traceroute Usage Guidelines, page 9
- Displaying the Physical Path, page 10

### **Understanding Layer 2 Traceroute**

The Layer 2 traceroute feature allows the switch to identify the physical path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. It finds the path by using the MAC address tables of the switches in the path. When the switch detects a device in the path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.



Layer 2 traceroute is not available only on ports configured with service instances.

The switch can only identify the path from the source device to the destination device. It cannot identify the path that a packet takes from source host to the source device or from the destination device to the destination host.

### **Layer 2 Traceroute Usage Guidelines**

- Ports configured with service instances do not support Layer 2 traceroute.
- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For Layer 2
  traceroute to function properly, do not disable CDP. CDP is enabled by default. If any devices in the
  physical path are transparent to CDP, the switch cannot identify the path through these devices. For
  more information about enabling CDP, see Chapter 25, "Configuring CDP."
- A switch is reachable from another switch when you can test connectivity by using the **ping** privileged EXEC command. All switches in the physical path must be reachable from each other.
- The maximum number of hops identified in the path is ten.
- You can enter the **traceroute mac** or the **traceroute mac ip** privileged EXEC command on a switch that is not in the physical path from the source device to the destination device. All switches in the path must be reachable from this switch.
- The traceroute mac command output shows the Layer 2 path only when the specified source and
  destination MAC addresses belong to the same VLAN. If you specify source and destination MAC
  addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message
  appears.
- If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.
- If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.
- The traceroute mac ip command output shows the Layer 2 path when the specified source and
  destination IP addresses belong to the same subnet. When you specify the IP addresses, the switch
  uses the Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding
  MAC addresses and the VLAN IDs.
  - If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.
  - If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.

- When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute feature is not supported. When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.
- This feature is not supported in Token Ring VLANs.

### **Displaying the Physical Path**

You can display the physical path that a packet takes from a source device to a destination device by using one of these privileged EXEC commands:

- tracetroute mac [interface interface-id] {source-mac-address} [interface interface-id] {destination-mac-address} [vlan vlan-id] [detail]
- tracetroute mac ip {source-ip-address | source-hostname}{destination-ip-address | destination-hostname} [detail]

For more information, see the command reference for this release.

# **Using IP Traceroute**

- Understanding IP Traceroute, page 10
- Executing IP Traceroute, page 11

### **Understanding IP Traceroute**

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your switches can participate as the source or destination of the **traceroute** privileged EXEC command and might or might not appear as a hop in the **traceroute** command output. If the switch is the destination of the traceroute, it is displayed as the final destination in the output. Intermediate switches do not show up in the output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a particular packet, this switch shows up as a hop in the output.

The **traceroute** privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute finds the address of the first hop by examining the source address field of this message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To learn when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP

*port-unreachable* error to the source. Because all errors except port-unreachable errors come from intermediate hops, the receipt of a port-unreachable error means that this message was sent by the destination port.

### **Executing IP Traceroute**

Beginning in privileged EXEC mode, follow this step to trace that the path packets take through the network:

| Command            | Purpose                                               |
|--------------------|-------------------------------------------------------|
| traceroute ip host | Trace the path that packets take through the network. |



Though other protocol keywords are available with the **traceroute** privileged EXEC command, they are not supported in this release.

This example shows how to perform a **traceroute** to an IP host:

```
Switch# traceroute ip 171.9.15.10
```

```
Type escape sequence to abort.

Tracing the route to 171.69.115.10

1 172.2.52.1 0 msec 0 msec 4 msec
2 172.2.1.203 12 msec 8 msec 0 msec
3 171.9.16.6 4 msec 0 msec 0 msec
4 171.9.4.5 0 msec 4 msec 0 msec
5 171.9.121.34 0 msec 4 msec 4 msec
6 171.9.15.9 120 msec 132 msec 128 msec
7 171.9.15.10 132 msec 128 msec 128 msec
```

The display shows the hop count, IP address of the router, and the round-trip time in milliseconds for each of the three probes that are sent.

