Prerequisites for Flexible Algorithm
Segment routing must be enabled on the router before the Flexible Algorithm functionality is activated.
The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product. Learn more about how Cisco is using Inclusive Language.
Segment Routing Flexible Algorithm allows operators to customize IGP shortest path computation according to their own needs. An operator can assign custom SR prefix-SIDs to realize forwarding beyond link-cost-based SPF. As a result, Flexible Algorithm provides a traffic engineered path automatically computed by the IGP to any destination reachable by the IGP.
The SR architecture associates prefix-SIDs to an algorithm which defines how the path is computed. Flexible Algorithm allows for user-defined algorithms where the IGP computes paths based on a user-defined combination of metric type and constraint.
This document describes the IS-IS and OSPF extensions to support Segment Routing Flexible Algorithm on an MPLS data-plane.
Segment routing must be enabled on the router before the Flexible Algorithm functionality is activated.
This section describes the building blocks that are required to support the SR Flexible Algorithm functionality in IS-IS and OSPF.
Many possible constraints may be used to compute a path over a network. Some networks are deployed with multiple planes. A simple form of constraint may be to use a particular plane. A more sophisticated form of constraint can include some extended metric, like delay, as described in [RFC7810]. Even more advanced case could be to restrict the path and avoid links with certain affinities. Combinations of these are also possible. To provide a maximum flexibility, the mapping between the algorithm value and its meaning can be defined by the user. When all the routers in the domain have the common understanding what the particular algorithm value represents, the computation for such algorithm is consistent and the traffic is not subject to looping. Here, since the meaning of the algorithm is not defined by any standard, but is defined by the user, it is called a Flexible Algorithm.
An algorithm defines how the best path is computed by IGP. Routers advertise the support for the algorithm as a node capability. Prefix-SIDs are also advertised with an algorithm value and are tightly coupled with the algorithm itself.
An algorithm is a one octet value. Values from 128 to 255 are reserved for user defined values and are used for Flexible Algorithm representation.
To guarantee the loop free forwarding for paths computed for a particular Flexible Algorithm, all routers in the network must share the same definition of the Flexible Algorithm. This is achieved by dedicated router(s) advertising the definition of each Flexible Algorithm. Such advertisement is associated with the priority to make sure that all routers will agree on a single and consistent definition for each Flexible Algorithm.
Definition of Flexible Algorithm includes:
Metric type
Affinity constraints
Exclude SRLG constraint
Minimum bandwidth constraint
Maximum delay constraint
To enable the router to advertise the definition for the particular Flexible Algorithm, advertise-definition command is used. At least one router in the area, preferably two for redundancy, must advertise the Flexible Algorithm definition. Without the valid definition being advertised, the Flexible Algorithm will not be functional.
Various link attributes may be used during the Flexible Algorithm path calculation. For example, include or exclude rules based on link affinities can be part of the Flexible Algorithm definition, as defined in IETF draft draft-ietf-lsr-flex-algo.
Link attribute advertisements used during Flexible Algorithm calculation must use the Application-Specific Link Attribute (ASLA) advertisements, as defined in RFC8919 (IS-IS) and RFC8920 (OSPF). In the case of IS-IS, if the L-Flag is set in the ASLA advertisement, then legacy advertisements (IS-IS Extended Reachability TLV) are used instead.
The mandatory use of ASLA advertisements applies to the following link attributes:
Minimum Unidirectional Link Delay
TE Default Metric
Administrative Group
Extended Administrative Group
Shared Risk Link Group
Maximum Link Bandwidth
To be able to forward traffic on a Flexible Algorithm specific path, all routers participating in the Flexible Algorithm will install a MPLS labeled path for the Flexible Algorithm specific SID that is advertised for the prefix. Only prefixes for which the Flexible Algorithm specific Prefix-SID is advertised is subject to Flexible Algorithm specific forwarding.
Feature Name |
Release Information |
Feature Description |
---|---|---|
OSPF: Microloop Avoidance for Flexible Algorithm |
Release 7.4.1 |
This feature extends the current OSPF Flexible Algorithm functionality to support Microloop Avoidance. |
Feature Name |
Release Information |
Feature Description |
---|---|---|
OSPF: Microloop Avoidance for Flexible Algorithm |
Release 7.3.2 |
This feature extends the current OSPF Flexible Algorithm functionality to support Microloop Avoidance. |
OSPF: TI-LFA for Flexible Algorithm |
Release 7.3.1 |
This feature extends the current OSPF Flexible Algorithm functionality to support TI-LFA. |
A router may compute path for multiple Flexible Algorithms. A router must be configured to support particular Flexible Algorithm before it can compute any path for such Flexible Algorithm. A router must have a valid definition of the Flexible Algorithm before Flexible Algorithm is used.
The router uses the following rules to prune links from the topology during the Flexible Algorithm computation:
All nodes that don't advertise support for Flexible Algorithm are pruned from the topology.
Affinities:
Check if any exclude affinity rule is part of the Flexible Algorithm Definition. If such exclude rule exists, check if any color that is part of the exclude rule is also set on the link. If such a color is set, the link must be pruned from the computation.
Check if any include-any affinity rule is part of the Flexible Algorithm Definition. If such include-any rule exists, check if any color that is part of the include-any rule is also set on the link. If no such color is set, the link must be pruned from the computation.
Check if any include-all affinity rule is part of the Flexible Algorithm Definition. If such include-all rule exists, check if all colors that are part of the include-all rule are also set on the link. If all such colors are not set on the link, the link must be pruned from the computation
Note |
See Flexible Algorithm Affinity Constraint. |
If the Flexible Algorithm definition includes an "exclude SRLG" rule, then all links that are part of such SRLG are pruned from the topology.
Note |
See Flexible Algorithm with Exclude SRLG Constraint. |
If the minimum bandwidth constraint is configured, any link that does not meet the minimum link bandwidth threshold is pruned from the topology.
If the maximum delay constraint is configured, any link that exceeds the maximum unidirectional link delay is pruned from the topology.
Router uses the metric that is part of the Flexible Algorithm definition. If the metric isn't advertised for the particular link, the link is pruned from the topology.
By default, Microloop Avoidance per Flexible Algorithm instance follows Microloop Avoidance configuration for algo-0. For information about configuring Microloop Avoidance, see Configure Segment Routing Microloop Avoidance.
You can disable Microloop Avoidance for Flexible Algorithm using the following commands:
router isis instance flex-algo algo microloop avoidance disable
router ospf process flex-algo algo microloop avoidance disable
By default, LFA/TI-LFA per Flexible Algorithm instance follows LFA/TI-LFA configuration for algo-0. For information about configuring TI-LFA, see Configure Topology-Independent Loop-Free Alternate (TI-LFA).
