- Finding Feature Information
- Prerequisites for Zone-Based Policy Firewall
- Restrictions for Zone-Based Policy Firewall
- Information About Zone-Based Policy Firewall
- Top-Level Class Maps and Policy Maps
- Application-Specific Class Maps and Policy Maps
- Overview of Zones
- Security Zones
- Zone Pairs
- Zones and Inspection
- Zones and ACLs
- Zones and VRF-Aware Firewalls
- Zones and Transparent Firewalls
- Overview of Security Zone Firewall Policies
- Class Maps and Policy Maps for Zone-Based Policy Firewalls
- Parameter Maps
- Firewall and Network Address Translation
- WAAS Support for the Cisco Firewall
- Out-of-Order Packet Processing Support in the Zone-Based Firewall Application
- Intrazone Support in the Zone-Based Firewall Application
- Configuring Layer 3 and Layer 4 Firewall Policies
- Configuring a Parameter Map
- Configuring Layer 7 Protocol-Specific Firewall Policies
- Layer 7 Class Map and Policy Map Restrictions
- Configuring an HTTP Firewall Policy
- Configuring a URL Filter Policy
- Configuring an IMAP Firewall Policy
- Configuring an Instant Messenger Policy
- Configuring a Peer-to-Peer Policy
- Configuring a POP3 Firewall Policy
- Configuring an SMTP Firewall Policy
- Configuring a SUNRPC Firewall Policy
- Configuring an MSRPC Firewall Policy
- Creating Security Zones and Zone Pairs and Attaching a Policy Map to a Zone Pair
- Configuring the Cisco Firewall with WAAS
- Example: Configuring Layer 3 and Layer 4 Firewall Policies
- Example: Configuring Layer 7 Protocol-Specific Firewall Policies
- Example: Creating Security Zones and Zone Pairs and Attaching a Policy Map to a Zone Pair
- Example: Configuring a URL Filter Policy for Websense
- Example: Configuring the Cisco Firewall with WAAS
- Example: Protocol Match Data Not Incrementing for a Class Map
Zone-Based Policy Firewall
This module describes the Cisco unidirectional firewall policy between groups of interfaces known as zones. Prior to the release of the Cisco unidirectional firewall policy, Cisco firewalls were configured as an inspect rule only on interfaces. Traffic entering or leaving the configured interface was inspected based on the direction in which the inspect rule was applied.
- Finding Feature Information
- Prerequisites for Zone-Based Policy Firewall
- Restrictions for Zone-Based Policy Firewall
- Information About Zone-Based Policy Firewall
- How to Configure Zone-Based Policy Firewall
- Configuration Examples for Zone-Based Policy Firewall
- Additional References
- Feature Information for Zone-Based Policy Firewall
Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Zone-Based Policy Firewall
- Before you create zones, you must consider what should constitute zones. The general guideline is that you should group interfaces that are similar when they are viewed from a security perspective.
- Depending on your release, you can use the Wide Area Application Services (WAAS) and the Cisco firewall interoperability capability.
Restrictions for Zone-Based Policy Firewall
- If a configuration includes both security zones and inspect rules on interfaces (the old methodology), the configuration may work, but that type of configuration is not recommended.
- Depending on your release, the cumulative counters in the show policy-map type inspect zone-pair command output do not increment for match statements in a nested class-map configuration. The problem with counters exist regardless of whether the top-level class map uses the match-any or match-all keyword. For more information, see the "Example Protocol Match Data Not Incrementing for a Class Map" section.
-
Depending on your release, if the Simple Mail Transfer Protocol (SMTP) is configured for inspection in a class map and you need to configure the Extended Simple Mail Transfer Protocol (ESMTP) for inspection, then the no match protocol smtp command must be entered before adding the match protocol smtp extended command. To revert to regular SMTP inspection, use the no match protocol smtp extended command and then enter the match protocol smtp command. If these commands are not configured in the proper order, the following error is displayed:
%Cannot add this filter. Remove match protocol smtp filter and then add this filter.
- In a WAAS and Cisco firewall configuration, all packets processed by a Wide Area Application Engine (WAE) device must go over the Cisco firewall in both directions to support the Web Cache Coordination Protocol (WCCP). Depending on your release, this situation occurs because the Layer 2 redirect is not available. If Layer 2 redirect is configured on the WAE, the system defaults to the generic routing encapsulation (GRE) redirect to continue to function.
- When an in-to-out zone-based policy is configured to match the Internet Control Message Protocol (ICMP) on a Windows system, the traceroute command works. However, the same configuration on an Apple system does not work because it uses a UDP-based traceroute. To overcome this issue, configure an out-to-in zone-based policy with the icmp time-exceeded and icmp host unreachable commands with the pass command (not the inspect command).
- In a WAAS and Cisco firewall configuration, WCCP does not support traffic redirection using policy-based routing (PBR).
- Stateful inspection support for multicast traffic is not supported between any zones, including the self zone. Use Control Plane Policing for the protection of the control plane against multicast traffic.
- A UDP-based traceroute is not supported through ICMP inspection.
- To allow GRE and Encapsulating Security Payload (ESP) protocol traffic through a zone-based policy firewall, you must use the pass command. The GRE and ESP protocols do not support stateful inspection and if you use the inspect command, the traffic for these protocols is dropped.
Information About Zone-Based Policy Firewall
- Top-Level Class Maps and Policy Maps
- Application-Specific Class Maps and Policy Maps
- Overview of Zones
- Security Zones
- Zone Pairs
- Zones and Inspection
- Zones and ACLs
- Zones and VRF-Aware Firewalls
- Zones and Transparent Firewalls
- Overview of Security Zone Firewall Policies
- Class Maps and Policy Maps for Zone-Based Policy Firewalls
- Parameter Maps
- Firewall and Network Address Translation
- WAAS Support for the Cisco Firewall
- Out-of-Order Packet Processing Support in the Zone-Based Firewall Application
- Intrazone Support in the Zone-Based Firewall Application
Top-Level Class Maps and Policy Maps
Top-level class maps allow you to identify the traffic stream at a high level. Identifying the traffic stream is accomplished by using the match access-group and match protocol commands. Top-level class maps are also referred to as Layer 3 and Layer 4 class maps.
Top-level policy maps allow you to define high-level actions by using the inspect, drop, pass, and urlfilter keywords. You can attach maps to a target (zone pair).
Note |
Only inspect type policies can be configured on a zone pair. |
With CSCto44113 fix, only Layer 4 policy maps will be inspected by the firewall when you configure the access-group match command. Prior to this fix, when the access-group match command was configured, both Layer 4 and Layer 7 policy maps were inspected.
Application-Specific Class Maps and Policy Maps
Application-specific class maps allow you to identify traffic based on the attributes of a given protocol. All match conditions in these class maps are specific to an application (for example, HTTP or SMTP). Application-specific class maps are identified by an additional subtype that generally is the protocol name (HTTP or SMTP), in addition to the type inspect.
Application-specific policy maps are used to specify a policy for an application protocol. For example, if you want to drop HTTP traffic with Unique Resource Identifier (URI) lengths exceeding 256 bytes, you must configure an HTTP policy map. Application-specific policy maps cannot be attached directly to a target (zone pair). They must be configured as "child" policies in a top-level Layer 3 or Layer 4 policy map.
Overview of Zones
A zone is a group of interfaces that have similar functions or features. Zones provide a way to specify where a Cisco firewall is applied.
For example, on a device, Gigabit Ethernet interface 0/0/0 and Gigabit Ethernet interface 0/0/1 may be connected to the local LAN. These two interfaces are similar because they represent the internal network, so they can be grouped into a zone for firewall configurations.
By default, the traffic between interfaces in the same zone is not subject to any policy and passes freely. Firewall zones are used for security features.
Note |
Zones may not span interfaces in different VPN routing and forwarding (VRF) instances. |
When a zone-based policy firewall is enabled for TCP keepalive traffic and the host behind the firewall is undergoing an ungraceful disconnect, TCP keepalive works only when the configured TCP timeout is complete. On receiving an out-of-window reset (RST) packet, the firewall sends an empty acknowledge (ACK) packet to the initiator of the RST packet. This ACK has the current sequence (SEQ) and the ACK number from the firewall session. On receiving this ACK, the client sends an RST packet with the SEQ number that is equal to the ACK number in the ACK packet. The firewall processes this RST packet, clears the firewall session, and passes the RST packet.
Security Zones
A security zone is a group of interfaces to which a policy can be applied.
Grouping interfaces into zones involves two procedures:
- Creating a zone so that interfaces can be attached to it.
- Configuring an interface to be a member of a given zone.
By default, traffic flows among interfaces that are members of the same zone.
When an interface is a member of a security zone, all traffic (except traffic going to the device or initiated by the device) between that interface and an interface within a different zone is dropped by default. To permit traffic to and from a zone-member interface and another interface, you must make that zone part of a zone pair and apply a policy to that zone pair. If the policy permits traffic through inspect or pass actions, traffic can flow through the interface.
The following are basic rules to consider when setting up zones:
- Traffic from a zone interface to a nonzone interface or from a nonzone interface to a zone interface is always dropped; unless default zones are enabled (default zone is a nonzone interface).
- Traffic between two zone interfaces is inspected if there is a zone pair relationship for each zone and if there is a configured policy for that zone pair.
- By default, all traffic between two interfaces in the same zone is always allowed.
- A zone pair can be configured with a zone as both source and destination zones. An inspect policy can be configured on this zone pair to inspect or drop the traffic between two interfaces in the same zone.
- An interface cannot be part of a zone and a legacy inspect policy at the same time.
- An interface can be a member of only one security zone.
- When an interface is a member of a security zone, all traffic to and from that interface is blocked unless you configure an explicit interzone policy on a zone pair involving that zone.
- Traffic cannot flow between an interface that is a member of a security zone and an interface that is not a member of a security zone because a policy can be applied only between two zones.
