VPLS Autodiscovery BGP Based

VPLS Autodiscovery enables Virtual Private LAN Service (VPLS) provider edge (PE) devices to discover other PE devices that are part of the same VPLS domain. VPLS Autodiscovery also automatically detects when PE devices are added to or removed from a VPLS domain. As a result, with VPLS Autodiscovery enabled, you no longer need to manually configure a VPLS domain and maintain the configuration when a PE device is added or deleted. VPLS Autodiscovery uses the Border Gateway Protocol (BGP) to discover VPLS members and set up and tear down pseudowires in a VPLS domain.

This module describes how to configure BGP-based VPLS Autodiscovery.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for VPLS Autodiscovery BGP Based

  • Virtual Private LAN Service (VPLS) Autodiscovery supports only IPv4 addresses.

  • VPLS Autodiscovery uses Forwarding Equivalence Class (FEC) 129 to convey endpoint information. Manually configured pseudowires use FEC 128.

  • VPLS Autodiscovery is not supported with Layer 2 Tunnel Protocol Version 3 (L2TPv3).

  • You can configure both autodiscovered and manually configured pseudowires in a single virtual forwarding instance (VFI). However, you cannot configure different pseudowires on the same peer PE device.

  • After enabling VPLS Autodiscovery, if you manually configure a neighbor by using the neighbor command and both peers are in autodiscovery mode, each peer will receive discovery data for that VPLS. To prevent peers from receiving data for the VPLS domain, manually configure route target (RT) values.

  • If you manually configure multiple pseudowires and target different IP addresses on the same PE device for each pseudowire, do not use the same virtual circuit (VC) ID to identify pseudowires that terminate at the same PE device.

  • If you manually configure a neighbor on one PE device, you cannot configure the same pseudowire in the other direction by using autodiscovery on another PE device.

  • Tunnel selection is not supported with autodiscovered neighbors.

  • Up to 16 RTs are supported per VFI.

  • The same RT is not allowed in multiple VFIs on the same PE device.

  • The Border Gateway Protocol (BGP) autodiscovery process does not support dynamic, hierarchical VPLS. User-facing PE (U-PE) devices cannot discover network-facing PE (N-PE) devices, and N-PE devices cannot discover U-PE devices.

  • Pseudowires for autodiscovered neighbors have split horizon enabled. (A split horizon is enabled by default on all interfaces. A split horizon blocks route information from being advertised by a device, irrespective of the interface from which the information originates.) Therefore, manually configure pseudowires for hierarchical VPLS. Ensure that U-PE devices do not participate in BGP autodiscovery for these pseudowires.

  • Do not disable split horizon on autodiscovered neighbors. Split horizon is required with VPLS Autodiscovery.

  • The provisioned peer address must be a /32 address bound to the peer’s Label Distribution Protocol (LDP) router ID.

  • A peer PE device must be able to access the IP address that is used as the local LDP router ID. Even if the IP address is not used in the xconnect command on the peer PE device, the IP address must be reachable.

Information About VPLS Autodiscovery BGP Based

How VPLS Works

Virtual Private LAN Service (VPLS) allows Multiprotocol Label Switching (MPLS) networks to provide multipoint Ethernet LAN services, also known as Transparent LAN Services (TLS). All customer sites in a VPLS appear to be on the same LAN, even though these sites might be in different geographic locations.

How the VPLS Autodiscovery BGP Based Feature Works

VPLS Autodiscovery enables each Virtual Private LAN Service (VPLS) provider edge (PE) device to discover other PE devices that are part of the same VPLS domain. VPLS Autodiscovery also tracks PE devices when they are added to or removed from a VPLS domain. Autodiscovery and signaling functions use the Border Gateway Protocol (BGP) to find and track PE devices.

BGP uses the Layer 2 VPN (L2VPN) Routing Information Base (RIB) to store endpoint provisioning information, which is updated each time any Layer 2 virtual forwarding instance (VFI) is configured. The prefix and path information is stored in the L2VPN database, which allows BGP to make decisions about the best path. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, this endpoint information is used to configure a pseudowire mesh to support L2VPN-based services.

The BGP autodiscovery mechanism facilitates the configuration of L2VPN services, which are an integral part of the VPLS feature. VPLS enables flexibility in deploying services by connecting geographically dispersed sites as a large LAN over high-speed Ethernet in a robust and scalable IP Multiprotocol Label Switching (MPLS) network. For more information about BGP and the L2VPN address family in relation to VPLS Autodiscovery, see the following chapters in the IP Routing: BGP Configuration Guide:

  • “L2VPN Address Family” section in the “Cisco BGP Overview” chapter

  • “BGP Support for the L2VPN Address Family” chapter

How Enabling VPLS Autodiscovery Differs from Manually Configuring VPLS

With VPLS Autodiscovery enabled, you no longer need to manually set up Virtual Private LAN Service (VPLS). The commands that you use to set up VPLS Autodiscovery are similar to those that you use to manually configure VPLS, as shown in the table below. VPLS Autodiscovery uses neighbor commands in L2VPN address family mode to distribute endpoint information to configure a pseudowire.

Table 1. Manual VPLS Configuration Versus VPLS Autodiscovery Configuration

Manual Configuration of VPLS

VPLS Autodiscovery BGP Based

l2 vfi vpls1 manual
 vpn id 100
 neighbor 10.10.10.1 encapsulation mpls
 neighbor 10.10.10.0 encapsulation mpls
 exit
l2 vfi vpls1 autodiscovery
 vpn id 100
 exit
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.2 remote-as 1
 neighbor 10.1.1.2 update-source Loopback1  
 .
 .
 .
 address-family l2vpn vpls
 neighbor 10.1.1.2 activate
 neighbor 10.1.1.2 send-community extended  
exit-address-family 

Configure VPLS Autodiscovery by using the l2 vfi autodiscovery command. This command allows a virtual forwarding instance (VFI) to learn and advertise pseudowire endpoints. As a result, you no longer need to enter the neighbor command in L2 VFI configuration mode.

However, the neighbor command is still supported with VPLS Autodiscovery in L2 VFI configuration mode. You can use the neighbor command to allow PE devices that do not participate in the autodiscovery process to join the VPLS domain. You can also use the neighbor command with PE devices that have been configured using the Tunnel Selection feature. In addition, you can use the neighbor command in hierarchical VPLS configurations that have user-facing PE (U-PE) devices that do not participate in the autodiscovery process and have split-horizon forwarding disabled.

