Configure EVPN IRB

This chapter introduces you to Ethernet VPN (EVPN) Integrated Routing and Bridging (IRB) feature and describe how you can configure the EVPN IRB feature.

EVPN IRB

EVPN IRB feature enables a Layer 2 VPN and an Layer 3 VPN overlay that allows end hosts across the overlay to communicate with each other within the same subnet and across different subnets within the VPN.

Figure 1. EVPN IRB

The benefit of EVPN IRB is that it allows the hosts in an IP subnet to be provisioned anywhere in the data center. When a virtual machine (VM) in a subnet is provisioned behind a EVPN PE, and another VM is required in the same subnet, it can be provisioned behind another EVPN PE. The VMs do not have to be localized; they need not be directly connected; or be in the same complex. The VM is allowed to move across in the same subnet. Availability of IP MPLS network across all the EVPN PEs enables the provisioning of VM mobility. The EVPN PEs route traffic to each other through MPLS encapsulation.

The EVPN PEs are connected to each other by a spine so they have IP reachability to each other's loopback interfaces. The IP network and MPLS tunnels existing between these EVPN PEs constitute the IP MPLS underlay fabric.

You can configure the MPLS tunnels to tunnel Layer 2 traffic, and to overlay VPN on these tunnels. EVPN control plane distributes both Layer 2 MAC reachability and Layer 3 IP reachability for hosts within the context of the VPN; it overlays a tenant's VPN network on top of the MPLS underlay fabric. Thus you can have tenant's hosts, which are in the same subnet layer 2 domain, but distributed across the fabric, communicate to each other as if they are in a Layer 2 network.

The Layer 2 VLAN and the corresponding IP subnet are not only a network of physically connected hosts on Layer 2 links, but an overlayed network on top of underlayed IP MPLS fabric which is spread across the datacenter.

A routing service, which enables stretching of the subnet across the fabric, is available. It also provides Layer 3 VPN and performs routing between subnets within the context of the Layer 3 VPN. The EVPN PEs provide Layer 2 bridging service between hosts that are spread across the fabric within a Layer 2 domain that is stretched across the fabric, and Layer 3 VPN service or inter-subnet routing service for hosts in different subnets within Layer 3 VPN. For example, as shown in the above topology diagram, the two VM are in the same subnet but they are not connected directly through each other through a Layer 2 link. The Layer 2 link is replaced by MPLS tunnels that are connecting them. The whole fabric acts as a single switch and bridges traffic from one VM to the other. This also enables VM mobility.

Note

Egress marking is not supported on L2 interfaces in a bridge domain.


In the above topology diagram, the VMs, VM1 and VM2 are connected each other. When VM2 migrates to a different switch and different server, the VM's current MAC address and IP address are retained. When the subnet is stretched between two EVPN PEs, the same IRB configuration is applied on both the devices.

For stretching within the same subnet, you must configure the AC interface and the EVI; it is not required to configure IRB interface or VRF.

EVPN Single-Homing Access Gateway

The EVPN provider edge (PE) devices learn the MAC address and IP address from the ARP traffic that they receive from the customer edge (CE) devices. The PEs create the MAC+IP routes. The PEs advertise the MAC+IP routes to MPLS core. They inject the host IP routes to IP-VPN gateway. Subnet routes are also advertised from the access EVPN PEs in addition to host routes. All the PE nodes add the host routes in the IP-VRF table. The EVPN PE nodes add MAC route to the MAC-VRF table. The IP-VPN PE advertise the subnet routes to the provider edge devices which add the subnet routes to IP-VRF table. On the PE devices, IRB gateway IP addresses and MAC addresses are not advertised through BGP. IRB gateway IP addresses or MAC addresses are used to send ARP requests towards the datacenter CEs.

Figure 2. EVPN Single-Homing Access Gateway

The above topology depicts how EVPN single-homing access gateway enables network connectivity by allowing a CE device to connect to one PE device. The PE device is attached to the Ethernet Segment through bundle or physical interfaces. Null Ethernet Segment Identifier (ESI) is used for single-homing.

EVPN Multihoming All-Active

In EVPN IRB, both EVPN and IP VPN (both VPNv4 and VPNv6) address families are enabled between routers and Data Center Interconnect (DCI) gateways. When Layer 2 (L2) stretch is not available in multiple data centers (DC), routing is established through VPNv4 or VPNv6 routes. When Layer 2 stretch is available, host routing is applied where IP-MAC routes are learnt by ARP and are distributed to EVPN/BGP. In remote peer gateway, these IP-MAC EVPN routes are imported into IP VPN routing table from EVPN route-type 2 routes with secondary label and Layer 3 VRF route-target.

Figure 3. EVPN Multi-Homing All-Active

The above topology describes how EVPN Multi-homing access gateway enables redundant network connectivity by allowing a CE device to connect to more than one PE device. Disruptions to the network connectivity are prevented by allowing a CE device to be connected to a PE device or several PE devices through multi-homing. Ethernet segment is the bunch of Ethernet links through which a CE device is connected to more than one PE devices. The All-Active Link Aggregation Group bundle operates as an Ethernet segment. Only MC bundles that operates between two chassis are supported.

Enable Auto-BGP RT with Manual ESI Configuration

Configuring an ES-Import RT was previously mandatory for Type 0 ESI. The ES-Import RT is auto-extracted by default, and the configuration serves to override the default value. This feature is based on RFC 7432 but applied specifically to ESI Type 0. For more information, see Section 5 of RFC 7432.