You can disable TI-LFA for Flexible Algorithm using the following commands:
router isis instance flex-algo algo fast-reroute disable
router ospf process flex-algo algo fast-reroute disable
Feature Name |
Release Information |
Feature Description |
---|---|---|
IS-IS: Flexible Algorithm Reverse Affinity |
Release 7.9.1 |
This feature enhances the IS-IS Flexible Algorithm link admin group (affinity) constraint to include link colors on links in the reverse direction toward the calculating router. The ability to apply affinity constraints in the reverse direction provides additional control for IS-IS Flexible Algorithm path computation. This feature intoduces the reverse keyword to the router isis instance flex-algo algo affinity command. |
You can apply a color or name to links or interfaces by assigning affinity bit-maps to them. You can then specify an affinity (or relationship) between a Flexible Algorithm path and link colors in the forwarding direction. Flexible Algorithm computes a path that includes or excludes links that have specific colors, or combinations of colors.
Affinity “blue” is assigned to interface on node A; exclude affinity "blue": Link A-B is pruned from path calculation
In Cisco IOS XR release 7.9.1, for IS-IS Flexible Algorithm, you can also specify a reverse affinity between a Flexible Algorithm path and link colors (in the direction toward the computing router). Flexible Algorithm computes a path that includes or excludes links in the reverse direction that have specific colors, or combinations of colors.
For example, on a point-to-point link between endpoints A and B and for the traffic flowing in the direction from A to B, the input errors can only be detected at node B. You may measure the rate of such input errors and set certain 'color' on a link locally on node B when the input error rate crosses a certain threshold.
Affinity “blue” is assigned to interface on node B; exclude affinity "blue": Link A-B is not pruned from path calculation
With IS-IS Flexible Algorithm Reverse Affinity, when Flex-Algorithm calculation processes link A to B, it may look at the 'colors' of the link in the reverse direction (link B to A). This enables you to exclude this link from the Flex-Algorithm topology.
Affinity “blue” is assigned to interface on node B; exclude reverse-affinity "blue": Link A-B is pruned from path calculation
Flexible Algorithm path to any prefix must be installed in the forwarding using the Prefix-SID that was advertised for such Flexible Algorithm. If the Prefix-SID for Flexible Algorithm is not known, such Flexible Algorithm path is not installed in forwarding for such prefix..
Only MPLS to MPLS entries are installed for a Flexible Algorithm path. No IP to IP or IP to MPLS entries are installed. These follow the native IPG paths computed based on the default algorithm and regular IGP metrics.
Feature Name |
Release Information |
Feature Description |
---|---|---|
Flexible Algorithm Prefix-SID Redistribution for External Route Propagation |
Release 7.5.2 |
You can now propagate flexible algorithm prefix-SIDs and their algorithm-specific metric between different IGP domains, such as OSPF to IS-IS RIP to OSPF. With this functionality enabling interdomain traffic engineering, you can export flexible algorithm labels from the OSPF domain to other domains and import the labels from other domains into OSPF. The show ospf route flex-algo command has been modified to include additional attributes to indicate the external routes. |
Prefix redistribution from IS-IS to another IS-IS instance or protocol was limited to SR algorithm 0 (regular SPF) prefix SIDs; SR algorithm 1 (Strict SPF) and SR algorithms 128-255 (Flexible Algorithm) prefix SIDs were not redistributed along with the prefix. The Segment Routing IS-IS Flexible Algorithm Prefix SID Redistribution feature allows redistribution of strict and flexible algorithms prefix SIDs from IS-IS to another IS-IS instance or protocols. This feature is enabled automatically when you configure redistribution of IS-IS Routes with strict or flexible algorithm SIDs.
The following example shows how to configure redistribute and flexible algorithm to enable external routes.
RP/0/RP0/CPU0:ios(config)#router ospf 1
RP/0/RP0/CPU0:ios(config-ospf)#segment-routing mpls
RP/0/RP0/CPU0:ios(config-ospf)#segment-routing forwarding mpls
RP/0/RP0/CPU0:ios(config-ospf)#redistribute isis 2 route-policy loopback-type
RP/0/RP0/CPU0:ios(config-ospf)#flex-algo 240
RP/0/RP0/CPU0:ios(config-ospf-flex-algo)#metric-type delay
RP/0/RP0/CPU0:ios(config-ospf-flex-algo)#prefix-metric
RP/0/RP0/CPU0:ios(config-ospf-flex-algo)#advertise-definition
This following show output displays the route-type as 'Extern' for the external routes.
Router#show ospf routes flex-algo 240 route-type external detail
Route Table of ospf-1 with router ID 192.168.0.2 (VRF default)
Algorithm 240
Route entry for 192.168.4.3/32, Metric 220, SID 536, Label 16536
Priority : Medium
Route type : Extern Type 1
Last updated : Apr 25 14:30:12.718
Flags: Inuse
Prefix Contrib Algo 240 SID 536
From 192.168.0.4 Route-type 5
Total Metric : 220 Base metric 20 FAPM 20
Contrib Flags : Inuse, Reachable
SID Flags : PHP off, Index, Global, Valid
Path: 10.1.1.3, from 192.168.0.4, via GigabitEthernet0/2/0/2
Out Label : 16536
Weight : 0
Area : 0
Path: 10.1.2.3, from 192.168.0.4, via GigabitEthernet0/2/0/3
Out Label : 16536
Weight : 0
Area : 0
Path: 10.2.1.5, from 192.168.0.4, via GigabitEthernet0/2/0/4
Out Label : 16536
Weight : 0
Area : 0
Route entry for 192.168.4.5/32, Metric 120, SID 556, Label 16556
Priority : Medium
Route type : Extern Type 1
Last updated : Apr 25 14:30:12.724
Flags: Inuse
Prefix Contrib Algo 240 SID 556
From 192.168.0.3 Route-type 5
Total Metric : 120 Base metric 1 FAPM 20
Contrib Flags : Inuse, Reachable
SID Flags : PHP off, Index, Global, Valid
Path: 10.1.1.3, from 192.168.0.3, via GigabitEthernet0/2/0/2
Out Label : 16556
Weight : 0
Area : 0
Path: 10.1.2.3, from 192.168.0.3, via GigabitEthernet0/2/0/3
Out Label : 16556
Weight : 0
Area : 0
The following show output displays label information for flexible algorithm and its corresponding metric as added in RIB:
RP/0/RP0/CPU0:ios# show route 192.168.0.2/32 detail
Wed Apr 6 16:24:46.021 IST
Routing entry for 192.168.0.2/32
Known via "ospf 1", distance 110, metric 2, labeled SR, type intra area
Installed Apr 6 15:51:57.973 for 00:32:48
Routing Descriptor Blocks
10.10.10.2, from 192.168.0.2, via GigabitEthernet0/2/0/0, Protected
Route metric is 2
Label: 0x3 (3)
Tunnel ID: None
Binding Label: None
Extended communities count: 0
Path id:1 Path ref count:0
NHID:0x1(Ref:1)
Backup path id:65
OSPF area: 1
10.11.11.2, from 192.168.0.2, via GigabitEthernet0/2/0/1, Backup (Local-LFA)
Route metric is 6
Label: 0x3 (3)
Tunnel ID: None
Binding Label: None
Extended communities count: 0
Path id:65 Path ref count:1
NHID:0x2(Ref:1)
OSPF area:
Route version is 0x12 (18)
Local Label: 0x3ee6 (16102)
Local Label Algo Set (ID, Label, Metric): (1, 16202, 0),(128, 17282, 2)
IP Precedence: Not Set
QoS Group ID: Not Set
Flow-tag: Not Set
Fwd-class: Not Set
Route Priority: RIB_PRIORITY_NON_RECURSIVE_MEDIUM (7) SVD Type RIB_SVD_TYPE_LOCAL
Download Priority 1, Download Version 38
No advertising protos.