How Enabling VPLS Autodiscovery Differs from Manually Configuring VPLS using the commands associated with the L2VPN Protocol-Based CLIs feature

With VPLS Autodiscovery enabled, you no longer need to manually set up Virtual Private LAN Service (VPLS). The commands that you use to set up VPLS Autodiscovery are similar to those that you use to manually configure VPLS, as shown in the table below. VPLS Autodiscovery uses neighbor commands in L2VPN address family mode to distribute endpoint information to configure a pseudowire.

Table 2. Manual VPLS Configuration Versus VPLS Autodiscovery Configuration

Manual Configuration of VPLS

VPLS Autodiscovery BGP Based

l2vpn vfi context vpls1
 vpn id 100
 neighbor 10.10.10.1 encapsulation mpls
 neighbor 10.10.10.0 encapsulation mpls
 exit
l2vpn vfi context vpls1 
 vpn id 100
 autodiscovery bgp signaling ldp
 exit
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.2 remote-as 1
 neighbor 10.1.1.2 update-source Loopback1  
 .
 .
 .
 address-family l2vpn vpls
 neighbor 10.1.1.2 activate
 neighbor 10.1.1.2 send-community extended  
exit-address-family 

Configure VPLS Autodiscovery by using the autodiscovery command. This command allows a virtual forwarding instance (VFI) to learn and advertise pseudowire endpoints. As a result, you no longer need to enter the neighbor command in L2 VFI configuration mode.

However, the neighbor command is still supported with VPLS Autodiscovery in L2 VFI configuration mode. You can use the neighbor command to allow PE devices that do not participate in the autodiscovery process to join the VPLS domain. You can also use the neighbor command with PE devices that have been configured using the Tunnel Selection feature. In addition, you can use the neighbor command in hierarchical VPLS configurations that have user-facing PE (U-PE) devices that do not participate in the autodiscovery process and have split-horizon forwarding disabled.

show Commands Affected by VPLS Autodiscovery BGP Based

The following show commands were enhanced for VPLS Autodiscovery:

  • The show mpls l2transport vc detail command was updated to include Forwarding Equivalence Class (FEC) 129 signaling information for autodiscovered Virtual Private LAN Service (VPLS) pseudowires.

  • The show vfi command was enhanced to display information related to autodiscovered virtual forwarding instances (VFIs). The new output includes the VPLS ID, the route distinguisher (RD), the route target (RT), and router IDs of discovered peers.

  • The show xconnect command was updated with the rib keyword to provide Routing Information Base (RIB) information about pseudowires.

BGP VPLS Autodiscovery Support on a Route Reflector

By default, routes received from an internal BGP (iBGP) peer are not sent to another iBGP peer unless a full mesh configuration is formed between all BGP devices within an autonomous system (AS). This results in scalability issues. Using Border Gateway Protocol (BGP) route reflectors leads to much higher levels of scalability. Configuring a route reflector allows a device to advertise or reflect the iBGP learned routes to other iBGP speakers.

Virtual Private LAN Service (VPLS) Autodiscovery supports BGP route reflectors. A BGP route reflector can be used to reflect BGP VPLS prefixes without VPLS being explicitly configured on the route reflector.

A route reflector does not participate in autodiscovery; that is, no pseudowires are set up between the route reflector and the PE devices. A route reflector reflects VPLS prefixes to other PE devices so that these PE devices do not need to have a full mesh of BGP sessions. The network administrator configures only the BGP VPLS address family on a route reflector. For an example configuration of VPLS Autodiscovery support on a route reflector, see the “Example: BGP VPLS Autodiscovery Support on Route Reflector” section.

N-PE Access to VPLS Using MST

When a Virtual Private LAN Service (VPLS) network uses multihoming (network-facing PE [N-PE] VPLS redundancy) to prevent a single point of failure of an N-PE device, a bridging loop is introduced. One of the N-PE devices can be set as a Multiple Spanning Tree (MST) root to break the loop. In most cases, the two N-PE devices are also separated by a distance that makes direct physical link impossible. You can configure a virtual link (usually through the same VPLS core network) between the two N-PE devices to pass an MST bridge protocol data unit (BPDU) for path calculation, break the loop, and maintain convergence. The virtual link is created using a special pseudowire between the active and redundant N-PE devices.

While setting up an MST topology for a VPLS PE device, ensure the following:

  • The spanning-tree mode mst command is enabled on all PE devices (N-PE and user-facing PE [U-PE]) participating in the MST topology.

  • A special pseudowire is configured between the two N-PE devices, and these two devices are in the up state.

  • The special pseudowire is a manually created virtual forwarding instance (VFI).

  • The configuration (inlcuding the MST instance, the Ethernet virtual circuit [EVC], and the VLAN) on all PE devices is the same.

  • One of the N-PE devices, and not one of the U-PE devices, is the root for the MST instance.

  • The name and revision for the MST configuration are configured to synchronize with the standby Route Processor (RP).

How to Configure VPLS Autodiscovery BGP Based

Enabling VPLS Autodiscovery BGP Based

Perform this task to enable Virtual Private LAN Service (VPLS) PE devices to discover other PE devices that are part of the same VPLS domain.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. l2 vfi vfi-name autodiscovery
  4. vpn id vpn-id
  5. end

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:

Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 3

l2 vfi vfi-name autodiscovery

Example:

Device(config)# l2 vfi vpls1 autodiscovery

Enables VPLS Autodiscovery on a PE device and enters L2 VFI configuration mode.

Step 4

vpn id vpn-id

Example:

Device(config-vfi)# vpn id 10

Configures a VPN ID for the VPLS domain.

Step 5

end

Example:

Device(config-vfi)# end

Exits L2 VFI configuration mode and returns to privileged EXEC mode.

  • Commands take effect after the device exits L2 VFI configuration mode.

Enabling VPLS Autodiscovery BGP Based using the commands associated with the L2VPN Protocol-Based CLIs feature

Perform this task to enable Virtual Private LAN Service (VPLS) PE devices to discover other PE devices that are part of the same VPLS domain.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. l2vpn vfi context vfi-name
  4. vpn id vpn-id
  5. autodiscovery bgp signaling { ldp | bgp }
  6. end

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

l2vpn vfi context vfi-name

Example:


Device(config)# l2vpn vfi context vpls1

Establishes an L2VPN VFI context and enters L2 VFI configuration mode.

Step 4

vpn id vpn-id

Example:


Device(config-vfi)# vpn id 10

Configures a VPN ID for the VPLS domain.