Supported EVPN IRB Scenarios

EVPN IRB supports the following scenarios:

  • Dual-homing supports the following methods:
    • Only one EFP is supported per ESI per EVI

    • Only all-active mode is supported

    • Only two PE gateways in a redundancy group

  • Single-homing supports the following methods:
    • Physical

    • VLAN

    • Bundle-ethernet

    • QinQ access

  • Only IPv4 is supported.

  • Subnet-stretch feature with EVPN IRB is only supported in VRF and is not supported in global VRF. in other words, EVPN IRB with EV-LAG multihoming is supported in global VRF without subnet being stretched beyond the multi-homing leafs

Distributed Anycast Gateway

EVPN IRB for the given subnet is configured on all the EVPN PEs that are hosted on this subnet. To facilitate optimal routing while supporting transparent virtual machine mobility, hosts are configured with a single default gateway address for their local subnet. That single (anycast) gateway address is configured with a single (anycast) MAC address on all EVPN PE nodes locally supporting that subnet. This process is repeated for each locally defined subnet requires Anycast Gateway support.

The host-to-host Layer 3 traffic, similar to Layer 3 VPN PE-PE forwarding, is routed on the source EVPN PE to the destination EVPN PE next-hop over an IP or MPLS tunnel, where it is routed again to the directly connected host. Such forwarding is also known as Symmetric IRB because the Layer 3 flows are routed at both the source and destination EVPN PEs.

The following are the solutions that are part of the Distributed Anycast Gateway feature:

EVPN IRB with All-Active Multi-Homing without Subnet Stretch or Host-Routing across the Fabric

For those subnets that are local to a set of multi-homing EVPN PEs, EVPN IRB Distributed Anycast Gateway is established through subnet routes that are advertised using EVPN Route Type 5 to VRF-hosting remote leafs. Though there is no need for the /32 routes within the subnet to be advertised, host MAC and ARP entries have to synced across the EVPN PE to which the servers are multi-homed.

This type of multi-homing has the following characteristics:

  • All-active EV LAG on access

  • Layer 3 ECMP for the fabric for dual-homed hosts based on subnet routes

  • Absence of Layer 2 subnet stretch over the fabric

  • Layer 2 stretch within redundancy group of leafs with orphan ports

Prefix-routing solution for a non-stretched subnet is summarized as below:

Across multi-homing EVPN PEs:

  • Local ARP cache and MAC addresses are synchronized for dual-homed hosts through EVPN MAC+IP host route advertisements. They are imported as local, and are based on the local ESI match, for optimal forwarding to the access gateway.

  • Orphan MAC addresses and host IP addresses are installed as remote addresses over the fabric.

  • ES/EAD routes are exchanges for the designated forwarder (DF) election and split-horizon label.

Across remote EVPN PEs:

  • Dual-homed MAC+IP EVPN Route Type 2 is exchanged with the ESI, EVI Label, Layer 2-Route Type. It is not imported across the fabric, if there is no subnet stretch or host-routing.

  • The subnet IP EVPN Route Type 5 is exchanged with VRF label and Layer 3-Route Type.

  • Layer 3 Route Type for the VRFs is imported that are present locally.

  • Layer 2 Route Type for locally present BDs is imported. It is only imported from the leaf in the same redundancy group, if BD is not stretched.

EVPN IRB with All-Active Multihoming with Subnet Stretch or Host-Routing across the Fabric

For a bridge domain or subnet that is stretched across remote EVPN PEs, both /32 host routes and MAC routes are distributed in a EVPN overlay control plane to enable Layer 2 and Layer 3 traffic to the end points in a stretched subnet.

This type of multihoming has the following characteristics:

  • All-active EV-LAG on the access gateway

  • Layer 2 or Layer 3 ECMP for the fabric for dual-homed hosts based on Route Type 1 and Route Type 2

  • Layer 3 unipath over the fabric for single-homed hosts based on Route Type 2

  • Layer 2 subnet stretch over the fabric

  • Layer 2 stretch within redundancy group of leafs with orphan ports

MAC and host routing solution for a stretched subnet is summarized as follows:

Across multihoming EVPN PEs:

  • The Local ARP cache and MAC addresses are synchronized for dual-homed hosts through EVPN MAC+IP host route advertisements. They are imported as local, based on the local ESI match, for optimal forwarding to the access gateway.

  • Synchronized MAC+IP are re-originated for inter-subnet Layer 3 ECMP.

  • Orphan MAC address and host IP address are installed as remote addresses over the fabric.

  • ES/EAD route is exchanged for designated forwarder (DF) election and split-horizon label.

Across remote EVPN PEs:

  • Dual-homed MAC+IP EVPN Route Type 2 is exchange with ESI, EVI label, Layer 2-Route Type, VRF label, and Layer 3-Route Type.

  • Subnet IP EVPN Route Type 5 is exchanged for VRF label, Layer 3-Route Type for silent hosts, and non-stretched subnets.

  • Layer 3 Route Type is imported for locally present VRFs.

  • Layer 2 Route Type is imported for locally present bridge domains.

MAC and IP Unicast Control Plane

This use case has following types:

Prefix Routing or No Subnet Stretch

IP reachability across the fabric is established using subnet prefix routes that are advertised using EVPN Route Type 5 with the VPN label and VRF RTs. Host ARP and MAC sync are established across multi-homing EVPN PEs using MAC+IP Route Type 2 based on a shared ESI to enable local switching through both the multi-homing EVPN PEs.

