- Read Me First
- Cisco BGP Overview
- BGP 4
- Configuring a Basic BGP Network
- BGP 4 Soft Configuration
- BGP Support for 4-byte ASN
- IPv6 Routing: Multiprotocol BGP Extensions for IPv6
- IPv6 Routing: Multiprotocol BGP Link-Local Address Peering
- IPv6 Multicast Address Family Support for Multiprotocol BGP
- Configuring Multiprotocol BGP (MP-BGP) Support for CLNS
- BGP IPv6 Admin Distance
- Connecting to a Service Provider Using External BGP
- BGP Route-Map Continue
- BGP Route-Map Continue Support for Outbound Policy
- Removing Private AS Numbers from the AS Path in BGP
- Configuring BGP Neighbor Session Options
- BGP Neighbor Policy
- BGP Dynamic Neighbors
- BGP Support for Next-Hop Address Tracking
- BGP Restart Neighbor Session After Max-Prefix Limit Reached
- BGP Support for Dual AS Configuration for Network AS Migrations
- Configuring Internal BGP Features
- BGP VPLS Auto Discovery Support on Route Reflector
- BGP FlowSpec Route-reflector Support
- BGP Flow Specification Client
- BGP NSF Awareness
- BGP Graceful Restart per Neighbor
- BGP Support for BFD
- IPv6 NSF and Graceful Restart for MP-BGP IPv6 Address Family
- BGP Link Bandwidth
- Border Gateway Protocol Link-State
- iBGP Multipath Load Sharing
- BGP Multipath Load Sharing for Both eBGP and iBGP in an MPLS-VPN
- Loadsharing IP Packets over More Than Six Parallel Paths
- BGP Policy Accounting
- BGP Policy Accounting Output Interface Accounting
- BGP Cost Community
- BGP Support for IP Prefix Import from Global Table into a VRF Table
- BGP Support for IP Prefix Export from a VRF Table into the Global Table
- BGP per Neighbor SoO Configuration
- Per-VRF Assignment of BGP Router ID
- BGP Next Hop Unchanged
- BGP Support for the L2VPN Address Family
- BGP Event-Based VPN Import
- BGP Best External
- BGP PIC Edge for IP and MPLS-VPN
- Detecting and Mitigating a BGP Slow Peer
- Configuring BGP: RT Constrained Route Distribution
- Configuring a BGP Route Server
- BGP Diverse Path Using a Diverse-Path Route Reflector
- BGP Enhanced Route Refresh
- Configuring BGP Consistency Checker
- BGP—Origin AS Validation
- BGP MIB Support
- BGP 4 MIB Support for Per-Peer Received Routes
- BGP Support for Nonstop Routing (NSR) with Stateful Switchover (SSO) Using L2VPN VPLS
- BGP NSR Auto Sense
- BGP NSR Support for iBGP Peers
- BGP Graceful Shutdown
- BGP — mVPN BGP sAFI 129 - IPv4
- BGP-MVPN SAFI 129 IPv6
- BFD—BGP Multihop Client Support, cBit (IPv4 and IPv6), and Strict Mode
- BGP Attribute Filter and Enhanced Attribute Error Handling
- BGP Additional Paths
- BGP-Multiple Cluster IDs
- BGP-VPN Distinguisher Attribute
- BGP-RT and VPN Distinguisher Attribute Rewrite Wildcard
- VPLS BGP Signaling
- Multicast VPN BGP Dampening
- BGP—IPv6 NSR
- BGP-VRF-Aware Conditional Advertisement
- BGP—Selective Route Download
- BGP—Support for iBGP Local-AS
- eiBGP Multipath for Non-VRF Interfaces (IPv4/IPv6)
- L3VPN iBGP PE-CE
- BGP NSR Support for MPLS VPNv4 and VPNv6 Inter-AS Option B
- BGP-RTC for Legacy PE
- BGP PBB EVPN Route Reflector Support
- BGP Monitoring Protocol
- VRF Aware BGP Translate-Update
- BGP Support for MTR
- BGP Accumulated IGP
- BGP MVPN Source-AS Extended Community Filtering
- BGP AS-Override Split-Horizon
- BGP Support for Multiple Sourced Paths Per Redistributed Route
- Maintenance Function: BGP Routing Protocol
- Finding Feature Information
- Prerequisites for BGP PIC
- Restrictions for BGP PIC
- Information About BGP PIC
- Benefits of the BGP PIC Edge for IP and MPLS-VPN Feature
- How BGP Converges Under Normal Circumstances
- How BGP PIC Improves Convergence
- How a Failure Is Detected
- How BGP PIC Can Achieve Subsecond Convergence
- How BGP PIC Improves Upon the Functionality of MPLS VPN BGP Local Convergence
- Configuration Modes for Enabling BGP PIC
- BGP PIC Scenarios
- Cisco Express Forwarding Recursion
- How to Configure BGP PIC
- Configuration Examples for BGP PIC
- Additional References
- Feature Information for BGP PIC
BGP PIC Edge for IP and MPLS-VPN
The BGP PIC Edge for IP and MPLS-VPN feature improves BGP convergence after a network failure. This convergence is applicable to both core and edge failures and can be used in both IP and MPLS networks. The BGP PIC Edge for IP and MPLS-VPN feature creates and stores a backup/alternate path in the routing information base (RIB), forwarding information base (FIB), and Cisco Express Forwarding so that when a failure is detected, the backup/alternate path can immediately take over, thus enabling fast failover.
