Configure EVPN IRB

This chapter introduces you to Ethernet VPN (EVPN) Integrated Routing and Bridging (IRB) feature and describe how you can configure the EVPN IRB feature.

EVPN IRB

EVPN IRB feature enables a Layer 2 VPN and an Layer 3 VPN overlay that allows end hosts across the overlay to communicate with each other within the same subnet and across different subnets within the VPN.

Figure 1. EVPN IRB

The benefit of EVPN IRB is that it allows the hosts in an IP subnet to be provisioned anywhere in the data center. When a virtual machine (VM) in a subnet is provisioned behind a EVPN PE, and another VM is required in the same subnet, it can be provisioned behind another EVPN PE. The VMs do not have to be localized; they need not be directly connected; or be in the same complex. The VM is allowed to move across in the same subnet. Availability of IP MPLS network across all the EVPN PEs enables the provisioning of VM mobility. The EVPN PEs route traffic to each other through MPLS encapsulation.

The EVPN PEs are connected to each other by a spine so they have IP reachability to each other's loopback interfaces. The IP network and MPLS tunnels existing between these EVPN PEs constitute the IP MPLS underlay fabric.

You can configure the MPLS tunnels to tunnel Layer 2 traffic, and to overlay VPN on these tunnels. EVPN control plane distributes both Layer 2 MAC reachability and Layer 3 IP reachability for hosts within the context of the VPN; it overlays a tenant's VPN network on top of the MPLS underlay fabric. Thus you can have tenant's hosts, which are in the same subnet layer 2 domain, but distributed across the fabric, communicate to each other as if they are in a Layer 2 network.

The Layer 2 VLAN and the corresponding IP subnet are not only a network of physically connected hosts on Layer 2 links, but an overlayed network on top of underlayed IP MPLS fabric which is spread across the datacenter.

A routing service, which enables stretching of the subnet across the fabric, is available. It also provides Layer 3 VPN and performs routing between subnets within the context of the Layer 3 VPN. The EVPN PEs provide Layer 2 bridging service between hosts that are spread across the fabric within a Layer 2 domain that is stretched across the fabric, and Layer 3 VPN service or inter-subnet routing service for hosts in different subnets within Layer 3 VPN. For example, as shown in the above topology diagram, the two VM are in the same subnet but they are not connected directly through each other through a Layer 2 link. The Layer 2 link is replaced by MPLS tunnels that are connecting them. The whole fabric acts as a single switch and bridges traffic from one VM to the other. This also enables VM mobility.

Note

Egress marking is not supported on L2 interfaces in a bridge domain.


In the above topology diagram, the VMs, VM1 and VM2 are connected each other. When VM2 migrates to a different switch and different server, the VM's current MAC address and IP address are retained. When the subnet is stretched between two EVPN PEs, the same IRB configuration is applied on both the devices.

For stretching within the same subnet, you must configure the AC interface and the EVI; it is not required to configure IRB interface or VRF.


Note

Only a single custom MAC address is supported for all BVIs across the system.


Limitations

In case static MAC address is configured on a bundle-ether interface, the following limitations are applied:

  • Locally generated packets, such as ICMP, BGP, and so on, going out from the interface have the source MAC address as the statically configured MAC address.

  • Transit (forwarded) packets going out of the interface do not have the configured static MAC as source MAC address. In such a scenario, the upper 36-bits come from the system MAC address (or the original/dynamic MAC address) and the lower 12-bits come from the MAC address configured on the bundle. To check the dynamic pool of MAC addresses included, use the show ethernet mac-allocation detail command.

    For example, if the dynamic MAC address was 008A.9624.48D8 and the configured static MAC address is 0011.2222.ABCD. Then, the source MAC for transit (forwarded) traffic will be 008A.9624.4BCD.

For more information on limitations, refer Limitations and Compatible Characteristics of Ethernet Link Bundles in Interface and Hardware Component Configuration Guide for Cisco NCS 5500 Series Routers

EVPN Single-Homing Access Gateway

The EVPN provider edge (PE) devices learn the MAC address and IP address from the ARP traffic that they receive from the customer edge (CE) devices. The PEs create the MAC+IP routes. The PEs advertise the MAC+IP routes to MPLS core. They inject the host IP routes to IP-VPN gateway. Subnet routes are also advertised from the access EVPN PEs in addition to host routes. All the PE nodes add the host routes in the IP-VRF table. The EVPN PE nodes add MAC route to the MAC-VRF table. The IP-VPN PE advertise the subnet routes to the provider edge devices which add the subnet routes to IP-VRF table. On the PE devices, IRB gateway IP addresses and MAC addresses are not advertised through BGP. IRB gateway IP addresses or MAC addresses are used to send ARP requests towards the datacenter CEs.

Figure 2. EVPN Single-Homing Access Gateway

The above topology depicts how EVPN single-homing access gateway enables network connectivity by allowing a CE device to connect to one PE device. The PE device is attached to the Ethernet Segment through bundle or physical interfaces. Null Ethernet Segment Identifier (ESI) is used for single-homing.

EVPN Multihoming All-Active

In EVPN IRB, both EVPN and IP VPN (both VPNv4 and VPNv6) address families are enabled between routers and Data Center Interconnect (DCI) gateways. When Layer 2 (L2) stretch is not available in multiple data centers (DC), routing is established through VPNv4 or VPNv6 routes. When Layer 2 stretch is available, host routing is applied where IP-MAC routes are learnt by ARP and are distributed to EVPN/BGP. In remote peer gateway, these IP-MAC EVPN routes are imported into IP VPN routing table from EVPN route-type 2 routes with secondary label and Layer 3 VRF route-target.

