BGP Prefix Independent Convergence

Table 1. Feature History Table

Feature Name

Release Information

Feature Description

BGP PIC Backup Path when the Primary Path is a Static Route with the next hop as an IP Address.

Release 7.5.1

This feature is now supported on routers that have Cisco NC57 line cards installed and operate in native and compatibiltiy mode.

This feature enables BGP PIC backup path when the primary path is a static route with the next hop as an IP Address.

Restrictions:

  • Ensure that the Border Gateway Protocol (BGP) and the IP or Multiprotocol Label Switching (MPLS) network is up and running at the customer site that is connected to the provider site by more than one path (multihomed).

  • BGP PIC does not support instances where the sum of number of primary paths and backup paths is greater than 2. Hence, only one primary path and one backup path are supported.

  • BGP PIC does not work when Label Distribution Protocol (LDP) and Segment Routing (SR) are enabled in IGP.

  • Ensure that the backup or alternate path has a unique next hop that is not the same as the next hop of the best path.

BGP PIC: Export of Backup Path Agnostic to its Multipath Eligibility

The BGP PIC: Export of Backup Path Agnostic to its Multipath Eligibility feature improves BGP convergence after a network failure. This convergence applies to both core and edge failures. The BGP PIC pre-programs a backup path so that when a failure is detected, the backup path can immediately take over, thus enabling fast failover. This feature enables BGP PIC on VPNv4 with additional paths or when the multiple paths that are ineligible to be multipath are received from the same neighbor. For backup paths to be multipath eligible, all the following attributes in the backup paths must be the same: weight, local preference, autonomous system path, origin code, Multi Exit Discriminator (MED), and Interior Gateway Protocol (iGP) distance. Also, the next hop router for each multipath must be different. This feature introduces flexibility to allow the import of backup paths to the VRF even if the said attributes are not the same.

Configuration Example

Router# router bgp 10
Router(config-bgp)# address-family vpnv4 unicast
router(config-bgp-af)# export to vrf allow backup

Running Configuration


router bgp 10
 address-family vpnv4 unicast
  export to vrf allow backup

Convergence for BGP Labeled Unicast PIC Edge

Table 2. Feature History Table

Feature Name

Release Information

Feature Description

Convergence for BGP Labeled Unicast PIC Edge

Release 7.7.1

This feature improves the convergence time of BGP labeled unicast (LU) routes to subseconds when an ingress provider edge router fails or loses PE router connectivity, and another PE router needs to be connected. This feature minimizes traffic drops when the primary paths fail for the BGP LU routes.

This feature is now supported on routers that have Cisco NC57 line cards installed and operate in native and compatibility mode`

BGP Labeled Unicast (LU) PIC Edge feature enables you to create and store both the primary and backup path in the Routing Information Base (RIB), Forwarding Information Base (FIB), and Cisco Express Forwarding. When the router detects a failure, the backup or alternate path immediately takes over, thus this feature enables fast failover and convergence in subseconds.

For BGP LU PIC Edge to work, the edge iBGP devices, such as ingress PEs and Autonomous System Border Router (ASBR), must support BGP PIC and must receive backup BGP next hop.

The topology diagram given below illustrates the Convergence for BGP Labeled Unicast PIC Edge feature. The topology is explained as follows:

  • The BGP LU PIC Edge feature is enabled on a provider edge router, PE1.

  • PE1 learns the BGP LU prefix from the remote PE router, PE2.

  • PE1 routes traffic through the Area Border Routers, ABR1, ABR2 and ABR3. If one of them fails, the preprogrammed backup of the failed ABR routes the traffic.

  • PE1 routes traffic through the Area Border Routers, ABR1, ABR2 and ABR3.

  • PE2 is marked as the backup or alternate next hop and is programmed into the FIB of PE1.

  • When PE1 learns PE2 is not reachable through ABR1, it immediately changes the BGP next hop for the PE1's prefix to ABR2.

  • The switchover occurs in less than a second regardless of the number of prefixes.

  • Subsecond convergence occurs although updates to multiple BGP prefixes are pending.

Topology

Figure 1. BGP LU PIC Edge
BGP LU PIC Edge

Guidelines and Limitations

This feature supports BGP multipaths that allows the router to install multiple internal BGP paths and multiple external BGP paths to the forwarding table. The multiple paths enable BGP to load balance traffic across multiple links.

The convergence time is independent of the BGP LU route scale.

Configure Convergence for BGP Labeled Unicast PIC Edge

Perform the following steps to configure Convergence for BGP Labeled Unicast PIC Edge:

  • Configure BGP labeled unicast and attach route-policy to BGP address families.

  • Configure BGP labeled unicast multipath and attach route-policy to BGP address families


Router(config)# route-policy BGP-PIC-EDGE
Router(config-rpl)# set path-selection backup 1 install
Router(config-rpl)# end-policy
Router(config)# end
Router(config)# router bgp 200
Router(config-bgp)# bgp router-id 10.0.0.1 
Router(config-bgp)#  address-family ipv4 unicast 
Router(config-bgp-af)# additional-paths receive
Router(config-bgp-af)# additional-paths send
Router(config-bgp-af)# additional-paths selection route-policy BGP-PIC-EDGE

/*Perform the following steps to configure BGP labeled unicast multipath and attach route-policy to BGP address families: */
Router(config)# route-policy BGP-PIC-EDGE-MULTIPATH 
Router(config-rpl)# set path-selection backup 1 install multipath-protect 
Router(config)# end-policy 
Router(config)# router bgp 200 
Router(config)# bgp router-id 192.168.1.0 
Router(config)# address-family ipv4 unicast
Router(config)# maximum-paths ibgp 2
Router(config)# additional-paths receive
Router(config)# additional-paths send 
Router(config)# additional-paths selection route-policy BGP-PIC-EDGE-MULTIPATH

Running Configuration

route-policy BGP-PIC-EDGE 
 set path-selection backup 1 install
 end-policy
router bgp 200
 bgp router-id 192.168.1.0
 address-family ipv4 unicast
  additional-paths receive
  additional-paths send
  additional-paths selection route-policy BGP-PIC-EDGE

route-policy BGP-PIC-EDGE-MULTIPATH
 set path-selection backup 1 install multipath-protect
 end-policy
router bgp 200
 bgp router-id 192.168.1.0
 address-family ipv4 unicast
  maximum-paths ibgp 2
  additional-paths receive
  additional-paths send
  additional-paths selection route-policy BGP-PIC-EDGE-MULTIPATH

Verification

Verify that the backup path is established.