Note | In this document, the BGP PIC Edge for IP and MPLS-VPN feature is called BGP PIC. |
- Finding Feature Information
- Prerequisites for BGP PIC
- Restrictions for BGP PIC
- Information About BGP PIC
- How to Configure BGP PIC
- Configuration Examples for BGP PIC
- Additional References
- Feature Information for BGP PIC
Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for BGP PIC
-
Ensure that the Border Gateway Protocol (BGP) and the IP or Multiprotocol Label Switching (MPLS) network is up and running with the customer site connected to the provider site by more than one path (multihomed).
-
Ensure that the backup/alternate path has a unique next hop that is not the same as the next hop of the best path.
-
Enable the Bidirectional Forwarding Detection (BFD) protocol to quickly detect link failures of directly connected neighbors.
Restrictions for BGP PIC
The following restrictions apply to the BGP PIC feature:
-
With BGP Multipath, the BGP Prefix-Independent Convergence (PIC) feature is already supported.
-
In MPLS VPNs, the BGP PIC feature is not supported with MPLS VPN Inter-Autonomous Systems Option B.
-
The BGP PIC feature supports prefixes only for IPv4, IPv6, VPNv4, and VPNv6 address families.
-
The BGP PIC feature cannot be configured with Multicast or L2VPN Virtual Routing and Forwarding (VRF) address families.
-
If the route reflector is only in the control plane, then you do not need BGP PIC, because BGP PIC addresses data plane convergence.
-
When two PE devices become each other’s backup/alternate path to a CE device, traffic might loop if the CE device fails. Neither device will reach the CE device, and traffic will continue to be forwarded between the PE devices until the time-to-live (TTL) timer expires.
-
The BGP PIC feature does not support Nonstop Forwarding with Stateful Switchover (NSF/SSO). However, ISSU is supported if both Route Processors have the BGP PIC feature configured.
-
The BGP PIC feature solves the traffic forwarding only for a single network failure at both the edge and the core.
-
The BGP PIC feature does not work with the BGP Best External feature. If you try to configure the BGP PIC feature after configuring the BGP Best External feature, you receive an error.
Information About BGP PIC
- Benefits of the BGP PIC Edge for IP and MPLS-VPN Feature
- How BGP Converges Under Normal Circumstances
- How BGP PIC Improves Convergence
- How a Failure Is Detected
- How BGP PIC Can Achieve Subsecond Convergence
- How BGP PIC Improves Upon the Functionality of MPLS VPN BGP Local Convergence
- Configuration Modes for Enabling BGP PIC
- BGP PIC Scenarios
- Cisco Express Forwarding Recursion
Benefits of the BGP PIC Edge for IP and MPLS-VPN Feature
How BGP Converges Under Normal Circumstances
Under normal circumstances, BGP can take several seconds to a few minutes to converge after a network change. At a high level, BGP goes through the following process:
BGP learns of failures through either Interior Gateway Protocol (IGP) or BFD events or interface events.