Figure 3. EVPN Multi-Homing All-Active

The above topology describes how EVPN Multi-homing access gateway enables redundant network connectivity by allowing a CE device to connect to more than one PE device. Disruptions to the network connectivity are prevented by allowing a CE device to be connected to a PE device or several PE devices through multi-homing. Ethernet segment is the bunch of Ethernet links through which a CE device is connected to more than one PE devices. The All-Active Link Aggregation Group bundle operates as an Ethernet segment. Only MC bundles that operates between two chassis are supported.

Enable Auto-BGP RT with Manual ESI Configuration

Configuring an ES-Import RT was previously mandatory for Type 0 ESI. The ES-Import RT is auto-extracted by default, and the configuration serves to override the default value. This feature is based on RFC 7432 but applied specifically to ESI Type 0. For more information, see Section 5 of RFC 7432.

Supported EVPN IRB Scenarios

EVPN IRB supports the following scenarios:

Dual-homing supports the following methods:

  • Only one EFP is supported per ESI per EVI

  • Only all-active mode is supported

  • Only two PE gateways in a redundancy group

Single-homing supports the following methods:

  • Physical

  • VLAN

  • Bundle-ethernet

  • QinQ access

  • Only IPv4 is supported.

  • Subnet-stretch feature with EVPN IRB is only supported in VRF and is not supported in global VRF. in other words, EVPN IRB with EV-LAG multihoming is supported in global VRF without subnet being stretched beyond the multi-homing leafs

Distributed Anycast Gateway

EVPN IRB for the given subnet is configured on all the EVPN PEs that are hosted on this subnet. To facilitate optimal routing while supporting transparent virtual machine mobility, hosts are configured with a single default gateway address for their local subnet. That single (anycast) gateway address is configured with a single (anycast) MAC address on all EVPN PE nodes locally supporting that subnet. This process is repeated for each locally defined subnet requires Anycast Gateway support.

The host-to-host Layer 3 traffic, similar to Layer 3 VPN PE-PE forwarding, is routed on the source EVPN PE to the destination EVPN PE next-hop over an IP or MPLS tunnel, where it is routed again to the directly connected host. Such forwarding is also known as Symmetric IRB because the Layer 3 flows are routed at both the source and destination EVPN PEs.

The following are the solutions that are part of the Distributed Anycast Gateway feature:

EVPN IRB with All-Active Multi-Homing without Subnet Stretch or Host-Routing across the Fabric

For those subnets that are local to a set of multi-homing EVPN PEs, EVPN IRB Distributed Anycast Gateway is established through subnet routes that are advertised using EVPN Route Type 5 to VRF-hosting remote leafs. Though there is no need for the /32 routes within the subnet to be advertised, host MAC and ARP entries have to synced across the EVPN PE to which the servers are multi-homed.

This type of multi-homing has the following characteristics:

  • All-active EV LAG on access

  • Layer 3 ECMP for the fabric for dual-homed hosts based on subnet routes

  • Absence of Layer 2 subnet stretch over the fabric

  • Layer 2 stretch within redundancy group of leafs with orphan ports

Prefix-routing solution for a non-stretched subnet is summarized as below:

Across multi-homing EVPN PEs:

  • Local ARP cache and MAC addresses are synchronized for dual-homed hosts through EVPN MAC+IP host route advertisements. They are imported as local, and are based on the local ESI match, for optimal forwarding to the access gateway.

  • Orphan MAC addresses and host IP addresses are installed as remote addresses over the fabric.

  • ES/EAD routes are exchanges for the designated forwarder (DF) election and split-horizon label.

Across remote EVPN PEs:

  • Dual-homed MAC+IP EVPN Route Type 2 is exchanged with the ESI, EVI Label, Layer 2-Route Type. It is not imported across the fabric, if there is no subnet stretch or host-routing.

  • The subnet IP EVPN Route Type 5 is exchanged with VRF label and Layer 3-Route Type.

  • Layer 3 Route Type for the VRFs is imported that are present locally.

  • Layer 2 Route Type for locally present BDs is imported. It is only imported from the leaf in the same redundancy group, if BD is not stretched.

EVPN IRB with All-Active Multihoming with Subnet Stretch or Host-Routing across the Fabric

For a bridge domain or subnet that is stretched across remote EVPN PEs, both /32 host routes and MAC routes are distributed in a EVPN overlay control plane to enable Layer 2 and Layer 3 traffic to the end points in a stretched subnet.

This type of multihoming has the following characteristics:

  • All-active EV-LAG on the access gateway

  • Layer 2 or Layer 3 ECMP for the fabric for dual-homed hosts based on Route Type 1 and Route Type 2

  • Layer 3 unipath over the fabric for single-homed hosts based on Route Type 2

  • Layer 2 subnet stretch over the fabric

  • Layer 2 stretch within redundancy group of leafs with orphan ports

MAC and host routing solution for a stretched subnet is summarized as follows:

Across multihoming EVPN PEs:

  • The Local ARP cache and MAC addresses are synchronized for dual-homed hosts through EVPN MAC+IP host route advertisements. They are imported as local, based on the local ESI match, for optimal forwarding to the access gateway.

  • Synchronized MAC+IP are re-originated for inter-subnet Layer 3 ECMP.

  • Orphan MAC address and host IP address are installed as remote addresses over the fabric.

  • ES/EAD route is exchanged for designated forwarder (DF) election and split-horizon label.

Across remote EVPN PEs:

  • Dual-homed MAC+IP EVPN Route Type 2 is exchange with ESI, EVI label, Layer 2-Route Type, VRF label, and Layer 3-Route Type.

  • Subnet IP EVPN Route Type 5 is exchanged for VRF label, Layer 3-Route Type for silent hosts, and non-stretched subnets.

  • Layer 3 Route Type is imported for locally present VRFs.

