IPv6 Routing: OSPFv3

Open Shortest Path First version 3 (OSPFv3) is an IPv4 and IPv6 link-state routing protocol that supports IPv6 and IPv4 unicast address families (AFs).

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/​go/​cfn. An account on Cisco.com is not required.

Prerequisites for IPv6 Routing: OSPFv3

  • Complete the OSPFv3 network strategy and planning for your IPv6 network. For example, you must decide whether multiple areas are required.
  • Enable IPv6 unicast routing.
  • Enable IPv6 on the interface.

Restrictions for IPv6 Routing: OSPFv3

When running a dual-stack IP network with OSPF version 2 for IPv4 and OSPFv3, be careful when changing the defaults for commands used to enable OSPFv3. Changing these defaults may affect your OSPFv3 network, possibly adversely.

Information About IPv6 Routing: OSPFv3

How OSPFv3 Works

OSPFv3 is a routing protocol for IPv4 and IPv6. It is a link-state protocol, as opposed to a distance-vector protocol. Think of a link as being an interface on a networking device. A link-state protocol makes its routing decisions based on the states of the links that connect source and destination machines. The state of a link is a description of that interface and its relationship to its neighboring networking devices. The interface information includes the IPv6 prefix of the interface, the network mask, the type of network it is connected to, the devices connected to that network, and so on. This information is propagated in various type of link-state advertisements (LSAs).

A device’s collection of LSA data is stored in a link-state database. The contents of the database, when subjected to the Dijkstra algorithm, result in the creation of the OSPF routing table. The difference between the database and the routing table is that the database contains a complete collection of raw data; the routing table contains a list of shortest paths to known destinations via specific device interface ports.

OSPFv3, which is described in RFC 5340, supports IPv6 and IPv4 unicast AFs.

Comparison of OSPFv3 and OSPF Version 2

Much of OSPF version 3 is the same as in OSPF version 2. OSPFv3, which is described in RFC 5340, expands on OSPF version 2 to provide support for IPv6 routing prefixes and the larger size of IPv6 addresses.

In OSPFv3, a routing process does not need to be explicitly created. Enabling OSPFv3 on an interface will cause a routing process, and its associated configuration, to be created.

In OSPFv3, each interface must be enabled using commands in interface configuration mode. This feature is different from OSPF version 2, in which interfaces are indirectly enabled using the device configuration mode.

When using a nonbroadcast multiaccess (NBMA) interface in OSPFv3, you must manually configure the device with the list of neighbors. Neighboring devices are identified by their device ID.

In IPv6, you can configure many address prefixes on an interface. In OSPFv3, all address prefixes on an interface are included by default. You cannot select some address prefixes to be imported into OSPFv3; either all address prefixes on an interface are imported, or no address prefixes on an interface are imported.

Unlike OSPF version 2, multiple instances of OSPFv3 can be run on a link.

OSPF automatically prefers a loopback interface over any other kind, and it chooses the highest IP address among all loopback interfaces. If no loopback interfaces are present, the highest IP address in the device is chosen. You cannot tell OSPF to use any particular interface.

LSA Types for OSPFv3

The following list describes LSA types, each of which has a different purpose:

  • Device LSAs (Type 1)—Describes the link state and costs of a device’s links to the area. These LSAs are flooded within an area only. The LSA indicates if the device is an Area Border Router (ABR) or Autonomous System Boundary Router (ASBR), and if it is one end of a virtual link. Type 1 LSAs are also used to advertise stub networks. In OSPFv3, these LSAs have no address information and are network-protocol-independent. In OSPFv3, device interface information may be spread across multiple device LSAs. Receivers must concatenate all device LSAs originated by a given device when running the SPF calculation.
  • Network LSAs (Type 2)—Describes the link-state and cost information for all devices attached to the network. This LSA is an aggregation of all the link-state and cost information in the network. Only a designated device tracks this information and can generate a network LSA. In OSPFv3, network LSAs have no address information and are network-protocol-independent.
  • Interarea-prefix LSAs for ABRs (Type 3)—Advertises internal networks to devices in other areas (interarea routes). Type 3 LSAs may represent a single network or a set of networks summarized into one advertisement. Only ABRs generate summary LSAs. In OSPFv3, addresses for these LSAs are expressed as prefix, prefix length instead of address, mask. The default route is expressed as a prefix with length 0.
  • Interarea-device LSAs for ASBRs (Type 4)—Advertises the location of an ASBR. Devices that are trying to reach an external network use these advertisements to determine the best path to the next hop. Type 4 LSAs are generated by ABRs on behalf of ASBRs.
  • Autonomous system external LSAs (Type 5)—Redistributes routes from another autonomous system, usually from a different routing protocol into OSPFv3. In OSPFv3, addresses for these LSAs are expressed as prefix, prefix length instead of address, mask. The default route is expressed as a prefix with length 0.
  • Link LSAs (Type 8)—Have local-link flooding scope and are never flooded beyond the link with which they are associated. Link LSAs provide the link-local address of the device to all other devices attached to the link, inform other devices attached to the link of a list of prefixes to associate with the link, and allow the device to assert a collection of Options bits to associate with the network LSA that will be originated for the link.
  • Intra-Area-Prefix LSAs (Type 9)—A device can originate multiple intra-area-prefix LSAs for each device or transit network, each with a unique link-state ID. The link-state ID for each intra-area-prefix LSA describes its association to either the device LSA or the network LSA and contains prefixes for stub and transit networks.

An address prefix occurs in almost all newly defined LSAs. The prefix is represented by three fields: PrefixLength, PrefixOptions, and Address Prefix. In OSPFv3, addresses for these LSAs are expressed as prefix, prefix length instead of address, mask. The default route is expressed as a prefix with length 0. Type 3 and Type 9 LSAs carry all prefix (subnet) information that, in OSPFv2, is included in device LSAs and network LSAs. The Options field in certain LSAs (device LSAs, network LSAs, interarea-device LSAs, and link LSAs) has been expanded to 24 bits to provide support for OSPFv3.

In OSPFv3, the sole function of the link-state ID in interarea-prefix LSAs, interarea-device LSAs, and autonomous-system external LSAs is to identify individual pieces of the link-state database. All addresses or device IDs that are expressed by the link-state ID in OSPF version 2 are carried in the body of the LSA in OSPFv3.

The link-state ID in network LSAs and link LSAs is always the interface ID of the originating device on the link being described. For this reason, network LSAs and link LSAs are now the only LSAs whose size cannot be limited. A network LSA must list all devices connected to the link, and a link LSA must list all of the address prefixes of a device on the link.

NBMA in OSPFv3

On NBMA networks, the designated router (DR) or backup DR (BDR) performs the LSA flooding. On point-to-point networks, flooding simply goes out an interface directly to a neighbor.

Devices that share a common segment (Layer 2 link between two interfaces) become neighbors on that segment. OSPFv3 uses the Hello protocol, periodically sending hello packets out each interface. Devices become neighbors when they see themselves listed in the neighbor’s hello packet. After two devices become neighbors, they may proceed to exchange and synchronize their databases, which creates an adjacency. Not all neighboring devices have an adjacency.

On point-to-point and point-to-multipoint networks, the software floods routing updates to immediate neighbors. There is no DR or BDR; all routing information is flooded to each networking device.

On broadcast or NBMA segments only, OSPFv3 minimizes the amount of information being exchanged on a segment by choosing one device to be a DR and one device to be a BDR. Thus, the devices on the segment have a central point of contact for information exchange. Instead of each device exchanging routing updates with every other device on the segment, each device exchanges information with the DR and BDR. The DR and BDR relay the information to the other devices.