Host Routing or Stretched Subnet

When a host is discovered through ARP, the MAC and IP Route Type 2 is advertised with both MAC VRF and IP VRF router targets, and with VPN labels for both MAC-VRF and IP-VRF. Particularly, the VRF route targets and Layer 3 VPN label are associated with Route Type 2 to achieve PE-PE IP routing identical to traditional L3VPNs. A remote EVPN PE installs IP/32 entries directly in Layer 3 VRF table through the advertising EVPN PE next-hop with the Layer 3 VPN label encapsulation, much like a Layer 3 VPN imposition PE. This approach avoids the need to install separate adjacency rewrites for each remote host in a stretched subnet. Instead, it inherits a key Layer 3 VPN scale benefit of being able to share a common forwarding rewrite or load-balance resource across all IP host entries reachable through a set of EVPN PEs.

ARP and MAC sync

For hosts that are connected through LAG to more that one EVPN PE, the local host ARP and MAC entries are learnt in data plane on either or both of the multihoming EVPN PEs. Local ARP and MAC entries are synced across the two multihoming EVPN PEs using MAC and IP Route Type 2 based on a shared ESI to enable local switching through both the multihoming EVPN PEs. Essentially, a MAC and IP Route Type 2 that is received with a local ESI causes the installation of a synced MAC entry that points to the local AC port, and a synced ARP entry that is installed on the local BVI interface.


Note

Only one Ethernet Flow Point (EFP) is supported per non-Zero ESI per bridge domain or EVI. This is a limitation of EVPN.


MAC and IP Route Re-origination

MAC and IP Route Type 2 received with a local ESI, which is used to sync MAC and ARP entries, is also re-originated from the router that installs a SYNC entry, if the host is not locally learnt and advertised based on local learning. This route re-origination is required to establish overlay IP ECMP paths on remote EVPN PEs, and to minimize traffic hit on local AC link failures, that can result in MAC and IP route withdraw in the overlay.


Note

If custom or static MAC address is configured on a BVI interface, the MAC address on the wire may be different than what is configured. This has no operational or functional impact.


Intra-subnet Unicast Data Plane

The Layer 2 traffic is bridged on the source EVPN PE using ECMP paths to remote EVPN PEs, established through MAC+IP RT2, for every ES and for every EVI, ES and EAD Route Type 2 routes that are advertised from the local EVPN PEs.

Inter-subnet Unicast Data Plane

Inter-subnet traffic is routed on the source ToRs through overlay ECMP to the destination ToR next-hops. Data packet are encapsulated with the VPN label advertised from the ToR and tunnel label for the BGP next-hop towards the spine. It is then routed again on the destination ToR using a local ARP adjacency towards the host. IP ECMP on the remote ToRs is established through local and re-originated routes advertised from the local ToRs.

VM Mobility Support

VM mobility is the ability of virtual machines to migrate between one server and another while retaining their existing MAC and IP addresses.

The following are the two key components in EVPN Route Type 2 that enable VM Mobility:
  • Host MAC advertisement component that is imported into local bridge MAC table, and Layer 2 bridged traffic across the network overlay.

  • Host IP advertisement component that is imported into the IP routing table in a symmetric IRB design, enables routed traffic across the network overlay.

The above-mentioned components are advertised together in a single MAC + IP host route advertisement. An additional MAC-only route could also be advertised.

The following behaviors of VM are supported. The VM can:
  • retain existing MAC and acquire a new IP address

  • retain existing IP address and acquire a new MAC

  • retain both existing MAC and IP address

MAC and MAC-IP Sequence Numbers

The IRB gateway device assigns, manages, and advertises sequence numbers that are associated with the locally learnt MAC routes through hardware learning, and the locally learnt MAC-IP routes through ARP.

Synchronized MAC and MAC-IP Sequence Numbers

In a host that is multi-homed to two ToRs, the locally learnt MAC and MAC-IP routes are synchronized across the two multi-homing peers through Route Type 2 learnt routes with a local ESI. So a device could have either MAC and MAC-IP, or both of them, learnt through both synchronized and local learning. Sequence numbers are synchronized across local and synchronized routes, because of which the sequence number that is advertised from the two ToRs for a given route is always the same.In certain situations, remote-sync route with same ESI can have a higher sequence number than a local route. In such a case, the local route sequence number is bumped up to match remote-sync route sequence number.

Local Sequence Number Updates

Host mobility is triggered when a local route is learnt while a remote route already exists. When mobility occurs, the local route is assigned a sequence number that is one higher than the existing remote route. This new local route is then advertised to the rest of the network.

Best Route Selection after Host Movement

When a host moves, the EVPN-PE at the new location of the host generates and advertises a higher sequence route to the network. When a higher sequence number route is received, as per RFC 7432, it is considered as the new best route and it is used for forwarding traffic. Best route selection is done for both MAC and MAC-IP routes.

Stale Route Deletion after a Host Movement

After a host moves from local to remote ESI, if a remote route from a different ESI is received and if a local route for the same host with a lower sequence number exists, then the local route is deleted and is withdrawn from the network.

The new higher sequence number remote MAC route is now considered best and is used to forward traffic. An ARP probe is sent to the host at the old local location. Because the host is at new remote location, probe will not succeed, resulting in clearing old local MAC-IP route.

Host Movement Detection through GARP

If a host sends a Gratuitous ARP (GARP) at its new location after a movement, the local MAC and local MAC-IP learning independently trigger mobility for both routes.