Feature Name |
Release Information |
Feature Description |
---|---|---|
Prefix Metric support for OSPF Flexible Algorithm |
Release 7.5.1 |
This feature extends the current OSPF Flexible Algorithm functionality to introduce a Flexible Algorithm-specific prefix-metric in the OSPF prefix advertisement. The prefix-metric provides a way to compute the best end-to-end Flexible Algorithm optimized paths across multiple areas or domains. |
A limitation of the existing Flexible Algorithm functionality in IS-IS and OSPF is the inability to compute the best path to a prefix in a remote area or remote IGP domain. Prefixes are advertised between IS-IS areas, OSPF processes, or between protocol domains, but the existing prefix metric does not reflect any of the constraints used for Flexible Algorithm path. Although the best Flexible Algorithm path can be computed to the inter-area or redistributed prefix inside the area, the path may not represent the overall best path through multiple areas or IGP domains.
The Flexible Algorithm Prefix Metric feature introduces a Flexible Algorithm-specific prefix-metric in the IS-IS and OSPF prefix advertisement. The prefix-metric provides a way to compute the best end-to-end Flexible Algorithm optimized paths across multiple areas or domains.
Note |
The Flexible Algorithm definition must be consistent between domains or areas. Refer to section 8 and section 9 in IETF draft https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo/. |
Feature Name |
Release Information |
Feature Description |
---|---|---|
IS-IS Enhancements: max-metric and data plane updates |
Release 7.8.1 |
The new anomaly optional keyword is introduced to affinity flex-algo command. This keyword helps to advertise the flex-algo affinity when the performance measurement signals a link anomaly, such as an excessive delay on a link. You could use the anomaly option to exclude the link from flex-algo path computations. |
Feature Name |
Release Information |
Feature Description |
---|---|---|
TE Metric Support for IS-IS Flex Algo |
Release 7.4.1 |
Flexible Algorithm allows for user-defined algorithms where the IGP computes paths based on a user-defined combination of metric type (path optimization objective) and constraint. This feature adds support for TE metric as a metric type for IS-IS Flexible Algorithm. This allows the TE metric, along with IGP and delay metrics, to be used when running shortest path computations. |
The following IS-IS and OSPF configuration sub-mode is used to configure Flexible Algorithm:
router isis instance flex-algo algo
router ospf process flex-algo algo
algo—value from 128 to 255
The following commands are used to configure Flexible Algorithm definition under the flex-algo sub-mode:
router isis instance flex-algo algo metric-type {delay | te}
router ospf process flex-algo algo metric-type {delay | te-metric}
Note |
By default the IGP metric is used. If delay or TE metric is enabled, the advertised delay or TE metric on the link is used as a metric for Flexible Algorithm computation. |
Note |
See Flexible Algorithm Link Attribute Advertisement Behavior for TE metric behaviors. |
router isis instance flex-algo algo affinity [reverse] { include-any | include-all | exclude-any} name1, name2, …
router ospf process flex-algo algo affinity { include-any | include-all | exclude-any} name1, name2, …
name—name of the affinity map
Note |
See Flexible Algorithm Affinity Constraint for information about affinity constraint behaviors. |
router isis instance flex-algo algo priority priority value
router ospf process flex-algo algo priority priority value
priority value—priority used during the Flexible Algorithm definition election.
router isis instance flex-algo algo prefix-metric
router ospf process flex-algo algo prefix-metric
The following command is used to enable advertisement of the Flexible Algorithm definition in IS-IS:
router isis instance flex-algo algo advertise-definition
The following command is used for defining the affinity-map. Affinity-map associates the name with the particular bit positions in the Extended Admin Group bitmask.
router isis instance flex-algo algo affinity-map name bit-position bit number
router ospf process flex-algo algo affinity-map name bit-position bit number
name—name of the affinity-map.
bit number—bit position in the Extended Admin Group bitmask.
router isis instance interface type interface-path-id affinity flex-algo anomaly name 1, name 2, …
router ospf process area area interface type interface-path-id affinity flex-algo anomaly name 1, name 2, …
name—name of the affinity-map
Router# configure
Router(config)# router isis 1
Router(config-isis)#flex-algo 128
Router(config-isis-flex-algo)# interface GigabitEthernet0/0/0/2
Router(config-isis-flex-algo)# affinity flex-algo blue
Router(config-isis-flex-algo)# affinity flex-algo anomaly red
The following command is used to advertise prefix-SID for default and strict-SPF algorithm:
router isis instance interface type interface-path-id address-family {ipv4 | ipv6} [unicast] prefix-sid [strict-spf | algorithm algorithm-number] [index | absolute] sid value
router ospf process area area interface Loopback interface-instance prefix-sid [strict-spf | algorithm algorithm-number] [index | absolute] sid value
algorithm-number—Flexible Algorithm number
sid value—SID value
Feature Name |
Release Information |
Feature Description |
---|---|---|
Advertisement of Link Attributes for IS-IS Flexible Algorithm |
Release 7.4.1 |
Link attribute advertisements used during Flexible Algorithm path calculation must use the Application-Specific Link Attribute (ASLA) advertisements, as defined in IETF draft draft-ietf-lsr-flex-algo. This feature introduces support for ASLA advertisements during IS-IS Flexible Algorithm path calculation. |
The following tables explain the behaviors for advertising (transmitting) and processing (receiving) Flexible Algorithm link attributes.