Step 5

autodiscovery bgp signaling { ldp | bgp }

Example:


Device(config-vfi)# autodiscovery bgp signaling ldp

Enables the VPLS Autodiscovery: BGP Based feature on the PE device.

Step 6

end

Example:


Device(config-vfi)# end

Exits L2 VFI configuration mode and returns to privileged EXEC mode.

  • Commands take effect after the device exits L2 VFI configuration mode.

Configuring VPLS BGP Signaling

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. l2vpn vfi context name
  4. vpn id vpn-id
  5. autodiscovery bgp signaling {bgp | ldp } [template template-name]
  6. ve id ve-id
  7. ve range ve-range
  8. exit
  9. exit
  10. router bgp autonomous-system-number
  11. bgp graceful-restart
  12. neighbor ip-address remote-as autonomous-system-number
  13. address-family l2vpn [vpls ]
  14. neighbor ip-address activate
  15. neighbor ip-address send-community [both | standard | extended ]
  16. neighbor ip-address suppress-signaling-protocol ldp
  17. end
  18. show bgp l2vpn vpls {all | rd route-distinguisher}

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

l2vpn vfi context name

Example:


Device(config)# l2vpn vfi context vfi1

Establishes a L2VPN virtual forwarding interface (VFI) between two or more separate networks and enters Layer 2 VFI configuration mode.

Step 4

vpn id vpn-id

Example:


Device(config-vfi)# vpn id 100

Configures a VPN ID for the VPLS domain.

Step 5

autodiscovery bgp signaling {bgp | ldp } [template template-name]

Example:


Device(config-vfi)# autodiscovery bgp signaling bgp

Enables BGP signaling and discovery or LDP signaling and enters L2VPN VFI autodiscovery configuration mode.

Note 

For the VPLS BGP Signaling feature use the autodiscovery bgp signaling bgp command.

Step 6

ve id ve-id

Example:


Device(config-vfi-autodiscovery)# ve id 1001

Specifies the VPLS endpoint (VE) device ID value. The VE ID identifies a VFI within a VPLS service. The VE device ID value is from 1 to 16384.

Step 7

ve range ve-range

Example:


Device(config-vfi-autodiscovery)# ve range 12

Specifies the VE device ID range value. The VE range overrides the minimum size of VE blocks. The default minimum size is 10. Any configured VE range must be higher than 10.

Step 8

exit

Example:


Device(config-vfi-autodiscovery)# exit

Exits L2VPN VFI autodiscovery configuration mode and enters L2VPN VFI configuration mode.

Step 9

exit

Example:


Device(config-vfi)# exit

Exits L2VPN VFI configuration mode and enters global configuration mode.

Step 10

router bgp autonomous-system-number

Example:


Device(config)# router bgp 100

Enters router configuration mode to create or configure a BGP routing process.

Step 11

bgp graceful-restart

Example:


Device(config-router)# bgp graceful-restart

Enables the BGP graceful restart capability and BGP nonstop forwarding (NSF) awareness.

Step 12

neighbor ip-address remote-as autonomous-system-number

Example:


Device(config-router)# neighbor 10.10.10.1 remote-as 100

Configures peering with a BGP neighbor in the specified autonomous system.

Step 13

address-family l2vpn [vpls ]

Example:


Device(config-router)# address-family l2vpn vpls
Specifies the L2VPN address family and enters address family configuration mode.
  • The optional vpls keyword specifies that VPLS endpoint provisioning information is to be distributed to BGP peers.

In this example, an L2VPN VPLS address family session is created.
Step 14

neighbor ip-address activate

Example:


Device(config-router-af)# neighbor 10.10.10.1 activate

Enables the neighbor to exchange information for the L2VPN VPLS address family with the local device.

Step 15

neighbor ip-address send-community [both | standard | extended ]

Example:


Device(config-router-af)# neighbor 10.10.10.1 send-community extended 
Specifies that a communities attribute should be sent to a BGP neighbor.
  • In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1.

Step 16

neighbor ip-address suppress-signaling-protocol ldp

Example:


Device(config-router-af)# neighbor 10.10.10.1 suppress-signaling-protocol ldp 
Suppresses LDP signaling and enables BGP signaling.
  • In this example LDP signaling is suppressed (and BGP signaling enabled) for the neighbor at 10.10.10.1.

Step 17

end

Example:


Device(config-router-af)# end

Exits address family configuration mode and returns to privileged EXEC mode.

Step 18

show bgp l2vpn vpls {all | rd route-distinguisher}

Example:


Device# show bgp l2vpn vpls all 

(Optional) Displays information about the L2VPN VPLS address family.

Configuring BGP to Enable VPLS Autodiscovery

The Border Gateway Protocol (BGP) Layer 2 VPN (L2VPN) address family supports a separate L2VPN Routing Information Base (RIB) that contains endpoint provisioning information for Virtual Private LAN Service (VPLS) Autodiscovery. BGP learns the endpoint provisioning information from the L2VPN database, which is updated each time a Layer 2 virtual forwarding instance (VFI) is configured. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, the endpoint information is used to configure a pseudowire mesh to support L2VPN-based services.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. router bgp autonomous-system-number
  4. no bgp default ipv4-unicast
  5. bgp log-neighbor-changes
  6. neighbor {ip-address | peer-group-name } remote-as autonomous-system-number
  7. neighbor {ip-address | peer-group-name } update-source interface-type interface-number
  8. Repeat Steps 6 and 7 to configure other BGP neighbors.
  9. address-family l2vpn [vpls ]
  10. neighbor {ip-address | peer-group-name } activate
  11. neighbor {ip-address | peer-group-name } send-community {both | standard | extended }
  12. Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family.
  13. exit-address-family
  14. end
  15. show vfi
  16. show ip bgp l2vpn vpls {all | rd route-distinguisher }

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:

Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 3

router bgp autonomous-system-number

Example:

Device(config)# router bgp 65000

Enters router configuration mode for the specified routing process.

Step 4

no bgp default ipv4-unicast

Example:

Device(config-router)# no bgp default ipv4-unicast

Disables the IPv4 unicast address family for the BGP routing process.

Note 

Routing information for the IPv4 unicast address family is advertised by default for each BGP routing session configured using the neighbor remote-as router configuration command unless you configure the no bgp default ipv4-unicast router configuration command before configuring the neighbor remote-as command. Existing neighbor configurations are not affected.

Step 5

bgp log-neighbor-changes

Example:

Device(config-router)# bgp log-neighbor-changes

Enables logging of BGP neighbor resets.