  • Layer 2 Route Type is imported for locally present bridge domains.

MAC and IP Unicast Control Plane

This use case has following types:

Prefix Routing or No Subnet Stretch

IP reachability across the fabric is established using subnet prefix routes that are advertised using EVPN Route Type 5 with the VPN label and VRF RTs. Host ARP and MAC sync are established across multi-homing EVPN PEs using MAC+IP Route Type 2 based on a shared ESI to enable local switching through both the multi-homing EVPN PEs.

Host Routing or Stretched Subnet

When a host is discovered through ARP, the MAC and IP Route Type 2 is advertised with both MAC VRF and IP VRF router targets, and with VPN labels for both MAC-VRF and IP-VRF. Particularly, the VRF route targets and Layer 3 VPN label are associated with Route Type 2 to achieve PE-PE IP routing identical to traditional L3VPNs. A remote EVPN PE installs IP/32 entries directly in Layer 3 VRF table through the advertising EVPN PE next-hop with the Layer 3 VPN label encapsulation, much like a Layer 3 VPN imposition PE. This approach avoids the need to install separate adjacency rewrites for each remote host in a stretched subnet. Instead, it inherits a key Layer 3 VPN scale benefit of being able to share a common forwarding rewrite or load-balance resource across all IP host entries reachable through a set of EVPN PEs.

ARP and MAC sync

For hosts that are connected through LAG to more that one EVPN PE, the local host ARP and MAC entries are learnt in data plane on either or both of the multihoming EVPN PEs. Local ARP and MAC entries are synced across the two multihoming EVPN PEs using MAC and IP Route Type 2 based on a shared ESI to enable local switching through both the multihoming EVPN PEs. Essentially, a MAC and IP Route Type 2 that is received with a local ESI causes the installation of a synced MAC entry that points to the local AC port, and a synced ARP entry that is installed on the local BVI interface.


Note

Only one Ethernet Flow Point (EFP) is supported per non-Zero ESI per bridge domain or EVI. This is a limitation of EVPN.


MAC and IP Route Re-origination

MAC and IP Route Type 2 received with a local ESI, which is used to sync MAC and ARP entries, is also re-originated from the router that installs a SYNC entry, if the host is not locally learnt and advertised based on local learning. This route re-origination is required to establish overlay IP ECMP paths on remote EVPN PEs, and to minimize traffic hit on local AC link failures, that can result in MAC and IP route withdraw in the overlay.


Note

If custom or static MAC address is configured on a BVI interface, the MAC address on the wire may be different than what is configured. This has no operational or functional impact.


Intra-subnet Unicast Data Plane

The Layer 2 traffic is bridged on the source EVPN PE using ECMP paths to remote EVPN PEs, established through MAC+IP RT2, for every ES and for every EVI, ES and EAD Route Type 2 routes that are advertised from the local EVPN PEs.

Inter-subnet Unicast Data Plane

Inter-subnet traffic is routed on the source ToRs through overlay ECMP to the destination ToR next-hops. Data packet are encapsulated with the VPN label advertised from the ToR and tunnel label for the BGP next-hop towards the spine. It is then routed again on the destination ToR using a local ARP adjacency towards the host. IP ECMP on the remote ToRs is established through local and re-originated routes advertised from the local ToRs.

VM Mobility Support

VM mobility is the ability of virtual machines to migrate between one server and another while retaining their existing MAC and IP addresses.

The following are the two key components in EVPN Route Type 2 that enable VM Mobility:
  • Host MAC advertisement component that is imported into local bridge MAC table, and Layer 2 bridged traffic across the network overlay.

  • Host IP advertisement component that is imported into the IP routing table in a symmetric IRB design, enables routed traffic across the network overlay.

The above-mentioned components are advertised together in a single MAC + IP host route advertisement. An additional MAC-only route could also be advertised.

The following behaviors of VM are supported. The VM can:
  • retain existing MAC and acquire a new IP address

  • retain existing IP address and acquire a new MAC

  • retain both existing MAC and IP address

MAC and MAC-IP Sequence Numbers

The IRB gateway device assigns, manages, and advertises sequence numbers that are associated with the locally learnt MAC routes through hardware learning, and the locally learnt MAC-IP routes through ARP.

Synchronized MAC and MAC-IP Sequence Numbers

In a host that is multi-homed to two ToRs, the locally learnt MAC and MAC-IP routes are synchronized across the two multi-homing peers through Route Type 2 learnt routes with a local ESI. So a device could have either MAC and MAC-IP, or both of them, learnt through both synchronized and local learning. Sequence numbers are synchronized across local and synchronized routes, because of which the sequence number that is advertised from the two ToRs for a given route is always the same.In certain situations, remote-sync route with same ESI can have a higher sequence number than a local route. In such a case, the local route sequence number is bumped up to match remote-sync route sequence number.

Local Sequence Number Updates

Host mobility is triggered when a local route is learnt while a remote route already exists. When mobility occurs, the local route is assigned a sequence number that is one higher than the existing remote route. This new local route is then advertised to the rest of the network.

Best Route Selection after Host Movement

When a host moves, the EVPN-PE at the new location of the host generates and advertises a higher sequence route to the network. When a higher sequence number route is received, as per RFC 7432, it is considered as the new best route and it is used for forwarding traffic. Best route selection is done for both MAC and MAC-IP routes.

Stale Route Deletion after a Host Movement

After a host moves from local to remote ESI, if a remote route from a different ESI is received and if a local route for the same host with a lower sequence number exists, then the local route is deleted and is withdrawn from the network.

The new higher sequence number remote MAC route is now considered best and is used to forward traffic. An ARP probe is sent to the host at the old local location. Because the host is at new remote location, probe will not succeed, resulting in clearing old local MAC-IP route.

