Use gRPC Protocol to Define Network Operations with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message types in .proto files. Each protocol buffer message is a small logical record of information, containing a series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf. The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the infrastructure to build a device management service to exchange configuration and operational data between a client and a server. The structure of the data is defined by YANG models.


Note


All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only TCP protocol.


Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:
syntax = "proto3";
 
package IOSXRExtensibleManagabilityService;
 
service gRPCConfigOper {
 
    rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};
  
    rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};
 
    rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};
 
    rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};
 
    rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};
 
    rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};
 
    rpc CommitReplace(CommitReplaceArgs) returns(CommitReplaceReply) {};
} 
message ConfigGetArgs {
     int64 ReqId = 1;
     string yangpathjson = 2;
}
 
message ConfigGetReply {
    int64 ResReqId = 1;
    string yangjson = 2;
    string errors = 3;
}
 
message GetOperArgs {
     int64 ReqId = 1;
     string yangpathjson = 2;
}
 
message GetOperReply {
    int64 ResReqId = 1;
    string yangjson = 2;
    string errors = 3;
}
 
message ConfigArgs {
    int64 ReqId = 1;
    string yangjson = 2;
 
}
 
message ConfigReply {
    int64 ResReqId = 1;
    string errors = 2;
}
 
message CliConfigArgs {
    int64 ReqId = 1;
    string cli = 2;
}
 
message CliConfigReply {
    int64 ResReqId = 1;
    string errors = 2;
}

message CommitReplaceArgs {
     int64 ReqId = 1;
     string cli = 2;
     string yangjson = 3;
}

message CommitReplaceReply {
     int64 ResReqId = 1;
     string errors = 2;
}
Example for gRPCExec configuration:

service gRPCExec {
    rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};
    rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};
    rpc ActionJSON(ActionJSONArgs) returns(stream ActionJSONReply) {};
}

message ShowCmdArgs {
     int64 ReqId = 1;
     string cli = 2;
}
 
message ShowCmdTextReply {
    int64 ResReqId =1;
    string output = 2;
    string errors = 3;
}

message ActionJSONArgs {
	int64 ReqId = 1;
	string yangpathjson = 2;
}

message ActionJSONReply {
	int64 ResReqId = 1;
	string yangjson = 2;
	string errors = 3;
}

Example for OpenConfiggRPC configuration:
service OpenConfiggRPC {
     rpc SubscribeTelemetry(SubscribeRequest) returns (stream SubscribeResponse) {};
     rpc UnSubscribeTelemetry(CancelSubscribeReq) returns (SubscribeResponse) {};
     rpc GetModels(GetModelsInput) returns (GetModelsOutput) {};
}

message GetModelsInput {
     uint64  requestId   = 1;
     string  name        = 2;
    string  namespace   = 3;
    string  version     = 4;
    enum MODLE_REQUEST_TYPE {
         SUMMARY = 0;
         DETAIL  = 1;
     }
     MODLE_REQUEST_TYPE requestType = 5;
}

message GetModelsOutput {
     uint64  requestId   = 1;
     message ModelInfo {
         string  name        = 1;
         string  namespace   = 2;
        string  version     = 3;
         GET_MODEL_TYPE  modelType = 4;
         string modelData = 5;
     }
     repeated ModelInfo models = 2;
     OC_RPC_RESPONSE_TYPE responseCode = 3;
     string msg = 4;
}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster programmatic and standards-based configuration of a network, as comapared to CLI.

gRPC Operations

You can issue the following gRPC operations:

gRPC Operation

Description

GetConfig

Retrieves a configuration

GetModels

Gets the supported Yang models on the router

MergeConfig

Appends to an existing configuration

DeleteConfig

Deletes a configuration

ReplaceConfig

Modifies a part of an existing configuration

CommitReplace

Replaces existing configuration with the new configuration file provided

GetOper

Gets operational data using JSON

CliConfig

Invokes the CLI configuration

ShowCmdTextOutput

Displays the output of show command

ShowCmdJSONOutput

Displays the JSON output of show command

ActionJSON

Displays the gRPC JSON action

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The router responds with the current CDP configuration.

gRPC Request (Client to Router)

gRPC Response (Router to Client)

 
rpc GetConfig
  {
   "Cisco-IOS-XR-cdp-cfg:cdp": [
    "cdp": "running-configuration"
    ]
  }
 

{
 "Cisco-IOS-XR-cdp-cfg:cdp": {
  "timer": 50,
  "enable": true,
  "log-adjacency": [
   null
  ],
  "hold-time": 180,
  "advertise-v1-only": [
   null
  ]
 }
}

gRPC Network Management Interface

gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to modify, install or delete configuration from network devices. It is also used to view operational data, control and generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths are requested by the collector (such as pipeline), and the subscription mode can be specified for each path. gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gRPC Network Operations Interface

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing operational commands on network devices. These services are to be used in conjunction with gRPC network management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the Github repository.

gNOI RPCs

To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig proto files are located in the Github repository.