Host Move Detection with Silent Host

If a host does not send a GARP or a data packet at its new location following a move, the aging of the local MAC at the old location triggers mobility for both routes.

Host Move Detection without GARP with Data Packet

If the host does not send a GARP following a move, a data packet from the host triggers a proactive ARP probe to discover host MAC-IP and trigger mobility for this host across the overlay.

Duplicate MAC Detection

Duplicate MAC detection and freezing is supported as per RFC 7432.

Detection: Duplicate detection and recovery parameters are configurable. The default configuration is five times in 180 seconds and route freezing after three duplicate cycles. With the default configuration, when a host moves five times in 180 seconds, it is marked as duplicate for 30 seconds. Route advertisement for hosts in Duplicate state is suppressed. Host is taken out of duplicate state after 30 seconds. After a host is detected as duplicate for 3 times, on the fourth duplicate cycle, the host is permanently frozen. All route advertisements are suppressed for the frozen hosts.

In multi-homed hosts, a MAC is not necessarily learnt locally but is learnt through synchronization. Duplicate detection is supported for both local and remote-sync hosts. Remote-sync routes are differentiated from remote routes.

MAC-IP Handling: If the MAC route is in duplicate or frozen state, the corresponding local MAC-IP is updated, except that the route deletes are not withheld.

Duplicate State Handling:When a host is in duplicate state, route advertisements are suppressed. However, local routes are programmed in hardware so that traffic on local EVPN-PE is forwarded to the local host.

Recovery: It is possible to unfreeze permanently frozen hosts. The following is the recommended procedure to clear frozen hosts:

  • Shutdown the host which is causing duplicate traffic.

  • Use the clear l2route evpn frozen-mac frozen-flag command to clear the frozen hosts.

Configuring EVPN IRB


/* Configure CEF to prefer RIB prefixes over adjacency prefixes.*/

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface Bundle-Ether 3
RP/0/RSP0/CPU0:router(config-if)# lacp system mac 1.1.1
RP/0/RSP0/CPU0:router(config-if)# exit
RP/0/RSP0/CPU0:router(config)# cef adjacency route override rib

/* Configure EVPN L3VRF per DC tenant. */

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# vrf irb1 
RP/0/RSP0/CPU0:router(config-vrf)# address-family ipv4 unicast 
RP/0/RSP0/CPU0:router(config-vrf-af)# import route-target 1000:1 
RP/0/RSP0/CPU0:router(config-vrf-af)# export route-target 1000:1 
RP/0/RSP0/CPU0:router(config-vrf-af)# exit 

/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and bridge-group virtual interface (BVI) per bridge domain. */
/* Note: When a VM migrates from one subnet to another (subnet stretching), apply the following IRB configuration to both the EVPN PEs. *\

RP/0/RSP0/CPU0:router# configure 
RP/0/RSP0/CPU0:router(config)# interface bvi 1001
RP/0/RSP0/CPU0:router(config-if)# host-routing
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 10.10.0.4 255.255.255.0 
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 172.16.0.1 secondary 
RP/0/RSP0/CPU0:router(config-if)# mac-address 2001:DB8::1
/* Configure EVPN Layer 2 bridging service. Note: This configuration is performed in Layer 2 gateway or bridging scenario. */

Router# configure 
Router(config)# l2vpn 
Router(config-l2vpn)# bridge group 1
Router(config-l2vpn-bg)# bridge-domain 1-1
Router(config-l2vpn-bg-bd)# interface GigabitEthernet 0/0/0/1.1
Router(config-l2vpn-bg-bd-ac)# evi 1
Router(config-l2vpn-bg-bd-ac-evi)# commit
Router(config-l2vpnbg-bd-ac-evi)# exit

/* Configure BGP. */

RP/0/RSP0/CPU0:router# configure 
RP/0/RSP0/CPU0:router(config)# router bgp 3107 
RP/0/RSP0/CPU0:router(config-bgp)# vrf irb1 
RP/0/RSP0/CPU0:router(config-bgp-vrf)# rd auto
RP/0/RSP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute connected
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute static
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# exit
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute connected
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute static

/* Configure EVPN, and configure main bundle ethernet segment parameters in EVPN. */

RP/0/RSP0/CPU0:router# configure 
RP/0/RSP0/CPU0:router(config)# evpn  
RP/0/RSP0/CPU0:router(config-evpn)# evi 2001
RP/0/RSP0/CPU0:router(config-evpn-evi)# bgp
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# route-target import 1000:1 
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# route-target export 1000:1
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# exit
RP/0/RSP0/CPU0:router(config-evpn-evi)# advertise-mac
RP/0/RSP0/CPU0:router(config-evpn-evi)# unknown-unicast-suppression

/* Configure Layer 2 VPN. */

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# l2vpn  
RP/0/RSP0/CPU0:router(config-l2vpn)# bridge group irb
RP/0/RSP0/CPU0:router(config-l2vpn-bg)# bridge-domain irb1
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# interface bundle-Ether3.1001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-ac)# routed interface BVI100
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-bvi)# split-horizon group core
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-bvi)# evi 10001

Running Configuration for EVPN IRB



/* Configure LACP */

interface Bundle-Ether3
 lacp system mac 1.1.1
!
 
/* Configure CEF adjacency overwrite. */

cef adjacency route override rib
 
/* Configure EVPN Layer 3 VRF per DC tenant. */

vrf irb1
address-family ipv4 unicast
  import route-target
   1000:1
  !
  export route-target
   1000:1
  !