- For traffic to flow among all interfaces in a device, all interfaces must be members of one security zone or another. This is particularly important because after you make an interface a member of a security zone, a policy action (such as inspect or pass) must explicitly allow packets. Otherwise, packets are dropped.
- If an interface on a device cannot be part of a security zone or firewall policy, you may have to add that interface in a security zone and configure a "pass all" policy (that is, a "dummy" policy) between that zone and other zones to which a traffic flow is desired.
- You cannot apply an access control list (ACL) between security zones or on a zone pair.
- An ACL cannot be applied between security zones and zone pairs. Include the ACL configuration in a class map, and use policy maps to drop traffic.
- An ACL on an interface that is a zone member should not be restrictive (strict).
- All interfaces in a security zone must belong to the same VPN routing and forwarding (VRF) instance.
- You can configure policies between security zones whose member interfaces are in separate VRFs. However, traffic may not flow between these VRFs if the configuration does not allow it.
- If traffic does not flow between VRFs (because route-leaking between VRFs is not configured), the policy across VRFs is not executed. This is a configuration mistake on the routing side, not on the policy side.
- Traffic between interfaces in the same security zone is not subject to any policy; traffic passes freely.
- Source and destination zones in a zone pair must be of the type security.
- The same zone cannot be defined as both source and destination zones.
A policy is applied to an initiating packet of a traffic flow. After the initial packet has been classified and permitted, traffic flows between peers with no further reclassification of the packet (this means that bidirectional traffic flow is allowed after the initial classification). If you have a zone pair between Zone Z1 and Zone Z2, and no zone pair between Zone Z2 and Zone Z1, all traffic that is initiated from Zone Z2 is blocked. Traffic from Zone Z1 to Zone Z2 is permitted or denied based on the zone pair policy.
For traffic to flow among all interfaces in a device, all interfaces must be members of security zones or the default zone.
It is not necessary for all device interfaces to be members of security zones.
The figure below illustrates the following:
- Interfaces E0 and E1 are members of security zone Z1.
- Interface E2 is a member of security zone Z2.
- Interface E3 is not a member of any security zone.
Figure 1 | Security Zone Restrictions |
The following situations exist:
- The zone pair and policy are configured in the same zone. If no policy is configured for Z1 and Z2, traffic will flow freely between E0 and E1, but not between E0 or E1 to E2. A zone pair and policy may be created to inspect this traffic.
- If no policies are configured, traffic will not flow between any other interfaces (for example, E0 and E2, E1 and E2, E3 and E1, and E3 and E2).
- Traffic can flow between E0 or E1 and E2 only when an explicit policy permitting traffic is configured between zone Z1 and zone Z2.
- Traffic can never flow between E3 and E0, E1, or E2 unless default zones are enabled and a zone pair is created between the default zone and other zones.
Virtual Interfaces as Members of Security Zones
A virtual template interface is a logical interface configured with generic configuration information for a specific purpose or for a configuration common to specific users, plus device-dependent information. The template contains Cisco software interface commands that are applied to virtual access interfaces. To configure a virtual template interface, use the interface virtual-template command.
Zone member information is acquired from a RADIUS server and the dynamically created interface is made a member of that zone.
The zone-member security command adds the dynamic interface to the corresponding zone.
Zone Pairs
A zone pair allows you to specify a unidirectional firewall policy between two security zones.
To define a zone pair, use the zone-pair security command. The direction of the traffic is specified by source and destination zones. The source and destination zones of a zone pair must be security zones.
You can select the default or self zone as either the source or the destination zone. The self zone is a system-defined zone which does not have any interfaces as members. A zone pair that includes the self zone, along with the associated policy, applies to traffic directed to the device or traffic generated by the device. It does not apply to traffic through the device.
The most common usage of firewall is to apply them to traffic through a device, so you need at least two zones (that is, you cannot use the self zone).
To permit traffic between zone member interfaces, you must configure a policy permitting (or inspecting) traffic between that zone and another zone. To attach a firewall policy map to the target zone pair, use the service-policy type inspect command.
The figure below shows the application of a firewall policy to traffic flowing from zone Z1 to zone Z2, which means that the ingress interface for the traffic is a member of zone Z1 and the egress interface is a member of zone Z2.
Figure 2 | Zone Pairs |
If there are two zones and you require policies for traffic going in both directions (from Z1 to Z2 and Z2 to Z1), you must configure two zone pairs (one for each direction).
If a policy is not configured between zone pairs, traffic is dropped. However, it is not necessary to configure a zone pair and a service policy solely for the return traffic. By default, return traffic is not allowed. If a service policy inspects the traffic in the forward direction and there is no zone pair and service policy for the return traffic, the return traffic is inspected. If a service policy passes the traffic in the forward direction and there is no zone pair and service policy for the return traffic, the return traffic is dropped. In both these cases, you need to configure a zone pair and a service policy to allow the return traffic. In the above figure, it is not mandatory that you configure a zone pair source and destination for allowing return traffic from Z2 to Z1. The service policy on Z1 to Z2 zone pair takes care of it.
A zone-based firewall drops a packet if it is not explicitly allowed by a rule or policy in contrast to a legacy firewall, which permits a packet if it is not explicitly denied by a rule or policy by default.
A zone-based firewall behaves differently when handling intermittent Internet Control Message Protocol (ICMP) responses generated within a zone because of the traffic flowing between in-zones and out-zones.
In a configuration where an explicit policy is configured for the self zone to go out of its zone and for the traffic moving between the in-zone and out-zone, if any intermittent ICMP responses are generated, then the zone-based firewall looks for a explicit permit rule for the ICMP in the self zone to go out of its zone. An explicit inspect rule for the ICMP for the self zone to go out-zone may not help because there is no session associated with the intermittent ICMP responses.
Zones and Inspection
Zone-based policy firewalls examine source and destination zones from the ingress and egress interfaces for a firewall policy. It is not necessary that all traffic flowing to or from an interface be inspected; you can designate that individual flows in a zone pair be inspected through your policy map that you apply across the zone pair. The policy map will contain class maps that specify individual flows.
You can also configure inspect parameters like TCP thresholds and timeouts on a per-flow basis.
Zones and ACLs
Access control lists (ACLs) applied to interfaces that are members of zones are processed before the policy is applied on the zone pair. You must ensure that interface ACLs do not interfere with the policy firewall traffic when there are policies between zones.
Pinholes (ports opened through a firewall that allows applications-controlled access to a protected network) are not punched for return traffic in interface ACLs.
Zones and VRF-Aware Firewalls
The Cisco firewall is VPN routing and forwarding (VRF)-aware. It handles IP address overlap across different VRFs, separate thresholds, and timeouts for VRFs. All interfaces in a zone must belong to the same VRF.
However, you should not group interfaces from different VRFs in the same zone because VRFs belong to different entities that typically have their own policies.
You can configure a zone pair between two zones that contain different VRFs, as shown in the figure below.
When multiple VRFs are configured on a device and an interface provides common services to all the VRFs (for example, Internet service), you should place that interface in a separate zone. You can then define policies between the common zone and other zones. (There can be one or more zones per VRF.)
Figure 3 | Zones and VRF |
In the figure above, the interface providing common services is a member of the zone "common." All of VRF A is in a single zone, vrf_A. VRF B, which has multiple interfaces, is partitioned into multiple zones vrf_B_1 and vrf_B_2. Zone Z1 does not have VRF interfaces. You can specify policies between each of these zones and the common zone. Additionally, you can specify polices between each of the zones vrf_A, vrf_B_n, and Z1 if VRF route export is configured and the traffic patterns make sense. You can configure a policy between zones vrf_A and vrf_B_1, but make sure that traffic can flow between them.
You do not need to specify the global thresholds and timers on a per-VRF basis. Instead, parameters are supplied to the inspect action through a parameter map.
Zones and Transparent Firewalls
The Cisco firewall supports transparent firewalls where the interfaces are placed in bridging mode and the firewall inspects the bridged traffic.
To configure a transparent firewall, use the bridge command to enable the bridging of a specified protocol in a specified bridge and the zone-member security command to attach an interface to a zone. The bridge command on the interface indicates that the interface is in bridging mode.
A bridged interface can be a zone member. In a typical case, the Layer 2 domain is partitioned into zones and a policy is applied the same way as for Layer 3 interfaces.
Transparent Firewall Restriction for P2P Inspection
The Cisco firewall uses network-based application recognition (NBAR) for peer-to-peer (P2P) protocol classification and policy enforcement. NBAR is not available for bridged packets; thus, P2P packet inspection is not supported for firewalls with transparent bridging.
Overview of Security Zone Firewall Policies
A class is a way of identifying a set of packets based on its contents. Normally, you define a class so that you can apply an action on the identified traffic that reflects a policy. A class is designated through class maps.
An action is a specific functionality that is typically associated with a traffic class. For example, inspect, drop, and pass are actions.
To create security zone firewall policies, you should complete the following tasks:
- Define a match criterion (class map).
- Associate actions to the match criterion (policy map).
- Attach the policy map to a zone pair (service policy).
The class-map command creates a class map to be used for matching packets to a specified class. Packets arriving at the targets (such as the input interface, output interface, or zone pair), that are determined by how the service-policy command is configured, are checked against match criteria configured for a class map to determine if the packet belongs to that class.
The policy-map command creates or modifies a policy map that can be attached to one or more targets to specify a service policy. Use the policy-map command to specify the name of the policy map to be created, added to, or modified before you can configure policies for classes whose match criteria are defined in a class map.
To log firewall drop messages, enable the drop-log command under the class-default class in the policy map. For example, consider the following policy map:
policy-map type inspect in-out-pol class type inspect in-out inspect class class-default drop-log policy-map type inspect out-in-pol class type inspect out-in inspect class class-default drop-log
To log dropped packets for an inspect parameter map, use the log dropped-packets enable command. The following example shows how to configure logging of dropped packets due to an inspect policy:
parameter-map type inspect global log dropped-packets enable
Class Maps and Policy Maps for Zone-Based Policy Firewalls
Quality of service (QoS) class maps have numerous match criteria; firewalls have fewer match criteria. Firewall class maps are of type inspect and this information controls what shows up under firewall class maps.