Host Movement Detection through GARP

If a host sends a Gratuitous ARP (GARP) at its new location after a movement, the local MAC and local MAC-IP learning independently trigger mobility for both routes.

Host Move Detection with Silent Host

If a host does not send a GARP or a data packet at its new location following a move, the aging of the local MAC at the old location triggers mobility for both routes.

Host Move Detection without GARP with Data Packet

If the host does not send a GARP following a move, a data packet from the host triggers a proactive ARP probe to discover host MAC-IP and trigger mobility for this host across the overlay.

Duplicate MAC Detection

Duplicate MAC detection and freezing is supported as per RFC 7432.

Detection: Duplicate detection and recovery parameters are configurable. The default configuration is five times in 180 seconds and route freezing after three duplicate cycles. With the default configuration, when a host moves five times in 180 seconds, it is marked as duplicate for 30 seconds. Route advertisement for hosts in Duplicate state is suppressed. Host is taken out of duplicate state after 30 seconds. After a host is detected as duplicate for 3 times, on the fourth duplicate cycle, the host is permanently frozen. All route advertisements are suppressed for the frozen hosts.

In multi-homed hosts, a MAC is not necessarily learnt locally but is learnt through synchronization. Duplicate detection is supported for both local and remote-sync hosts. Remote-sync routes are differentiated from remote routes.

MAC-IP Handling: If the MAC route is in duplicate or frozen state, the corresponding local MAC-IP is updated, except that the route deletes are not withheld.

Duplicate State Handling:When a host is in duplicate state, route advertisements are suppressed. However, local routes are programmed in hardware so that traffic on local EVPN-PE is forwarded to the local host.

Recovery: It is possible to unfreeze permanently frozen hosts. The following is the recommended procedure to clear frozen hosts:

  • Shutdown the host which is causing duplicate traffic.

  • Use the clear l2route evpn frozen-mac frozen-flag command to clear the frozen hosts.

Configuring EVPN IRB


/* Configure CEF to prefer RIB prefixes over adjacency prefixes.*/

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface Bundle-Ether 3
RP/0/RSP0/CPU0:router(config-if)# lacp system mac 1.1.1
RP/0/RSP0/CPU0:router(config-if)# exit
RP/0/RSP0/CPU0:router(config)# cef adjacency route override rib

/* Configure EVPN L3VRF per DC tenant. */

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# vrf irb1 
RP/0/RSP0/CPU0:router(config-vrf)# address-family ipv4 unicast 
RP/0/RSP0/CPU0:router(config-vrf-af)# import route-target 1000:1 
RP/0/RSP0/CPU0:router(config-vrf-af)# export route-target 1000:1 
RP/0/RSP0/CPU0:router(config-vrf-af)# exit 

/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and bridge-group virtual interface (BVI) per bridge domain. */
/* Note: When a VM migrates from one subnet to another (subnet stretching), apply the following IRB configuration to both the EVPN PEs. *\

RP/0/RSP0/CPU0:router# configure 
RP/0/RSP0/CPU0:router(config)# interface bvi 1001
RP/0/RSP0/CPU0:router(config-if)# host-routing
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 10.10.0.4 255.255.255.0 
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 172.16.0.1 secondary 
RP/0/RSP0/CPU0:router(config-if)# mac-address 2001:DB8::1
/* Configure EVPN Layer 2 bridging service. Note: This configuration is performed in Layer 2 gateway or bridging scenario. */

Router# configure 
Router(config)# l2vpn 
Router(config-l2vpn)# bridge group 1
Router(config-l2vpn-bg)# bridge-domain 1-1
Router(config-l2vpn-bg-bd)# interface GigabitEthernet 0/0/0/1.1
Router(config-l2vpn-bg-bd-ac)# evi 1
Router(config-l2vpn-bg-bd-ac-evi)# commit
Router(config-l2vpnbg-bd-ac-evi)# exit

/* Configure BGP. */

RP/0/RSP0/CPU0:router# configure 
RP/0/RSP0/CPU0:router(config)# router bgp 3107 router-id 192.168.1.1
RP/0/RSP0/CPU0:router(config-bgp)# vrf irb1 
RP/0/RSP0/CPU0:router(config-bgp-vrf)# rd auto
RP/0/RSP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute connected
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute static
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# exit


/* Configure EVPN, and configure main bundle ethernet segment parameters in EVPN. */

RP/0/RSP0/CPU0:router# configure 
RP/0/RSP0/CPU0:router(config)# evpn  
RP/0/RSP0/CPU0:router(config-evpn)# evi 2001
RP/0/RSP0/CPU0:router(config-evpn-instance)# bgp
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# route-target import 1000:1 
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# route-target export 1000:1

RP/0/RSP0/CPU0:router(config-evpn-evi)# advertise-mac
RP/0/RSP0/CPU0:router(config-evpn-evi)# unknown-unicast-suppression

/* Configure Layer 2 VPN. */

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# l2vpn  
RP/0/RSP0/CPU0:router(config-l2vpn)# bridge group irb
RP/0/RSP0/CPU0:router(config-l2vpn-bg)# bridge-domain irb1
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# interface bundle-Ether3.1001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-ac)# routed interface BVI100
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-bvi)# split-horizon group core
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-bvi)# evi 10001

Running Configuration for EVPN IRB


/* Configure LACP */
interface Bundle-Ether3
 lacp system mac 1.1.1
!
 
/* Configure CEF adjacency overwrite. */
cef adjacency route override rib

/* Configure EVPN Layer 3 VRF per DC tenant. */
vrf irb1
address-family ipv4 unicast
  import route-target
   1000:1
  !
  export route-target
   1000:1
  !

!
!
 