The software looks at the priority of the devices on the segment to determine which devices will be the DR and BDR. The device with the highest priority is elected the DR. If there is a tie, then the device with the higher device ID takes precedence. After the DR is elected, the BDR is elected the same way. A device with a device priority set to zero is ineligible to become the DR or BDR.

When using NBMA in OSPFv3, you cannot automatically detect neighbors. On an NBMA interface, you must configure your neighbors manually using interface configuration mode.

Load Balancing in OSPFv3

When a device learns multiple routes to a specific network via multiple routing processes (or routing protocols), it installs the route with the lowest administrative distance in the routing table. Sometimes the device must select a route from among many learned via the same routing process with the same administrative distance. In this case, the device chooses the path with the lowest cost (or metric) to the destination. Each routing process calculates its cost differently and the costs may need to be manipulated in order to achieve load balancing.

OSPFv3 performs load balancing automatically in the following way. If OSPFv3 finds that it can reach a destination through more than one interface and each path has the same cost, it installs each path in the routing table. The only restriction on the number of paths to the same destination is controlled by the maximum-paths command. The default maximum paths is 16, and the range is from 1 to 64.

Addresses Imported into OSPFv3

When importing the set of addresses specified on an interface on which OSPFv3 is running into OSPFv3, you cannot select specific addresses to be imported. Either all addresses are imported, or no addresses are imported.

OSPFv3 Customization

You can customize OSPFv3 for your network, but you likely will not need to do so. The defaults for OSPFv3 are set to meet the requirements of most customers and features. If you must change the defaults, refer to the IPv6 command reference to find the appropriate syntax.


Caution


Be careful when changing the defaults. Changing defaults will affect your OSPFv3 network, possibly adversely.


OSPFv3 Cost Calculation

Because cost components can change rapidly, it might be necessary to reduce the volume of changes to reduce network-wide churn. The recommended values for S2, S3, and S4 in the second table below are based on network simulations that may reduce the rate of network changes. The recommended value for S1 is 0 to eliminate this variable from the route cost calculation.

The overall link cost is computed using the formula shown in the figure below.

Figure 1. Overall Link Cost Formula

The table below defines the symbols used in the OSPFv3 cost calculation.

Table 1 OSPFv3 Cost Calculation Definitions

Cost Component

Component Definition

OC

The default OSPFv3 cost. Calculated from reference bandwidth using reference_bw / (MDR*1000), where reference_bw=10^8.

A through D

Various radio-specific data-based formulas that produce results in the 0 through 64,000 range.

A

CDR- and MDR-related formula:

(2^16 * (100 – (CDR * 100 / MDR)))/100

B

Resources related formula:

((100 – RESOURCES)^3 * 2^16 / 10^6)

C

Latency as reported by the radio, already in the 0 through 64,000 range when reported (LATENCY).

D

RLF-related formula:

((100 – RLF) * 2^16)/100

S1 through S4

Scalar weighting factors input from the CLI. These scalars scale down the values as computed by A through D.

The value of 0 disables and the value of 100 enables full 0 through 64,000 range for one component.

Because each network might have unique characteristics that require different settings to optimize actual network performance, these are recommended values intended as a starting point for optimizing an OSPFv3 network. The table below lists the recommended value settings for OSPFv3 cost metrics.

Table 2 Recommended Value Settings for OSPFv3 Cost Metrics

Setting

Metric Description

Default Value

Recommended Value

S1

ipv6 ospf dynamic weight throughout

100

0

S2

ipv6 ospf dynamic weight resources

100

29

S3

ipv6 ospf dynamic weight latency

100

29

S4

ipv6 ospf dynamic weight L2 factor

100

29

The default path costs were calculated using this formula, as noted in the following list. If these values do not suit your network, you can use your own method of calculating path costs.