A policy is an association of traffic classes and actions. It specifies what actions should be performed on defined traffic classes. An action is a specific function, and it is typically associated with a traffic class. For example, inspect and drop are actions.
- Layer 3 and Layer 4 Class Maps and Policy Maps
- Layer 7 Class Maps and Policy Maps
- Class-Default Class Map
- Hierarchical Policy Maps
Layer 3 and Layer 4 Class Maps and Policy Maps
Layer 3 and Layer 4 class maps identify traffic streams on which different actions should be performed.
A Layer 3 or Layer 4 policy map is sufficient for the basic inspection of traffic.
The following example shows how to configure class map c1 with the match criteria of ACL 101 and the HTTP protocol, and create an inspect policy map named p1 to specify that packets will be dropped on the traffic at c1:
Device(config)# class-map type inspect match-all c1 Device(config-cmap)# match access-group 101 Device(config-cmap)# match protocol http Device(config)# policy-map type inspect p1 Device(config-pmap)# class type inspect c1 Device(config-pmap-c)# drop
To create a Layer 3 or Layer 4 policy, see the "Configuring Layer 7 Protocol-Specific Firewall Policies" section.
- Class-Map Configuration Restriction
- Rate Limiting (Policing) Traffic Within a Layer 3 and Layer 4 Policy Map
Class-Map Configuration Restriction
If traffic meets multiple match criteria, these match criteria must be applied in the order of specific to less specific. For example, consider the following class map:
class-map type inspect match-any my-test-cmap match protocol http match protocol tcp
In this example, HTTP traffic must first encounter the match protocol http command to ensure that the traffic is handled by the service-specific capabilities of HTTP inspection. If the "match" lines are reversed, and the traffic encounters the match protocol tcp command before it is compared to the match protocol http command, the traffic will be classified as TCP traffic and inspected according to the capabilities of the TCP inspection component of the firewall. If match protocol TCP is configured first, it will create issues for services such as FTP and TFTP and for multimedia and voice signaling services such as H.323, Real Time Streaming Protocol (RTSP), Session Initiation Protocol (SIP), and Skinny. These services require additional inspection capabilities to recognize more complex activities.
Rate Limiting (Policing) Traffic Within a Layer 3 and Layer 4 Policy Map
Depending on your releases, you can use the police command within an inspect policy to limit the number of concurrent connections allowed for applications such as Instant Messenger (IM) and peer-to-peer (P2P).
To use the police command, you must enable Cisco stateful packet inspection within the inspect policy map. If you configure the police command without configuring the inspect command, you will receive an error message and the police command will be rejected.
Compatibility with Existing Police Actions
Police actions provisioned in a modular QoS CLI (MQC) policy map are applied as input and output policies on an interface. An inspect policy map can be applied only to a zone pair and not to an interface. The police action is enforced on traffic that traverses the zone pair. (The direction of the traffic is inherent to the specification of the zone pair.) Thus, a quality of service (QoS) policy that contains a police action can be present on interfaces that make up a zone pair and in an inspect policy map applied across the zone pair. If both police actions are configured, the zone pair police action is executed after the input interface police action, but before the output interface police action. There is no interaction between QoS and the inspect police actions.
Police Restrictions
Layer 7 Class Maps and Policy Maps
Layer 7 class maps can be used in inspect policy maps only for deep packet inspection (DPI). The DPI functionality is delivered through Layer 7 class maps and policy maps.
To create a Layer 7 class map, use the class-map type inspect command for the desired protocol. For example, for the HTTP protocol, enter the class-map type inspect http command.
The type of class map (for example, HTTP) determines the match criteria that you can use. If you want to specify HTTP traffic that contains Java applets, you must specify a "match response body java" statement in the context of an "inspect HTTP" class map.
A Layer 7 policy map provides application level inspection of traffic. The policy map can include class maps of the same type.
To create a Layer 7 policy map, specify the protocol in the policy-map type inspect command. For example, to create a Layer 7 HTTP policy map, use the policy-map type inspect http policy-map-name command. Enter the name of the HTTP policy-map for the policy-map-name argument.
If you do not specify a protocol name (for example, if you use the policy-map type inspect command), you will create a Layer 3 or Layer 4 policy map, which can only be an inspect type policy map.
A Layer 7 policy map must be contained in a Layer 3 or Layer 4 policy map; it cannot be attached directly to a target. To attach a Layer 7 policy map to a top-level policy map, use the service-policy command and specify the application name (that is, HTTP, Internet Message Access Protocol [IMAP], Post Office Protocol, version 3 [POP3], Simple Mail Transfer Protocol [SMTP], or SUN Remote Procedure Call [SUNRPC]). The parent class for a Layer 7 policy should have an explicit match criterion that matches only one Layer 7 protocol before the policy is attached.
If the Layer 7 policy map is in a lower level, you must specify the inspect action at the parent level for a Layer 7 policy map.
Layer 7 Supported Protocols
You can create Layer 7 class maps and policy maps for the following protocols:
- America Online (AOL) Instant Messenger (IM) protocol.
- eDonkey peer-to-peer (P2P) protocol.
- FastTrack traffic P2P protocol.
- Gnutella Version 2 traffic P2P protocol.
- H.323 VoIP Protocol Version 4.
- HTTP--Protocol used by web browsers and web servers to transfer files, such as text and graphic files.
- Internet Message Access Protocol (IMAP)--Method of accessing e-mail or bulletin board messages kept on a mail server that is shared.
- I Seek You (ICQ) IM protocol.
- Kazaa Version 2 P2P protocol.
- MSN Messenger IM protocol.
- Post Office Protocol, Version 3 (POP3)--Protocol that client e-mail applications use to retrieve mail from a mail server.
- SIP--Session Initiation Protocol (SIP).
- SMTP--Simple Network Management Protocol.
- SUNRPC--Sun RPC (Remote Procedure Call).
- Windows Messenger IM Protocol.
- Yahoo IM protocol.
For information on configuring a Layer 7 class map and policy map (policies), see the "Configuring Layer 7 Protocol-Specific Firewall Policies" section.
Class-Default Class Map
In addition to user-defined classes, a system-defined class map named class-default represents all packets that do not match any of the user-defined classes in a policy. The class-default class is always the last class in a policy map.
You can define explicit actions for a group of packets that does not match any of the user-defined classes. If you do not configure any actions for the class-default class in an inspect policy, the default action is drop.
Note |
For a class-default in an inspect policy, you can configure only drop action or pass action. |
The following example shows how to use class-default in a policy map. In this example, HTTP traffic is dropped and the remaining traffic is inspected. Class map c1 is defined for HTTP traffic, and class-default is used for a policy map p1.
Device(config)# class-map type inspect match-all c1 Device(config-cmap)# match protocol http Device(config)# policy-map type inspect p1 Device(config-pmap)# class type inspect c1 Device(config-pmap-c)# drop Device(config-pmap)# class class-default Device(config-pmap-c)# drop
Hierarchical Policy Maps
A policy can be nested within a policy. A policy that contains a nested policy is called a hierarchical policy.
To create a hierarchical policy, attach a policy directly to a class of traffic. A hierarchical policy contains a child and a parent policy. The child policy is the previously defined policy that is associated with the new policy through the use of the service-policy command. The new policy that uses the preexisting policy is the parent policy.
Note |
There can be a maximum of two levels in a hierarchical inspect service policy. |
Parameter Maps
A parameter map allows you to specify parameters that control the behavior of actions and match criteria specified under a policy map and a class map, respectively.
There are three types of parameter maps:
-
Inspect parameter map
An inspect parameter map is optional. If you do not configure a parameter map, the software uses default parameters. Parameters associated with the inspect action apply to all nested actions (if any). If parameters are specified in both the top and lower levels, parameters in the lower levels override those in the top levels.
-
URL filter parameter map
A parameter map is required for URL filtering (through the URL filter action in a Layer 3 or Layer 4 policy map and the URL filter parameter map).
Firewall and Network Address Translation
Network Address Translation (NAT) enables private IP internetworks that use nonregistered IP addresses to connect to the Internet. NAT operates on a device, usually connecting two networks, and translates private (not globally unique) addresses in the internal network into legal addresses before packets are forwarded to another network. NAT can be configured to advertise only one address for the entire network to the outside world. A device configured with NAT will have at least one interface to the inside network and one to the outside network.
In a typical environment, NAT is configured at the exit device between a stub domain and the backbone. When a packet leaves the domain, NAT translates the locally significant source address to a global unique address. When a packet enters the domain, NAT translates the globally unique destination address into a local address. If more than one exit point exists, each NAT must have the same translation table. If the software cannot allocate an address because it has run out of addresses, it drops the packet and sends an Internet Control Message Protocol (ICMP) host unreachable packet.
With reference to NAT, the term "inside" refers to those networks that are owned by an organization and that must be translated. Inside this domain, hosts will have addresses in one address space. When NAT is configured and when the hosts are outside, hosts will appear to have addresses in another address space. The inside address space is referred to as the local address space and the outside address space is referred to as the global address space.
Consider a scenario where NAT translates both source and destination IP addresses. A packet is sent to a device from inside NAT with the source address 192.168.1.1 and the destination address 10.1.1.1. NAT translates these addresses and sends the packet to the external network with the source address 209.165.200.225 and the destination address 209.165.200.224.
Similarly, when the response comes back from outside NAT, the source address will be 209.165.200.225 and the destination address will be 209.165.200.224. Therefore, inside NAT, the packets will have a source address of 10.1.1.1 and a destination address of 192.168.1.1.
In this scenario, if you want to create an Application Control Engine (ACE) to be used in a firewall policy, the pre-NAT IP addresses (also known as inside local and outside global addresses) 192.168.1.1 and 209.165.200.224 must be used.
WAAS Support for the Cisco Firewall
Depending on your release, the Wide Area Application Services (WAAS) firewall software provides an integrated firewall that optimizes security-compliant WANs and application acceleration solutions with the following benefits:
- Integrates WAAS networks transparently.