Link Attribute |
Transmit |
Receive |
---|---|---|
Link Delay Metric |
IOS XR OSPF Flex Algo implementation advertises the link delay metric value using the OSPF ASLA sub-TLV with the F-bit set. |
IOS XR OSPF only uses the link delay metric advertised in the ASLA sub-TLV for Flex Algo. ASLA sub-TLV is supported with non-zero-length or with zero-length Application Identifier Bit Masks. |
Link TE Metric |
IOS XR OSPF Flex Algo implementation advertises the link TE metric value using the OSPF ASLA sub-TLV with the F-bit set. The link TE metric values advertised are configured under SR-TE. |
IOS XR OSPF only uses the TE metric advertised in the ASLA sub-TLV for Flex Algo. ASLA sub-TLV is supported with non-zero-length or with zero-length Application Identifier Bit Masks. |
Link Admin Group/Extended Admin Group |
IOS XR OSPF Flex Algo implementation advertises the link admin group value using both link admin group (AG) and link extended admin group (EAG) encoding using the OSPF ASLA sub-TLV with the F-bit set. The link admin group values advertised can be configured directly under the IGP and are therefore FA-specific. Otherwise, they will be derived from the link admin group values configured under SR-TE. |
IOS XR OSPF only uses the AG/EAG (either one or both) advertised in the ASLA sub-TLV for Flex Algo. ASLA sub-TLV is supported with non-zero-length or with zero-length Application Identifier Bit Masks. |
Link Attribute | Transmit | Receive |
---|---|---|
Link Delay Metric |
IOS XR IS-IS Flex Algo implementation advertises the link delay metric value using both the IS-IS Extended Reachability TLV and the IS-IS ASLA. |
By default, IOS XR IS-IS Flex Algo implementation prefers the link delay metric value received in the IS-IS ASLA. Otherwise, it will use link delay metric value received in the IS-IS Extended Reachability TLV. ASLA sub-TLV is supported with non-zero-length or with zero-length Application Identifier Bit Masks. If the incoming ASLA includes the L-Flag, implementation derives the link delay metric value from the IS-IS Extended Reachability TLV. You can configure the IOS XR IS-IS Flex Algo implementation to strictly use the link delay metric value received in the IS-IS ASLA. See Strict IS-IS ASLA Link Attribute. |
Link TE Metric |
IOS XR IS-IS Flex Algo implementation advertises the link TE metric value using the IS-IS ASLA. The link TE metric values advertised can be configured directly under the IGP and are therefore FA-specific. Otherwise, they will be derived from the link TE metric values configured under SR-TE. |
IOS XR IS-IS Flex Algo implementation processes the link TE metric value received in the IS-IS ASLA. ASLA sub-TLV is supported with non-zero-length or with zero-length Application Identifier Bit Masks. If incoming ASLA includes the L-Flag, implementation derives the link TE metric value from the IS-IS Extended Reachability TLV. |
Link Admin Group/Extended Admin Group |
IOS XR IS-IS Flex Algo implementation advertises the affinity value as both the link admin group (AG) TLV and the link extended admin group (EAG) TLV using the IS-IS ASLA when its value falls within the first 32 bits. Otherwise, the affinity value is advertised only as link EAG TLV using the IS-IS ASLA. The admin group values advertised are configured directly under the IGP and are therefore FA-specific. |
IOS XR IS-IS Flex Algo implementation processes the affinity value received as either the link admin group TLV or link extended admin group TLV in the IS-IS ASLA. ASLA sub-TLV is supported with non-zero-length or with zero-length Application Identifier Bit Masks. If incoming ASLA includes the L-Flag, implementation derives the affinity value from the IS-IS Extended Reachability TLV. |
Link SRLG |
IOS XR IS-IS LFA implementation advertises the link SRLG value in the IS-IS ASLA. |
IOS XR IS-IS LFA implementation processes the link SRLG value received in the IS-IS ASLA. If incoming ASLA includes the L-Flag, implementation derives the link SRLG value from the IS-IS Extended Reachability TLV. |
Use the following command to configure the IOS XR IS-IS Flex Algo implementation to strictly use the link delay metric value received in the IS-IS ASLA:
router isis instance-id receive application flex-algo delay app-only
Use the following command to configure the Flexible Algorithm-specific TE metric value under IS-IS, where metric_value is from 1 to 16777214:
router isis instance interface type interface-path-id address-family { ipv4 | ipv6} [unicast] te-metric flex-algo metric_value [level {1 | 2}]
The following example shows how to configure the IS-IS Flexible Algorithm-specific TE metric value to 50:
Router(config)# router isis 1
Router(config-isis)# interface HundredGigE 0/0/0/2
Router(config-isis-if)# address-family ipv4 unicast
Router(config-isis-if-af)# te-metric flex-algo 50
Use the following command to configure the Flexible Algorithm-specific TE metric value under OSPF, where metric_value is from 1 to 2147483647:
router ospf process-name area area interface type interface-path-id te-metric flex-algo metric_value
The following example shows how to configure the OSPF Flexible Algorithm-specific TE metric value to 50:
Router(config)# router ospf 1
Router(config-ospf)# area 0
Router(config-ospf-ar)# interface HundredGigE 0/0/0/2
Router(config-ospf-ar-if# te-metric flex-algo 50
Feature Name |
Release Information |
Feature Description |
---|---|---|
Flexible Algorithm to Exclude SRLGs for OSPF |
Release 7.5.2 |
You can now configure the flexible algorithm to exclude any link belonging to the Shared Risk Link Groups (SRLGs) from the path computation for OSPF. The ability to exclude the at-risk links ensures that the rest of the links in the network remain unaffected. |
IS-IS Flexible Algorithm: Exclude-SRLG Constraint |
Release 7.5.1 |
This feature allows the Flexible Algorithm definition to specify Shared Risk Link Groups (SRLGs) that the operator wants to exclude during the Flex-Algorithm path computation. The ability to exclude the at-risk links ensures that the rest of the links in the network remain unaffected. This allows the setup of disjoint paths between two or more Flex Algos by leveraging deployed SRLG configurations. |
This feature allows the Flexible Algorithm definition to specify Shared Risk Link Groups (SRLGs) that the operator wants to exclude during the Flex-Algorithm path computation. A set of links that share a resource whose failure can affect all links in the set constitute a SRLG. An SRLG provides an indication of which links in the network might be at risk from the same failure.
This allows the setup of disjoint paths between two or more Flex Algos by leveraging deployed SRLG configurations. For example, multiple Flex Algos could be defined by excluding all SRLGs except one. Each FA will prune the links belonging to the excluded SRLGs from its topology on which it computes its paths.
This provides a new alternative to creating disjoint paths with FA, in addition to leveraging FA with link admin group (affinity) constraints.
The Flexible Algorithm definition (FAD) can advertise SRLGs that you want to exclude during the Flexible Algorithm path computation. The IS-IS Flexible Algorithm Exclude SRLG Sub-TLV (FAESRLG) is used to advertise the exclude rule that is used during the Flexible Algorithm path calculation, as specified in IETF draft https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo/
The Flexible Algorithm path computation checks if an “exclude SRLG” rule is part of the FAD. If an “exclude SRLG” rule exists, it then checks if the link is part of an SRLG that is also part of the “exclude SRLG” rule. If the link is part of an excluded SRLG, the link is pruned from the path computation.