Step 6

neighbor {ip-address | peer-group-name } remote-as autonomous-system-number

Example:

Device(config-router)# neighbor 10.10.10.1 remote-as 65000

Adds the IP address or peer group name of the neighbor in the specified autonomous system to the IPv4 multiprotocol BGP neighbor table of the local device.

  • If the autonomous-system-number argument matches the autonomous system number specified in the router bgp command, the neighbor is an internal neighbor.

  • If the autonomous-system-number argument does not match the autonomous system number specified in the router bgp command, the neighbor is an external neighbor.

  • In this example, the neighbor at 10.10.10.1 is an internal BGP neighbor.

Step 7

neighbor {ip-address | peer-group-name } update-source interface-type interface-number

Example:

Device(config-router)# neighbor 10.10.10.1 update-source loopback1

(Optional) Configures a device to select a specific source or interface to receive routing table updates.

  • This example uses a loopback interface. The advantage of this configuration is that the loopback interface is not affected by the effects of a flapping interface.

Step 8

Repeat Steps 6 and 7 to configure other BGP neighbors.

Step 9

address-family l2vpn [vpls ]

Example:

Device(config-router)# address-family l2vpn vpls

Specifies the L2VPN address family and enters address family configuration mode.

  • The optional vpls keyword specifies that the VPLS endpoint provisioning information is to be distributed to BGP peers.

  • In this example, an L2VPN VPLS address family session is created.

Step 10

neighbor {ip-address | peer-group-name } activate

Example:

Device(config-router-af)# neighbor 10.10.10.1 activate

Enables the exchange of information with a BGP neighbor.

Step 11

neighbor {ip-address | peer-group-name } send-community {both | standard | extended }

Example:

Device(config-router-af)# neighbor 10.10.10.1 send-community extended

Specifies that a communities attribute should be sent to a BGP neighbor.

  • In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1.

Step 12

Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family.

Step 13

exit-address-family

Example:

Device(config-router-af)# exit-address-family

Exits address family configuration mode and returns to router configuration mode.

Step 14

end

Example:

Device(config-router)# end

Exits router configuration mode and returns to privileged EXEC mode.

Step 15

show vfi

Example:

Device# show vfi

Displays information about the configured VFI instances.

Step 16

show ip bgp l2vpn vpls {all | rd route-distinguisher }

Example:

Device# show ip bgp l2vpn vpls all

Displays information about the L2VPN VPLS address family.

Configuring BGP to Enable VPLS Autodiscovery using the commands associated with the L2VPN Protocol-Based CLIs feature

The BGP L2VPN address family supports a separate L2VPN Routing Information Base (RIB) that contains endpoint provisioning information for Virtual Private LAN Service (VPLS) Autodiscovery. BGP learns the endpoint provisioning information from the L2VPN database, which is updated each time a Layer 2 virtual forwarding instance (VFI) is configured. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, the endpoint information is used to configure a pseudowire mesh to support L2VPN-based services.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. router bgp autonomous-system-number
  4. no bgp default ipv4-unicast
  5. bgp log-neighbor-changes
  6. neighbor {ip-address | peer-group-name } remote-as autonomous-system-number
  7. neighbor {ip-address | peer-group-name } update-source interface-type interface-number
  8. Repeat Steps 6 and 7 to configure other BGP neighbors.
  9. address-family l2vpn [vpls ]
  10. neighbor {ip-address | peer-group-name } activate
  11. neighbor {ip-address | peer-group-name } send-community {both | standard | extended }
  12. Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family.
  13. exit-address-family
  14. end
  15. show l2vpn vfi
  16. show ip bgp l2vpn vpls {all | rd route-distinguisher }

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

router bgp autonomous-system-number

Example:


Device(config)# router bgp 65000

Enters router configuration mode for the specified routing process.

Step 4

no bgp default ipv4-unicast

Example:


Device(config-router)# no bgp default ipv4-unicast

Disables the IPv4 unicast address family for the BGP routing process.

Note 

Routing information for the IPv4 unicast address family is advertised by default for each BGP routing session configured using the neighbor remote-as router configuration command unless you configure the no bgp default ipv4-unicast router configuration command before configuring the neighbor remote-as command. Existing neighbor configurations are not affected.

Step 5

bgp log-neighbor-changes

Example:


Device(config-router)# bgp log-neighbor-changes

Enables logging of BGP neighbor resets.

Step 6

neighbor {ip-address | peer-group-name } remote-as autonomous-system-number

Example:


Device(config-router)# neighbor 10.10.10.1 remote-as 65000

Adds the IP address or peer group name of the neighbor in the specified autonomous system to the IPv4 multiprotocol BGP neighbor table of the local device.

  • If the autonomous-system-number argument matches the autonomous system number specified in the router bgp command, the neighbor is an internal neighbor.

  • If the autonomous-system-number argument does not match the autonomous system number specified in the router bgp command, the neighbor is an external neighbor.

  • In this example, the neighbor at 10.10.10.1 is an internal BGP neighbor.

Step 7

neighbor {ip-address | peer-group-name } update-source interface-type interface-number

Example:


Device(config-router)# neighbor 10.10.10.1 update-source loopback1

(Optional) Configures a device to select a specific source or interface to receive routing table updates.

  • This example uses a loopback interface. The advantage of this configuration is that the loopback interface is not affected by the effects of a flapping interface.

Step 8

Repeat Steps 6 and 7 to configure other BGP neighbors.

Step 9

address-family l2vpn [vpls ]

Example:


Device(config-router)# address-family l2vpn vpls

Specifies the L2VPN address family and enters address family configuration mode.

  • The optional vpls keyword specifies that the VPLS endpoint provisioning information is to be distributed to BGP peers.

  • In this example, an L2VPN VPLS address family session is created.

Step 10

neighbor {ip-address | peer-group-name } activate

Example:


Device(config-router-af)# neighbor 10.10.10.1 activate

Enables the exchange of information with a BGP neighbor.

Step 11

neighbor {ip-address | peer-group-name } send-community {both | standard | extended }

Example:


Device(config-router-af)# neighbor 10.10.10.1 send-community extended

Specifies that a communities attribute should be sent to a BGP neighbor.

  • In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1.

Step 12

Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family.

Step 13

exit-address-family

Example:


Device(config-router-af)# exit-address-family

Exits address family configuration mode and returns to router configuration mode.

Step 14

end

Example:


Device(config-router)# end

Exits router configuration mode and returns to privileged EXEC mode.

Step 15

show l2vpn vfi

Example:


Device# show l2vpn vfi

Displays information about the Layer 2 VPN (L2VPN) virtual forwarding instances (VFI).