/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and bridge-group virtual interface (BVI) per bridge domain./*

 
interface Bundle-Ether3.1001 l2transport
 encapsulation dot1q 1001
 rewrite ingress tag pop 1 symmetric
!
interface BVI1001
 host-routing
 vrf irb1
 ipv4 address 10.0.1.1 255.255.255.0
 mac-address 0000.3030.1
!
 
/* Configure BGP. */
 
router bgp 3107
 vrf irb1
  rd auto
  address-family ipv4 unicast
  redistribute connected
  redistribute static
!
! 

/* Configure EVPN. */

evpn
evi 10001
  bgp
   route-target import 1000:1
   route-target export 1000:1
  !
  advertise-mac
  unknown-unicast-suppression
!
 
/* Configure Layer2 VPN. */
 
l2vpn
bridge group irb
  bridge-domain irb1
   interface Bundle-Ether3.1001
   !
   routed interface BVI1001
    split-horizon group core
   !
   evi 10001
   !
  !

Verify EVPN IRB

EVPN IPv6 Hosts with Mobility

EVPN IPv6 Hosts with Mobility feature enables you to provide EVPN IPv6 service over IPv4-MPLS core network. This feature supports all-active multihoming and virtual machine (VM) or host move.

Service Providers (SPs) use a stable and established core with IPv4-MPLS backbone for providing IPv4 VPN services. The IPv6 VPN Provider Edge Transport over MPLS (IPv6 on Provider Edge Routers [6PE] and IPv6 on VPN Provider Edge Routers [6VPE]) facilitates SPs to offer IPv6 VPN services over IPv4 backbone without an IPv6 core. The provide edge (PE) routers run MP-iBGP to advertise IPv6 reachability and IPv6 label distribution. For 6PE, the labels are allocated per IPv6 prefix learnt from connected customer edge (CE) routers and for 6VPE, the PE router can be configured to allocate labels on a per-prefix or per-CE and per-VRF level.

Mobility Support

In global VRF, mobility is not supported. However, you can move a host from one ES to another ES within the same bridge domain. The host gets a new MAC address and IP address. The host can have multiple IP addresses for the same MAC address.

In non-default VRF, mobility is supported with the following conditions:
  • Basic MAC move: The IP address and MAC address remains the same. You can move a host from one ES to another ES with the same IP address and MAC address

  • Same MAC address but with a different IP address: The host gets a new IP address

  • Same IP address but with a different MAC address: The host gets a new MAC address but retains the same IP address

  • Multiple IP addresses with the same MAC address: Many VMs are involved in the same the MAC move

Restrictions

  • In customer VRFs, when host routing is not configured, MAC-IP advertisement is different between zero ESI and none-zero ESI. When host routing is not configured, MAC-IP with non-zero ESI is advertised without L3 RT (VRF RT). MAC-IP with zero ESI is not advertised. The following table lists the behavior of MAC-IP advertisement with respect to ESI and host routing.

    ESI Type

    With host routing

    Without host routing

    MAC-IP with non-zero ESI

    Advertised with L3 VRF RT

    Advertised without L3 VRF RT

    MAC-IP with zero ESI

    Advertised with L3 VRF RT

    Not advertised

  • In global VRF, Layer 2 stretch is not supported.

  • MAC move in global VRF is only supported if the host is within the same bridge domain. You can move a host from one ES to another ES within the same bridge domain.

  • Duplication of IP address detection is not supported.

  • Maximum number of leafs allowed per ESI is two.

Configure EVPN IPv6 Hosts with Mobility

Perform the following tasks to configure EVPN IPv6 Hosts with Mobility feature:

  • Configure VRF

  • Configure ISIS

  • Configure BGP

  • Configure AC interface

  • Configure BVI interface

  • Configure EVPN

  • Configure L2VPN


    Note

    A device can contain up to 128K MAC address entries. A bridge domain on a device can contain up to 65K MAC address entries.



    Note

    • You cannot configure the EVPN remote peer using the VPNv4 unicast if you have configured the advertise vpnv4 unicast re-originated command under the L2VPN EVPN address-family. You can either configure the VPNv4 unicast or the advertise vpnv4 unicast re-originated under L2VPN EVPN address-family.

    • You cannot configure the EVPN remote peer using the VPNv6 unicast if you have configured the advertise vpnv6 unicast re-originated command under the L2VPN EVPN address-family. You can either configure the VPNv6 unicast or the advertise vpnv6 unicast re-originated under L2VPN EVPN address-family.


    
    /* Configure VRF */
    
    Router# configure
    Router(config)# vrf cust102 
    Router(config-vrf)# address-family ipv4 unicast 
    Router(config-vrf-af)# import route-target 160102:16102 
    Router(config-vrf-af)# export route-target 160102:16102 
    Router(config-vrf-af)# exit 
    !
    Router(config-vrf)# address-family ipv6 unicast 
    Router(config-vrf-af)# import route-target 6160102:16102 
    Router(config-vrf-af)# export route-target 6160102:16102 
    Router(config-vrf-af)# commit 
    !
    