The figure below shows a topology configured with the following flex algos:
Flex algo 128: metric IGP and exclude SRLG X constraint
Flex algo 129: metric IGP and exclude SRLG Y constraint
The horizontal links between nodes 3 and 4 and between 2 and 5 are part of SRLG group X. The diagonal links between nodes 3 and 5 and between 2 and 4 are part of SRLG group Y. As a result, traffic from node 1 to node 6's FA 128 prefix SID (16806) avoids interfaces part of SRLG X. While traffic from node 1 to node 6's FA 129 prefix SID (16906) avoids interfaces part of SRLG Y.
Note |
See Constraints section in the Configure SR-TE Policies chapter for information about configuring SR policies with Flex-Algo constraints. |
Use the router isis instance address-family ipv4 unicast advertise application flex-algo link-attributes srlg command to enable the Flexible Algorithm ASLA-specific advertisement of SRLGs.
Use the router isis instance flex-algo algo srlg exclude-any srlg-name . . . srlg-name command to configure the SRLG constraint which is advertised in the Flexible Algorithm definition (FAD) if the FAD advertisement is enabled under the flex-algo sub-mode. You can specify up to 32 SRLG names.
The SRLG configuration (value and port mapping) is performed under the global SRLG sub-mode. Refer to MPLS Traffic Engineering Shared Risk Link Groups for more information.
The following example shows how to enable the Flexible Algorithm ASLA-specific advertisement of SRLGs and to exclude SRLG groups from Flexible Algorithm path computation:
RP/0/RP0/CPU0:router(config)# srlg
RP/0/RP0/CPU0:router(config-srlg)# interface HunGigE0/0/0/0
RP/0/RP0/CPU0:router(config-srlg-if)# name groupX
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# interface TenGigE0/0/0/1
RP/0/RP0/CPU0:router(config-srlg-if)# name groupX
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# interface HunGigE0/0/1/0
RP/0/RP0/CPU0:router(config-srlg-if)# name groupY
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# interface TenGigE0/0/1/1
RP/0/RP0/CPU0:router(config-srlg-if)# name groupY
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# name groupX value 100
RP/0/RP0/CPU0:router(config-srlg)# name groupY value 200
RP/0/RP0/CPU0:router(config-srlg)# exit
RP/0/RP0/CPU0:router(config)# router isis 1
RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-af)# advertise application flex-algo link-attributes srlg
RP/0/RP0/CPU0:router(config-isis-af)# exit
RP/0/RP0/CPU0:router(config-isis)# flex-algo 128
RP/0/RP0/CPU0:router(config-isis-flex-algo)# advertise-definition
RP/0/RP0/CPU0:router(config-isis-flex-algo)# srlg exclude-any groupX
RP/0/RP0/CPU0:router(config-isis-flex-algo)# exit
RP/0/RP0/CPU0:router(config-isis)# flex-algo 129
RP/0/RP0/CPU0:router(config-isis-flex-algo)# advertise-definition
RP/0/RP0/CPU0:router(config-isis-flex-algo)# srlg exclude-any groupY
RP/0/RP0/CPU0:router(config-isis-flex-algo)# commit
RP/0/RP0/CPU0:router(config-isis-flex-algo)# exit
RP/0/RP0/CPU0:router(config-isis)#
The following example shows how to enable the Flexible Algorithm ASLA-specific advertisement of SRLGs and to exclude SRLG groups from Flexible Algorithm path computation for OSPF:
RP/0/RP0/CPU0:router(config)# srlg
RP/0/RP0/CPU0:router(config-srlg)# interface HunGigE0/0/0/0
RP/0/RP0/CPU0:router(config-srlg-if)# name groupX
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# interface TenGigE0/0/0/1
RP/0/RP0/CPU0:router(config-srlg-if)# name groupX
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# interface HunGigE0/0/1/0
RP/0/RP0/CPU0:router(config-srlg-if)# name groupY
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# interface TenGigE0/0/1/1
RP/0/RP0/CPU0:router(config-srlg-if)# name groupY
RP/0/RP0/CPU0:router(config-srlg-if)# exit
RP/0/RP0/CPU0:router(config-srlg)# name groupX value 100
RP/0/RP0/CPU0:router(config-srlg)# name groupY value 200
RP/0/RP0/CPU0:router(config-srlg)# exit
RP/0/0/CPU0:r1(config)#router ospf 1
RP/0/0/CPU0:r1(config-ospf)#flex-algo 128
RP/0/0/CPU0:r1(config-ospf-flex-algo)#srlg exclude-any
RP/0/0/CPU0:r(config-ospf-flex-algo-srlg-exclude-any)#groupX
RP/0/0/CPU0:r(config-ospf-flex-algo-srlg-exclude-any)#groupY
RP/0/0/CPU0:r(config-ospf-flex-algo-srlg-exclude-any)#commit
The following example shows how to verify the number of SRLGs excluded for OSPF:
RP/0/RP0/CPU0:router# show ospf topology summary
Process ospf-1
Instance default
Router ID : 192.168.0.1
Number of Areas : 1
Number of Algos : 1
Max Path count : 16
Route count : 10
SR Global Block : 16000 - 23999
Area 0
Number of Nodes : 6
Algo 128
FAD Advertising Router : 192.168.0.1
FAD Area ID : 0
Algo Type : 0
Metric Type : 0
Number of Exlclude SRLGs : (2)
[1]: 100 [2]: 200
FAPM supported : No
Feature Name |
Release Information |
Feature Description |
---|---|---|
IS-IS Flexible Algorithm with Exclude Minimum Bandwidth Constraint |
Release 7.11.1 |
Traffic engineering in networks can be optimized by avoiding low-bandwidth links that may not be capable of handling high volumes of traffic. This feature allows you to use Flexible Algorithm to create topologies in your network that explicitly exclude high bandwidth traffic from utilizing links below a specified capacity. This constraint is achieved by introducing a new bandwidth-based metric type within the Flexible Algorithm framework. Links that do not satisfy the constraint are ignored when computing the associated Flexible Algorithm topology. This feature introduces these changes: CLI:
YANG Data Model:
|
This feature allows you to configure a minimum bandwidth value for computing a Flexible Algorithm path.
The IS-IS Flex-Algorithm Exclude Minimum Bandwidth sub-TLV (FAEMB) is a way to set a minimum bandwidth requirement for links in the Flex-Algorithm topology.
To determine if a link should be excluded based on this minimum bandwidth requirement, we compare the Minimum Bandwidth specified in the FAEMB sub-TLV with the Maximum Link Bandwidth advertised in the Area Supported by the Link Attribute (ASLA) sub-TLV.