Table 50-1 Traceroute Output Display Characters

| Character | Description                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------|
| *         | The probe timed out.                                                                              |
| ?         | Unknown packet type.                                                                              |
| A         | Administratively unreachable. Usually, this output means that an access list is blocking traffic. |
| Н         | Host unreachable.                                                                                 |
| N         | Network unreachable.                                                                              |
| P         | Protocol unreachable.                                                                             |
| Q         | Source quench.                                                                                    |
| U         | Port unreachable.                                                                                 |

To end a trace in progress, enter the escape sequence (Ctrl-^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys, and then press the X key.

# **Using TDR**

- Understanding TDR, page 12
- Running TDR and Displaying the Results, page 12

### **Understanding TDR**

You can use the Time Domain Reflector (TDR) feature to diagnose and resolve cabling problems. When running TDR, a local device sends a signal through a cable and compares the reflected signal to the initial signal.

TDR can detect these cabling problems:

- Open, broken, or cut twisted-pair wires—The wires are not connected to the wires from the remote
  device.
- Shorted twisted-pair wires—The wires are touching each other or the wires from the remote device.
   For example, a shorted twisted pair can occur if one wire of the twisted pair is soldered to the other wire.

If one of the twisted-pair wires is open, TDR can find the length at which the wire is open.

Use TDR to diagnose and resolve cabling problems in these situations:

- · Replacing a switch
- Setting up a wiring closet
- Troubleshooting a connection between two devices when a link cannot be established or when it is not operating properly

### **Running TDR and Displaying the Results**

To run TDR, enter the **test cable-diagnostics tdr interface** interface-id privileged EXEC command:

To display the results, enter the **show cable-diagnostics tdr interface** *interface-id* privileged EXEC command. For a description of the fields in the display, see the command reference for this release.



ITDR is supported only on the copper Ethernet 10/100/1000 ports.

# **Using Debug Commands**

- Enabling Debugging on a Specific Feature, page 13
- Enabling All-System Diagnostics, page 13
- Redirecting Debug and Error Message Output, page 14



Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use **debug** commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use **debug** commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased **debug** command processing overhead will affect system use.



For complete syntax and usage information for specific **debug** commands, see the command reference for this release.

### **Enabling Debugging on a Specific Feature**

All **debug** commands are entered in privileged EXEC mode, and most **debug** commands take no arguments. For example, beginning in privileged EXEC mode, enter this command to enable the debugging for all Flex Links backup interface:

Switch# debug backup all

The switch continues to generate output until you enter the **no** form of the command.

If you enable a debug command and no output appears, consider these possibilities:

- The switch might not be properly configured to generate the type of traffic that you want to monitor. Use the **show running-config** command to check its configuration.
- Even if the switch is properly configured, it might not generate the type of traffic that you want to monitor during the particular period that debugging is enabled. Depending on the feature you are debugging, you can use commands such as the TCP/IP **ping** command to generate network traffic.

To disable debugging of Flex Links, enter this command in privileged EXEC mode:

Switch# no debug backup all

Alternately, in privileged EXEC mode, you can enter the **undebug** form of the command:

Switch# undebug backup all

To display the state of each debugging option, enter this command in privileged EXEC mode:

Switch# show debugging

### **Enabling All-System Diagnostics**

Beginning in privileged EXEC mode, enter this command to enable all-system diagnostics:

Switch# debug all



Because debugging output takes priority over other network traffic, and because the **debug all** privileged EXEC command generates more output than any other **debug** command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific **debug** commands.

The **no debug all** privileged EXEC command disables all diagnostic output. Using the **no debug all** command is a convenient way to ensure that you have not accidentally left any **debug** commands enabled.

### **Redirecting Debug and Error Message Output**

By default, the network server sends the output from **debug** commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port.

Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.



Be aware that the debugging destination you use affects system overhead. Logging messages to the console produces very high overhead, whereas logging messages to a virtual terminal produces less overhead. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

For more information about system message logging, see Chapter 28, "Configuring System Message Logging."