Step 16

show ip bgp l2vpn vpls {all | rd route-distinguisher }

Example:


Device# show ip bgp l2vpn vpls all

Displays information about the L2VPN VPLS address family.

Customizing the VPLS Autodiscovery Settings

Several commands allow you to customize the Virtual Private LAN Service (VPLS) environment. You can specify identifiers for the VPLS domain, the route distinguisher (RD), the route target (RT), and the provider edge (PE) device. Perform this task to customize these identifiers.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. l2 vfi vfi-name autodiscovery
  4. vpn id vpn-id
  5. vpls-id {autonomous-system-number : nn | ip-address : nn }
  6. rd {autonomous-system-number : nn | ip-address : nn }
  7. route-target [import | export | both ] {autonomous-system-number : nn | ip-address : nn }
  8. auto-route-target
  9. end

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:

Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 3

l2 vfi vfi-name autodiscovery

Example:

Device(config)# l2 vfi vpls1 autodiscovery

Enables VPLS Autodiscovery on the PE device and enters Layer 2 VFI configuration mode.

Step 4

vpn id vpn-id

Example:

Device(config-vfi)# vpn id 10

Configures a VPN ID for the VPLS domain.

Step 5

vpls-id {autonomous-system-number : nn | ip-address : nn }

Example:

Device(config-vfi)# vpls-id 5:300

(Optional) Assigns an identifier to the VPLS domain.

  • This command is optional because VPLS Autodiscovery automatically generates a VPLS ID using the Border Gateway Protocol (BGP) autonomous system (AS) number and the configured VFI VPN ID. You can use this command to change the automatically generated VPLS ID.

  • There are two formats for configuring the VPLS ID argument. It can be configured in the autonomous-system-number:network number (ASN:nn ) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn ).

Step 6

rd {autonomous-system-number : nn | ip-address : nn }

Example:

Device(config-vfi)# rd 2:3

(Optional) Specifies the RD to distribute endpoint information.

  • This command is optional because VPLS Autodiscovery automatically generates an RD using the BGP autonomous system number and the configured VFI VPN ID. You can use this command to change the automatically generated RD.

  • There are two formats for configuring the route distinguisher argument. It can be configured in the autonomous-system-number:network number (ASN:nn ) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn ).

Step 7

route-target [import | export | both ] {autonomous-system-number : nn | ip-address : nn }

Example:

Device(config-vfi)# route-target 600:2222

(Optional) Specifies the RT.

  • This command is optional because VPLS Autodiscovery automatically generates an RT using the lower 6 bytes of the RD and the VPLS ID. You can use this command to change the automatically generated RT.

  • There are two formats for configuring the route target argument. It can be configured in the autonomous-system-number:network number (ASN:nn ) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn ).

Step 8

auto-route-target

Example:

Device(config-vfi)# auto-route-target

(Optional) Enables the automatic generation of a RT.

Step 9

end

Example:

Device(config-vfi)# end

Exits L2 VFI configuration mode and returns to privileged EXEC mode.

  • Commands take effect after the device exits Layer 2 VFI configuration mode.

Customizing the VPLS Autodiscovery Settings using the commands associated with the L2VPN Protocol-Based CLIs feature

Several commands allow you to customize the Virtual Private LAN Service (VPLS) environment. You can specify identifiers for the VPLS domain, the route distinguisher (RD), the route target (RT), and the provider edge (PE) device. Perform this task to customize these identifiers.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. l2vpn vfi context vfi-name
  4. vpn id vpn-id
  5. autodiscovery bgp signaling { ldp | bgp }
  6. vpls-id {autonomous-system-number : nn | ip-address : nn }
  7. rd {autonomous-system-number : nn | ip-address : nn }
  8. route-target [import | export | both ] {autonomous-system-number : nn | ip-address : nn }
  9. auto-route-target
  10. end

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

l2vpn vfi context vfi-name

Example:


Device(config)# l2vpn vfi context vpls1

Establishes a L2VPN VFI context and enters L2 VFI configuration mode.

Step 4

vpn id vpn-id

Example:


Device(config-vfi)# vpn id 10

Configures a VPN ID for the VPLS domain.

Step 5

autodiscovery bgp signaling { ldp | bgp }

Example:


Device(config-vfi)# autodiscovery bgp signaling ldp

Enables the VPLS Autodiscovery: BGP Based feature on the PE device.

Step 6

vpls-id {autonomous-system-number : nn | ip-address : nn }

Example:


Device(config-vfi)# vpls-id 5:300

(Optional) Assigns an identifier to the VPLS domain.

  • This command is optional because VPLS Autodiscovery automatically generates a VPLS ID using the Border Gateway Protocol (BGP) autonomous system (AS) number and the configured VFI VPN ID. You can use this command to change the automatically generated VPLS ID.

  • There are two formats for configuring the VPLS ID argument. It can be configured in the autonomous-system-number:network number (ASN:nn ) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn ).

Step 7

rd {autonomous-system-number : nn | ip-address : nn }

Example:


Device(config-vfi)# rd 2:3

(Optional) Specifies the RD to distribute endpoint information.

  • This command is optional because VPLS Autodiscovery automatically generates an RD using the BGP autonomous system number and the configured VFI VPN ID. You can use this command to change the automatically generated RD.

  • There are two formats for configuring the route distinguisher argument. It can be configured in the autonomous-system-number:network number (ASN:nn ) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn ).

Step 8

route-target [import | export | both ] {autonomous-system-number : nn | ip-address : nn }

Example:


Device(config-vfi)# route-target 600:2222

(Optional) Specifies the RT.

  • This command is optional because VPLS Autodiscovery automatically generates an RT using the lower 6 bytes of the RD and the VPLS ID. You can use this command to change the automatically generated RT.

  • There are two formats for configuring the route target argument. It can be configured in the autonomous-system-number:network number (ASN:nn ) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn ).

Step 9

auto-route-target

Example:


Device(config-vfi)# auto-route-target

(Optional) Enables the automatic generation of a RT.

Step 10

end

Example:


Device(config-vfi)# end

Exits L2 VFI configuration mode and returns to privileged EXEC mode.

  • Commands take effect after the device exits Layer 2 VFI configuration mode.