  • 56-kbps serial link—Default cost is 1785.
  • 64-kbps serial link—Default cost is 1562.
  • T1 (1.544-Mbps serial link)—Default cost is 64.
  • E1 (2.048-Mbps serial link)—Default cost is 48.
  • 4-Mbps Token Ring—Default cost is 25.
  • Ethernet—Default cost is 10.
  • 16-Mbps Token Ring—Default cost is 6.
  • FDDI—Default cost is 1.
  • X25—Default cost is 5208.
  • Asynchronous—Default cost is 10,000.
  • ATM—Default cost is 1.

To illustrate these settings, the following example shows how OSPFv3 cost metrics might be defined for a Virtual Multipoint Interface (VMI) interface:

interface vmi1
 ipv6 ospf cost dynamic weight throughput 0
 ipv6 ospf cost dynamic weight resources 29
 ipv6 ospf cost dynamic weight latency 29
 ipv6 ospf cost dynamic weight L2-factor 29

Force SPF in OSPFv3

When the process keyword is used with the clear ipv6 ospf command, the OSPFv3 database is cleared and repopulated, and then the SPF algorithm is performed. When the force-spf keyword is used with the clear ipv6 ospf command, the OSPFv3 database is not cleared before the SPF algorithm is performed.

How to Configure Load Balancing in OSPFv3

Configuring the OSPFv3 Device Process

Once you have completed step 3 and entered OSPFv3 router configuration mode, you can perform any of the subsequent steps in this task as needed to configure OSPFv3 Device configuration.

SUMMARY STEPS

    1.    enable

    2.    configure terminal

    3.    router ospfv3 [process-id]

    4.    area area-ID [default-cost | nssa | stub]

    5.    auto-cost reference-bandwidth Mbps

    6.    bfd all-interfaces

    7.    default {area area-ID [range ipv6-prefix | virtual-link router-id]} [default-information originate [always | metric | metric-type | route-map] | distance | distribute-list prefix-list prefix-list-name {in | out} [interface] | maximum-paths paths | redistribute protocol | summary-prefix ipv6-prefix]

    8.    ignore lsa mospf

    9.    interface-id snmp-if-index

    10.    log-adjacency-changes [detail]

    11.    passive-interface [default | interface-type interface-number]

    12.    queue-depth {hello | update} {queue-size | unlimited}

    13.    router-id router-id


DETAILED STEPS
     Command or ActionPurpose
    Step 1 enable


    Example:
    Device> enable
     

    Enables privileged EXEC mode.

    • Enter your password if prompted.
     
    Step 2 configure terminal


    Example:
    Device# configure terminal
     

    Enters global configuration mode.

     
    Step 3 router ospfv3 [process-id]


    Example:
    Device(config)# router ospfv3 1
     

    Enters router configuration mode for the IPv4 or IPv6 address family.

     
    Step 4 area area-ID [default-cost | nssa | stub]


    Example:
    Device(config-router)# area 1
     

    Configures the OSPFv3 area.

     
    Step 5 auto-cost reference-bandwidth Mbps


    Example:
    Device(config-router)# auto-cost reference-bandwidth 1000 
     

    Controls the reference value OSPFv3 uses when calculating metrics for interfaces in an IPv4 OSPFv3 process.

     
    Step 6 bfd all-interfaces


    Example:
    Device(config-router)# bfd all-interfaces 
     

    Enables BFD for an OSPFv3 routing process

     
    Step 7 default {area area-ID [range ipv6-prefix | virtual-link router-id]} [default-information originate [always | metric | metric-type | route-map] | distance | distribute-list prefix-list prefix-list-name {in | out} [interface] | maximum-paths paths | redistribute protocol | summary-prefix ipv6-prefix]


    Example:
    Device(config-router)# default area 1
     

    Returns an OSPFv3 parameter to its default value.

     
    Step 8 ignore lsa mospf


    Example:
    Device(config-router)# ignore lsa mospf 
     

    Suppresses the sending of syslog messages when the device receives LSA Type 6 multicast OSPFv3 packets, which are unsupported.