!
!
 
/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and bridge-group virtual interface (BVI) per bridge domain./*

 
interface Bundle-Ether3.1001 l2transport
 encapsulation dot1q 1001
 rewrite ingress tag pop 1 symmetric
!
interface BVI1001
 host-routing
 vrf irb1
 ipv4 address 10.0.1.1 255.255.255.0
 mac-address 0000.3030.1
!
 
/* Configure BGP. */
 
router bgp 3107
 vrf irb1
  rd auto
  address-family ipv4 unicast
  redistribute connected
  redistribute static
!
! 

/* Configure EVPN. */

evpn
evi 10001
  bgp
   route-target import 1000:1
   route-target export 1000:1
  !
  advertise-mac
  unknown-unicast-suppression
!
 
/* Configure Layer2 VPN. */
 
l2vpn
bridge group irb
  bridge-domain irb1
   interface Bundle-Ether3.1001
   !
   routed interface BVI1001
    split-horizon group core
   !
   evi 10001
   !
  !

Verify EVPN IRB

Verify the Address Resolution Protocol (ARP) protocol entries, and synced entries in multi-homing scenarios; only multi-homing active-active mode is supported for EVPN IRB.


RP/0/RSP0/CPU0:router# show arp vrf evpn1

-----------------------------------------------------------------
0/1/CPU0
-----------------------------------------------------------------
Address    Age       	Hardware Addr   State      Type   Interface

10.1.1.1    -   						0010.0001.0001 	Interface  ARPA 		BVI1
10.1.1.11 02:23:46 			1000.0001.0001 	Dynamic 			ARPA 		BVI1
10.1.1.93 		- 								0000.f65a.357c 	EVPN_SYNC 	ARPA 		BVI1
10.1.2.1 			- 								0011.0112.0001 	Interface 	ARPA 		BVI2
10.1.2.91 02:24:14 			0000.f65a.3570 	Dynamic 			ARPA 		BVI2
10.1.2.93 02:21:52 			0000.f65a.357d 	Dynamic 			ARPA 		BVI2
---------------------------------------------------------------
0/0/CPU0
---------------------------------------------------------------
Address		 Age									Hardware Addr   State      Type  Interface

10.1.1.1  -           0010.0001.0001  Interface  ARPA  BVI1
10.1.1.11 02:23:46    1000.0001.0001  Dynamic    ARPA  BVI1
10.1.1.93 -           0000.f65a.357c  EVPN_SYNC  ARPA  BVI1
10.1.2.1  -           0011.0112.0001  Interface  ARPA BVI2
10.1.2.91 02:24:14    0000.f65a.3570  Dynamic    ARPA BVI2
10.1.2.93 02:21:52    0000.f65a.357d  Dynamic    ARPA BVI2


Verify the adjacency entries, particularly verify newly added information for synced IPv4 and IP ARP entries.


RP/0/RSP0/CPU0:router# show adjacency ipv4 BVI 1 internal detail location 0/0/CPU0

BVI1, 10.1.1.93 (ipv4) 
Version: 1169, references: 2, transient lock: 0 
Encapsulation information (14 bytes) 0000f65a357c0000f65a357c0800 MTU: 1500
 Adjacency pointer is: 0x770a9278
 Platform adjacency pointer is: 0x7d7bc380
 Last updated: Feb 28 15:58:21.998 
 Adjacency producer: arp (prod_id: 10) 
 Flags: incomplete adj, 
 Additional Adjacency Information (4 bytes long),
 Upto first 4 bytes (in hex): 01000000 
 Netio idb pointer not cached Cached interface type: 78

Adjacency references: 
bfd_agent (JID 150, PID 3637), 0 reference
l2fib_mgr (JID 185, PID 4003), 0 reference
fib_mgr (JID 294, PID 3605), 1 reference 
aib (JID 314, PID 3590), 1 reference 

BVI1, 10.1.1.11 (ipv4) Version: 1493, 
references: 3, transient lock: 0 
Encapsulation information (14 bytes) 1000000100010010000100010800
MTU: 1500 
Adjacency pointer is: 0x770ab778 
Platform adjacency pointer is: 0x7d7bcb10
Last updated: Mar 2 17:22:00.544 
Adjacency producer: arp (prod_id: 10) 
Flags: incomplete adj,
Netio idb pointer not cached Cached interface type: 78 
Adjacency references: 
bfd_agent (JID 150, PID 3637), 0 reference 
l2fib_mgr (JID 185, PID 4003), 1 reference 
fib_mgr (JID 294, PID 3605), 1 reference 
aib (JID 314, PID 3590), 1 reference


Verify the entries to obtain details learnt in L2FIB line cards. In multi-homing active-active scenario, the link-local addresses are also updated and distributed to EVPN peer gateways.


RP/0/RSP0/CPU0:router# show l2vpn mac-learning mac-ipv4 all location 0/0/cPU0

Topo ID  Producer  Next Hop(s)  Mac Address     IP Address 
                            
6        0/0/CPU0   BV1        1000.0001.0001      10.1.1.11 
7        0/0/CPU0   BV2        0000.f65a.3570      10.1.2.91 
7       0/0/CPU0    BV2        0000.f65a.357d      10.1.2.93

RP/0/RSP0/CPU0:router# show l2vpn mac-learning mac-ipv4 all location 0/0/cPU0

Topo ID  Producer  Next Hop(s)  Mac Address    IP Address 
 
6      0/0/CPU0    BV1       0000.f65a.357c    fe80::200:f6ff:fe5a:357c
7      0/0/CPU0    BV2       0000.f65a.3570    10:1:2::91 
7      0/0/CPU0    BV2       0000.f65a.357d    10:1:2::93 
7      0/0/CPU0    BV2       0000.f65a.3570    fe80::200:f6ff:fe5a:3570

Verify sequence ID for VM mobility.