- Protects transparent WAN accelerated traffic.
- Optimizes a WAN through full stateful inspection capabilities.
- Simplifies Payment Card Industry (PCI) compliance.
- Supports the Network Management Equipment (NME)-Wide Area Application Engine (WAE) modules or standalone WAAS device deployment.
WAAS has an automatic discovery mechanism that uses TCP options during the initial three-way handshake to identify WAE devices transparently. After automatic discovery, optimized traffic flows (paths) experience a change in the TCP sequence number to allow endpoints to distinguish between optimized and nonoptimized traffic flows.
Note |
Paths are synonymous with connections. |
WAAS allows the Cisco firewall to automatically discover optimized traffic by enabling the sequence number to change without compromising the stateful Layer 4 inspection of TCP traffic flows that contain internal firewall TCP state variables. These variables are adjusted for the presence of WAE devices.
If the Cisco firewall notices that a traffic flow has successfully completed WAAS automatic discovery, it permits the initial sequence number shift for the traffic flow and maintains the Layer 4 state on the optimized traffic flow.
Note |
Stateful Layer 7 inspection on the client side can also be performed on nonoptimized traffic. |
WAAS Traffic Flow Optimization Deployment Scenarios
The following sections describe two different WAAS traffic flow optimization scenarios for branch office deployments. WAAS traffic flow optimization works with the Cisco firewall feature on a Cisco Integrated Services Router (ISR).
The figure below shows an example of an end-to-end WAAS traffic flow optimization with the Cisco firewall. In this particular deployment, a Network Management Equipment (NME)-WAE device is on the same device as the Cisco firewall. Web Cache Communication Protocol (WCCP) is used to redirect traffic for interception.
Figure 4 | End-to-End WAAS Optimization Path |
WAAS Branch Deployment with an Off-Path Device
A Wide Area Application Engine (WAE) device can be either a standalone WAE device or an NME-WAE that is installed on an Integrated Services Router (ISR) as an integrated service engine (as shown in the figure Wide Area Application Service [WAAS] Branch Deployment).
The figure below shows a WAAS branch deployment that uses Web Cache Communication Protocol (WCCP) to redirect traffic to an off-path, standalone WAE device for traffic interception. The configuration for this option is the same as the WAAS branch deployment with an NME-WAE.
Figure 5 | WAAS Off-Path Branch Deployment |
WAAS Branch Deployment with an Inline Device
The figure below shows a Wide Area Application Service (WAAS) branch deployment that has an inline Wide Area Application Engine (WAE) device that is physically in front of the Integrated Services Router (ISR). Because the WAE device is in front of the device, the Cisco firewall receives WAAS optimized packets, and as a result, Layer 7 inspection on the client side is not supported.
Figure 6 | WAAS Inline Path Branch Deployment |
An edge WAAS device with the Cisco firewall is applied at branch office sites that must inspect the traffic moving to and from a WAN connection. The Cisco firewall monitors traffic for optimization indicators (TCP options and subsequent TCP sequence number changes) and allows optimized traffic to pass, while still applying Layer 4 stateful inspection and deep packet inspection to all traffic and maintaining security while accommodating WAAS optimization advantages.
Note |
If the WAE device is in the inline location, the device enters its bypass mode after the automatic discovery process. Although the device is not directly involved in WAAS optimization, the device must be aware that WAAS optimization is applied to the traffic in order to apply the Cisco firewall inspection to network traffic and make allowances for optimization activity if optimization indicators are present. |
Out-of-Order Packet Processing Support in the Zone-Based Firewall Application
Out-of-Order (OoO) packet processing support for Common Classification Engine (CCE) firewall application and CCE adoptions of the Intrusion Prevention System (IPS) allows packets that arrive out of order to be copied and reassembled in the correct order. The OoO packet processing reduces the need to retransmit dropped packets and reduces the bandwidth needed for the transmission of traffic on a network. To configure OoO support, use the parameter-map type ooo global command.
Note |
IPS sessions use OoO parameters that are configured using the parameter-map type ooo global command. |
OoO processing is not supported in Simple Mail Transfer Protocol (SMTP) because SMTP supports masking actions that require packet modification.
OoO packet processing support is enabled by default when a Layer 7 policy is configured for Deep Packet Inspection (DPI) for the following protocols:
- AOL IM protocol.
- eDonkey P2P protocol.
- FastTrack traffic P2P protocol.
- Gnutella Version 2 traffic P2P protocol.
- H.323 VoIP Protocol Version 4.
- HTTP--Protocol used by web browsers and web servers to transfer files, such as text and graphic files.
- IMAP--Method of accessing e-mail or bulletin board messages kept on a mail server that is shared.
- ICQ IM Protocol.
- Kazaa Version 2 P2P protocol.
- Match Protocol SIP--Match Protocol SIP.
- MSN Messenger IM protocol.
- POP3--Protocol that client e-mail applications use to retrieve mail from a mail server.
- SUNRPC--Sun RPC.
- Windows Messenger IM Protocol.
- Yahoo IM protocol.
For information on configuring a Layer 7 class map and policy map (policies), see the "Configuring Layer 7 Protocol-Specific Firewall Policies" section.
Note |
OoO packets are dropped when IPS and zone-based policy firewall with Layer 4 inspection are enabled. |
Intrazone Support in the Zone-Based Firewall Application
Intrazone support allows a zone configuration to include users both inside and outside a network. Intrazone support allows traffic inspection between users belonging to the same zone but different networks. Depending on your release, traffic within a zone was allowed to pass uninspected by default. To configure a zone pair definition with the same zone for source and destination, use the zone-pair security command. This allows the functionality of attaching a policy map and inspecting the traffic within the same zone.
How to Configure Zone-Based Policy Firewall
- Configuring Layer 3 and Layer 4 Firewall Policies
- Configuring a Parameter Map
- Configuring Layer 7 Protocol-Specific Firewall Policies
- Creating Security Zones and Zone Pairs and Attaching a Policy Map to a Zone Pair
- Configuring the Cisco Firewall with WAAS
Configuring Layer 3 and Layer 4 Firewall Policies
Layer 3 and Layer 4 policies are "top-level" policies that are attached to the target (zone pair). Perform the following tasks to configure Layer 3 and Layer 4 firewall policies:
- Configuring a Class Map for a Layer 3 and Layer 4 Firewall Policy
- Creating a Policy Map for a Layer 3 and Layer 4 Firewall Policy
Configuring a Class Map for a Layer 3 and Layer 4 Firewall Policy
Use the following task to configure a class map for classifying network traffic.
Note |
You must perform at least one match step from Step 4, 5, or 6. |
When packets are matched to an access group, a protocol, or a class map, a traffic rate is generated for these packets. In a zone-based firewall policy, only the first packet that creates a session matches the policy. Subsequent packets in this flow do not match the filters in the configured policy, but match the session directly. The statistics related to subsequent packets are shown as part of the inspect action.
DETAILED STEPS
Creating a Policy Map for a Layer 3 and Layer 4 Firewall Policy
Use this task to create a policy map for a Layer 3 and Layer 4 firewall policy that will be attached to zone pairs.
Note |
If you are creating an inspect type policy map, note that only the following actions are allowed: drop, inspect, pass, police, service-policy, and urlfilter. |
Note |
You must perform at least one step from Step 5, 8, 9, or 10. |
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# policy-map type inspect p1 |
Creates a Layer 3 and Layer 4 inspect type policy map and enters QoS policy-map configuration mode. |
||
|
Example: Device(config-pmap)# class type inspect c1 |
Specifies the traffic class on which an action to perform and enters QoS policy-map class configuration mode. |
||
|
Example: Device(config-pmap-c)# inspect inspect-params |
Enables Cisco stateful packet inspection. |
||
|
Example: Device(config-pmap-c)# police rate 2000 bps burst 3000 bytes |
(Optional) Limits traffic matching within a firewall (inspect) policy. |
||
|
Example: Device(config-pmap-c)# drop |
(Optional) Drops packets that are matched with the defined class.
|
||
|
Example: Device(config-pmap-c)# pass |
(Optional) Allows packets that are matched with the defined class. |
||
|
Example: Device(config-pmap-c)# service-policy type inspect p1 |
Attaches a firewall policy map to a zone pair. |
||
|
Example: Device(config-pmap-c)# urlfilter param1 |
(Optional) Enables Cisco firewall URL filtering. |
||
|
Example: Device(config-pmap-c)# end |
Exits QoS policy-map class configuration mode and enters privileged EXEC mode. |
Configuring a Parameter Map
Depending on your policy, you can configure either an inspect, URL filter, or a protocol-specific parameter map. If you configure a URL filter type or a protocol-specific policy, you must configure a parameter map. However, a parameter map is optional if you are using an inspect type policy.