Table 1. Feature History Table

Feature Name

Release Information

Description

gNOI System Proto

Release 7.8.1

You can now avail the services of CancelReboot to terminate outstanding reboot request, and KillProcess RPCs to restart the process on device.

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting the device, and troubleshooting the network. The system.proto file is available in the Github repository.

RPC

Description

Reboot

Reboots the target. The router supports the following reboot options:

  • COLD = 1; Shutdown and restart OS and all hardware

  • POWERDOWN = 2; Halt and power down

  • HALT = 3; Halt

  • POWERUP = 7; Apply power

RebootStatus

Returns the status of the target reboot.

SetPackage

Places a software package including bootable images on the target device.

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its metadata. The file.proto file is available in the Github repository.

RPC

Description

Get

Reads and streams the contents of a file from the target device. The RPC streams the file as sequential messages with 64 KB of data.

Remove

Removes the specified file from the target device. The RPC returns an error if the file does not exist or permission is denied to remove the file.

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available in the Github repository.

RPC

Description

Rotate

Replaces an existing certificate on the target device by creating a new CSR request and placing the new certificate on the target device. If the process fails, the target rolls back to the original certificate.

Install

Installs a new certificate on the target by creating a new CSR request and placing the new certificate on the target based on the CSR.

GetCertificates

Gets the certificates on the target.

RevokeCertificates

Revokes specific certificates.

CanGenerateCSR

Asks a target if the certificate can be generated.

Interface RPCs

The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github repository.

RPC

Description

SetLoopbackMode

Sets the loopback mode on an interface.

GetLoopbackMode

Gets the loopback mode on an interface.

ClearInterfaceCounters

Resets the counters for the specified interface.

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor discovery protocol. The layer2.proto file is available in the Github repository.

Feature Name

Description

ClearLLDPInterface

Clears all the LLDP adjacencies on the specified interface.

BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor discovery protocol. The bgp.proto file is available in the Github repository.

Feature Name

Description

ClearBGPNeighbor

Clears a BGP session.

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test (BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available in the Github repository.

Feature Name

Description

StartBERT

Starts BERT on a pair of connected ports between devices in the network.

StopBERT

Stops an already in-progress BERT on a set of ports.

GetBERTResult

Gets the BERT results during the BERT or after the operation is complete.

gNOI RPCs

The following examples show the representation of few gNOI RPCs:

Get RPC

Streams the contents of a file from the target.


RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638
---------------------File Get Request---------------------
RPC start time: 20:58:27.513668
remote_file: "harddisk:/giso_image_repo/test.log"

---------------------File Get Response---------------------
RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {
method: MD5
hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Remove the specified file from the target.


RPC to 10.105.57.106:57900
RPC start time: 21:07:57.089554
---------------------File Remove Request---------------------
remote_file: "harddisk:/sample.txt"

---------------------File Remove Response---------------------
RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC

Reloads a requested target.


RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Reboot Request---------------------
RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}
---------------------Reboot Request---------------------
RPC end time: 21:12:50.023604

Set Package RPC

Places software package on the target.


RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Set Package Request---------------------
RPC start time: 15:33:34.378745
Sending SetPackage RPC
package {
filename: "harddisk:/giso_image_repo/<platform-version>-giso.iso"
activate: true
}
method: MD5
hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.


RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473
---------------------Reboot Status Request---------------------
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem 
name: "location"
}
}

RPC end time: 22:27:34.319618

---------------------Reboot Status Response---------------------
Active : False
Wait : 0
When : 0
Reason : Test Reboot
Count : 0

Configure Interfaces Using Data Models in a gRPC Session

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6 address families. The client applications use this protocol to request information from the router, and make configuration changes to the router.

The process for using data models involves:

  • Obtain the data models.

  • Establish a connection between the router and the client using gRPC communication protocol.

  • Manage the configuration of the router from the client using data models.


Note


Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured, the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol (NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid granting uncontrolled access, enable AAA authorization using aaa authorization exec command before setting up any configuration. For more information about configuring AAA authorization, see the System Security Configuration Guide for Cisco NCS 5500 Series Routers.