RP/0/RSP0/CPU0:router# show l2route evpn mac-ip all detail

Sun Apr 30 18:09:19.368 PDT
Flags: (Stt)=Static; (L)=Local; (R)=Remote; (F)=Flood;
(N)=No Redistribution; (Rtr)=Router MAC; (B)=Best Route;
(P)=Probe; (S)=Peer Sync; (F)=Flush;
(D)=Duplicate MAC; (Z)=Frozen MAC;

Topo ID    Mac Address     IP Address  Prod   Next Hop(s)        Seq No  Flags         Opaque Data Type    Opaque Data Len   Opaque Data Value 
-------    -----------     ----------  ----   ----------         ------  -----         ----------------    ---------------   -----------------
33         0022.6730.0001  10.130.0.2  L2VPN  Bundle-Ether6.1300  0      SB 0 12      0x06000000           0x22000080        0x00000000 

Last Update: Sun Apr 30 15:00:01.911 PDT

33         0022.6730.0002 10.130.0.3  LOCAL  Bundle-Ether6.1300   0       B           N/A                   N/A               N/A


RP/0/RSP0/CPU0:router# show l2route evpn mac all detail


Flags:  (Stt)=Static; (L)=Local; (R)=Remote; (F)=Flood;
        (N)=No Redistribution; (Rtr)=Router MAC; (B)=Best Route;
        (S)=Peer Sync; (Spl)=Split; (Rcv)=Recd;
        (D)=Duplicate MAC; (Z)=Frozen MAC;

Topo ID  Mac Address     Prod   Next Hop(s)         Seq No  Flags  Slot ESI   Opaque Data Type  Opaque Data Len Opaque Data Value 
-------- --------------  ------ -----------         ------  ------ ---- ----  ----------------  --------------- -----------------
36       0022.5830.0001  L2VPN  Bundle-Ether5.1300  0       BSSpl  0    (F)    0                12             0x06000000 0x25000080 0x00000000 
    
Last Update: Thu Apr 20 09:04:44.358 PDT



Verify duplicate detection and recovery parameters.



/* Use the show run evpn mac to verify the current parameters:  *\

RP/0/RSP0/CPU0:router# show run evpn mac

evpn                                             
mac
  secure
   freeze-time 5
   move-count 1000
   move-interval 60
   retry-count 1000
  !
!
!


/* Perform the following steps to change the existing parameters. */

RP/0/RP0/CPU0:EVPN-LF1# configure
RP/0/RP0/CPU0:EVPN-LF1(config)# evpn
RP/0/RP0/CPU0:EVPN-LF1(config-evpn)# mac
RP/0/RP0/CPU0:EVPN-LF1(config-evpn-mac)# secure
RP/0/RP0/CPU0:EVPN-LF1(config-evpn-mac-secure)# move-count 1000
RP/0/RP0/CPU0:EVPN-LF1(config-evpn-mac-secure)# end

/* Use the show run evpn mac to verify the changed parameters:  *\

RP/0/RSP0/CPU0:router# show run evpn mac

evpn
mac
  secure
   move-count 1000
  !
!
!



Verify the entries to obtain details learnt in L2FIB RP when it is an aggregator. Route processor (RP) entries are aggregated entries obtained from the line cards. In some cases of MAC move, there could be different states for the same MAC. This is displayed in RP aggregated entries. RP determines the update to be sent to L2RIB according to MAC-Learning algorithms.


RP/0/RSP0/CPU0:router#  show l2vpn mac-learning mac-ipv4 all location 0/RSP0/CPU0 

Topo ID  Producer        Next Hop(s)        Mac Address         IP Address 
-------      --------    -----------        --------------      ---------- 
6            0/0/CPU0       BV1            1000.0001.0001      10.1.1.11 
7            0/0/CPU0       BV2            0000.f65a.3570      10.1.2.91 
7            0/0/CPU0       BV2            0000.f65a.357d      10.1.2.93


Verify the entries in L2RIB that are updated by RP L2FIB. Note the following when you verify the entries:

  • The entries with producer as L2VPN and NH as remote IP are learnt from the remote peer gateways, which are learnt from BGP, updated to EVPN, and then updated to L2RIB. So these entries are not from local IP-MAC learning.

  • The entries with producer as L2VPN and NH as local bundle interfaces are synced entries from MH-AA peer gateway.

  • The entries with producer as LOCAL and NH as local bundle interfaces are dynamically learnt local entries.


