- Implementing IPv6 Addressing and Basic Connectivity
- Implementing ADSL for IPv6
- Implementing Bidirectional Forwarding Detection for IPv6
- Implementing DHCP for IPv6
- Implementing EIGRP for IPv6
- Configuring First Hop Redundancy Protocols in IPv6
- Implementing IPsec in IPv6 Security
- Implementing IS-IS for IPv6
- Implementing IPv6 for Network Management
- Implementing IPv6 over MPLS
- Implementing IPv6 VPN over MPLS
- Implementing IPv6 Multicast
- PIMv6 Anycast RP Solution
- Implementing Multiprotocol BGP for IPv6
- Implementing NAT-PT for IPv6
- Implementing OSPFv3
- Implementing Policy-Based Routing for IPv6
- Implementing QoS for IPv6
- Implementing RIP for IPv6
- Implementing Selective Packet Discard in IPv6
- Implementing Static Routes for IPv6
- Implementing Traffic Filters for IPv6 Security
- IPv6 ACL Extensions for Hop by Hop Filtering
- Implementing Tunneling for IPv6
- IPv6 Virtual Fragmentation Reassembly
- IPv6 RFCs
PIMv6 Anycast RP Solution
Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About the PIMv6 Anycast RP Solution
PIMv6 Anycast RP Solution Overview
The anycast RP solution in IPv6 PIM allows an IPv6 network to support anycast services for the PIM-SM RP. It allows anycast RP to be used inside a domain that runs PIM only. Anycast RP can be used in IPv4 as well as IPv6, but it does not depend on the Multicast Source Discovery Protocol (MSDP), which runs only on IPv4. This feature is useful when interdomain connection is not required.
Anycast RP is a mechanism that ISP-based backbones use to get fast convergence when a PIM RP device fails. To allow receivers and sources to rendezvous to the closest RP, the packets from a source need to get to all RPs to find joined receivers.
A unicast IP address is chosen as the RP address. This address is either statically configured or distributed using a dynamic protocol to all PIM devices throughout the domain. A set of devices in the domain is chosen to act as RPs for this RP address; these devices are called the anycast RP set. Each device in the anycast RP set is configured with a loopback interface using the RP address. Each device in the anycast RP set also needs a separate physical IP address to be used for communication between the RPs.
The RP address, or a prefix that covers the RP address, is injected into the unicast routing system inside of the domain. Each device in the anycast RP set is configured with the addresses of all other devices in the anycast RP set, and this configuration must be consistent in all RPs in the set.
PIMv6 Anycast RP Normal Operation
- RP1, RP2, RP3, and RP4 are members in the same anycast RP group.
- S11 and S31 are sources that use RP1 and RP3, respectively, based on their unicast routing metric.
- R11, R12, R2, R31, and R32 are receivers. Based on their unicast routing metrics, R11 and R12 join to RP1, R2 joins to RP2 and R31, and R32 joins to RP3, respectively.
The following sequence of events occurs when S11 starts sending packets:
- DR1 creates (S,G) states and sends a register to RP1. DR1 may also encapsulate the data packet in the register.
- Upon receiving the register, RP1 performs normal PIM-SM RP functionality, and forwards the packets to R11 and R12.
- RP1 also sends the register (which may encapsulate the data packets) to RP2, RP3, and RP4.
- RP2, RP3, and RP4 do not further forward the register to each other.
- RP2, RP3, and RP4 perform normal PIM-SM RP functionality, and if there is a data packet encapsulated, RP2 forwards the data packet to R2 and RP3 forwards the data packet to R31 and R32, respectively.
- The previous five steps repeat for null registers sent by DR1.
PIMv6 Anycast RP Failover
The following illustration shows PIM anycast RP failover.
In this way, the loss of the RP (RP1 in this case) is transparent to DR1, R11, and R12, and the network can converge as soon as the IGP is converged.
How to Configure the PIMv6 Anycast RP Solution
Configuring PIMv6 Anycast RP
This task describes how to configure two PIMv6 anycast RP peers. Steps 3 through 11 show the configuration for RP1, and Steps 12 through 19 show the configuration for RP2.
DETAILED STEPS
Configuration Examples for the PIMv6 Anycast RP Solution
Example: Configuring PIMv6 Anycast RP
RP1 Device1(config)# ipv6 pim rp-address 2001:DB8::1:1 acl_sparse1 Device1(config)# interface Loopback4 Device1(config-if)# ipv6 address 2001:DB8::4:4/64 Device1(config-if)# no shut Device1(config)# interface Loopback5 Device1(config-if)# ipv6 address 2001:DB8:0:ABCD::1/64 Device1(config-if)# no shut Device1(config-if)# exit Device1(config)# ipv6 pim anycast-rp 2001:DB8:0:ABCD::1 2001:DB8::3:3 RP2 (Anycast RP Peer) Device2(config)# ipv6 pim rp-address 2001:DB8::1:1 acl_sparse1 Device2(config)# interface Loopback4 Device2(config-if)# ipv6 address 2001:DB8::3:3/64 Device2(config-if)# no shut Device2(config)# interface Loopback5 Device2(config-if)# ipv6 address 2001:DB8:0:ABCD::1/64 Device2(config-if)# no shut Device2(config)# ipv6 pim anycast-rp 2001:DB8::1:1 2001:DB8::4:4
Device2 show ipv6 pim anycast-rp 2001:DB8::1:1
Anycast RP Peers For 2001:DB8::1:1 Last Register/Register-Stop received
2001:DB8::3:3 00:00:00/00:00:00
2001:DB8::4:4 00:00:00/00:00:00
Additional References
Related Documents
Related Topic | Document Title |
---|---|
Cisco IOS commands |
|
IPv6 commands |
|
Cisco IOS IPv6 features |
Standards and RFCs
Standard/RFC | Title |
---|---|
RFC 4610 |
Anycast-RP Using Protocol Independent Multicast (PIM) |
Technical Assistance
Description | Link |
---|---|
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |
Feature Information for PIMv6 Anycast RP Solution
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1 | Feature Information for the PIMv6: Anycast RP Solution |
Feature Name | Releases | Feature Information |
---|---|---|
PIMv6: Anycast RP Solution |
Cisco IOS XE Release 3.4S |
The anycast RP solution in IPv6 PIM allows an IPv6 network to support anycast services for the PIM-SM RP. It allows anycast RP to be used inside a domain that runs PIM only. The following commands were introduced or modified: ipv6 pim anycast-RP, show ipv6 pim anycast-RP. |
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.