    /* Configure ISIS */
    
    Router# configure
    Route(config)# router isis v6
    Route(config-isis)# 49.0001.0000.0160.0005.00
    Route(config-isis)# nsr
    Route(config-isis)# log adjacency changes
    Route(config-isis)# lsp-gen-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
    Route(config-isis)# lsp-mtu 1468
    Route(config-isis)# lsp-refresh-interval 65000
    Route(config-isis)# max-lsp-lifetime 65535
    Route(config-isis)# address-family ipv4 unicast
    Route(config-isis-af)# metric-style wide
    Route(config-isis-af)# microloop avoidance protected
    Route(config-isis-af)# spf-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
    Route(config-isis-af)# segment-routing mpls sr-prefer
    Route(config-isis-af)# segment-routing prefix-sid-map advertise-local
    Route(config-isis-af)# exit
    !
    Route(config-isis)# interface Bundle-Ether10
    Route(config-isis-if)# point-to-point
    Route(config-isis-if)# address-family ipv4 unicast
    Route(config-isis-af)# fast-reroute per-prefix
    Route(config-isis-af)# fast-reroute per-prefix ti-lfa
    Route(config-isis-af)# metric 10
    Route(config-isis-af)# exit
    !
    Route(config-isis)# interface Bundle-Ether20
    Route(config-isis-if)# point-to-point
    Route(config-isis-if)# address-family ipv4 unicast
    Route(config-isis-af)# fast-reroute per-prefix
    Route(config-isis-af)# fast-reroute per-prefix ti-lfa
    Route(config-isis-af)# metric 10
    Route(config-isis-af)# exit
    !
    Route(config-isis)# interface loopback0
    Route(config-isis-if)# passive
    Route(config-isis-if)# address-family ipv4 unicast
    Route(config-isis-af)# exit
    !
    Route(config-isis)# interface loopback10
    Route(config-isis-if)# passive
    Route(config-isis-if)# address-family ipv4 unicast
    Route(config-isis-af)# prefix-sid index 1605
    Route(config-isis-af)# commit
    Route(config-isis-af)# exit
    !
    
    /* Configure Segment Routing */
    
    Router# configure
    Router(config)# segment-routing
    Router(config-sr)# global-block 16000 23999
    Router(config-sr)# commit
    
    /* Configure BGP */
    
    Router(config)# router bgp 100
    Router(config-bgp)# bfd minimum-interval 50
    Router(config-bgp)# bfd multiplier 3
    Router(config-bgp)# bgp router-id 160.0.0.5
    Router(config-bgp)# address-family ipv4 unicast      --->  To support V4 Global VRF
    Router(config-bgp-af)# maximum-paths ibgp 10 unequal-cost  ---> ECMP
    Router(config-bgp-af)# redistribute connected    --> V4 Global VRF
    Router(config-bgp-af)# exit
    !
    Router(config-bgp)# address-family ipv4 unicast      --->  VRF
    Router(config-bgp-af)# vrf all
    Router(config-bgp-af)# label mode per-vrf
    Router(config-bgp-af)# exit
    !
    Router(config-bgp)# address-family ipv6 unicast   ---> For 6PE
    Router(config-bgp-af)# label mode per-vrf
    Router(config-bgp-af)# maximum-paths ibgp 8
    Router(config-bgp-af)# redistribute static
    Router(config-bgp-af)# allocate-label all
    Router(config-bgp-af)# exit
    !
    Router(config-bgp)# address-family vpnv6 unicast   ---> 6 VPE
    Router(config-bgp-af)# vrf all
    Router(config-bgp-af)# label mode per-vrf
    Router(config-bgp-af)# exit
    !
    Router(config-bgp)# address-family l2vpn evpn   ----> EVPN
    Router(config-bgp-af)# bgp implicit-import      ----> Global VRF
    Router(config-bgp-af)# exit
    !
    Router(config-bgp)# neighbor-group evpn-rr
    Router(config-bgp-nbr)# remote-as 100
    Router(config-bgp-nbr)# bfd fast-detect
    Router(config-bgp-nbr)# update-source loopback0
    Router(config-bgp-nbr)# address-family ipv4 unicast
    Router(config-bgp-nbr-af)# route-policy pass-all in
    Router(config-bgp-nbr-af)# route-policy nh-lo10 out
    Router(config-bgp-nbr-af)# exit
    !
    Router(config-bgp-nbr)# address-family ipv6 labeled-unicast  ----> For 6PE
    Router(config-bgp-nbr-af)# route-policy pass-all out
    Router(config-bgp-nbr-af)# exit
    !
    Router(config-bgp-nbr)# address-family l2vpn evpn
    Router(config-bgp-nbr-af)# route-policy pass-all in
    Router(config-bgp-nbr-af)# route-policy nh-lo10 out
    Router(config-bgp-nbr-af)# advertise vpnv4 unicast re-originated -> For Route Type 5
    Router(config-bgp-nbr-af)# advertise vpnv6 unicast re-originated -> For Route Type 5
    Router(config-bgp-nbr-af)# exit
    !
    Router(config-bgp)# neighbor 160.0.0.1
    Router(config-bgp-nbr)# use neighbor-group evpn-rr
    Router(config-bgp-nbr)# exit
    !
    Router(config-bgp)# neighbor 160.0.0.2
    Router(config-bgp-nbr)# use neighbor-group evpn-rr
    Router(config-bgp-nbr)# exit
    !
    Router(config-bgp)# vrf all
    Router(config-bgp-vrf)# rd 1605:102
    Router(config-bgp-vrf)# address-family ipv4 unicast
    Router(config-bgp-vrf-af)# label mode per-vrf
    Router(config-bgp-vrf-af)# maximum-paths ibgp 10 unequal-cost
    Router(config-bgp-vrf-af)# redistribute connected   --->  Triggers Route Type 5
    Router(config-bgp-vrf-af)# exit
    !
    Router(config-bgp-vrf)# address-family ipv6 unicast
    Router(config-bgp-vrf-af)# label mode per-vrf
    Router(config-bgp-vrf-af)# maximum-paths ibgp 10 unequal-cost
    Router(config-bgp-vrf-af)# redistribute connected
    Router(config-bgp-vrf-af)# exit
    !
    