If the Maximum Link Bandwidth is lower than the Minimum bandwidth specified, the link is excluded from the Flex-Algorithm topology. However, if the FAD includes the FAEMB sub-TLV but the Maximum Link Bandwidth is not advertised for the link, it should not be excluded based on the Minimum Bandwidth constraint.
Use the router isis instance flex-algo algo minimum-bandwidth value command to configure the minimum bandwidth value in kbps.
router isis 1
address-family ipv4 unicast
segment-routing mpls
!
address-family ipv6 unicast
segment-routing srv6
locator L1_A129
!
!
!
flex-algo 129
advertise-definition
minimum-bandwidth 10000000
!
interface Loopback0
address-family ipv4 unicast
prefix-sid index 100
prefix-sid algorithm 129 index 300
!
address-family ipv6 unicast
!
!
segment-routing
srv6
locators
locator L1_A129
micro-segment behavior unode psp-usd
prefix cafe:0:2100::/48
algorithm 129
!
!
!
!
Feature Name |
Release Information |
Feature Description |
---|---|---|
IS-IS Flexible Algorithm with Exclude Maximum Delay Constraint |
Release 7.11.1 |
This feature enables you to configure topologies that exclude links that have delays over a specific threshold. This is especially critical for high-frequency trading applications, in satellite networks, or wherever there are fluctuations in link delays. This feature introduces these changes: CLI:
YANG Data Model:
|
This feature allows you to configure a maximum delay value for computing a Flexible Algorithm path.
The Flexible Algorithm Exclude Minimum Delay (FAEMD) sub-TLV is used to specify the maximum delay requirement for links in a Flex-Algorithm topology. To ensure proper functioning, the FAEMD sub-TLV must appear only once in the FAD sub-TLV (Flexible Algorithm Definition). If it appears more than once, it should be ignored by the receiver. The maximum link delay advertised in the FAEMD sub-TLV is compared with the minimum unidirectional link delay advertised in the ASLA sub-TLV.
If the minimum unidirectional link delay is higher than the maximum link delay advertised in the FAEMD sub-TLV, the link must be excluded from the Flex-Algorithm topology.
However, if a link does not have the minimum unidirectional link delay advertised but the FAD contains the FAEMD sub-TLV, then based on the maximum delay constraint, that link should not be excluded from the topology.
Use the router isis instance flex-algo algo maximum-delay delay command to configure the maximum delay value in microseconds.
router isis 1
address-family ipv4 unicast
segment-routing mpls
!
address-family ipv6 unicast
segment-routing srv6
locator L1_A128
!
!
!
flex-algo 128
advertise-definition
maximum-delay 300
!
interface Loopback0
address-family ipv4 unicast
prefix-sid index 100
prefix-sid algorithm 128 index 200
!
address-family ipv6 unicast
!
!
segment-routing
srv6
locators
locator L1_A128
micro-segment behavior unode psp-usd
prefix cafe:0:1100::/48
algorithm 128
!
!
!
!
Feature Name |
Release |
Description |
---|---|---|
IS-IS: Maximum Paths Per Flexible Algorithm |
Release 7.8.1 |
This feature introduces a new subcommand under flex-algo command. This feature allows for maximum number of Equal-Cost Multi-path (ECMP) to be set for individual Flex Algorithms |
A new subcommand under flex-algo is introduced.
The flex-algo command now includes the address-family <ipv4/ipv6> unicast subcommand, and the maximum-paths <maximum-paths> subcommand.
Note |
For information on IS-IS Algo0 Maximum Paths, refer to the "Implementing IS-IS" chapter in the Routing Configuration Guide for Cisco NCS 560 Series Routers. |
The new subcommands allow for maximum number of Equal-Cost Multi-path (ECMP) to be set for individual algorithms. The value that is configured on a per-flex-algo per address-family basis overrides any value that is configured under the IS-IS global address-family submode.
The maximum-paths configuration is not part of the Flexible Algorithm Definitions (FAD). If the advertised definition is configured for the flexible algorithm, the maximum-paths will not be propagated by the IS-IS.
The maximum-paths per algorithm takes precedence over maximum-paths per address-family.
The maximum paths effective for each algorithm are as follows:
For Flex-Algo 128:
IPv4: 5
IPv6: 3
For Flex-Algos 129 through 255:
IPv4: 12
IPv6:8
This example shows how you can set the maximum paths per-Flex-Algo:
Router(config)# router isis 10
Router(config-isis)# flex-algo 128
Router(config-isis-flex-algo)# metric-type te
Router(config-isis-flex-algo)# address-family ipv4 unicast
Router(config-isis-flex-algo-af)# maximum-paths 5
Router(config-isis-flex-algo)# exit
Router(config-isis-flex-algo-af)# address-family ipv6 unicast
Router(config-isis-flex-algo-af)# maximum-paths 3
Router(config-isis-flex-algo-af)# exit
Feature Name |
Release |
Description |
---|---|---|
Maximum Paths Per IS-IS Flexible Algorithm Per Prefix |
Release 7.11.1 |
Previously, you could configure a maximum number of Equal-Cost Multi-path (ECMP) to be set for individual Flex Algorithms. This feature provides additional granularity to the IS-IS Maximum Paths Per-Algorithm feature by allowing you to specify a set of prefixes for Flexible Algorithm. Now you can achieve a balance between path diversity and computational and memory requirements by controlling the number of paths for each specific algorithm and destination prefix combination. This feature introduces these changes: CLI:
YANG Data Models:
|
Previously, you could set the maximum paths for a Flexible Algorithm per address-family.
With this feature, you can further refine the maximum paths configuration by associating it with specific prefixes for each Flexible Algorithm. The existing maximum-paths command is extended to include a route-policy qualifier to configure the maximum paths per algorithm per prefix-list.
When installing paths into the Routing Information Base (RIB) for Segment Routing with IPv6 (SRv6) or the Label Switched Database (LSD) for Segment Routing with MPLS (SR-MPLS), the system checks if a maximum paths value has been configured for the algorithm and the associated prefix. If such a configuration exists, it will be used instead of the existing address-family value to determine the number of paths to be installed.
Note |
Route policies that have the attribute set maximum-paths number are supported. |
Note |
For information on maximum paths per prefix for IS-IS algo 0 (SPF), refer to the "Implementing IS-IS" chapter in the Routing Configuration Guide for Cisco NCS 560 Series Routers. |
The maximum-paths maximum-paths and maximum-paths route-policy name configurations are mutually exclusive. You can configure either an unqualified number or a route-policy for any given IS-IS instance.
The maximum paths per-algorithm per-prefix configuration takes precedence over maximum paths per-algorithm configuration. Likewise, the maximum paths per-algorithm configuration takes precedence over maximum paths per-address-family configuration. This hierarchy ensures that the most specific configuration is prioritized when determining the maximum paths for a given algorithm and prefix combination.