# **Using the crashinfo File**

The crashinfo file saves information that helps Cisco technical support representatives to debug problems that caused the Cisco IOS image to fail (crash). The switch writes the crash information to the console at the time of the failure, and the file is created the next time you boot the Cisco IOS image after the failure (instead of while the system is failing).

The information in the file includes the Cisco IOS image name and version that failed, a list of the processor registers, and a stack trace. You can provide this information to the Cisco technical support representative by using the **show tech-support** privileged EXEC command.

All crashinfo files are kept in this directory on the flash file system:

flash:/crashinfo/crashinfo $_n$  where n is a sequence number.

Each new crashinfo file that is created uses a sequence number that is larger than any previously existing sequence number, so the file with the largest sequence number describes the most recent failure. Version numbers are used instead of a timestamp because the switches do not include a real-time clock. You cannot change the name of the file that the system will use when it creates the file. However, after the file is created, you can use the **rename** privileged EXEC command to rename it, but the contents of the renamed file will not be displayed by the **show tech-support** privileged EXEC command. You can delete crashinfo files by using the **delete** privileged EXEC command.

You can display the most recent crashinfo file (that is, the file with the highest sequence number at the end of its filename) by entering the **show tech-support** privileged EXEC command. You also can access the file by using any command that can copy or display files, such as the **more** or the **copy** privileged EXEC command.

## **Using On-Board Failure Logging**

You can use the on-board-failure logging (OBFL) feature to collect information about the switch. The information includes uptime, temperature, and voltage information and helps Cisco technical support representatives to troubleshoot switch problems.

This section has this information:

- Understanding OBFL, page 15
- Configuring OBFL, page 15
- Displaying OBFL Information, page 16

### **Understanding OBFL**

By default, OBFL is enabled and is automatically activated five minutes after the switch boots up. It collects information about the switch and small form-factor pluggable (SFP) modules. The switch stores this information in the flash memory:

- CLI commands—Record of the OBFL CLI commands that are entered on a switch
- Environmental data—Unique device identifier (UDI) information for a switch and for all the
  connected devices: the product identification (PID), the version identification (VID), and the serial
  number
- Message—Record of the hardware-related system messages generated by a switch
- Temperature—Temperature of a switch
- Uptime data—Time when a switch starts, the reason the switch restarts, and the length of time the switch has been running since it last restarted
- Voltage—System voltages of a switch

You should manually set the system clock, or configure it by using Network Time Protocol (NTP).

When the switch is running, you can retrieve the OBFL data by using the **show logging onboard** privileged EXEC commands. If the switch fails, contact your Cisco technical support representative to find out how to retrieve the data.

When an OBFL-enabled switch is restarted, there is a 10-minute delay before logging of new data begins.

### **Configuring OBFL**

To enable OBFL, use the **hw-module module logging onboard** [message level level] global configuration command. Use the message level level parameter to specify the severity of the hardware-related messages that the switch generates and stores in the flash memory.

To copy the OBFL data to the local network or a specific file system, use the **copy logging onboard module 1** *destination* privileged EXEC command.



We recommend that you keep OBFL enabled and that you do not remove the data stored in the flash memory.

Beginning in privileged EXEC mode, follow these steps to enable and configure OBFL. Note that OBLF is enabled by default; you need to enable it only if it has been disabled.

|        | Command                                               | Purpose                                                                                                                                                              |
|--------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure terminal                                    | Enter global configuration mode.                                                                                                                                     |
| Step 2 | hw-module module [slot-number]                        | Enable OBFL on the switch.                                                                                                                                           |
|        | logging onboard [message level]                       | You can specify these optional parameters:                                                                                                                           |
|        |                                                       | • (Optional) <i>slot-number</i> —The slot number is always 1 and is not relevant for the switch.                                                                     |
|        |                                                       | • (Optional) <b>message</b> <i>level</i> —Specify the severity level of messages to be generated and stored. The range is from 1 to 7, with 1 being the most severe. |
| Step 3 | end                                                   | Return to privileged EXEC mode.                                                                                                                                      |
| Step 4 | copy logging onboard module [slot-number] destination | (Optional) Copy the OBFL data to the local network or a specific file system.                                                                                        |
|        |                                                       | • (Optional) <i>slot-number</i> —The slot number is always 1 and is not relevant.                                                                                    |
|        |                                                       | • <i>destination</i> —See the <b>copy logging onboard module</b> command for destination options.                                                                    |
| Step 5 | show logging onboard                                  | Verify your entries.                                                                                                                                                 |
| Step 6 | copy running-config startup-config                    | (Optional) Save your entries in the configuration file.                                                                                                              |