     
    Step 9 interface-id snmp-if-index


    Example:
    Device(config-router)# interface-id snmp-if-index
     

    Configures OSPFv3 interfaces with Simple Network Management Protocol (SNMP) MIB-II interface Index (ifIndex) identification numbers in IPv4 and IPv6.

     
    Step 10 log-adjacency-changes [detail]


    Example:
    Device(config-router)# log-adjacency-changes 
     

    Configures the device to send a syslog message when an OSPFv3 neighbor goes up or down.

     
    Step 11passive-interface [default | interface-type interface-number]

    Example:
    Device(config-router)# passive-interface default 
     

    Suppresses sending routing updates on an interface when an IPv4 OSPFv3 process is used.

     
    Step 12 queue-depth {hello | update} {queue-size | unlimited}


    Example:
    Device(config-router)# queue-depth update 1500 
     

    Configures the number of incoming packets that the IPv4 OSPFv3 process can keep in its queue.

     
    Step 13router-id router-id


    Example:
    Device(config-router)# router-id 10.1.1.1 
     

    Enter this command to use a fixed router ID.

     

    Configuring NBMA Interfaces in OSPFv3

    You can customize OSPFv3 in your network to use NBMA interfaces. OSPFv3 cannot automatically detect neighbors over NBMA interfaces. On an NBMA interface, you must configure your neighbors manually using interface configuration mode.

    Before You Begin

    Before you configure NBMA interfaces, you must perform the following tasks:

    • Configure your network to be an NBMA network
    • Identify each neighbor

    Note


    • You cannot automatically detect neighbors when using NBMA interfaces. You must manually configure your device to detect neighbors when using an NBMA interface.
    • When the ipv6 ospf neighbor command is configured, the IPv6 address used must be the link-local address of the neighbor.

    SUMMARY STEPS

      1.    enable

      2.    configure terminal

      3.    interface type number

      4.    frame-relay map ipv6 ipv6-address dlci [broadcast] [cisco] [ietf] [payload-compression {packet-by-packet | frf9 stac [ hardware-options] | data-stream stac [hardware-options]}]

      5.    ipv6 ospf neighbor ipv6-address [priority number] [poll-interval seconds] [cost number] [database-filter all out]


    DETAILED STEPS
       Command or ActionPurpose
      Step 1 enable


      Example:
      Device> enable
      
       

      Enables privileged EXEC mode.

      • Enter your password if prompted.
       
      Step 2 configure terminal


      Example:
      Device# configure terminal
      
       

      Enters global configuration mode.

       
      Step 3 interface type number


      Example:
      Device(config)# interface serial 0
      
       

      Specifies an interface type and number, and places the device in interface configuration mode.

       
      Step 4 frame-relay map ipv6 ipv6-address dlci [broadcast] [cisco] [ietf] [payload-compression {packet-by-packet | frf9 stac [ hardware-options] | data-stream stac [hardware-options]}]


      Example:
      Device(config-if)#  frame-relay map ipv6 FE80::A8BB:CCFF:FE00:C01 120
      
       

      Defines the mapping between a destination IPv6 address and the data-link connection identifier (DLCI) used to connect to the destination address.

      • In this example, the NBMA link is Frame Relay. For other kinds of NBMA links, different mapping commands are used.
       
      Step 5 ipv6 ospf neighbor ipv6-address [priority number] [poll-interval seconds] [cost number] [database-filter all out]


      Example:
      Device(config-if) ipv6 ospf neighbor FE80::A8BB:CCFF:FE00:C01
      
       

      Configures an OSPFv3 neighboring device.

       

      Forcing an SPF Calculation

      SUMMARY STEPS

        1.    enable

        2.    clear ospfv3 [process-id] force-spf

        3.    clear ospfv3 [process-id] process

        4.    clear ospfv3 [process-id] redistribution

        5.    clear ipv6 ospf [process-id] {process | force-spf | redistribution}


      DETAILED STEPS
         Command or ActionPurpose
        Step 1 enable


        Example:
        Device> enable
        
         

        Enables privileged EXEC mode.