    /* Configure AC interface */
    
    Router(config)# interface Bundle-Ether1.102 l2transport
    Router(config-l2vpn-subif)# encapsulation dot1q 102
    Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
    Router(config-l2vpn-subif)# commit
    Router(config-l2vpn-subif)# exit
    
    /* Configure BVI interface */
    
    Router(config)# interface BVI100
    Router(config-if)# ipv4 address 56.78.100.1 255.255.255.0
    Router(config-if)# ipv6 address 56:78:100::1/64
    Router(config-if)# mac-address 22.22.22
    Router(config-if)# exit
    !
    Router(config)# interface BVI102
    Router(config-if)# host-routing
    Router(config-if)# vrf cust102
    Router(config-if-vrf)# ipv4 address 56.78.102.1 255.255.255.0
    Router(config-if-vrf)# ipv6 address 56:78:100::1/64
    Router(config-if-vrf)# ipv6 address 56:78:102::1/64
    Router(config-if-vrf)# mac-address 22.22.22
    Router(config-if)# commit
    
    /* Configure CEF */ [Required for dual homing]
    Router# configure
    Router(config)# cef adjacency route override rib
    /* Configure EVPN, and configure main bundle ethernet segment parameters in EVPN */
    Router# configure 
    Router(config)# evpn  
    Router(config-evpn)# evi 102
    Router(config-evpn-evi)# bgp
    Router(config-evpn-evi)# rd 1605:102
    Router(config-evpn-evi-bgp)# route-target import 160102:102
    Router(config-evpn-evi-bgp)# route-target export 160102:102
    Router(config-evpn-evi-bgp)# exit
    Router(config-evpn-evi)# advertise-mac
    Router(config-evpn-evi)# exit
    !
    Router(config-evpn)# interface Bundle-Ether1
    Router(config-evpn-ac)# ethernet-segment
    Router(config-evpn-ac-es)# identifier type 0 56.56.56.56.56.56.56.56.01
    Router(config-evpn-ac-es)# exit
    !
    Router(config-evpn)# interface Bundle-Ether2
    Router(config-evpn-ac)# ethernet-segment
    Router(config-evpn-ac-es)# identifier type 0 56.56.56.56.56.56.56.56.02
    Router(config-evpn-ac-es)# commit
    
    /* Configure L2VPN */
    
    Router# configure
    Router(config)# l2vpn  
    Router(config-l2vpn)# bridge group bg102
    Router(config-l2vpn-bg)# bridge-domain bd102
    Router(config-l2vpn-bg-bd)# interface Bundle-Ether1.102
    Router(config-l2vpn-bg-bd-ac)# exit
    !
    Router(config-l2vpn-bg-bd)# interface Bundle-Ether2.102
    Router(config-l2vpn-bg-bd-ac)# exit
    !
    Router(config-l2vpn-bg-bd)# interface Bundle-Ether3.102
    Router(config-l2vpn-bg-bd-ac)# exit
    !
    Router(config-l2vpn-bg-bd)# interface Bundle-Ether4.102
    Router(config-l2vpn-bg-bd-ac)# exit
    !
    Router(config-l2vpn-bg-bd)# interface Bundle-Ether5.102
    Router(config-l2vpn-bg-bd-ac)# routed interface BVI102
    Router(config-l2vpn-bg-bd-bvi)# evi 102
    Router(config-l2vpn-bg-bd-bvi-evi)# commit
    

Running Configuration


/* Configure VRF */

vrf cust102
 address-family ipv4 unicast
 import route-target
 160102:16102
 !
 export route-target
 160102:16102
 !
 !
 address-family ipv6 unicast
 import route-target
 6160102:16102
 !
 export route-target
 6160102:16102
 !
 !
!

/ * Configure ISIS */

router isis v6
 net 49.0001.0000.0160.0005.00
 nsr
 log adjacency changes
 lsp-gen-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
 lsp-mtu 1468
 lsp-refresh-interval 65000
 max-lsp-lifetime 65535
 address-family ipv4 unicast
 metric-style wide
 microloop avoidance protected
 spf-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
 segment-routing mpls sr-prefer
 segment-routing prefix-sid-map advertise-local
 !
 interface Bundle-Ether10
 point-to-point
 address-family ipv4 unicast
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
 metric 10
 !
 !
 interface Bundle-Ether20
 point-to-point
 address-family ipv4 unicast
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
 metric 10
 !
 !
 interface Loopback0
 passive
 address-family ipv4 unicast
 !
 !
 interface Loopback10
 passive
 address-family ipv4 unicast
 prefix-sid index 1605
 !
 !
!

/ * Configure Segment Routing */

segment-routing
 global-block 16000 23999
!

/ * Configure BGP */

router bgp 100
 bfd minimum-interval 50
 bfd multiplier 3
 bgp router-id 160.0.0.5
 address-family ipv4 unicast      --->  To support V4 Global VRF
  maximum-paths ibgp 10 unequal-cost  ---> ECMP
  redistribute connected    --> V4 Global VRF
 !
 address-family vpnv4 unicast ---> VRF
  vrf all
   label mode per-vrf
 !
 address-family ipv6 unicast   ---> For 6PE
  label mode per-vrf
  maximum-paths ibgp 8
  redistribute connected
  redistribute static
  allocate-label all
 !
 address-family vpnv6 unicast   ---> 6VPE
  vrf all
   label mode per-vrf
 !
 address-family l2vpn evpn   ----> EVPN
 bgp implicit-import         ----> Global VRF
 !
 
neighbor-group evpn-rr
 remote-as 100
 bfd fast-detect
 update-source Loopback0
 address-family ipv4 unicast
  route-policy pass-all in
  route-policy nh-lo10 out
 !
 address-family ipv6 labeled-unicast  ----> For 6PE
 route-policy pass-all out
 !
 address-family l2vpn evpn
 route-policy pass-all in
 route-policy nh-lo10 out
 advertise vpnv4 unicast re-originated   ---> For Route Type 5
 advertise vpnv6 unicast re-originated   ----> For Route Type 5
 !
 !
 neighbor 160.0.0.1
 use neighbor-group evpn-rr
 !
 neighbor 160.0.0.2
 use neighbor-group evpn-rr
 !
 vrf cust102
 rd 1605:102
 address-family ipv4 unicast
 label mode per-vrf
 maximum-paths ibgp 10 unequal-cost
 redistribute connected   <----- Triggers Route Type 5
 !
 address-family ipv6 unicast
 label mode per-vrf
 maximum-paths ibgp 10 unequal-cost
 redistribute connected
 !
 !