Configuring MST on VPLS N-PE Devices

A network-facing PE (N-PE) device is the root bridge for a Multiple Spanning Tree (MST) instance.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. l2 vfi vfi-name manual
  4. vpn id vpn-id
  5. forward permit l2protocol all
  6. neighbor peer-N-PE-ip-address encapsulation mpls
  7. exit
  8. spanning-tree mode [mst | pvst | rapid-pvst ]
  9. spanning-tree mst configuration
  10. name name
  11. revision version
  12. instance instance-id vlan vlan-range
  13. end
  14. show spanning-tree mst [instance-id [detail ] [interface] | configuration [digest ] | detail | interface type number [detail ]]

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:

Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 3

l2 vfi vfi-name manual

Example:

Device(config)# l2 vfi vpls-mst manual

Creates a Layer 2 virtual forwarding instance (VFI) and enters Layer 2 VFI manual configuration mode.

Step 4

vpn id vpn-id

Example:

Device(config-vfi)# vpn id 4000

Sets or updates the VPN ID on a VPN routing and forwarding (VRF) instance.

Step 5

forward permit l2protocol all

Example:

Device(config-vfi)# forward permit l2protocol all

Defines the VPLS pseudowire that is used to transport the bridge protocol data unit (BPDU) information between two N-PE devices.

Step 6

neighbor peer-N-PE-ip-address encapsulation mpls

Example:

Device(config-vfi)# neighbor 10.76.100.12 encapsulation mpls

Specifies the type of tunnel signaling and encapsulation mechanism for each VPLS peer.

Step 7

exit

Example:

Device(config-vfi)# exit

Exits Layer 2 VFI manual configuration mode and returns to global configuration mode.

Step 8

spanning-tree mode [mst | pvst | rapid-pvst ]

Example:

Device(config)# spanning-tree mode mst

Switches between MST, Per-VLAN Spanning Tree+ (PVST+), and Rapid-PVST+ modes.

Step 9

spanning-tree mst configuration

Example:

Device(config)# spanning-tree mst configuration

Enters MST configuration mode.

Step 10

name name

Example:

Device(config-mst)# name cisco

Sets the name for the MST region.

Step 11

revision version

Example:

Device(config-mst)# revision 11

Sets the revision number for the MST configuration.

Step 12

instance instance-id vlan vlan-range

Example:

Device(config-mst)# instance 1 vlan 100

Maps a VLAN or a group of VLANs to an MST instance.

Step 13

end

Example:

Device(config-mst)# end

Exits MST configuration mode and enters privileged EXEC mode.

Step 14

show spanning-tree mst [instance-id [detail ] [interface] | configuration [digest ] | detail | interface type number [detail ]]

Example:

Device# show spanning-tree mst 1

Displays information about the MST configuration.

Configuring MST on VPLS N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature

A network-facing PE (N-PE) device is the root bridge for a Multiple Spanning Tree (MST) instance.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. l2vpn vfi context vfi-name
  4. vpn id vpn-id
  5. forward permit l2protocol all
  6. neighbor peer-N-PE-ip-address encapsulation mpls
  7. exit
  8. spanning-tree mode [mst | pvst | rapid-pvst ]
  9. spanning-tree mst configuration
  10. name name
  11. revision version
  12. instance instance-id vlan vlan-range
  13. end
  14. show spanning-tree mst [instance-id [detail ] [interface] | configuration [digest ] | detail | interface type number [detail ]]

DETAILED STEPS

  Command or Action Purpose
Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

l2vpn vfi context vfi-name

Example:


Device(config)# l2vpn vfi context vpls-mst

Establishes an L2VPN VFI context and enters L2 VFI configuration mode.

Step 4

vpn id vpn-id

Example:


Device(config-vfi)# vpn id 4000

Sets or updates the VPN ID on a VPN routing and forwarding (VRF) instance.

Step 5

forward permit l2protocol all

Example:


Device(config-vfi)# forward permit l2protocol all

Defines the VPLS pseudowire that is used to transport the bridge protocol data unit (BPDU) information between two N-PE devices.

Step 6

neighbor peer-N-PE-ip-address encapsulation mpls

Example:


Device(config-vfi)# neighbor 10.76.100.12 encapsulation mpls

Specifies the type of tunnel signaling and encapsulation mechanism for each VPLS peer.

Step 7

exit

Example:


Device(config-vfi)# exit

Exits Layer 2 VFI manual configuration mode and returns to global configuration mode.

Step 8

spanning-tree mode [mst | pvst | rapid-pvst ]

Example:


Device(config)# spanning-tree mode mst

Switches between MST, Per-VLAN Spanning Tree+ (PVST+), and Rapid-PVST+ modes.

Step 9

spanning-tree mst configuration

Example:


Device(config)# spanning-tree mst configuration

Enters MST configuration mode.

Step 10

name name

Example:


Device(config-mst)# name cisco

Sets the name for the MST region.

Step 11

revision version

Example:


Device(config-mst)# revision 11

Sets the revision number for the MST configuration.

Step 12

instance instance-id vlan vlan-range

Example:


Device(config-mst)# instance 1 vlan 100

Maps a VLAN or a group of VLANs to an MST instance.

Step 13

end

Example:


Device(config-mst)# end

Exits MST configuration mode and enters privileged EXEC mode.

Step 14

show spanning-tree mst [instance-id [detail ] [interface] | configuration [digest ] | detail | interface type number [detail ]]

Example:


Device# show spanning-tree mst 1

Displays information about the MST configuration.

Configuration Examples for VPLS Autodiscovery BGP Based

The following examples show the configuration of a network that uses VPLS Autodiscovery:

Example: Enabling VPLS Autodiscovery BGP Based

Device> enable
Device# configure terminal
Device(config)# l2 vfi vpls1 autodiscovery
Device(config-vfi)# vpn id 10
Device(config-vfi)# exit

Example: Enabling VPLS Autodiscovery BGP Based using the commands associated with the L2VPN Protocol-Based CLIs feature

Device> enable
Device# configure terminal
Device(config)# l2vpn vfi context vpls1
Device(config-vfi)# vpn id 10
Device(config-vfi)# autodiscovery bgp signaling ldp
Device(config-vfi)# exit

Example: Configuring BGP to Enable VPLS Autodiscovery

PE1

l2 router-id 10.1.1.1
l2 vfi auto autodiscovery
 vpn id 100
!
pseudowire-class mpls
 encapsulation mpls
!
interface Loopback1
 ip address 10.1.1.1 255.255.255.255
!
interface GigabitEthernet 0/0/1
 description Backbone interface
 ip address 192.168.0.1 255.255.255.0
 mpls ip
!
router ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.2 remote-as 1
 neighbor 10.1.1.2 update-source Loopback1  
 neighbor 10.1.1.3 remote-as 1  
 neighbor 10.1.1.3 update-source Loopback1  
!
 address-family ipv4
 no synchronization
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.1.1.2 activate
 neighbor 10.1.1.2 send-community extended  
 neighbor 10.1.1.3 activate  
 neighbor 10.1.1.3 send-community extended  
 exit-address-family 