        • Enter your password if prompted.
         
        Step 2 clear ospfv3 [process-id] force-spf


        Example:
        Device# clear ospfv3 1 force-spf
        
         

        Runs SPF calculations for an OSPFv3 process.

        • If the clear ospfv3 force-spf command is configured, it overwrites the clear ipv6 ospf configuration.
        • Once the clear ospfv3 force-spf command has been used, the clear ipv6 ospf command cannot be used.
         
        Step 3 clear ospfv3 [process-id] process


        Example:
        Device# clear ospfv3 2 process
        
         

        Resets an OSPFv3 process.

        • If the clear ospfv3 force-spf command is configured, it overwrites the clear ipv6 ospf configuration.
        • Once the clear ospfv3 force-spf command has been used, the clear ipv6 ospf command cannot be used.
         
        Step 4 clear ospfv3 [process-id] redistribution


        Example:
        Device# clear ospfv3 redistribution
        
         

        Clears OSPFv3 route redistribution.

        • If the clear ospfv3 force-spf command is configured, it overwrites the clear ipv6 ospf configuration.
        • Once the clear ospfv3 force-spf command has been used, the clear ipv6 ospf command cannot be used.
         
        Step 5 clear ipv6 ospf [process-id] {process | force-spf | redistribution}


        Example:
        Device# clear ipv6 ospf force-spf
        
         

        Clears the OSPFv3 state based on the OSPFv3 routing process ID, and forces the start of the SPF algorithm.

        • If the clear ospfv3 force-spf command is configured, it overwrites the clear ipv6 ospf configuration.
        • Once the clear ospfv3 force-spf command has been used, the clear ipv6 ospf command cannot be used.
         

        Verifying OSPFv3 Configuration and Operation

        This task is optional, and the commands can be entered in any order, as needed.

        SUMMARY STEPS

          1.    enable

          2.    show ospfv3 [process-id] [address-family] border-routers

          3.    show ospfv3 [process-id [area-id]] [address-family] database [database-summary | internal | external [ipv6-prefix ] [link-state-id] | grace | inter-area prefix [ipv6-prefix | link-state-id] | inter-area router [destination-router-id | link-state-id] | link [interface interface-name | link-state-id] | network [link-state-id] | nssa-external [ipv6-prefix] [link-state-id] | prefix [ref-lsa {router | network} | link-state-id] | promiscuous | router [link-state-id] | unknown [{area | as | link} [link-state-id]] [adv-router router-id] [self-originate]

          4.    show ospfv3 [process-id] [address-family] events [generic | interface | lsa | neighbor | reverse | rib | spf]

          5.    show ospfv3 [process-id] [area-id] [address-family] flood-list interface-type interface-number

          6.    show ospfv3 [process-id] [address-family] graceful-restart

          7.    show ospfv3 [process-id] [area-id] [address-family] interface [type number] [brief]

          8.    show ospfv3 [process-id] [area-id] [address-family] neighbor [interface-type interface-number] [neighbor-id] [detail]

          9.    show ospfv3 [process-id] [area-id] [address-family] request-list[neighbor] [interface] [interface-neighbor]

          10.    show ospfv3 [process-id] [area-id] [address-family] retransmission-list [neighbor] [interface] [interface-neighbor]

          11.    show ospfv3 [process-id] [address-family] statistic [detail]

          12.    show ospfv3 [process-id] [address-family] summary-prefix

          13.    show ospfv3 [process-id] [address-family] timers rate-limit

          14.    show ospfv3 [process-id] [address-family] traffic[interface-type interface-number]

          15.    show ospfv3 [process-id] [address-family] virtual-links


        DETAILED STEPS
           Command or ActionPurpose
          Step 1 enable


          Example:
          Device> enable 
          
           

          Enables privileged EXEC mode.

          • Enter your password if prompted.
           