Note |
Changes to the parameter map are not reflected on connections already established through the firewall. Changes are applicable only to new connections permitted to the firewall. To ensure that your firewall enforces policies strictly, clear all connections that are allowed in the firewall after you change the parameter map. To clear existing connections, use the clear zone-pair inspect sessions command. |
Perform one of the following tasks to configure a parameter map:
- Creating an Inspect Parameter Map
- Creating a URL Filter Parameter Map
- Configuring a Layer 7 Protocol-Specific Parameter Map
- Configuring OoO Packet Processing Support in the Zone-Based Firewall Applications
- Configuring Intrazone Support in the Zone-Based Firewall Applications
Creating an Inspect Parameter Map
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# parameter-map type inspect eng-network-profile |
Configures an inspect parameter map for connecting thresholds, timeouts, and other parameters that pertains to the inspect action and enters parameter map type inspect configuration mode. |
||
|
Example: Device(config-profile)# log summary flows 15 time-interval 30 |
(Optional) Configures packet logging during the firewall activity.
|
||
|
Example: Device(config-profile)# alert on |
(Optional) Enables Cisco stateful packet inspection alert messages that are displayed on the console. |
||
|
Example: Device(config-profile)# audit-trail on |
(Optional) Enables audit trail messages. |
||
|
Example: Device(config-profile)# dns-timeout 60 |
(Optional) Specifies the domain name system (DNS) idle timeout (the length of time for which a DNS lookup session will be managed while there is no activity). |
||
|
Example: Device(config-profile)# icmp idle-timeout 90 |
(Optional) Configures the timeout for Internet Control Message Protocol (ICMP) sessions. |
||
|
Example: Device(config-profile)# max-incomplete low 800 |
(Optional) Defines the number of existing half-open sessions that will cause the Cisco firewall to start and stop deleting half-open sessions. |
||
|
Example: Device(config-profile)# one-minute low 300 |
(Optional) Defines the number of new unestablished sessions that will cause the system to start deleting half-open sessions and stop deleting half-open sessions. |
||
|
Example: Device(config-profile)# sessions maximum 200 |
(Optional) Sets the maximum number of allowed sessions that can exist on a zone pair. |
||
|
Example: Device(config-profile)# tcp finwait-time 5 |
(Optional) Specifies the length of time a TCP session will be managed after the Cisco firewall detects a finish (FIN)-exchange. |
||
|
Example: Device(config-profile)# tcp idle-time 90 |
(Optional) Configures the timeout for TCP sessions. |
||
|
Example: Device(config-profile)# tcp max-incomplete host 500 block-time 10 |
(Optional) Specifies threshold and blocking time values for TCP host-specific Denial-of-Service (DoS) detection and prevention. |
||
|
Example: Device(config-profile)# tcp synwait-time 3 |
(Optional) Specifies how long the software will wait for a TCP session to reach the established state before dropping the session. |
||
|
Example: Device(config-profile)# tcp window-scale-enforcement loose |
(Optional) Disables the window scale option check in the parameter map for a TCP packet that has an invalid window scale option under the zone-based policy firewall. |
||
|
Example: Device(config-profile)# udp idle-time 75 |
(Optional) Configures an idle timeout of UDP sessions that are going through the firewall. |
||
|
Example: Device(config-profile)# end |
Exits parameter map type inspect configuration mode and enters privileged EXEC configuration mode. |
Creating a URL Filter Parameter Map
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# parameter-map type urlfilter eng-network-profile |
Creates or modifies a parameter map for URL filtering parameters and enters parameter map type inspect configuration mode.
|
||
|
Example: Device(config-profile)# alert on |
(Optional) Enables Cisco stateful packet inspection alert messages that are displayed on the console. |
||
|
Example: Device(config-profile)# allow-mode on |
(Optional) Enables the default mode of the filtering algorithm. |
||
|
Example: Device(config-profile)# audit-trail on |
(Optional) Enables audit trail messages. |
||
|
Example: Device(config-profile)# cache 5 |
(Optional) Controls how the URL filter handles the cache it maintains for HTTP servers. |
||
|
Example: Device(config-profile)# exclusive-domain permit cisco.com |
(Optional) Adds a domain name to or from the exclusive domain list so that the Cisco firewall does not have to send lookup requests to the vendor server. |
||
|
Example: Device(config-profile)# max-request 80 |
(Optional) Specifies the maximum number of outstanding requests that exist at a time. |
||
|
Example: Device(config-profile)# max-resp-pak 200 |
(Optional) Specifies the maximum number of HTTP responses that the Cisco firewall can keep in its packet buffer. |
||
|
Example: Device(config-profile)# server vendor n2h2 10.193.64.22 port 3128 outside retrans 9 timeout 8 |
Specifies the URL filtering server. |
||
|
Example: Device(config-profile)# source-interface ethernet0 |
(Optional) Specifies the interface whose IP address is used as the source IP address while making a TCP connection to the URL filter server (N2H2 or Websense). |
||
|
Example: Device(config-profile)# end |
Exits parameter map type inspect configuration mode and enters privileged EXEC configuration mode. |
Configuring a Layer 7 Protocol-Specific Parameter Map
Note |
Protocol-specific parameter maps are created only for instant messenger applications (AOL, ICQ, MSN Messenger, Yahoo Messenger, and Windows Messenger). |
To enable name resolution, you must enable the ip domain name command and the ip name-server command.
DETAILED STEPS
Command or Action | Purpose | |||||
---|---|---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||||
|
Example: Device(config)# parameter-map type protocol-info ymsgr |
Defines an application-specific parameter map and enters parameter map type inspect configuration mode. |
||||
|
Example: Device(config-profile)# server name example1.example.com |
Configures a set of domain name system (DNS) servers with which a given instant messenger application will interact.
|
||||
|
Example: Device(config-profile)# end |
Exits parameter map type inspect configuration mode and enters privileged EXEC configuration mode. |
Troubleshooting Tips
To display details of an Instant Messenger (IM) protocol-specific parameter map, use the show parameter-map type protocol-info command.
Configuring OoO Packet Processing Support in the Zone-Based Firewall Applications
Note |
When you configure a TCP-based Layer 7 policy for Deep Packet Inspection (DPI), Out-of-Order (OoO) packet processing is enabled by default. Use the parameter-map type ooo global command to configure the OoO packet support parameters or to disable OoO processing. Depending on your release, OoO processing was enabled for zone-based firewall and for Intrusion Prevention System (IPS)-shared sessions with Layer 4 match (match protocol tcp, match protocol http), and for any TCP-based Layer 7 packet ordering. |
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# parameter-map type ooo global |
Configures OoO processing and enters parameter map type inspect configuration mode. |
|
Example: Device(config-profile)# tcp reassembly alarm on |
Specifies the alert message configuration. |
|
Example: Device(config-profile)# tcp reassembly memory limit 2048 |
Specifies the OoO box-wide buffer size. |
|
Example: Device(config-profile)# tcp reassembly queue length 45 |
Specifies the OoO queue length per TCP flow. |
|
Example: Device(config-profile)# tcp reassembly timeout 34 |
Specifies the OoO queue reassembly timeout value. |
|
Example: Device(config-profile)# end |
Exits parameter map type inspect configuration mode and enters privileged EXEC configuration mode. |
Configuring Intrazone Support in the Zone-Based Firewall Applications
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# zone-pair security zonepair17 source zone8 destination zone8 |
Specifies the name of the zone pair that is attached to an interface, the source zone for information passing, and the destination zone for information passing through this zone pair.
|
||
|
Example: Device(config-sec-zone-pair)# exit |
Exits security zone-pair configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# policy-map type inspect my-pmap |
Specifies a policy map name and enters quality of service (QoS) policy-map configuration mode. |
||
|
Example: Device(config-pmap)# class-map type inspect aol match-any cmap1 |
Specifies the firewall class map protocol and name. |
||
|
Example: Device(config-pmap)# end |
Exits QoS policy map configuration mode and enters privileged EXEC configuration mode. |
Configuring Layer 7 Protocol-Specific Firewall Policies
Configure Layer 7 policy maps if you need extra provisioning for Layer 7 inspection modules. It is not necessary that you configure all Layer 7 policy maps specified in this section.
Perform one of the following tasks to configure a Layer 7, protocol-specific firewall policy:
- Layer 7 Class Map and Policy Map Restrictions
- Configuring an HTTP Firewall Policy
- Configuring a URL Filter Policy
- Configuring an IMAP Firewall Policy
- Configuring an Instant Messenger Policy
- Configuring a Peer-to-Peer Policy
- Configuring a POP3 Firewall Policy
- Configuring an SMTP Firewall Policy
- Configuring a SUNRPC Firewall Policy
- Configuring an MSRPC Firewall Policy
Layer 7 Class Map and Policy Map Restrictions
- Deep packet inspection (DPI) class maps for Layer 7 can be used in inspect policy maps of the respective type. For example, class-map type inspect http can be used only in policy-map type inspect http.
- DPI policies require an inspect action at the parent level.
- A Layer 7 (DPI) policy map must be nested at the second level in a Layer 3 or Layer 4 inspect policy map, whereas a Layer 3 or Layer 4 inspect policy can be attached at the first level. Therefore, a Layer 7 policy map cannot be attached directly to a zone pair.
- If no action is specified in the hierarchical path of an inspect service policy, the packet is dropped. The traffic matching class-default in the top-level policy is dropped if there are no explicit actions configured in class-default. If the traffic does not match any class in a Layer 7 policy, the traffic is not dropped; control returns to the parent policy and subsequent actions (if any) in the parent policy are executed on the packet.
- Layer 7 policy maps include class maps only of the same type.
- You can specify the reset action only for TCP traffic; it resets the TCP connection.
- Depending on your release, removing a class that has a header with a regular expression from a Layer 7 policy map causes active HTTP sessions to reset. Prior to this change, when a class was removed from a Layer 7 policy map, the device is reloaded.
Configuring an HTTP Firewall Policy
To configure match criteria on the basis of an element within a parameter map, you must configure a parameter map as shown in the task "Creating an Inspect Parameter Map."
You must specify at least one match criterion; otherwise, the firewall policy will not be effective.