BGP withdraws the routes from the routing information base (RIB), and the RIB withdraws the routes from the forwarding information base (FIB) and distributed FIB (dFIB). This process clears the data path for the affected prefixes.
BGP sends withdraw messages to its neighbors.
BGP calculates the next best path to the affected prefixes.
BGP inserts the next best path for affected prefixes into the RIB, and the RIB installs them in the FIB and dFIB.
This process takes a few seconds or a few minutes to complete, depending on the latency of the network, the convergence time across the network, and the local load on the devices. The data plane converges only after the control plane converges.
How BGP PIC Improves Convergence
The BGP PIC functionality is achieved by an additional functionality in the BGP, RIB, Cisco Express Forwarding, and MPLS.
BGP Functionality
BGP PIC affects prefixes under IPv4 and VPNv4 address families. For those prefixes, BGP calculates an additional second best path, along with the primary best path. (The second best path is called the backup/alternate path.) BGP installs the best and backup/alternate paths for the affected prefixes into the BGP RIB. The backup/alternate path provides a fast reroute mechanism to counter a singular network failure. BGP also includes the alternate/backup path in its application programming interface (API) to the IP RIB.
RIB Functionality
For BGP PIC, RIB installs an alternate path per route if one is available. With the BGP PIC functionality, if the RIB selects a BGP route containing a backup/alternate path, it installs the backup/alternate path with the best path. The RIB also includes the alternate path in its API with the FIB.
Cisco Express Forwarding Functionality
With BGP PIC, Cisco Express Forwarding stores an alternate path per prefix. When the primary path goes down, Cisco Express Forwarding searches for the backup/alternate path in a prefix independent manner. Cisco Express Forwarding also listens to BFD events to rapidly detect local failures.
MPLS Functionality
MPLS Forwarding is similar to Cisco Express Forwarding, in that it stores alternate paths and switches to an the alternate path if the primary path goes down.
When the BGP PIC feature is enabled, BGP calculates a backup/alternate path per prefix and installs it into BGP RIB, IP RIB, and FIB. This improves convergence after a network failure. There are two types of network failures that the BGP PIC feature detects:
Core node/link failure (internal Border Gateway Protocol [iBGP] node failure): If a PE node/link fails, then the failure is detected through IGP convergence. IGP conveys the failure through the RIB to the FIB.
Local link/immediate neighbor node failure (external Border Gateway Protocol [eBGP] node/link failure): To detect a local link failure or eBGP single-hop peer node failure in less than a second, you must enable BFD. Cisco Express Forwarding looks for BFD events to detect a failure of an eBGP single-hop peer.
Convergence in the Data Plane
Upon detection of a failure, Cisco Express Forwarding detects the alternate next hop for all prefixes affected by the failure. The data plane convergence is achieved in subseconds depending on whether the BGP PIC implementation exists in the software or hardware.
Convergence in the Control Plane
Upon detection of failure, BGP learns about the failure through IGP convergence or BFD events and sends withdraw messages for the prefixes, recalculating the best and backup/alternate paths, and advertising the next best path across the network.
BGP Fast Reroute's Role in the BGP PIC Feature
BGP Fast Reroute (FRR) provides a best path and a backup/alternate path in BGP, RIB, and Cisco Express Forwarding. BGP FRR provides a very fast reroute mechanism into the RIB and Cisco Express Forwarding on the backup BGP next hop to reach a destination when the current best path is not available.
BGP FRR precomputes a second best path in BGP and gives it to the RIB and Cisco Express Forwarding as a backup/alternate path, and Cisco Express Forwarding programs it into line cards.
Therefore, BGP FRR sets up the best path and backup/alternate path. The BGP PIC feature provides the ability for Cisco Express Forwarding to quickly switch the traffic to the other egress ports if the current next hop or the link to this next hop goes down. This is illustrated in the figure below.
How a Failure Is Detected
A failure in the iBGP (remote) peer is detected by IGP; it may take a few seconds to detect the failure. Convergence can occur in subseconds or seconds, depending on whether PIC is enabled on the line cards.
If the failure is with directly connected neighbors (eBGP), and if you use BFD to detect when a neighbor has gone down, the detection happens within a subsecond and the convergence can occur in subseconds or seconds, depending on whether PIC is enabled on the line cards.