In this section, you use native data models to configure loopback and ethernet interfaces on a router using a gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers (LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:
Figure 1. Network Topology for gRPC session

You use Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang to programmatically configure router LER1.

Before you begin

  • Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

  • Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is not configured, the authentication credentials are transferred over the network unencrypted. Enabling TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure internal network.

Procedure


Step 1

Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example, you enable gRPC protocol on LER1, the server.

Note

 

Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

  1. Enable gRPC over an HTTP/2 connection.

    Example:

    
    Router#configure
    Router(config)#grpc
    Router(config-grpc)#port <port-number>
    

    The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

  2. Set the session parameters.

    Example:

    Router(config)#grpc {address-family | dscp | max-request-per-user | max-request-total | max-streams | 
    max-streams-per-user | no-tls | tlsv1-disable | tls-cipher | tls-mutual | tls-trustpoint | service-layer | vrf}
    

    where:

    • address-family: set the address family identifier type.

    • dscp: set QoS marking DSCP on transmitted gRPC.

    • max-request-per-user: set the maximum concurrent requests per user.

    • max-request-total: set the maximum concurrent requests in total.

    • max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128 requests. The default is 32 requests.

    • max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription limit is 128 requests. The default is 32 requests.

    • no-tls: disable transport layer security (TLS). The TLS is enabled by default

    • tlsv1-disable: disable TLS version 1.0

    • service-layer: enable the grpc service layer configuration.

      This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, and Cisco NCS540 series Routers.
    • tls-cipher: enable the gRPC TLS cipher suites.

    • tls-mutual: set the mutual authentication.

    • tls-trustpoint: configure trustpoint.

    • server-vrf: enable server vrf.

    After gRPC is enabled, use the YANG data models to manage network configurations.

Step 2

Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang. You gain an understanding about the various gRPC operations while you configure the interface. For the complete list of operations, see gRPC Operations. In this example, you merge configurations with merge-config RPC, retreive operational statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of the data model using YANG validator tools such as pyang.

LER1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

Note

 

The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not configure a sub interface with tag 0.

  1. Explore the XR configuration model for interfaces and its IPv4 augmentation.

    Example:

    
    controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
    Cisco-IOS-XR-ipv4-io-cfg.yang 
    module: Cisco-IOS-XR-ifmgr-cfg 
        +--rw global-interface-configuration 
        | +--rw link-status? Link-status-enum 
        +--rw interface-configurations 
            +--rw interface-configuration* [active interface-name] 
                +--rw dampening 
                | ... 
                +--rw mtus 
                | ... 
                +--rw encapsulation 
                | ... 
                +--rw shutdown? empty 
                +--rw interface-virtual? empty 
                +--rw secondary-admin-state? Secondary-admin-state-enum 
                +--rw interface-mode-non-physical? Interface-mode-enum 
                +--rw bandwidth? uint32 
                +--rw link-status? empty 
                +--rw description? string 
                +--rw active Interface-active 
                +--rw interface-name xr:Interface-name 
                +--rw ipv4-io-cfg:ipv4-network 
                | ... 
                +--rw ipv4-io-cfg:ipv4-network-forwarding ...
  2. Configure a loopback0 interface on LER1.

    Example:

    controller:grpc$ more xr-interfaces-lo0-cfg.json 
    { 
     "Cisco-IOS-XR-ifmgr-cfg:interface-configurations": 
      { "interface-configuration": [ 
        { 
          "active": "act", 
          "interface-name": "Loopback0", 
          "description": "LOCAL TERMINATION ADDRESS", 
          "interface-virtual": [ 
            null 
           ], 
           "Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": { 
            "addresses": { 
                "primary": { 
                  "address": "172.16.255.1", 
                  "netmask": "255.255.255.255" 
           } 
          } 
         } 
        } 
       ] 
     } 
    }
  3. Merge the configuration.

    Example:

    
    controller:grpc$ grpcc -username admin -password admin -oper merge-config 
    -server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json 
    emsMergeConfig: Sending ReqId 1 
    emsMergeConfig: Received ReqId 1, Response ' 
    '
  4. Configure the ethernet interface on LER1.

    Example:

    
    controller:grpc$ more xr-interfaces-gi0-cfg.json 
    { 
     "Cisco-IOS-XR-ifmgr-cfg:interface-configurations": { 
       "interface-configuration": [ 
        { 
         "active": "act", 
         "interface-name": "GigabitEthernet0/0/0/0", 
         "description": "CONNECTS TO LSR1 (g0/0/0/0)", 
         "Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": { 
            "addresses": { 
             "primary": { 
                "address": "172.16.1.0", 
                "netmask": "255.255.255.254" 
          } 
         } 
        } 
       } 
      ] 
     } 
    } 
  5. Merge the configuration.