RP/0/RSP0/CPU0:router# show l2route evpn mac-ip evi 6

Topo ID      Mac Address        IP Address               Prod        Next Hop(s) 
--------     --------------     ---------------          ------      -------------     
6            0000.f65a.3569     10.1.1.101               L2VPN     172.16.0.2/24014/ME 
6            0000.f65a.3575     10.1.1.97                L2VPN     172.16.0.7/24025/ME 
6            0000.f65a.3575     10:1:1::97               L2VPN     172.16.0.7/24025/ME 
6            0000.f65a.3575     fe80::200:f6ff:fe5a:3575 L2VPN     172.16.0.7/24025/ME 
6            0000.f65a.357c     10.1.1.93         	      L2VPN      Bundle-Ether1.11 
6            0000.f65a.357c     10:1:1::93        	      L2VPN      Bundle-Ether1.11 
6            0000.f65a.357c     fe80::200:f6ff:fe5a:357c LOCAL      Bundle-Ether1.11 
6            0010.0001.0012     10.1.1.12         	      L2VPN      172.16.0.7/24025/ME 
6            1000.0001.0001     10.1.1.11         	      LOCAL      Bundle-Ether1.11 
6            90e2.ba8e.c0c9     10.1.1.102       	       L2VPN      172.16.0.2/24014/ME



Verify entries to obtain details of EVPN.


RP/0/RSP0/CPU0:router# show evpn evi vpn-id 1 mac ipv4 10.1.1.93 detail

EVI       MAC address         IP address            Nexthop             Label 
----						--------------- 				----------												----------										-----
1          0000.f65a.357c      10.1.1.93            172.16.0.2          24014 

Ethernet Tag : 0
Multi-paths Resolved : True
Static : No
Local Ethernet Segment : N/A
Remote Ethernet Segment : 0100.6cbc.a77c.c180.0000
Local Sequence Number : N/A
Remote Sequence Number : 0
Local Encapsulation : N/A
Remote Encapsulation : MPLS



Verify local BGP entries with appropriate second label and second IP VRF route-target.


RP/0/RSP0/CPU0:router# show bgp l2vpn evpn rd 172.16.0.1:1 [2][0][48][0000.f65a.357c][32][10.1.1.93]/136

BGP routing table entry for [2][0][48][0000.f65a.357c][32][10.1.1.93]/136, Route Distinguisher: 172.16.0.1:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 3772 3772
Local Label: 24013
Last Modified: Feb 28 16:06:37.073 for 2d19h
Paths: (2 available, best #1)
Advertised to peers (in unique update groups):
172.16.0.9 
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
172.16.0.9 
Local
0.0.0.0 from 0.0.0.0 (172.16.0.1)
Second Label 24027                                >>>>  Second label when IRB host-routing is enabled.
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate, rib-install
Received Path ID 0, Local Path ID 0, version 3772
Extended community: SoO:172.16.0.2:1 RT:100:100 
EVPN ESI: 0100.6cbc.a77c.c180.0000
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 (metric 101) from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24031
Origin IGP, localpref 100, valid, internal, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 2, version 3769
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100  >>>  Second RT is IP VRF RT for remote to import into IP VRF routing table.
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
 


RP/0/RSP0/CPU0:router# show bgp l2vpn evpn rd 172.16.0.1:1  [2][0][48][0000.f65a.357c][128][10:1:1::93]/232 

[2][0][48][0000.f65a.357c][128][10:1:1::93]/232
BGP routing table entry for [2][0][48][0000.f65a.357c][128][10:1:1::93]/232, Route Distinguisher: 172.16.0.1:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 3172 3172
Local Label: 24013
Last Modified: Feb 28 11:34:33.073 for 3d00h
Paths: (2 available, best #1)
Advertised to peers (in unique update groups):
172.16.0.9 
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
172.16.0.9 
Local
0.0.0.0 from 0.0.0.0 (172.16.0.1)
Second Label 24029
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate, rib-install
Received Path ID 0, Local Path ID 0, version 3172
Extended community: SoO:172.16.0.2:1 RT:100:100 
EVPN ESI: 0100.6cbc.a77c.c180.0000
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 (metric 101) from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24033
Origin IGP, localpref 100, valid, internal, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 2, version 3167
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1




Verify the remote peer gateway BGP entries with correct label and route-target. Particularly verify the local auto-generated RD on a remote EVPN gateway. EVPN type-2 routes are imported into EVPN. The host routes of IPv4 /32 addresses are imported only into IP VRF route-table in the remote EVPN gateway, but not in the local EVPN gateway where local BVI adjacency is used to overwrite RIB entries.


RP/0/RSP0/CPU0:router#  show bgp l2vpn evpn rd 172.16.0.7:1 [2][0][48][0000.f65a.357c][32][10.1.1.93]/136
BGP routing table entry for [2][0][48][0000.f65a.357c][32][10.1.1.93]/136, Route Distinguisher: 172.16.0.7:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 16712 16712
Last Modified: Feb 28 16:06:36.448 for 2d19h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24013, Second Label 24027 >>>> First label for L2 MAC unicast bridging;  second label for EVPN IRB host-routing
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 0, version 16712
Extended community: SoO:172.16.0.2:1 RT:100:1 RT:100:100 
Originator: 172.16.0.1, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24031
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 1, version 16706
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1 
 



RP/0/RSP0/CPU0:router# show bgp l2vpn evpn rd 172.16.0.7:1 [2][0][48][0000.f65a.357c][128][10:1:1::93]/232

BGP routing table entry for [2][0][48][0000.f65a.357c][128][10:1:1::93]/232, Route Distinguisher: 172.16.0.7:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 6059 6059
Last Modified: Feb 28 12:03:22.448 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24013, Second Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 0, version 6043
Extended community: SoO:172.16.0.2:1 RT:100:1 RT:100:100 
Originator: 172.16.0.1, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 1, version 6059
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1



 

Verify the remote peer gateway with host routes of IPv4 /32 addresses imported into the IP VRF routing table.