Configuring an HTTP Firewall Class Map
DETAILED STEPS
Command or Action | Purpose | |||||
---|---|---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||||
|
Example: Device(config)# class-map type inspect http http-class |
Creates a class map for the HTTP protocol so that you can enter match criteria and enters QoS class-map configuration mode. |
||||
|
Example: Device(config-cmap)# match response body java-applet |
(Optional) Identifies Java applets in an HTTP connection. |
||||
|
Example: Device(config-cmap)# match req-resp protocol violation |
(Optional) Configures an HTTP class map to allow HTTP messages to pass through the firewall or to reset the TCP connection when HTTP noncompliant traffic is detected. |
||||
|
Example: Device(config-cmap)# match req-resp body length gt 35000 |
(Optional) Configures an HTTP class map to use the minimum or maximum message size, in bytes, as a match criterion for permitting or denying HTTP traffic through the firewall. |
||||
|
Example: Device(config-cmap)# match req-resp header content-type mismatch |
(Optional) Configures an HTTP class map based on the content type of the HTTP traffic. |
||||
|
Example: Device(config-cmap)# match req-resp header count gt 16 |
(Optional) Configure an HTTP firewall policy to permit or deny HTTP traffic on the basis of both request and response messages whose header count does not exceed the specified maximum number of fields. |
||||
|
Example: Device(config-cmap)# match response header length gt 50000 |
(Optional) Permits or denies HTTP traffic based on the length of the HTTP request header. |
||||
|
Example: Device(config-cmap)# match request uri length gt 500 |
(Optional) Configures an HTTP firewall policy to use the Uniform Resource Identifier (URI) or argument length in the request message as a match criterion for permitting or denying HTTP traffic. |
||||
|
Example: Device(config-cmap)# match request method connect |
(Optional) Configures an HTTP firewall policy to use the request methods or the extension methods as a match criterion for permitting or denying HTTP traffic. |
||||
|
Example: Device(config-cmap)# match request port-misuse any |
(Optional) Identifies applications misusing the HTTP port. |
||||
|
Example: Device(config-cmap)# match req-resp header transfer-encoding compress |
(Optional) Permits or denies HTTP traffic according to the specified transfer encoding of the message. |
||||
|
Example: Device(config-cmap)# match req-resp header regex non_ascii_regex |
(Optional) Configures HTTP firewall policy match criteria on the basis of headers that match the regular expression defined in a parameter map.
|
||||
|
Example: Device(config-cmap)# match request uri regex uri-regex-cm |
(Optional) Configures an HTTP firewall policy to permit or deny HTTP traffic on the basis of request messages whose URI or arguments (parameters) match a defined regular expression. |
||||
|
Example: Device(config-cmap)# match response body regex body-regex |
(Optional) Configures a list of regular expressions that are to be matched against the body of the request, response, or both the request and response message. |
||||
|
Example: Device(config-cmap)# match response status-line regex status-line-regex |
(Optional) Specifies a list of regular expressions that are to be matched against the status line of a response message. |
||||
|
Example: Device(config-cmap)# end |
(Optional) Exits QoS class map configuration mode and enters privileged EXEC mode. |
Configuring an HTTP Firewall Policy Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# policy-map type inspect http myhttp-policy |
Creates a Layer 7 HTTP policy map and enters QoS policy-map configuration mode. |
|
Example: Device(config-pmap)# class-type inspect http http-class |
Creates a class map for the HTTP protocol. |
|
Example: Device(config-pmap)# allow |
(Optional) Allows a traffic class that matches the class. |
|
Example: Device(config-pmap)# log |
Generates log messages. |
|
Example: Device(config-pmap)# reset |
(Optional) Resets a TCP connection if the data length of the Simple Mail Transfer Protocol (SMTP) body exceeds the value configured in the class-map type inspect smtp command. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring a URL Filter Policy
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# parameter-map type urlfpolicy websense websense-param-map |
Configures the URL filter name related to the parameter map, which can include local, Websense, or N2H2 parameters and enters parameter map type inspect configuration mode. |
|
Example: Device(config-profile)# exit |
Exits parameter map type inspect configuration mode and enters global configuration mode. |
|
Example: Device(config)# class-map type urlfilter websense websense-param-map |
Configures the class map for the URL filter and enters Qos class-map configuration mode. |
|
Example: Device(config-cmap)# exit |
Exits QoS class-map configuration mode and enters global configuration mode. |
|
Example: Device(config)# policy-map type inspect urlfilter websense-policy |
Configures the URL filter policy and enters QoS policy-map configuration mode. |
|
Example: Device(config-pmap)# service-policy urlfilter websense-policy |
Applies the URL filter policy under the inspect class as the service policy. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring an IMAP Firewall Policy
Configuring an IMAP Class Map
Perform the following task to configure an Integrated Messaging Access Protocol (IMAP) class map:
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# ip inspect name mail-guard imap |
Defines a set of inspection rules. |
|
Example: Device(config)# class-map type inspect imap imap-class |
Creates a class map for IMAP to enter the match criterion and enters QoS class-map configuration mode. |
|
Example: Device(config-cmap)# log |
Generates log messages. |
|
Example: Device(config-cmap)# match invalid-command |
(Optional) Locates invalid commands on an IMAP connection. |
|
Example: Device(config-cmap)# match login clear-text |
(Optional) Locates nonsecure login when an IMAP server is used. |
|
Example: Device(config-cmap)# end |
Exits QoS class-map configuration mode and enters privileged EXEC configuration mode. |
Configuring an IMAP Policy Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# policy-map type inspect imap myimap-policy |
Creates a Layer 3 Integrated Messaging Access Protocol (IMAP) policy map and enters QoS policy-map configuration mode. |
|
Example: Device(config-pmap)# class-type inspect imap pimap |
Creates a class map for the IMAP protocol. |
|
Example: Device(config-pmap)# log |
Generates log messages. |
|
Example: Device(config-pmap)# reset |
(Optional) Resets a TCP connection if the data length of the Simple Mail Transfer Protocol (SMTP) body exceeds the value that you configured in the class-map type inspect smtp command. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring an Instant Messenger Policy
Configuring an IM Class Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# class map type inspect aol myaolclassmap |
Creates an Instant Messenger (IM) type class map so that you can begin adding match criteria and enters QoS class-map configuration mode. |
|
Example: Device(config-cmap)# match service text-chat |
(Optional) Creates a match criterion on the basis of text chat messages. |
|
Example: Device(config-cmap)# end |
Exits QoS class-map configuration mode and enters privileged EXEC mode. |
Configuring an IM Policy Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# policy map type inspect aol myaolpolicymap |
Creates an Instant Messenger (IM) policy map and enters QoS policy-map configuration mode. |
|
Example: Device(config-pmap)# class type inspect aol myaolclassmap |
Specifies a traffic class on which an action is to be performed. |
|
Example: Device(config-pmap)# reset |
(Optional) Resets the connection. |
|
Example: Device(config-pmap)# log |
(Optional) Generates a log message for the matched parameters. |
|
Example: Device(config-pmap)# allow |
(Optional) Allows the connection. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
What to Do Next
If you have not done so already, you must configure an IM-specific parameter map as shown in the task "Configuring a Layer 7 Protocol-Specific Parameter Map."
Configuring a Peer-to-Peer Policy
You can create a peer-to-peer (P2P) policy for the following P2P applications: eDonkey, FastTrack, Gnutella, and Kazaa Version 2.
Configuring a P2P Class Map
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# class map type inspect edonkey myclassmap |
Creates a peer-to-peer (P2P) type class map so that you can begin adding match criteria and enters QoS class-map configuration mode. |
||
|
Example: Device(config-cmap)# match file-transfer * |
(Optional) Matches file transfer connections within any supported P2P protocol.
|
||
|
Example: Device(config-cmap)# match search-file-name |
(Optional) Blocks filenames within a search request for clients using the eDonkey P2P application.
|
||
|
Example: Device(config-cmap)# match text-chat |
(Optional) Blocks text chat messages between clients using the eDonkey P2P application.