    Example:

    
    controller:grpc$ grpcc -username admin -password admin -oper merge-config 
    -server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json 
    emsMergeConfig: Sending ReqId 1 
    emsMergeConfig: Received ReqId 1, Response ' 
    '
  6. Enable the ethernet interface GigabitEthernet 0/0/0/0 on LER1 to bring up the interface. To do this, delete shutdown configuration for the interface.

    Example:

    
    controller:grpc$ grpcc -username admin -password admin -oper delete-config 
    -server_addr 198.18.1.11:57400 -yang_path "$(< xr-interfaces-gi0-shutdown-cfg.json )" 
    emsDeleteConfig: Sending ReqId 1, yangJson { 
     "Cisco-IOS-XR-ifmgr-cfg:interface-configurations": { 
       "interface-configuration": [ 
       { 
        "active": "act", 
        "interface-name": "GigabitEthernet0/0/0/0", 
        "shutdown": [ 
          null 
        ] 
       } 
      ] 
     } 
    } 
    emsDeleteConfig: Received ReqId 1, Response ''

Step 3

Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Example:


controller:grpc$ grpcc -username admin -password admin -oper get-oper 
-server_addr 198.18.1.11:57400 -oper_yang_path "$(< xr-interfaces-briefs-oper-filter.json )" 
emsGetOper: Sending ReqId 1, yangPath { 
  "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": { 
    "interface-briefs": [ 
      null 
     ] 
  } 
}
{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": { 
  "interface-briefs": { 
    "interface-brief": [ 
    { 
      "interface-name": "GigabitEthernet0/0/0/0", 
      "interface": "GigabitEthernet0/0/0/0", 
      "type": "IFT_GETHERNET", 
      "state": "im-state-up", 
      "actual-state": "im-state-up", 
      "line-state": "im-state-up", 
      "actual-line-state": "im-state-up", 
      "encapsulation": "ether", 
      "encapsulation-type-string": "ARPA", 
      "mtu": 1514, 
      "sub-interface-mtu-overhead": 0, 
      "l2-transport": false, 
      "bandwidth": 1000000 
     },
     { 
      "interface-name": "GigabitEthernet0/0/0/1", 
      "interface": "GigabitEthernet0/0/0/1", 
      "type": "IFT_GETHERNET", 
      "state": "im-state-up", 
      "actual-state": "im-state-up", 
      "line-state": "im-state-up", 
      "actual-line-state": "im-state-up", 
      "encapsulation": "ether", 
      "encapsulation-type-string": "ARPA", 
      "mtu": 1514, 
      "sub-interface-mtu-overhead": 0, 
      "l2-transport": false, 
      "bandwidth": 1000000 
     },
     { 
      "interface-name": "Loopback0", 
      "interface": "Loopback0", 
      "type": "IFT_LOOPBACK", 
      "state": "im-state-up", 
      "actual-state": "im-state-up", 
      "line-state": "im-state-up", 
      "actual-line-state": "im-state-up", 
      "encapsulation": "loopback", 
      "encapsulation-type-string": "Loopback", 
      "mtu": 1500, 
      "sub-interface-mtu-overhead": 0, 
      "l2-transport": false, 
      "bandwidth": 0 
   },
   { 
      "interface-name": "MgmtEth0/RP0/CPU0/0", 
      "interface": "MgmtEth0/RP0/CPU0/0", 
      "type": "IFT_ETHERNET", 
      "state": "im-state-up", 
      "actual-state": "im-state-up", 
      "line-state": "im-state-up", 
      "actual-line-state": "im-state-up", 
      "encapsulation": "ether", 
      "encapsulation-type-string": "ARPA", 
      "mtu": 1514, 
      "sub-interface-mtu-overhead": 0, 
      "l2-transport": false, 
      "bandwidth": 1000000 
   },
   { 
      "interface-name": "Null0", 
      "interface": "Null0", 
      "type": "IFT_NULL", 
      "state": "im-state-up", 
      "actual-state": "im-state-up", 
      "line-state": "im-state-up", 
      "actual-line-state": "im-state-up", 
      "encapsulation": "null", 
      "encapsulation-type-string": "Null", 
      "mtu": 1500, 
      "sub-interface-mtu-overhead": 0, 
      "l2-transport": false, 
      "bandwidth": 0 
    } 
   ] 
  } 
 } 
} 
emsGetOper: ReqId 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network provisioning operations.