RP/0/RSP0/CPU0:router#  show bgp vpnv4 unicast vrf evpn1 10.1.1.93/32

BGP routing table entry for 10.1.1.93/32, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22202 22202
Last Modified: Feb 28 16:06:36.447 for 2d19h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24027
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22202
Extended community: SoO:172.16.0.2:1 RT:100:1 RT:100:100 
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1   >>>> The source from L2VPN and from synced ARP entry. 
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24031
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22201
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 
Originator: 172.16.0.2, Cluster list: 17.0.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1   >>>> source from L2VPN and from dynamic ARP entry
 





RP/0/RSP0/CPU0:router# show bgp vpnv6 unicast vrf evpn1 10:1:1::93/128

BGP routing table entry for 10:1:1::93/128, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22163 22163
Last Modified: Feb 28 12:09:30.447 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22163
Extended community: SoO:172.16.0.2:1 RT:100:1 RT:100:100 
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1 >>> Source from L2VPN and from synced ARP entry.     
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22163
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 
Originator: 172.16.0.2, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1 >>> Source from L2VPN and from dynamic ARP entry.

 




RP/0/RSP0/CPU0:router# show bgp vpnv6 unicast vrf evpn1 10:1:1::93/128

BGP routing table entry for 10:1:1::93/128, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22163 22163
Last Modified: Feb 28 12:09:30.447 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22163
Extended community: SoO:172.16.0.2:1 RT:100:1 RT:100:100 
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1     
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22163
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 
Originator: 172.16.0.2, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1 

 



Verify local forwarding with local adjacency which overwrite the RIB entries, and remote peer that use the IP VRF host route entries for IP VPN forwarding.


RP/0/RSP0/CPU0:router#  show bgp vpnv4 unicast vrf evpn1 10.1.1.93/32

-- For local routing and forwarding
RP/0/RSP0/CPU0:PE11-R1#show route vrf evpn1 10.1.1.93
Routing entry for 10.1.1.93/32
Known via "bgp 3107", distance 200, metric 0, type internal
Installed Feb 28 15:57:28.154 for 2d20h
Routing Descriptor Blocks
172.16.0.2, from 172.16.0.9      >>>  From MH-AA peer. 
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
No advertising protos.

RP/0/RSP0/CPU0:PE11-R1# show cef vrf evpn1 10.1.1.93 location 0/0/CPU0 
10.1.1.93/32, version 0, internal 0x1120001 0x0 (ptr 0x7b40052c) [1], 0x0 (0x7b286010), 0x0 (0x0)
Updated Feb 28 15:58:22.688 
local adjacency 10.1.1.93
Prefix Len 32, traffic index 0, Adjacency-prefix, precedence n/a, priority 15
via 10.1.1.93/32, BVI1, 2 dependencies, weight 0, class 0 [flags 0x0]
path-idx 0 NHID 0x0 [0x7f531f88 0x0]
next hop 
local adjacency              >>> Forwarding with local synced ARP adjacency entries.
 

For remote routing and forwarding:

RP/0/RSP0/CPU0:router# show route vrf evpn1 10.1.1.93

Routing entry for 10.1.1.93/32
Known via "bgp 3107", distance 200, metric 0
Number of pic paths 1 , type internal
Installed Feb 28 16:06:36.431 for 2d20h
Routing Descriptor Blocks
172.16.0.1, from 172.16.0.9
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
172.16.0.2, from 172.16.0.9, BGP backup path
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
No advertising protos. 
 
RP/0/RSP0/CPU0:router# show cef vrf evpn1 10.1.1.93 location 0/0/CPU0 

10.1.1.93/32, version 86, internal 0x5000001 0x0 (ptr 0x99fac884) [1], 0x0 (0x0), 0x208 (0x96c58494)
Updated Feb 28 16:06:39.285
Prefix Len 32, traffic index 0, precedence n/a, priority 3
via 172.16.0.1/32, 15 dependencies, recursive [flags 0x6000]
path-idx 0 NHID 0x0 [0x97955380 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 172.16.0.1/32 via 34034/0/21
next hop 100.0.57.5/32 Te0/0/0/3 labels imposed {ImplNull 24011 24027}
next hop 100.0.67.6/32 Te0/0/0/1 labels imposed {ImplNull 24009 24027}
via 172.16.0.2/32, 11 dependencies, recursive, backup [flags 0x6100]
path-idx 1 NHID 0x0 [0x979554a0 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 172.16.0.2/32 via 34035/0/21
next hop 100.0.57.5/32 Te0/0/0/3 labels imposed {ImplNull 24012 24031}
next hop 100.0.67.6/32 Te0/0/0/1 labels imposed {ImplNull 24010 24031}
 



The following sections describe how to verify the subnet stretching.

Verify the VRF.



RP/0/RP0/CPU0:leafW# show run vrf cust130

vrf cust130
address-family ipv4 unicast
  import route-target
   130:130
  !
  export route-target
   130:130
  !
!
!         



Verify the BGP configuration.

 RP/0/RP0/CPU0:leafW# show run router bgp | begin vrf cust130

vrf cust130
  rd auto
  address-family ipv4 unicast
   label mode per-vrf
   maximum-paths ibgp 10
   redistribute connected
  !
!

Verify the L2VPN.

RP/0/RP0/CPU0:leafW# show run l2vpn bridge group bg130 

l2vpn
bridge group bg130
  bridge-domain bd130
   interface Bundle-Ether1.1300
   !
   interface Bundle-Ether5.1300
   !
   routed interface BVI130
   evi 130
   !      
  !
!
!