The following example shows how to configure the maximum paths for Flex Algo 128:
Define a Prefix Set:
prefix-set isis-ipv4-L1
10.1.0.101/32
end-set
Create a Route Policy:
route-policy isis-mp-if-L1
if destination in isis-ipv4-L1 then
set maximum-paths 2
endif
end-policy
Apply Route Policy to Configure Maximum Paths Per-Algo Per-Prefix:
router isis 10
flex-algo 128
address-family ipv4 unicast
maximum-paths route-policy isis-mp-if-L1
Verification
Router# show isis route flex-algo 128
IS-IS 10 IPv4 Unicast routes Flex-Algo 128
Codes: L1 - level 1, L2 - level 2, ia - interarea (leaked into level 1)
df - level 1 default (closest attached router), su - summary null
C - connected, S - static, R - RIP, B - BGP, O - OSPF
E - EIGRP, A - access/subscriber, M - mobile, a - application
i - IS-IS (redistributed from another instance)
Maximum parallel path count: as defined in isis-mp-if-L1
L1 10.1.0.101/32 [121/115]
via 15.15.15.2, GigabitEthernet0/0/0/5, hare, SRGB Base: 16000, Weight: 0
via 16.16.16.2, GigabitEthernet0/0/0/6, hare, SRGB Base: 16000, Weight: 0
router isis 1
affinity-map red bit-position 65
affinity-map blue bit-position 8
affinity-map green bit-position 201
flex-algo 128
advertise-definition
affinity exclude-any red
affinity include-any blue
!
flex-algo 129
affinity exclude-any green
!
!
address-family ipv4 unicast
segment-routing mpls
!
interface Loopback0
address-family ipv4 unicast
prefix-sid algorithm 128 index 100
prefix-sid algorithm 129 index 101
!
!
interface GigabitEthernet0/0/0/0
affinity flex-algo red
!
interface GigabitEthernet0/0/0/1
affinity flex-algo blue red
!
interface GigabitEthernet0/0/0/2
affinity flex-algo blue
!
router ospf 1
flex-algo 130
priority 200
affinity exclude-any
red
blue
!
metric-type delay
!
flex-algo 140
affinity include-all
green
!
affinity include-any
red
!
!
interface Loopback0
prefix-sid index 10
prefix-sid strict-spf index 40
prefix-sid algorithm 128 absolute 16128
prefix-sid algorithm 129 index 129
prefix-sid algorithm 200 index 20
prefix-sid algorithm 210 index 30
!
!
interface GigabitEthernet0/0/0/0
flex-algo affinity
color red
color blue
!
!
affinity-map
color red bit-position 10
color blue bit-position 11
!
Feature Name |
Release Information |
Feature Description |
---|---|---|
User-Defined Generic Metric Support for IS-IS Flex Algo |
Release 24.2.11 |
This feature now extends support on the Cisco NCS 540 Series routers running on Cisco IOS XR7. |
User-Defined Generic Metric Support for IS-IS Flex Algo |
Release 24.2.1 |
Introduced in this release on the following Cisco NCS 540 router variants running on Cisco IOS XR:
This feature adds support for user-defined generic metric as a metric type for IS-IS Flexible Algorithm. You can now have more control over traffic flows using user-defined generic metrics. You can define a family of user-defined generic metrics that can advertise different types of administrative metrics such as jitter, reliability, and fiscal cost depending on the traffic class for Flexible Algorithms. You can selectively define and assign semantics of these metrics as per the network requirement. The feature introduces the following changes: CLI:
YANG Data Models:
|
With the addition of different traffic types, the need for alternate types of metrics has evolved. Flexible Algorithm already supports IGP, TE, and delay metrics. However a network operator might want to minimize their operational costs and might want a metric that reflects the actual fiscal costs of using a link. Other traffic may require low jitter, leading to an entirely different set of metrics. With Flexible Algorithm, all these different metrics could be used concurrently on the same network. These improvements are possible as you can now define a family of user-defined generic metrics that can advertise various types of administratively assigned metrics. These metrics are not predefined, which provides network administrators with the flexibility to assign their own meanings and semantics to the metrics. This means you can create metrics tailored to specific operational goals or traffic requirements.
You can apply the user-defined generic metrics within the Flexible Algorithm Definition (FAD) similar to how you would use TE or delay metrics. For example, you can assign specific user-defined generic metrics to individual Flex Algos, allowing for a customized path selection criteria. This capability enables different paths to use different metrics, ensuring that each path is optimized for the specific type of traffic it handles.
Consider a scenario where for some networks, traffic engineering might require splitting east and west traffic for different Flexible Algorithms across multiple hardware data planes. In the following figure, the Flex Algo 128 (Orange) uses the upper primary path, while the Flex Algo 129 (Blue) uses the lower primary path. You can achieve this by defining specific user-defined generic metrics for the Flex Algo to determine the best path for each Flex Algo. The numbers 10 and 100 represent the user-defined generic metrics configured for the two different Flex Algos.
Advantages of splitting traffic using user-defined generic metrics
This approach offers several advantages. You can use Equal-Cost Multi-Path (ECMP) routing within the backbone, allowing multiple links of the same color between core nodes. It also ensures efficient backup routes and prevents U-loops with Flex Algo specific Loop-Free Alternates (LFA) and Topology-Independent Loop-Free Alternates (TI-LFA).
In the above example, the vertical core links are used as backup paths for all Flex Algos, and you can activate them only if a core link or node fails. These links are part of all Flex Algos, and you can use user-defined generic metrics to configure and advertise such metrics for each individual Flex Algo to ensure smooth operation.
The key benefits of user-defined generic metrics are:
You can ensure precise control over routing decisions based on the assigned metrics, as the links that do not advertise the user-defined generic metric are excluded from the Flex Algo topology.
You can use the metrics to reduce operational expenses by choosing cost-effective paths.
You can customize metrics to fit unique operational goals and traffic requirements, providing tailored solutions for different scenarios.
You can simultaneously apply multiple metrics across the same network, enhancing overall network performance and reliability.
The user-defined generic metric is disabled by default. In other words, the metric is not advertised unless it is configured.
Step 1 |
Define the metric type and value for an interface using the generic-metric flex-algo command in the IS-IS interface address-family submode. In the following example, the user-defined generic metric type is 177 and the metric value as 100. Example:
|
Step 2 |
Associate or advertise the configured metric type to a Flexible Algorithm Definition using the metric-type generic command. In the following example, the metric type advertised is 177.
|
Step 3 |
Verify the running configuration using the show running-config command. Example:
|
Step 4 |
Verify the Flexible Algorithm Definition configuration using the show isis flex-algo command. Example:
|
Step 5 |
Optionally, you can also verify the application-specific user-defined generic metric configured for an interface by using the show isis interface command. Example:
|
SR-TE On Demand Next-Hop (ODN) feature can be used to steer the BGP traffic towards the Flexible Algorithm paths.