How BGP PIC Can Achieve Subsecond Convergence
The BGP PIC feature works at the Cisco Express Forwarding level, and Cisco Express Forwarding can be processed in both hardware line cards and in the software.
For platforms that support Cisco Express Forwarding processing in the line cards, the BGP PIC feature can converge in subseconds.
For platforms that do not use Cisco Express Forwarding in hardware line cards, Cisco Express Forwarding is achieved in the software. The BGP PIC feature works with the Cisco Express Forwarding through the software and achieves convergence within seconds.
How BGP PIC Improves Upon the Functionality of MPLS VPN BGP Local Convergence
The BGP PIC feature is an enhancement to the "MPLS VPN--BGP Local Convergence" feature, which provides a failover mechanism that recalculates the best path and installs the new path in forwarding after a link failure. The feature maintains the local label for 5 minutes to ensure that the traffic uses the backup/alternate path, thus minimizing traffic loss.
The BGP PIC feature improves the LoC time to under a second by calculating a backup/alternate path in advance. When a link failure occurs, the traffic is sent to the backup/alternate path.
When you configure the BGP PIC feature, it will override the functionality of the "MPLS VPN--BGP Local Convergence" feature. You do not have to remove the protection local-prefixes command from the configuration.
Configuration Modes for Enabling BGP PIC
Because many service provider networks contain many VRFs, the BGP PIC feature allows you to configure the BGP PIC feature for all VRFs at once.
VPNv4 address family configuration mode protects all the VRFs.
VRF-IPv4 address family configuration mode protects only IPv4 VRFs.
Router configuration mode protects prefixes in the global routing table.
BGP PIC Scenarios
The following scenarios explain how you can configure the BGP PIC functionality to achieve fast convergence:
- IP PE-CE Link and Node Protection on the CE Side (Dual PEs)
- IP PE-CE Link and Node Protection on the CE Side (Dual CEs and Dual PE Primary and Backup Nodes)
- IP MPLS PE-CE Link Protection for the Primary or Backup Alternate Path
- IP MPLS PE-CE Node Protection for Primary or Backup Alternate Path
IP PE-CE Link and Node Protection on the CE Side (Dual PEs)
The figure below shows a network that uses the BGP PIC feature. The network includes the following components:
-
eBGP sessions exist between the PE and CE devices.
-
Traffic from CE1 uses PE1 to reach network 192.168.9.0/24 through device CE3.
-
CE1 has two paths:
CE1 is configured with the BGP PIC feature. BGP computes PE1 as the best path and PE2 as the backup/alternate path and installs both routes into the RIB and Cisco Express Forwarding plane. When the CE1-PE1 link goes down, Cisco Express Forwarding detects the link failure and points the forwarding object to the backup/alternate path. Traffic is quickly rerouted due to local fast convergence in Cisco Express Forwarding.
IP PE-CE Link and Node Protection on the CE Side (Dual CEs and Dual PE Primary and Backup Nodes)
The figure below shows a network that uses the BGP PIC feature on CE1. The network includes the following components:
-
eBGP sessions exist between the PE and CE devices.
-
Traffic from CE1 uses PE1 to reach network 192.168.9.0/24 through device CE3.
-
CE1 has two paths: -
An iBGP session exists between the CE1 and CE2 devices.
In this example, CE1 and CE2 are configured with the BGP PIC feature. BGP computes PE1 as the best path and PE2 as the backup/alternate path and installs both the routes into the RIB and Cisco Express Forwarding plane.
There should not be any policies set on CE1 and CE2 for the eBGP peers PE1 and PE2. Both CE devices must point to the eBGP route as next hop. On CE1, the next hop to reach CE3 is through PE1, so PE1 is the best path to reach CE3. On CE2, the best path to reach CE3 is PE2. CE2 advertises itself as the next hop to CE1, and CE1 does the same to CE2. As a result, CE1 has two paths for the specific prefix and it usually selects the directly connected eBGP path over the iBGP path according to the best path selection rules. Similarly, CE2 has two paths--an eBGP path through PE2 and an iBGP path through CE1-PE1.
When the CE1-PE1 link goes down, Cisco Express Forwarding detects the link failure and points the forwarding object to the backup/alternate node CE2. Traffic is quickly rerouted due to local fast convergence in Cisco Express Forwarding.