To disable OBFL, use the **no hw-module module 1 logging onboard** [**message** *level*] global configuration command.

To clear all the OBFL data in the flash memory except for the uptime and CLI command information, use the **clear logging onboard** privileged EXEC command.

For more information about the commands in this section, see the command reference for this release.

### **Displaying OBFL Information**

To display the OBFL information, use one or more of the privileged EXEC commands in Table 50-2.



When an OBFL-enabled switch is restarted, there is a 10-minute delay before logging of new data begins.

Table 50-2 Commands for Displaying OBFL Information

| Command                      | Purpose                                                                                                                             |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| show logging onboard clilog  | Display the OBFL CLI commands that were entered on a switch.                                                                        |
|                              | Display the UDI information for a standalone switch and for all the connected FRU devices: the PID, the VID, and the serial number. |
| show logging onboard message | Display the hardware-related messages generated by a switch.                                                                        |

Table 50-2 Commands for Displaying OBFL Information (continued)

| Command                          | Purpose                                                                                                                                                 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| show logging onboard temperature | Display the temperature of a switch.                                                                                                                    |
|                                  | Display the time when a switch starts, the reason the switch restarts, and the length of time that the switch has been running since it last restarted. |
| show logging onboard voltage     | Display the system voltages of a switch.                                                                                                                |

These are examples of output from the show logging onboard commands: Switch# show logging onboard clilog CLI LOGGING SUMMARY INFORMATION COUNT COMMAND 1 hw-module module logging onboard 1 hw-module module logging onboard message level 7 4 show logging onboard 1 show logging onboard message 1 show logging onboard summary \_\_\_\_\_\_ Switch# show logging onboard temp TEMPERATURE SUMMARY INFORMATION \_\_\_\_\_\_ Number of sensors : 1 Sampling frequency : 5 minutes
Maximum time of storage : 720 minutes \_\_\_\_\_\_ | ID | Maximum Temperature 0C 1 \_\_\_\_\_ Temp Sensor ID 0C 1 No historical data to display Switch# show logging onboard uptime UPTIME SUMMARY INFORMATION \_\_\_\_\_\_ First customer power on : 03/01/1993 00:06:06 : 0 years 20 weeks 4 days 6 hours 20 minutes

Total downtime : 0 years 0 weeks 0 days 0 hours 0 minutes

Number of claims: 90 Number of slot changes : 0 Current reset reason : 0x0Current reset timestamp: 03/01/1993 00:05:43 Current slot : 1
Current uptime : 0 years 0 weeks 2 days 6 hours 0 minutes Reset Reason | Count | No historical data to display

| Switch# show logging onbo                                          | rd voltage           |
|--------------------------------------------------------------------|----------------------|
| VOLTAGE SUMMARY INFORMATION                                        | N                    |
| Number of sensors<br>Sampling frequency<br>Maximum time of storage | : 6 : 1 minutes      |
| Sensor                                                             | ID   Maximum Voltage |
| 12.00V                                                             | 0 12.567             |
| 1.25V                                                              | 2 1.258              |
| 3.30V                                                              | 3 3.305              |
| 2.50V                                                              | 4 2.517              |
| 1.80V                                                              | 5 1.825              |
| 1.50V                                                              | 6 1.508              |
| Nominal Range                                                      | Sensor ID            |
| No historical data to disp                                         | lay                  |

For more information about using the commands in Table 50-2 and for examples of OBFL data, see the command reference for this release.