|
||
|
Example: Device(config-cmap)# end |
Exits QoS class-map configuration mode and enters privileged EXEC mode. |
Configuring a Peer-to-Peer Policy Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# policy map type inspect p2p mypolicymap |
Creates a peer-to-peer (P2P) policy map and enters QoS policy-map configuration mode. |
|
Example: Device(config-pmap)# class type inspect edonkey myclassmap |
Specifies a traffic class on which an action is to be performed and enters policy-map configuration mode. |
|
Example: Device(config-pmap)# reset |
(Optional) Resets the connection. |
|
Example: Device(config-pmap)# log |
(Optional) Generates a log message for the matched parameters. |
|
Example: Device(config-pmap)# allow |
(Optional) Allows the connection. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring a POP3 Firewall Policy
Configuring a POP3 Firewall Class Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# ip inspect name mail-guard pop3 |
Defines a set of inspection rules. |
|
Example: Device(config)# class-map type inspect pop3 pop3-class |
Creates a class map for the Post Office Protocol, Version 3 (POP3) protocol to enter match criteria and enters QoS class-map configuration mode. |
|
Example: Device(config-cmap)# match invalid-command |
(Optional) Locates invalid commands on a POP3 server. |
|
Example: Device(config-cmap)# match login clear-text |
(Optional) Locates a nonsecure login when using a POP3 server. |
|
Example: Device(config-cmap)# end |
Exits QoS class-map configuration mode and enters privileged EXEC mode. |
Configuring a POP3 Firewall Policy Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# policy-map type inspect pop3 mypop3-policy |
Creates a Layer 7 Post Office Protocol, Version 3 (POP3) policy map and enters QoS policy-map configuration mode. |
|
Example: Device(config-pmap)# class-type inspect pop3 pcl |
Creates a class map for the POP3 protocol. |
|
Example: Device(config-pmap)# log |
Generates log messages. |
|
Example: Device(config-pmap)# reset |
(Optional) Resets a TCP connection if the data length of the Simple Mail Transfer Protocol (SMTP) body exceeds the value that you configured in the class-map type inspect smtp command. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring an SMTP Firewall Policy
Configuring an SMTP Firewall Class Map
Note |
To enable inspection for extended SMTP (ESMTP) in a class map, use the match protocol smtp extended command. See the "Restrictions for Zone-Based Policy Firewall" section for more information on using this command. |
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# class-map type inspect smtp smtp-class |
Creates a class map for the Simple Mail Transfer Protocol (SMTP) protocol to enter match criteria and enters QoS class-map configuration mode. |
|
Example: Device(config-cmap)# match data-length gt 200000 |
Determines if the amount of data transferred in an SMTP connection is above the configured limit. |
|
Example: Device(config-cmap)# end |
Exits QoS class-map configuration mode and enters privileged EXEC mode. |
Configuring an SMTP Firewall Policy Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# policy-map type inspect smtp mysymtp-policy |
Creates a Layer 7 Simple Mail Transfer Protocol (SMTP) policy map and enters QoS policy-map configuration mode. |
|
Example: Device(config-pmap)# class-type inspect smtp sc |
Configures inspection parameters for an SMTP protocol. |
|
Example: Device(config-pmap)# reset |
(Optional) Resets the TCP connection if the data length of the SMTP body exceeds the value that you configured in the class-map type inspect smtp command. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring a SUNRPC Firewall Policy
Note |
If you are inspecting a remote-procedure call (RPC) protocol (that is, you have specified the match protocol sunrpc command in the Layer 4 class map), the Layer 7 SUNRPC policy map is required. |
Configuring a SUNRPC Firewall Class Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# class-map type inspect sunrpc long-urls |
Creates a class map for the SUNRPC protocol to enter match criteria and enters QoS class-map configuration mode. |
|
Example: Device(config-cmap)# match program-number 2345 |
(Optional) Specifies the allowed remote-procedure call (RPC) protocol program number as a match criterion. |
|
Example: Device(config-cmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring a SUNRPC Firewall Policy Map
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
|
Example: Device# configure terminal |
Enters global configuration mode. |
|
Example: Device(config)# policy-map type inspect sunrpc my-rpc-policy |
Creates a Layer 7 SUNRPC policy map and enters policy-map configuration mode. |
|
Example: Device(config-pmap)# class-type inspect sunrpc cs1 |
Configures inspection parameters for the SUNRPC protocol. |
|
Example: Device(config-pmap)# allow wait-time 10 |
(Optional) Allows the configured program number. |
|
Example: Device(config-pmap)# end |
Exits QoS policy-map configuration mode and enters privileged EXEC mode. |
Configuring an MSRPC Firewall Policy
Note |
If you are inspecting an remote-procedure call (RPC) protocol (that is, you have specified the match protocol msrpc command in the Layer 4 class map), the Layer 7 Microsoft Remote Procedure Call (MSRPC) policy map is required. |
Perform the following task to configure an MSRPC firewall policy:
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# parameter-map type protocol-info msrpc para-map |
Defines an application-specific parameter map and enters parameter map type inspect configuration mode. |
||
|
Example: Device(config-profile)# timeout 60 |
Configures the MSRPC endpoint mapper (EPM) timeout. |
||
|
Example: Device(config-profile)# exit |
Exits parameter map type inspect configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# class-map type inspect match-any c-map |
Creates an inspect type class map for the traffic class and enters QoS class-map configuration mode. |
||
|
Example: Device(config-cmap)# match protocol msrpc |
Configures match criteria for a class map on the basis of a specified protocol. |
||
|
Example: Device(config-cmap)# match protocol msrpc-smb-netbios |
Configures match criteria for a class map on the basis of a specified protocol. |
||
|
Example: Device(config-cmap)# exit |
Exits QoS class-map configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# policy-map type inspect p-map |
Creates a Layer 3 and Layer 4 inspect type policy map and enters QoS policy-map configuration mode. |
||
|
Example: Device(config-pmap)# class type inspect c-map |
Specifies the traffic (class) on which an action is to be performed and enters QoS policy-map class configuration mode. |
||
|
Example: Device(config-pmap-c)# inspect |
Enables Cisco stateful packet inspection. |
||
|
Example: Device(config-pmap-c)# exit |
Exits QoS policy-map class configuration mode and enters QoS policy-map configuration mode. |
||
|
Example: Device(config-pmap)# class class-default |
Specifies the matching of the system default class and enters QoS policy-map class configuration mode. |
||
|
Example: Device(config-pmap-c)# drop |
Drops packets that match a defined class. |
||
|
Example: Device(config-pmap-c)# exit |
Exits QoS policy-map class configuration mode and enters QoS policy-map configuration mode. |
||
|
Example: Device(config-pmap)# exit |
Exits QoS policy-map configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone security in-zone |
Creates a security zone to which interfaces can be assigned and enters security zone configuration mode. |
||
|
Example: Device(config-sec-zone)# exit |
Exits security zone configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone security out-zone |
Creates a security zone to which interfaces can be assigned and enters security zone configuration mode. |
||
|
Example: Device(config-sec-zone)# exit |
Exits security zone configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone-pair security in-out source in-zone destination out-zone |
Creates a zone pair and enters security zone-pair configuration mode.
|
||
|
Example: Device(config-sec-zone-pair)# service-policy type inspect p-map |
Attaches a firewall policy map to the destination zone pair.
|
||
|
Example: Device(config-sec-zone-pair)# end |
Exits security zone-pair configuration mode and enters privileged EXEC mode. |
Creating Security Zones and Zone Pairs and Attaching a Policy Map to a Zone Pair
You need two security zones to create a zone pair. However, you can create only one security zone and use a system-defined security zone called "self." Note that if you select a self zone, you cannot configure inspect policing.
Use this process to complete the following tasks:
- Assign interfaces to security zones.
- Attach a policy map to a zone pair.
- Create at least one security zone.
- Define zone pairs.
Tip |
Before you create zones, think about what should constitute the zones. The general guideline is that you should group interfaces that are similar when they are viewed from a security perspective. |
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# zone security zone1 |
Creates a security zone to which interfaces can be assigned and enters security zone configuration mode. |
||
|
Example: Device(config-sec-zone)# description Internet Traffic |
(Optional) Describes the zone. |
||
|
Example: Device(config-sec-zone)# exit |
Exits security zone configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone-pair security zp source z1 destination z2 |
Creates a zone pair and enters security zone-pair configuration mode.
|
||
|
Example: Device(config-sec-zone-pair)# description accounting network |
(Optional) Describes the zone pair. |
||
|
Example: Device(config-sec-zone-pair)# exit |
Exits security zone-pair configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# interface ethernet 0 |
Configures an interface and enters interface configuration mode. |
||
|
Example: Device(config-if)# zone-member security zone1 |
Assigns an interface to a specified security zone.
|
||
|
Example: Device(config-if)# exit |
Exits interface configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone-pair security zp source z1 destination z2 |
Creates a zone pair and enters security zone-pair configuration mode. |
||
|
Example: Device(config-sec-zone-pair)# service-policy type inspect p2 |
Attaches a firewall policy map to the destination zone pair.
|
||
|
Example: Device(config-sec-zone-pair)# end |
Exits security zone-pair configuration mode and enters privileged EXEC mode. |
Configuring the Cisco Firewall with WAAS
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
|
Example: Device> enable |
Enables privileged EXEC mode. |
||
|
Example: Device# configure terminal |
Enters global configuration mode. |
||
|
Example: Device(config)# ip wccp 61 |
Enters the Web Cache Communication Protocol (WCCP) dynamically defined service identifier number. |
||
|
Example: Device(config)# ip inspect waas enable |
Enables the Cisco firewall inspection so that Cisco Wide Area Application Service (WAAS) optimization can be discovered.
|
||
|
Example: Device(config)# class-map type inspect most-traffic |
Creates an inspect type class map for the traffic class and enters QoS class-map configuration mode.
|
||
|
Example: Device(config-cmap)# match protocol http |
Configures match criteria for a class map on the basis of a specified protocol. |
||
|
Example: Device(config-cmap)# exit |
Exits QoS class-map configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# policy-map type inspect p1 |
Creates a Layer 3 and Layer 4 inspect type policy map and enters QoS policy-map configuration mode. |
||
|
Example: Device(config-pmap)# class class-default |
Specifies the matching of the system default class. |
||
|
Example: Device(config-pmap)# class-map type inspect most-traffic |
Specifies the firewall traffic (class) map on which an action is to be performed and enters QoS policy-map class configuration mode. |
||
|
Example: Device(config-pmap-c)# inspect |
Enables Cisco stateful packet inspection. |
||
|
Example: Device(config-pmap-c)# exit |
Exits QoS policy-map class configuration mode and enters policy-map configuration mode. |
||
|
Example: Device(config-pmap)# exit |
Exits policy-map configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone security zone1 |
Creates a security zone to which interfaces can be assigned and enters security zone configuration mode. |
||
|
Example: Device(config-sec-zone)# description Internet Traffic |
(Optional) Describes the zone. |
||
|
Example: Device(config-sec-zone)# exit |
Exits security zone configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone-pair security zp source z1 destination z2 |
Creates a zone pair and enters security zone configuration mode.
|
||
|
Example: Device(config-sec-zone)# description accounting network |
(Optional) Describes the zone pair. |
||
|
Example: Device(config-sec-zone)# exit |
Exits security zone configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# interface ethernet 0 |
Specifies an interface and enters interface configuration mode. |
||
|
Example: Device(config-if)# description zone interface |
(Optional) Describes an interface. |
||
|
Example: Device(config-if)# zone-member security zone1 |
Assigns an interface to a specified security zone.
|
||
|
Example: Device(config-if)# ip address 10.70.0.1 255.255.255.0 |
Assigns an interface IP address for the security zone. |
||
|
Example: Device(config-if)# ip wccp 61 redirect in |
Specifies WCCP parameters on the interface. |
||
|
Example: Device(config-if)# exit |
Exits interface configuration mode and enters global configuration mode. |
||
|
Example: Device(config)# zone-pair security zp source z1 destination z2 |
Creates a zone pair and enters security zone-pair configuration mode. |
||
|
Example: Device(config-sec-zone-pair)# service-policy type inspect p2 |
Attaches a firewall policy map to the destination zone pair.
|
||
|
Example: Device(config-sec-zone-pair)# end |
Exits security zone-pair configuration mode and enters privileged EXEC mode. |
Configuration Examples for Zone-Based Policy Firewall
- Example: Configuring Layer 3 and Layer 4 Firewall Policies
- Example: Configuring Layer 7 Protocol-Specific Firewall Policies
- Example: Creating Security Zones and Zone Pairs and Attaching a Policy Map to a Zone Pair
- Example: Configuring a URL Filter Policy for Websense
- Example: Configuring the Cisco Firewall with WAAS
- Example: Protocol Match Data Not Incrementing for a Class Map
Example: Configuring Layer 3 and Layer 4 Firewall Policies
The following example shows a Layer 3 or Layer 4 top-level policy. The traffic is matched to the access control list (ACL) 199 and deep-packet HTTP inspection is configured. Configuring the match access-group 101 enables Layer 4 inspection. As a result, Layer 7 inspection is omitted unless the class-map is of type match-all.
class-map type inspect match-all http-traffic match protocol http match access-group 101 policy-map type inspect mypolicy class type inspect http-traffic inspect service-policy http http-policy
Example: Configuring Layer 7 Protocol-Specific Firewall Policies
The following example shows how to match HTTP sessions that have a URL length greater than 500. The Layer 7 policy action reset is configured.
class-map type inspect http long-urls match request uri length gt 500 policy-map type inspect http http-policy class type inspect http long-urls reset
The following example shows how to enable inspection for Extended SMTP (ESMTP) by including the extended keyword:
class-map type inspect c1 match protocol smtp extended policy-map type inspect p1 class type inspect c1 inspect
The service-policy type inspect smtp command is optional and can be entered after the inspect command.