If the CE1-PE1 link or PE1 goes down and BGP PIC is enabled on CE1, BGP recomputes the best path, removing the next hop PE1 from RIB and reinstalling CE2 as the next hop into the RIB and Cisco Express Forwarding. CE1 automatically gets a backup/alternate repair path into Cisco Express Forwarding and the traffic loss during forwarding is now in subseconds, thereby achieving fast convergence.
IP MPLS PE-CE Link Protection for the Primary or Backup Alternate Path
The figure above shows a network that uses the BGP PIC feature on CE1 and CE2. The network includes the following components:
-
eBGP sessions exist between the PE and CE devices.
-
The PE devices are VPNv4 iBGP peers with reflect devices in the MPLS network.
-
Traffic from CE1 uses PE1 to reach network 192.168.9.0/24 through device CE3.
-
CE3 is dual-homed with PE3 and PE4.
-
PE1 has two paths to reach CE3 from the reflect routers:
In this example, all the PE devices can be configured with the BGP PIC feature under IPv4 or VPNv4 address families.
For BGP PIC to work in BGP for PE-CE link protection, set the policies on PE3 and PE4 for prefixes received from CE3 so that one of the PE devices acts as the primary and the other as the backup/alternate. Usually, this is done using local preference and giving better local preference to PE3. In the MPLS cloud, traffic internally flows through PE3 to reach CE3. Thus, PE1 has PE3 as the best path and PE4 as the second path.
When the PE3-CE3 link goes down, Cisco Express Forwarding detects the link failure, and PE3 recomputes the best path, selects PE4 as the best path, and sends a withdraw message for the PE3 prefix to the reflect routers. Some of the traffic goes through PE3-PE4 until BGP installs PE4 as the best path route into the RIB and Cisco Express Forwarding. PE1 receives the withdraw, recomputes the best path, selects PE4 as the best path, and installs the routes into the RIB and Cisco Express Forwarding plane.
Thus, with BGP PIC enabled on PE3 and PE4, Cisco Express Forwarding detects the link failure and does in-place modification of the forwarding object to the backup/alternate node PE4 that already exists in Cisco Express Forwarding. PE4 knows that the backup/alternate path is locally generated and routes the traffic to the egress port connected to CE3. This way, traffic loss is minimized and fast convergence is achieved.
IP MPLS PE-CE Node Protection for Primary or Backup Alternate Path
The figure below shows a network that uses the BGP PIC feature on all the PE devices in an MPLS network.
The network includes the following components:
-
eBGP sessions exist between the PE and CE devices.
-
The PE devices are VPNv4 iBGP peers with reflect routers in the MPLS network.
-
Traffic from CE1 uses PE1 to reach network 192.168.9.0/24 through device CE3.
-
CE3 is dual-homed with PE3 and PE4.
-
PE1 has two paths to reach CE3 from the reflect routers:
In this example, all the PE devices are configured with the BGP PIC feature under IPv4 and VPNv4 address families.
For BGP PIC to work in BGP for the PE-CE node protection, set the policies on PE3 and PE4 for the prefixes received from CE3 such that one of the PE devices acts as primary and the other as backup/alternate. Usually, this is done using local preference and giving better local preference to PE3. In the MPLS cloud, traffic internally flows through PE3 to reach CE3. So, PE1 has PE3 as the best path and PE4 as the second path.
When PE3 goes down, PE1 knows about the removal of the host prefix by IGPs in subseconds, recomputes the best path, selects PE4 as the best path, and installs the routes into the RIB and Cisco Express Forwarding plane. Normal BGP convergence will happen while BGP PIC is redirecting the traffic through PE4, and packets are not lost.
Thus, with BGP PIC enabled on PE3, Cisco Express Forwarding detects the node failure on PE3 and points the forwarding object to the backup/alternate node PE4. PE4 knows that the backup/alternate path is locally generated and routes the traffic to the egress port using the backup/alternate path. This way, traffic loss is minimized.
No Local Policies Set on the PE Devices
PE1 and PE2 point to the eBGP CE paths as the next hop with no local policy. Each of the PE devices receives the other’s path, and BGP calculates the backup/alternate path and installs it into Cisco Express Forwarding, along with its own eBGP path towards CE as the best path. The limitation of the MPLS PE-CE link and node protection solutions is that you cannot change BGP policies. They should work without the need for a best-external path.