          Step 2 show ospfv3 [process-id] [address-family] border-routers


          Example:
          Device# show ospfv3 border-routers
           
           

          Displays the internal OSPFv3 routing table entries to an ABR and ASBR.

           
          Step 3 show ospfv3 [process-id [area-id]] [address-family] database [database-summary | internal | external [ipv6-prefix ] [link-state-id] | grace | inter-area prefix [ipv6-prefix | link-state-id] | inter-area router [destination-router-id | link-state-id] | link [interface interface-name | link-state-id] | network [link-state-id] | nssa-external [ipv6-prefix] [link-state-id] | prefix [ref-lsa {router | network} | link-state-id] | promiscuous | router [link-state-id] | unknown [{area | as | link} [link-state-id]] [adv-router router-id] [self-originate]


          Example:
          Device# show ospfv3 database
          
           

          Displays lists of information related to the OSPFv3 database for a specific device.

           
          Step 4 show ospfv3 [process-id] [address-family] events [generic | interface | lsa | neighbor | reverse | rib | spf]


          Example:
          Device# show ospfv3 events 
          
           

          Displays detailed information about OSPFv3 events.

           
          Step 5 show ospfv3 [process-id] [area-id] [address-family] flood-list interface-type interface-number


          Example:
          Device# show ospfv3 flood-list 
          
           

          Displays a list of OSPFv3 LSAs waiting to be flooded over an interface.

           
          Step 6 show ospfv3 [process-id] [address-family] graceful-restart


          Example:
          Device# show ospfv3 graceful-restart
          
           

          Displays OSPFv3 graceful restart information.

           
          Step 7 show ospfv3 [process-id] [area-id] [address-family] interface [type number] [brief]


          Example:
          Device# show ospfv3 interface
           

          Displays OSPFv3-related interface information.

           
          Step 8 show ospfv3 [process-id] [area-id] [address-family] neighbor [interface-type interface-number] [neighbor-id] [detail]


          Example:
          Device# show ospfv3 neighbor
           
           

          Displays OSPFv3 neighbor information on a per-interface basis.

           
          Step 9 show ospfv3 [process-id] [area-id] [address-family] request-list[neighbor] [interface] [interface-neighbor]


          Example:
          Device# show ospfv3 request-list  
          
           

          Displays a list of all LSAs requested by a device.

           
          Step 10 show ospfv3 [process-id] [area-id] [address-family] retransmission-list [neighbor] [interface] [interface-neighbor]


          Example:
          Device# show ospfv3 retransmission-list 
          
           

          Displays a list of all LSAs waiting to be re-sent.

           
          Step 11 show ospfv3 [process-id] [address-family] statistic [detail]


          Example:
          Device# show ospfv3 statistics
          
           

          Displays OSPFv3 SPF calculation statistics.

           
          Step 12 show ospfv3 [process-id] [address-family] summary-prefix


          Example:
          Device# show ospfv3 summary-prefix
          
           

          Displays a list of all summary address redistribution information configured under an OSPFv3 process.

           
          Step 13 show ospfv3 [process-id] [address-family] timers rate-limit


          Example:
          Device# show ospfv3 timers rate-limit
          
           

          Displays all of the LSAs in the rate limit queue.

           
          Step 14 show ospfv3 [process-id] [address-family] traffic[interface-type interface-number]


          Example:
          Device# show ospfv3 traffic 
          
           

          Displays OSPFv3 traffic statistics.

           
          Step 15 show ospfv3 [process-id] [address-family] virtual-links


          Example:
          Device# show ospfv3 virtual-links 
          
           

          Displays parameters and the current state of OSPFv3 virtual links.