Router# show cef 192.0.2.1/32
192.168.0.0/32, version 31, internal 0x5000001 0x40 (ptr 0x901d2370) [1], 0x0 (0x90d2beb8), 0xa08 (0x91c74378)
 Prefix Len 32, traffic index 0, precedence n/a, priority 4
   via 203.0.113.1/32, 3 dependencies, recursive [flags 0x6000]  << Primary Path
    path-idx 0 NHID 0x0 [0x90319650 0x0]
    recursion-via-/32
    next hop 192.51.100.1/32 via 24006/0/21
    next hop 209.165.200.225/32 Hu0/0/0/25   labels imposed {24002 24000}
    next hop 10.0.0.1/32 Hu0/0/0/26   labels imposed {24002 24000}
   via 203.0.113.2/32, 2 dependencies, recursive, backup [flags 0x6100]  << Backup Path
    path-idx 1 NHID 0x0 [0x903197b8 0x0]
    recursion-via-/32
    next hop 209.165.200.225/32 via 24005/0/21
    next hop 192.51.100.1/32 Hu0/0/0/25   labels imposed {24001 24000}
    next hop 10.0.0.1/32 Hu0/0/0/26   labels imposed {24001 24000}

TCAM Enhancement to Improve L3VPN Routing Capability

Table 3. Feature History Table

Feature Name

Release Name

Description

TCAM Enhancement to Improve L3VPN Routing Capability

Release 7.10.1

We have now increased the capacity of L3VPN routes from 124K to 2M by introducing two additional TCAM labels into the router that uses BGP PIC (Prefix Independent Convergence). With this feature, the router is no longer dependent on Forwarding Equivalence Class (FEC) scale for L3VPN routes and improves performance and removes any limitations previously imposed by the router's FEC capacity for L3VPN routes.

This feature is now supported on Cisco NCS 5700 series fixed port routers and the Cisco NCS 5500 series routers that have the Cisco NC57 line cards installed and operating in the native mode.

The feature introduces these changes:

CLI: Introduced the following commands:

The modular database (MDB) profile carving imposed limitation on the FEC resources. Prior to this release, at the hierachy 2 of the FIB chain, the L3MAX hardware profile of the MDB enabled 248K resources. In per-prefix label allocation mode, each L3VPN prefix at the FIB heiarchy 2 with BGP PIC backup consumed 2 FEC resources per prefix. In unidimensional scale, a router with TCAM in the L3MAX hardware profile option accomodated a maximum of 124K L3VPN routes.

This feature introduces two additional TCAM labels into the router that uses BGP PIC.

With this feature, the router is no longer dependent on Forwarding Equivalence Class (FEC) scale for L3VPN routes and improves performance and removes any limitations previously imposed by the router's FEC capacity for L3VPN routes

BGP PIC Implementation Considerations

  • BGP PIC over BVI (core or edge) is not supported.

  • For labelled BGP loopback peering, the system supports only one primary and one backup path. No support for BGP PIC multipath protect.

  • PIC EDGE is supported for all services, such as IPv4, IPv6, VPNv4, VPNv6, 6PE, 6VPE, VPWS, VPLS, and EVPN, over labelled unicast address-family.

Configure BGP PIC

Procedure


Step 1

cef encap-sharing disable

Example:

RP/0/RP0/CPU0:router(config)# cef encap-sharing disable

By default, without primary and backup path installation in the hardware, IPv4, IPv6, 6PE (per-vrf), 6VPE (per-vrf/per-ce), L3VPN (per-vrf/per-ce) has good convergence.

When the mode is a per-prefix by default, BGP-PIC does not give good convergence, hence you must do hardware-assisted PIC. For this, configure the cef encap-sharing disable command in XR Config mode.

With hardware-assisted BGP PIC that is configured using the cef encap-sharing disable command, separate hardware resources (FEC/EEDB) are allocated for every prefix. Cisco recommends you to make sure that the router has sufficient hardware resources for the resource allocation.

Caution

 
This CLI reprograms the CEF completely and impacts traffic. We recommend that you do it in the maintenance window.

Note

 

The cef encap-sharing disable command does not take effect in the SRv6 core.

Step 2

router bgp as-number

Example:


RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP routing process.

Step 3

address-family {vpnv4 unicast | vpnv6 unicast | ipv4 unicast | ipv6 unicast }

Example:


RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
address-family ipv4 unicast
  additional-paths receive
  additional-paths selection route-policy backup 1
  allocate-label all 
!

Step 4

additional-paths selection route-policy route-policy-name

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# additional-paths selection route-policy ap1

Configures extra paths selection mode for a prefix.

Note

 
Use the additional-paths selection command with an appropriate route-policy to calculate backup paths and to enable Prefix-Independent Convergence (PIC) functionality.
The route-policy configuration is a prerequisite for configuring the additional-paths selection mode for a prefix. This is an example route-policy configuration to use with additional-selection command:
route-policy ap1
    set path-selection backup 1 install
  end-policy