Local Policies Set on the PE Devices
Whenever there is a local policy on the PE devices to select one of the PE devices as the primary path to reach the egress CE, the bgp advertise-best-external command is needed on the backup/alternate node PE3 to propagate the external CE routes with a backup/alternate label into the route reflectors and the far-end PE devices.
Cisco Express Forwarding Recursion
Recursion is the ability to find the next longest matching path when the primary path goes down.
When the BGP PIC feature is not installed, and if the next hop to a prefix fails, Cisco Express Forwarding finds the next path to reach the prefix by recursing through the FIB to find the next longest matching path to the prefix. This is useful if the next hop is multiple hops away and there is more than one way of reaching the next hop.
However, with the BGP PIC feature, you may want to disable Cisco Express Forwarding recursion for the following reasons:
Recursion slows down convergence when Cisco Express Forwarding searches all the FIB entries.
BGP PIC Edge already precomputes an alternate path, thus eliminating the need for Cisco Express Forwarding recursion.
When the BGP PIC functionality is enabled, Cisco Express Forwarding recursion is disabled by default for two conditions:
For next hops learned with a /32 network mask (host routes)
For next hops that are directly connected
For all other cases, Cisco Express Forwarding recursion is enabled.
As part of the BGP PIC functionality, you can issue the bgp recursion host command to disable or enable Cisco Express Forwarding recursion for BGP host routes.
Note | When the BGP PIC feature is enabled, by default, bgp recursion host is configured for VPNv4 and VPNv6 address families and disabled for IPv4 and IPv6 address families. |
To disable or enable Cisco Express Forwarding recursion for BGP directly connected next hops, you can issue the disable-connected-check command.
How to Configure BGP PIC
Configuring BGP PIC
Because many service provider networks contain many VRFs, the BGP PIC feature allows you to configure the BGP PIC feature for all VRFs at once.
-
VPNv4 address family configuration mode protects all the VRFs.
-
VRF-IPv4 address family configuration mode protects only IPv4 VRFs.
-
Router configuration mode protects prefixes in the global routing table.
For a full configuration example that includes configuring multiprotocol VRFs and shows output to verify that the feature is enabled, see the Example: Configuring BGP PIC.
If you are
implementing the BGP PIC feature in an MPLS VPN, ensure that the network is
working properly before configuring the BGP PIC feature. See “Configuring MPLS
Layer 3 VPNs” for more information.
If you are
implementing the BGP PIC feature in an MPLS VPN, configure multiprotocol VRFs,
which allow you to share route-target policies (import and export) between IPv4
and IPv6 or to configure separate route-target policies for IPv4 and IPv6 VPNs.
For information about configuring multiprotocol VRFs, see “MPLS VPN—VRF CLI for
IPv4 and IPv6 VPNs”.
Ensure that the
CE device is connected to the network by at least two paths.
1.
enable
2.
configure
terminal
3.
router
bgp
autonomous-system-number
5.
bgp
additional-paths
install
6.
neighbor
ip-address
remote-as
autonomous-system-number
7.
neighbor
ip-address
activate
8.
bgp
recursion
host
9.
neighbor
ip-address
fall-over
[bfd |route-map
map-name]
10.
end
DETAILED STEPS
Disabling BGP PIC Core
BGP PIC core feature is enabled by default. Use the following configuration to disable the BGP PIC core feature.
Note | Use the cef table output-chain build favor convergence-speed command in global configuration mode to re-enable the BGP PIC core feature. |
1.
enable
2.
configure
terminal
3.
cef table output-chain build favor memory-utilization
4.
end
DETAILED STEPS
Configuration Examples for BGP PIC
- Example: Configuring BGP PIC
- Example: Displaying Backup Alternate Paths for BGP PIC
- Example: Disabling BGP PIC Core
Example: Configuring BGP PIC
The following example shows how to configure the BGP PIC feature in VPNv4 address family configuration mode, which enables the feature on all VRFs. In the following example, there are two VRFs defined: blue and green. All the VRFs, including those in VRFs blue and green, are protected by backup/alternate paths.