PE2

l2 router-id 10.1.1.2
l2 vfi auto autodiscovery
 vpn id 100
!
 pseudowire-class mpls
 encapsulation mpls
!
interface Loopback1
 ip address 10.1.1.2 255.255.255.255
!
interface GigabitEthernet 0/0/1
 description Backbone interface
 ip address 192.168.0.2 255.255.255.0
 mpls ip
!
router ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.1 remote-as 1
 neighbor 10.1.1.1 update-source Loopback1  
 neighbor 10.1.1.3 remote-as 1  
 neighbor 10.1.1.3 update-source Loopback1  
!
 address-family ipv4
 no synchronization
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.1.1.1 activate
 neighbor 10.1.1.1 send-community extended  
 neighbor 10.1.1.3 activate  
 neighbor 10.1.1.3 send-community extended  
 exit-address-family 

PE3

l2 router-id 10.1.1.3
l2 vfi auto autodiscovery
 vpn id 100
!
pseudowire-class mpls
 encapsulation mpls
!
interface Loopback1
 ip address 10.1.1.3 255.255.255.255
!
interface GigabitEthernet 0/0/1
 description Backbone interface
 ip address 192.168.0.3 255.255.255.0
 mpls ip
!
router ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.1 remote-as 1
 neighbor 10.1.1.1 update-source Loopback1  
 neighbor 10.1.1.2 remote-as 1  
 neighbor 10.1.1.2 update-source Loopback1  
!
 address-family ipv4
 no synchronization
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.1.1.1 activate
 neighbor 10.1.1.1 send-community extended  
 neighbor 10.1.1.2 activate  
 neighbor 10.1.1.2 send-community extended  
 exit-address-family 

Example: Configuring BGP to Enable VPLS Autodiscovery using the commands associated with the L2VPN Protocol-Based CLIs feature

PE1

l2vpn
 router-id 10.1.1.1
l2vpn vfi context auto 
	vpn id 100
	autodiscovery bgp signaling ldp
!
interface pseudowire 1
 encapsulation mpls
 neighbor 33.33.33.33 1
!
interface Loopback1
 ip address 10.1.1.1 255.255.255.255
!
interface GigabitEthernet 0/0/1
 description Backbone interface
 ip address 192.168.0.1 255.255.255.0
 mpls ip
!
router ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.2 remote-as 1
 neighbor 10.1.1.2 update-source Loopback1  
 neighbor 10.1.1.3 remote-as 1  
 neighbor 10.1.1.3 update-source Loopback1  
!
 address-family ipv4
 no synchronization
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.1.1.2 activate
 neighbor 10.1.1.2 send-community extended  
 neighbor 10.1.1.3 activate  
 neighbor 10.1.1.3 send-community extended  
 exit-address-family 

PE2

l2vpn
 router-id 10.1.1.2
l2vpn vfi context auto 
	vpn id 100
	autodiscovery bgp signaling ldp
 
!
 interface pseudowire 1
 encapsulation mpls
 neighbor 33.33.33.33 1
!
interface Loopback1
 ip address 10.1.1.2 255.255.255.255
!
interface GigabitEthernet 0/0/1
 description Backbone interface
 ip address 192.168.0.2 255.255.255.0
 mpls ip
!
router ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.1 remote-as 1
 neighbor 10.1.1.1 update-source Loopback1  
 neighbor 10.1.1.3 remote-as 1  
 neighbor 10.1.1.3 update-source Loopback1  
!
 address-family ipv4
 no synchronization
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.1.1.1 activate
 neighbor 10.1.1.1 send-community extended  
 neighbor 10.1.1.3 activate  
 neighbor 10.1.1.3 send-community extended  
 exit-address-family 

PE3

l2vpn
 router-id 10.1.1.3
l2vpn vfi context auto
	vpn id 100
	autodiscovery bgp signaling ldp
 
!
interface pseudowire 1
 encapsulation mpls
 neighbor 33.33.33.33 1
!
interface Loopback1
 ip address 10.1.1.3 255.255.255.255
!
interface GigabitEthernet 0/0/1
 description Backbone interface
 ip address 192.168.0.3 255.255.255.0
 mpls ip
!
router ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.1 remote-as 1
 neighbor 10.1.1.1 update-source Loopback1  
 neighbor 10.1.1.2 remote-as 1  
 neighbor 10.1.1.2 update-source Loopback1  
!
 address-family ipv4
 no synchronization
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.1.1.1 activate
 neighbor 10.1.1.1 send-community extended  
 neighbor 10.1.1.2 activate  
 neighbor 10.1.1.2 send-community extended  
 exit-address-family 

Example: Customizing VPLS Autodiscovery Settings

Device> enable
Device# configure terminal
Device(config)# l2 vfi vpls1 autodiscovery
Device(config-vfi)# vpn id 10
Device(config-vfi)# vpls-id 5:300
Device(config-vfi)# rd 2:3
Device(config-vfi)# route-target 600:2222
Device(config-vfi)# end

Example: Customizing VPLS Autodiscovery Settings using the commands associated with the L2VPN Protocol-Based CLIs feature

Device> enable
Device# configure terminal
Device(config)# l2vpn vfi context vpls1
Device(config-vfi)# vpn id 10
Device(config-vfi)# autodiscovery bgp signaling ldp
Device(config-vfi)# vpls-id 5:300
Device(config-vfi)# rd 2:3
Device(config-vfi)# route-target 600:2222
Device(config-vfi)# end

Example: Configuring MST on VPLS N-PE Devices

Device> enable
Device# configure terminal
Device(config)# l2 vfi vpls-mst manual
Device(config-vfi)# vpn id 4000
Device(config-vfi)# forward permit l2protocol all
Device(config-vfi)# neighbor 10.76.100.12 encapsulation mpls
Device(config-vfi)# exit
Device(config)# spanning-tree mode mst
Device(config)# spanning-tree mst configuration
Device(config-mst)# name cisco
Device(config-mst)# revision 11
Device(config-mst)# instance 1 vlan 100
Device(config-mst)# end

The following is sample output from the show spanning-tree mst command:

Device# show spanning-tree mst 1

##### MST1    vlans mapped:   100
Bridge        address 0023.3380.f8bb  priority      4097  (4096 sysid 1)
Root          this switch for MST1                                 // Root for MST instance 1 with VLAN 100
Interface                        Role Sts Cost      Prio.Nbr Type
-----------                 --- -- ------ ---- ------------------------------
Gi1/0/0                          Desg FWD 20000     128.18   P2p   // Access interface
VPLS-MST                         Desg FWD 1         128.28   Shr   // Forward VFI

The following is sample output from the show spanning-tree mst detail command:

Device# show spanning-tree mst 1 detail

##### MST1    vlans mapped:   100
Bridge        address 0023.3380.f8bb  priority      4097  (4096 sysid 1)
Root          this switch for MST1            // Root for MST instance 1 with VLAN 100
GigabitEthernet1/0/0 of MST1 is designated forwarding
Port info             port id         128.18  priority    128  cost       20000
Designated root       address 0023.3380.f8bb  priority   4097  cost           0
Designated bridge     address 0023.3380.f8bb  priority   4097  port id   128.18
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 40, received 5
VPLS-4000 of MST1 is designated forwarding
Port info             port id         128.28  priority    128  cost           1
Designated root       address 0023.3380.f8bb  priority   4097  cost           0
Designated bridge     address 0023.3380.f8bb  priority   4097  port id   128.28
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 28, received 26         // BPDU message exchange between N-PE devices

Example: Configuring MST on VPLS N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature

Device> enable
Device# configure terminal
Device(config)# l2vpn vfi context vpls-mst
Device(config-vfi)# vpn id 4000
Device(config-vfi)# forward permit l2protocol all
Device(config-vfi)# member 10.76.100.12 encapsulation mpls
Device(config-vfi)# exit
Device(config)# spanning-tree mode mst
Device(config)# spanning-tree mst configuration
Device(config-mst)# name cisco
Device(config-mst)# revision 11
Device(config-mst)# instance 1 vlan 100
Device(config-mst)# end

The following is sample output from the show spanning-tree mst command:

Device# show spanning-tree mst 1

##### MST1    vlans mapped:   100
Bridge        address 0023.3380.f8bb  priority      4097  (4096 sysid 1)
Root          this switch for MST1                                 // Root for MST instance 1 with VLAN 100
Interface                        Role Sts Cost      Prio.Nbr Type
-----------                 --- -- ------ ---- ------------------------------
Gi1/0/0                          Desg FWD 20000     128.18   P2p   // Access interface
VPLS-MST                         Desg FWD 1         128.28   Shr   // Forward VFI

The following is sample output from the show spanning-tree mst detail command:

Device# show spanning-tree mst 1 detail

##### MST1    vlans mapped:   100
Bridge        address 0023.3380.f8bb  priority      4097  (4096 sysid 1)
Root          this switch for MST1            // Root for MST instance 1 with VLAN 100
GigabitEthernet1/0/0 of MST1 is designated forwarding
Port info             port id         128.18  priority    128  cost       20000
Designated root       address 0023.3380.f8bb  priority   4097  cost           0
Designated bridge     address 0023.3380.f8bb  priority   4097  port id   128.18
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 40, received 5
VPLS-4000 of MST1 is designated forwarding
Port info             port id         128.28  priority    128  cost           1
Designated root       address 0023.3380.f8bb  priority   4097  cost           0
Designated bridge     address 0023.3380.f8bb  priority   4097  port id   128.28
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 28, received 26         // BPDU message exchange between N-PE devices

Example: BGP VPLS Autodiscovery Support on Route Reflector

In the following example, a host named PE-RR (indicating Provider Edge-Route Reflector) is configured as a route reflector that is capable of reflecting Virtual Private LAN Service (VPLS) prefixes. The VPLS address family is configured using the address-family l2vpn vpls command.

hostname PE-RR
!
router bgp 1
 bgp router-id 10.1.1.3
 no bgp default route-target filter
 bgp log-neighbor-changes
neighbor iBGP-PEERS peer-group
neighbor iBGP-PEERS remote-as 1
neighbor iBGP-PEERS update-source Loopback1  
neighbor 10.1.1.1 peer-group iBGP-PEERS  
neighbor 10.1.1.2 peer-group iBGP-PEERS  
!
address-family l2vpn vpls
  neighbor iBGP-PEERS send-community extended
  neighbor iBGP-PEERS route-reflector-client
  neighbor 10.1.1.1 peer-group iBGP-PEERS
  neighbor 10.1.1.2 peer-group iBGP-PEERS  
exit-address-family 

Additional References for VPLS Autodiscovery BGP Based

Related Documents

Related Topic

Document Title

Cisco IOS commands

Master Command List, All Releases

MPLS commands

Multiprotocol Label Switching Command Reference

Standards and RFCs

Standard/RFC

Title

draft-ietf-l2vpn-signaling-08.txt

Provisioning, Autodiscovery, and Signaling in L2VPNs

draft-ietf-l2vpn-vpls-bgp-08.8

Virtual Private LAN Service (VPLS) Using BGP for Autodiscovery and Signaling

draft-ietf-mpls-lsp-ping-03.txt

Detecting MPLS Data Plane Failures

draft-ietf-pwe3-vccv-01.txt

Pseudo-Wire (PW) Virtual Circuit Connection Verification (VCCV)

RFC 3916

Requirements for Pseudo-wire Emulation Edge-to-Edge (PWE3)

RFC 3981

Pseudo Wire Emulation Edge-to-Edge Architecture

RFC 6074

Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)

RFC 4761

Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling

MIBs

MIB

MIBs Link

  • CISCO-IETF-PW-ATM-MIB (PW-ATM-MIB)

  • CISCO-IETF-PW-ENET-MIB (PW-ENET-MIB)

  • CISCO-IETF-PW-FR-MIB (PW-FR-MIB)

  • CISCO-IETF-PW-MIB (PW-MIB)

  • CISCO-IETF-PW-MPLS-MIB (PW-MPLS-MIB)

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

Technical Assistance

Description

Link

The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a user ID or password, you can register on Cisco.com.

http://www.cisco.com/techsupport

Feature Information for VPLS Autodiscovery BGP Based

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 3. Feature Information for VPLS Autodiscovery BGP Based

Feature Name

Releases

Feature Information

VPLS Autodiscovery BGP Based

Cisco IOS XE Release 3.7S

Cisco IOS Release 15.1(1)SY

VPLS Autodiscovery enables each Virtual Private LAN Service (VPLS) provider edge (PE) device to discover other PE devices that are part of the same VPLS domain.