The following example configuration shows how to setup BGP steering local policy, assuming two router: R1 (2.2.2.2) and R2 (4.4.4.4), in the topology.
Configuration on router R1:
vrf Test
address-family ipv4 unicast
import route-target
1:150
!
export route-policy SET_COLOR_RED_HI_BW
export route-target
1:150
!
!
!
interface Loopback0
ipv4 address 2.2.2.2 255.255.255.255
!
interface Loopback150
vrf Test
ipv4 address 2.2.2.222 255.255.255.255
!
interface TenGigE0/1/0/3/0
description exr1 to cxr1
ipv4 address 10.0.20.2 255.255.255.0
!
extcommunity-set opaque color129-red-igp
129
end-set
!
route-policy PASS
pass
end-policy
!
route-policy SET_COLOR_RED_HI_BW
set extcommunity color color129-red-igp
pass
end-policy
!
router isis 1
is-type level-2-only
net 49.0001.0000.0000.0002.00
log adjacency changes
affinity-map RED bit-position 28
flex-algo 128
priority 228
!
address-family ipv4 unicast
metric-style wide
advertise link attributes
router-id 2.2.2.2
segment-routing mpls
!
interface Loopback0
address-family ipv4 unicast
prefix-sid index 2
prefix-sid algorithm 128 index 282
!
!
interface TenGigE0/1/0/3/0
point-to-point
address-family ipv4 unicast
!
!
!
router bgp 65000
bgp router-id 2.2.2.2
address-family ipv4 unicast
!
address-family vpnv4 unicast
retain route-target all
!
neighbor-group RR-services-group
remote-as 65000
update-source Loopback0
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
!
neighbor 4.4.4.4
use neighbor-group RR-services-group
!
vrf Test
rd auto
address-family ipv4 unicast
redistribute connected
!
segment-routing
traffic-eng
logging
policy status
!
segment-list sl-cxr1
index 10 mpls label 16294
!
policy pol-foo
color 129 end-point ipv4 4.4.4.4
candidate-paths
preference 100
explicit segment-list sl-cxr1
!
!
!
!
!
!
Configuration on router R2:
vrf Test
address-family ipv4 unicast
import route-target
1:150
!
export route-policy SET_COLOR_RED_HI_BW
export route-target
1:150
!
!
!
interface TenGigE0/1/0/1
description cxr1 to exr1
ipv4 address 10.0.20.1 255.255.255.0
!
extcommunity-set opaque color129-red-igp
129
end-set
!
route-policy PASS
pass
end-policy
!
route-policy SET_COLOR_RED_HI_BW
set extcommunity color color129-red-igp
pass
end-policy
!
router isis 1
is-type level-2-only
net 49.0001.0000.0000.0004.00
log adjacency changes
affinity-map RED bit-position 28
affinity-map BLUE bit-position 29
affinity-map GREEN bit-position 30
flex-algo 128
priority 228
!
flex-algo 129
priority 229
!
flex-algo 130
priority 230
!
address-family ipv4 unicast
metric-style wide
advertise link attributes
router-id 4.4.4.4
segment-routing mpls
!
interface Loopback0
address-family ipv4 unicast
prefix-sid index 4
prefix-sid algorithm 128 index 284
prefix-sid algorithm 129 index 294
prefix-sid algorithm 130 index 304
!
!
interface GigabitEthernet0/0/0/0
point-to-point
address-family ipv4 unicast
!
!
interface TenGigE0/1/0/1
point-to-point
address-family ipv4 unicast
!
!
router bgp 65000
bgp router-id 4.4.4.4
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
neighbor-group RR-services-group
remote-as 65000
update-source Loopback0
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
!
neighbor 10.1.1.1
use neighbor-group RR-services-group
!
neighbor 2.2.2.2
use neighbor-group RR-services-group
!
vrf Test
rd auto
address-family ipv4 unicast
redistribute connected
!
neighbor 25.1.1.2
remote-as 4
address-family ipv4 unicast
route-policy PASS in
route-policy PASS out
!
!
!
!
segment-routing
!
end
Feature Name |
Release Information |
Feature Description |
---|---|---|
SR-TE Delay Normalization for OSPF |
Release 7.3.1 |
This feature extends the current Delay Normalization feature to support OSPF. |
Performance measurement (PM) measures various link characteristics like packet loss and delay. Such characteristics can be used by IS-IS as a metric for Flexible Algorithm computation. Low latency routing using dynamic delay measurement is one of the primary use cases for Flexible Algorithm technology.
Delay is measured in microseconds. If delay values are taken as measured and used as link metrics during the IS-IS topology computation, some valid ECMP paths might be unused because of the negligible difference in the link delay.
The Delay Normalization feature computes a normalized delay value and uses the normalized value instead. This value is advertised and used as a metric during the Flexible Algorithm computation.
The normalization is performed when the delay is received from the delay measurement component. When the next value is received, it is normalized and compared to the previous saved normalized value. If the values are different, then the LSP generation is triggered.
The following formula is used to calculate the normalized value:
Dm – measured Delay
Int – configured normalized Interval
Off – configured normalized Offset (must be less than the normalized interval Int)
Dn – normalized Delay
a = Dm / Int (rounded down)
b = a * Int + Off
If the measured delay (Dm) is less than or equal to b, then the normalized delay (Dn) is equal to b. Otherwise, Dn is b + Int.
The following example shows a low-latency service. The intent is to avoid high-latency links (1-6, 5-2). Links 1-2 and 5-6 are both low-latency links. The measured latency is not equal, but the difference is insignificant.
We can normalize the measured latency before it is advertised and used by IS-IS. Consider a scenario with the following:
Interval = 10
Offset = 3
The measured delays will be normalized as follows:
Dm = 29
a = 29 / 10 = 2 (2.9, rounded down to 2)
b = 2 * 10 + 3 = 23
In this case, Dm (29) is greater than b (23); so Dn is equal to b+I (23 + 10) = 33
Dm = 31
a = 31 / 10 = 3 (3.1, rounded down to 3)
b = 3 * 10 + 3 = 33
In this case, Dm (31) is less than b (33); so Dn is b = 33
The link delay between 1-2 and 5-6 is normalized to 33.
Delay normalization is disabled by default. To enable and configure delay normalization, use the delay normalize interval interval [offset offset] command.
interval – The value of the normalize interval in microseconds.
offset – The value of the normalized offset in microseconds. This value must be smaller than the value of normalized interval.
IS-IS Configuration
router isis 1
interface GigEth 0/0/0/0
delay normalize interval 10 offset 3
address-family ipv4 unicast
metric 77
OSPF Configuration
router ospf 1
area 0
interface GigabitEthernet0/0/0/0
delay normalize interval 10 offset 3
!
!
!