vrf definition test1 rd 400:1 route-target export 100:1 route-target export 200:1 route-target export 300:1 route-target export 400:1 route-target import 100:1 route-target import 200:1 route-target import 300:1 route-target import 400:1 address-family ipv4 exit-address-family exit ! vrf forwarding test1 ip address 10.0.0.1 255.0.0.0 exit router bgp 3 no synchronization bgp log-neighbor-changes redistribute static redistribute connected neighbor 10.6.6.6 remote-as 3 neighbor 10.6.6.6 update-source Loopback0 neighbor 10.7.7.7 remote-as 3 neighbor 10.7.7.7 update-source Loopback0 no auto-summary ! address-family vpnv4 bgp additional-paths install neighbor 10.6.6.6 activate neighbor 10.6.6.6 send-community both neighbor 10.7.7.7 activate neighbor 10.7.7.7 send-community both exit-address-family ! address-family ipv4 vrf blue import path selection all import path limit 10 no synchronization neighbor 10.11.11.11 remote-as 1 neighbor 10.11.11.11 activate exit-address-family ! address-family ipv4 vrf green import path selection all import path limit 10 no synchronization neighbor 10.13.13.13 remote-as 1 neighbor 10.13.13.13 activate exit-address-family
The following show vrf detail command output shows that the BGP PIC feature is enabled:
Router# show vrf detail VRF test1 (VRF Id = 1); default RD 400:1; default VPNID <not set> Interfaces: Se4/0 Address family ipv4 (Table ID = 1 (0x1)): Export VPN route-target communities RT:100:1 RT:200:1 RT:300:1 RT:400:1 Import VPN route-target communities RT:100:1 RT:200:1 RT:300:1 RT:400:1 No import route-map No export route-map VRF label distribution protocol: not configured VRF label allocation mode: per-prefix Prefix protection with additional path enabled Address family ipv6 not active.
Example: Displaying Backup Alternate Paths for BGP PIC
The command output in the following example shows that the VRFs in VRF blue have backup/alternate paths:
Device# show ip bgp vpnv4 vrf blue 10.0.0.0 BGP routing table entry for 10:12:12.0.0.0/24, version 88 Paths: (4 available, best #1, table blue) Additional-path Advertised to update-groups: 6 1, imported path from 12:23:12.0.0.0/24 10.3.3.3 (metric 21) from 10.6.6.6 (10.6.6.6) Origin incomplete, metric 0, localpref 200, valid, internal, best Extended Community: RT:12:23 Originator: 10.3.3.3, Cluster list: 10.0.0.1 , recursive-via-host mpls labels in/out nolabel/37 1, imported path from 12:23:12.0.0.0/24 10.13.13.13 (via green) from 10.13.13.13 (10.0.0.2) Origin incomplete, metric 0, localpref 100, valid, external Extended Community: RT:12:23 , recursive-via-connected 1, imported path from 12:23:12.0.0.0/24 10.3.3.3 (metric 21) from 10.7.7.7 (10.7.7.7) Origin incomplete, metric 0, localpref 200, valid, internal Extended Community: RT:12:23 Originator: 10.3.3.3, Cluster list: 10.0.0.1 , recursive-via-host mpls labels in/out nolabel/37 1 10.11.11.11 from 10.11.11.11 (1.0.0.1) Origin incomplete, metric 0, localpref 100, valid, external, backup/repair Extended Community: RT:11:12 , recursive-via-connected
The command output in the following example shows that the VRFs in VRF green have backup/alternate paths:
Device# show ip bgp vpnv4 vrf green 12.0.0.0 BGP routing table entry for 12:23:12.0.0.0/24, version 87 Paths: (4 available, best #4, table green) Additional-path Advertised to update-groups: 5 1, imported path from 11:12:12.0.0.0/24 10.11.11.11 (via blue) from 10.11.11.11 (1.0.0.1) Origin incomplete, metric 0, localpref 100, valid, external Extended Community: RT:11:12 , recursive-via-connected 1 10.3.3.3 (metric 21) from 10.7.7.7 (10.7.7.7) Origin incomplete, metric 0, localpref 200, valid, internal Extended Community: RT:12:23 Originator: 10.3.3.3, Cluster list: 10.0.0.1 , recursive-via-host mpls labels in/out nolabel/37 1 10.13.13.13 from 10.13.13.13 (10.0.0.2) Origin incomplete, metric 0, localpref 100, valid, external, backup/repair Extended Community: RT:12:23 , recursive-via-connected 1 10.3.3.3 (metric 21) from 10.6.6.6 (10.6.6.6) Origin incomplete, metric 0, localpref 200, valid, internal, best Extended Community: RT:12:23 Originator: 10.3.3.3, Cluster list: 10.0.0.1 , recursive-via-host mpls labels in/out nolabel/37