Example: Creating Security Zones and Zone Pairs and Attaching a Policy Map to a Zone Pair
Example: Creating a Security Zone
The following example shows how to create security zone z1, which is called finance department networks, and security zone z2, which is called engineering services network:
zone security z1 description finance department networks ! zone security z2 description engineering services network
Example: Creating Zone Pairs
The following example shows how to create zones z1 and z2 and specifies that the firewall policy map is applied in zone z2 for traffic flowing between zones:
zone-pair security zp source z1 destination z2 service-policy type inspect p1
Example: Assigning an Interface to a Security Zone
The following example shows how to attach Ethernet interface 0 to zone z1 and Ethernet interface 1 to zone z2:
interface ethernet0 zone-member security z1 ! interface ethernet1 zone-member security z2
Example: Configuring a URL Filter Policy for Websense
- Example: Websense Server Configuration
- Example: Configuring the Websense Class Map
- Example: Configuring the Websense URL Filter Policy
- Example: Configuring a URL Filter Policy
Example: Websense Server Configuration
parameter-map type urlfpolicy websense websense-param-map server fw21-ss1-bldr.example.com timeout 30 source-interface Loopback0 truncate script-parameters cache-size maximum-entries 100 cache-entry-lifetime 1 block-page redirect-url http://abc.example.com
Example: Configuring the Websense Class Map
class-map type urlfilter websense match-any websense-class match server-response any
Example: Configuring the Websense URL Filter Policy
policy-map type inspect urlfilter websense-policy parameter type urlfpolicy websense websense-param-map class type urlfilter websense websense-class server-specified-action log
Example: Configuring a URL Filter Policy
parameter-map type urlfpolicy websense-param-map class-map type urlfilter websense websense-param-map policy-map type inspect urlfilter websense-policy service-policy urlfilter websense-policy
Example: Configuring the Cisco Firewall with WAAS
The following is a sample of an end-to-end Wide Area Application Services (WAAS) traffic flow optimization configuration for the Cisco firewall that uses Web Cache Communication Protocol (WCCP) to redirect traffic to a Wide Area Application Engine (WAE) device for traffic interception.
The following configuration example prevents traffic from being dropped between security zone members because the integrated-service-engine interface is configured on a different zone and each security zone member is assigned an interface. Depending on your release, this change was made to the Cisco firewall configuration to address the different input interfaces.
ip wccp 61 ip wccp 62 ip inspect waas enable class-map type inspect most-traffic match protocol icmp match protocol ftp match protocol tcp match protocol udp ! policy-map type inspect p1 class-type inspect most-traffic inspect ! class class-default zone security zone-hr ! zone security zone-outside ! zone security z-waas ! zone-pair security hr-out source zone-hr destination zone-outside service-policy type inspect p1 ! zone-pair security out--hr source zone-outside destination zone-hr service-policy type inspect p1 ! zone-pair security eng--out source zone-eng destination zone-outside service-policy type inspect p1 interface GigabitEthernet 0/0 description Trusted interface ip address 10.70.0.1 255.255.255.0 ip wccp 61 redirect in! zone-member security zone-hr interface GigabitEthernet 0/0 description Trusted interface ip address 10.71.0.2 255.255.255.0 ip wccp 61 redirect in zone-member security zone-eng ! interface GigabitEthernet 0/1 description Untrusted interface ip address 10.72.2.3 255.255.255.0 ip wccp 62 redirect in zone-member security zone-outside
Note |
The new configuration, depending on your release, places an integrated service engine in its own zone and need not be part of any zone pair. The zone pairs are configured between zone-hr (zone-out) and zone-eng (zone-output). |
interface Integrated-Service-Engine l/0 ip address 10.70.100.1 255.255.255.252 ip wccp redirect exclude in zone-member security z-waas
Example: Protocol Match Data Not Incrementing for a Class Map
The following configuration example causes the match counter problem in the show policy-map type inspect zone-pair command output:
class-map type inspect match-any y match protocol tcp match protocol icmp class-map type inspect match-all x match class y
However, cumulative counters for the configuration are displayed in the show policy-map type inspect zone-pair command output if the class map matches any class map:
Device# show policy-map type inspect zone session
policy exists on zp zp
Zone-pair: zp
Service-policy inspect : fw
Class-map: x (match-any)
Match: class-map match-any y
2 packets, 48 bytes <======= Cumulative class map counters are incrementing.
30 second rate 0 bps
Match: protocol tcp
0 packets, 0 bytes <==== The match for the protocol is not incrementing.
30 second rate 0 bps
Match: protocol icmp
0 packets, 0 bytes
30 second rate 0 bps
Inspect
Number of Established Sessions = 1
Established Sessions
Session 53105C0 (10.1.1.2:19180)=>(172.16.1.2:23) telnet:tcp SIS_OPEN
Created 00:00:02, Last heard 00:00:02
Bytes sent (initiator:responder) [30:69]
Class-map: class-default (match-any)
Match: any
Drop
0 packets, 0 bytes
Additional References
Related Documents
Related Topic |
Document Title |
---|---|
Cisco commands |
|
Security commands |
|
Quality of service commands |
Standards and RFCs
Standard & RFC |
Title |
---|---|
RFC 1950 |
|
RFC 1951 |
|
RFC 2616 |
Technical Assistance
Description |
Link |
---|---|
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |
Feature Information for Zone-Based Policy Firewall
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1 | Feature Information for Zone-Based Policy Firewall |
Feature Name |
Releases |
Feature Information |
---|---|---|
Application Inspection and Control for HTTP--Phase 2 |
12.4(9)T |
The Application Inspection and Control for HTTP--Phase 2 feature extends support for HTTP application firewall policies. The following commands were introduced or modified by this feature: regexmatch body regex, match header count, match header length, match header regex, match request length, match request, match response status-line regex. |
E-mail Inspection Engine |
15.1(1)S |
The E-mail Inspection Engine feature allows users to inspect POP3, IMAP, and E/SMTP e-mail traffic contained in SSL VPN tunneled connections that traverse the Cisco device. |
P2P Application Inspection and Control--Phase 1 |
12.4(9)T 12.4(20)T |
The P2P Application Inspection and Control--Phase 1 feature introduces support for identifying and enforcing a configured policy for the following peer-to-peer applications: eDonkey, FastTrack, Gnutella Version 2, and Kazaa Version 2. Support for identifying and enforcing a configured policy for the following Instant Messenger (IM) applications is also introduced: AOL, MSN Messenger, and Yahoo Messenger. In Release 12.4(20)T, support was added for the following applications: H.323, VoIP, and SIP. In Release 12.4(20)T, support for the following IM applications was also added: ICQ and Windows Messenger. The following commands were introduced or modified by this feature: class-map type inspect, class type inspect, clear parameter-map type protocol-info, debug policy-firewall, match file-transfer, match protocol (zone), match search-file-name, match service, match text-chat, parameter-map type, policy-map type inspect, server (parameter-map), show parameter-map type protocol-info. |
Rate-Limiting Inspected Traffic |
12.4(9)T |
The Rate-Limiting Inspected Traffic feature allows users to rate limit traffic within a Cisco firewall (inspect) policy. Also, users can limit the absolute number of sessions that can exist on a zone pair. The following commands were introduced by this feature: police (zone policy), sessions maximum. |
Zone-Based Policy Firewall |
12.4(6)T |
The Zone-Based Policy Firewall feature provides a Cisco unidirectional firewall policy between groups of interfaces known as zones. The following commands were introduced or modified by this feature: class-map type inspect, class type inspect, clear parameter-map type protocol-info, debug policy-firewall, match body regex, match file-transfer, match header count, match header length, match header regex, match protocol (zone), match request length, match request regex, match response status-line regex, match search-file-name, match service, match text-chat, parameter-map type, policy-map type inspect, server (parameter-map), service-policy (policy-map), service-policy type inspect, show parameter-map type protocol-info. |
Zone-Based Firewall Support for Microsoft Remote Procedure Call (MSRPC) |
15.1(4)M |
The Zone-Based Firewall Support for MSRPC feature introduces zone-based policy firewall support for MSRPC. |
Zone-Based Firewall (ZBFW) Usability and Manageability |
15.0(1)M 15.1(1)T |
The Zone-Based Firewall Usability and Manageability features covered in this document are out-of-order (OoO) packet processing support in zone-based firewalls, intrazone support in zone-based firewalls, and enhanced debug capabilities. The following commands were introduced or modified by this feature: clear ip ips statistics, debug cce dp named-db inspect, debug policy-firewall, debug ip virtual-reassembly list, parameter-map type ooo global, show parameter-map type ooo global, zone-pair security. Depending on your release, the following commands were introduced or modified: class-map type inspect, clear policy-firewall, log (parameter-map type), match request regex, parameter-map type inspect, show parameter-map type inspect, show policy-firewall config, show policy-firewall mib, show policy-firewall sessions, show policy-firewall stats, show policy-firewall summary-log. |
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.