           

          Configuration Examples for Load Balancing in OSPFv3

          Example: Configuring the OSPFv3 Device Process

          Device# show ospfv3 database 
                      OSPFv3 Device with ID (172.16.4.4) (Process ID 1)
                          Device Link States (Area 0)
          ADV Device         Age         Seq#        Fragment ID   Link count  Bits
          172.16.4.4         239         0x80000003  0             1           B
          172.16.6.6         239         0x80000003  0             1           B
                      Inter Area Prefix Link States (Area 0)
          ADV Device         Age         Seq#        Prefix
          172.16.4.4         249         0x80000001  FEC0:3344::/32
          172.16.4.4         219         0x80000001  FEC0:3366::/32
          172.16.6.6         247         0x80000001  FEC0:3366::/32
          172.16.6.6         193         0x80000001  FEC0:3344::/32
          172.16.6.6         82          0x80000001  FEC0::/32
                      Inter Area Device Link States (Area 0)
          ADV Device         Age         Seq#        Link ID    Dest DevID
          172.16.4.4         219         0x80000001  50529027   172.16.3.3
          172.16.6.6         193         0x80000001  50529027   172.16.3.3
                    
                      Link (Type-8) Link States (Area 0)
          ADV Device         Age         Seq#        Link ID    Interface
          172.16.4.4         242         0x80000002  14         PO4/0
          172.16.6.6         252         0x80000002  14         PO4/0
                      Intra Area Prefix Link States (Area 0)
          ADV Device         Age         Seq#        Link ID    Ref-lstype  Ref-LSID
          172.16.4.4         242         0x80000002  0          0x2001      0
          172.16.6.6         252         0x80000002  0          0x2001      0
          
                  
                
          Device# show ospfv3 neighbor
           
          OSPFv3 Device with ID (10.1.1.1) (Process ID 42)
          Neighbor ID     Pri   State           Dead Time   Interface ID    Interface
          10.4.4.4        1    FULL/  -        00:00:39    12              vm1
          OSPFv3 Device with ID (10.2.1.1) (Process ID 100)
          Neighbor ID     Pri   State           Dead Time   Interface ID    Interface
          10.5.4.4          1    FULL/  -        00:00:35    12              vm1
          

          Example: Configuring NBMA Interfaces

          The following example shows how to configure an OSPFv3 neighboring device with the IPv6 address of FE80::A8BB:CCFF:FE00:C01.

          interface serial 0
           ipv6 enable
           ipv6 ospf 1 area 0
           encapsulation frame-relay
           frame-relay map ipv6 FE80::A8BB:CCFF:FE00:C01 120
           ipv6 ospf neighbor FE80::A8BB:CCFF:FE00:C0

          Example: Forcing SPF Configuration

          The following example shows how to trigger SPF to redo the SPF and repopulate the routing tables:

          clear ipv6 ospf force-spf
          

          Additional References

          Related Documents

          Related Topic

          Document Title

          IPv6 addressing and connectivity

          IPv6 Configuration Guide

          Cisco IOS commands

          Cisco IOS Master Commands List, All Releases

          IPv6 commands

          Cisco IOS IPv6 Command Reference

          Cisco IOS IPv6 features

          Cisco IOS IPv6 Feature Mapping

          IPv6 Routing: OSPFv3

          Configuring OSPF” module

          Standards and RFCs

          Standard/RFC

          Title

          RFCs for IPv6

          IPv6 RFCs

          MIBs

          MIB

          MIBs Link

          To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

          http:/​/​www.cisco.com/​go/​mibs

          Technical Assistance

          Description

          Link

          The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

          http:/​/​www.cisco.com/​cisco/​web/​support/​index.html

          Feature Information for IPv6 Routing: OSPFv3

          The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

          Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/​go/​cfn. An account on Cisco.com is not required.

          Table 3 Feature Information for IPv6 Routing: OSPFv3

          Feature Name

          Releases

          Feature Information

          IPv6 Routing: OSPFv3

          12.2(25)SG

          15.0(2)SG

          OSPF version 3 for IPv6 expands on OSPF version 2 to provide support for IPv6 routing prefixes and the larger size of IPv6 addresses.

          In Cisco IOS 15.0(2)SG, support was added for the Cisco Catalyst 4000 Series Switches.