The command output in the following example shows the BGP routing table entries for the backup and alternate paths:
Device# show ip bgp 10.0.0.0 255.255.0.0 BGP routing table entry for 10.0.0.0/16, version 123 Paths: (4 available, best #3, table default) Additional-path Advertised to update-groups: 2 3 Local 10.0.101.4 from 10.0.101.4 (10.3.3.3) Origin IGP, localpref 100, weight 500, valid, internal Local 10.0.101.3 from 10.0.101.3 (10.4.4.4) Origin IGP, localpref 100, weight 200, valid, internal Local 10.0.101.2 from 10.0.101.2 (10.1.1.1) Origin IGP, localpref 100, weight 900, valid, internal, best Local 10.0.101.1 from 10.0.101.1 (10.5.5.5) Origin IGP, localpref 100, weight 700, valid, internal, backup/repair
The command output in the following example shows the routing information base entries for the backup and alternate paths:
Device# show ip route repair-paths 10.0.0.0 255.255.0.0 Routing entry for 10.0.0.0/16 Known via "bgp 10", distance 200, metric 0, type internal Last update from 10.0.101.2 00:00:56 ago Routing Descriptor Blocks: * 10.0.101.2, from 10.0.101.2, 00:00:56 ago Route metric is 0, traffic share count is 1 AS Hops 0 MPLS label: none [RPR]10.0.101.1, from 10.0.101.1, 00:00:56 ago Route metric is 0, traffic share count is 1 AS Hops 0 MPLS label: none
The command output in the following example shows the Cisco Express Forwarding/forwarding information base entries for the backup and alternate paths:
Device# show ip cef 10.0.0.0 255.255.0.0 detail 10.0.0.0/16, epoch 0, flags rib only nolabel, rib defined all labels recursive via 10.0.101.2 attached to recursive via 10.0.101.1, repair attached to
Example: Disabling BGP PIC Core
The following example shows how to disable the BGP PIC core in global configuration mode.
Device> enable Device# configure terminal Device(config)# cef table output-chain build favor memory-utilization Device(config)# end
Additional References
Related Topic |
Document Title |
---|---|
Cisco IOS commands |
|
BGP commands |
|
Basic MPLS VPNs |
“Configuring MPLS Layer 3 VPNs” module in the MPLS: Layer 3 VPNs Configuration Guide |
A failover feature that creates a new path after a link or node failure |
“MPLS VPN—BGP Local Convergence” module in the MPLS: Layer 3 VPNs Configuration Guide |
Configuring multiprotocol VRFs |
“MPLS VPN—VRF CLI for IPv4 and IPv6 VPNs” module in the MPLS: Layer 3 VPNs Configuration Guide |
Related Documents
Standards
Standard |
Title |
---|---|
draft-walton-bgp-add-paths-04.txt |
Advertisement of Multiple Paths in BGP |
MIBs
MIB |
MIBs Link |
---|---|
— |
To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: |
RFCs
RFC |
Title |
---|---|
RFC 1771 |
A Border Gateway Protocol 4 (BGP-4) |
RFC 2547 |
BGP/MPLS VPNs |
Technical Assistance
Description |
Link |
---|---|
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |
Feature Information for BGP PIC
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Feature Name |
Releases |
Feature Information |
---|---|---|
BGP PIC Edge for IP and MPLS-VPN |
The BGP PIC Edge for IP and MPLS-VPN feature improves BGP convergence after a network failure. This convergence is applicable to both core and edge failures and can be used in both IP and MPLS networks. The BGP PIC Edge for IP and MPLS-VPN feature creates and stores a backup/alternate path in the routing information base (RIB), forwarding information base (FIB), and Cisco Express Forwarding so that when a failure is detected, the backup/alternate path can immediately take over, thus enabling fast failover. The following commands were introduced or modified: bgp additional-paths install, bgp recursion host, show ip bgp, show ip cef, show ip route, show vrf. |