/* Configure AC interface */

interface Bundle-Ether1.102 l2transport
 encapsulation dot1q 102
 rewrite ingress tag pop 1 symmetric
!
/* Configure BVI interface */
interface BVI100
 ipv4 address 56.78.100.1 255.255.255.0
 ipv6 address 56:78:100::1/64
 mac-address 22.22.22
!
interface BVI102
 host-routing
 vrf cust102
 ipv4 address 56.78.102.1 255.255.255.0
 ipv6 address 56:78:100::1/64
 ipv6 address 56:78:102::1/64
 mac-address 22.22.22
!
/* Configure CEF */ [ Required for Dual homing]
cef adjacency route override rib
/* Configure EVPN */
evpn
 evi 102
 bgp
 rd 1605:102
 route-target import 160102:102
 route-target export 160102:102
 !
 advertise-mac
 !
 !
!
interface Bundle-Ether1
 ethernet-segment
 identifier type 0 56.56.56.56.56.56.56.56.01
 !
 !
 interface Bundle-Ether2
 ethernet-segment
 identifier type 0 56.56.56.56.56.56.56.56.02
 !
 !

/* Configure L2VPN */

l2vpn
 bridge group bg102
 bridge-domain bd102
 interface Bundle-Ether1.102
 !
 interface Bundle-Ether2.102
 !
 interface Bundle-Ether3.102
 !
 interface Bundle-Ether4.102
 !
 interface Bundle-Ether5.102
 !
 routed interface BVI102
 !
 evi 102
 !
 !
 !
!

Verification

Verify that you have configured EVPN IPv6 Hosts with Mobility feature is configured.


/* 6PE and Static Route Advertisement */
Host route is advertised as EVPN Route Type 2

Router# show bgp ipv6 unicast 56:78:100::2
BGP routing table entry for 56:78:100::2/128
Versions:
 Process bRIB/RIB SendTblVer
 Speaker 212 212
 Local Label: 2
Last Modified: Oct 31 19:13:10.998 for 00:00:19
Paths: (1 available, best #1)
 Not advertised to any peer
 Path #1: Received by speaker 0
 Not advertised to any peer
 Local
 160.5.5.5 (metric 20) from 160.0.0.1 (160.0.0.5)
 Received Label 2 
 Origin IGP, localpref 100, valid, internal, best, group-best, imported
 Received Path ID 0, Local Path ID 0, version 212
 Extended community: Flags 0x20: SoO:160.5.5.5:100 RT:160100:100 
 mac: 00:06:01:00:01:02
 Originator: 160.0.0.5, Cluster list: 100.0.0.4
 Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 1605:100

/* Manually configured static route in global VRF */

Router# show bgp ipv6 unicast 56:78:100::2

BGP routing table entry for 30::1/128
Versions:
 Process bRIB/RIB SendTblVer
 Speaker 9 9
 Local Label: 2
Last Modified: Oct 30 20:25:17.159 for 23:15:55
Paths: (2 available, best #2)
 Advertised to update-groups (with more than one peer):
 0.2 
 Path #1: Received by speaker 0
 Not advertised to any peer
 Local
 160.0.0.6 (metric 20) from 160.0.0.1 (160.0.0.6)
 Received Label 2 
 Origin incomplete, metric 0, localpref 100, valid, internal, labeled-unicast
 Received Path ID 0, Local Path ID 0, version 0
 mac: 10:11:04:64:f2:7f
 Originator: 160.0.0.6, Cluster list: 100.0.0.4
 Path #2: Received by speaker 0
 Advertised to update-groups (with more than one peer):
 0.2 
 Local
 56:78:100::2 from :: (160.0.0.5)
 Origin incomplete, metric 0, localpref 100, weight 32768, valid, redistributed, best, group-best
 Received Path ID 0, Local Path ID 0, version 9
 mac: 10:11:04:64:f2:7f

/* Verify Ethernet Segments are peering for Dual homing */

Router# show evpn ethernet-segment int bundle-Ether 1

Ethernet Segment Id Interface Nexthops 
------------------------ ---------------------------------- --------------------
0056.5656.5656.5656.5601 BE1 160.5.5.5
                              160.6.6.6
-----------------------------------------------------------

/* Verify DF election */

Router# show evpn ethernet-segment int bundle-Ether 1 carving detail
Legend:
 A - Load-balancing mode and Access Protection incompatible,
 B - No Forwarders EVPN-enabled,
 C - Backbone Source MAC missing (PBB-EVPN),
 RT - ES-Import Route Target missing,
 E - ESI missing,
 H - Interface handle missing,
 I - Name (Interface or Virtual Access) missing,
 M - Interface in Down state,
 O - BGP End of Download missing,
 P - Interface already Access Protected,
 Pf - Interface forced single-homed,
 R - BGP RID not received,
 S - Interface in redundancy standby state,
 X - ESI-extracted MAC Conflict
 SHG - No local split-horizon-group label allocated

Ethernet Segment Id Interface Nexthops 
------------------------ ---------------------------------- --------------------
0056.5656.5656.5656.5601 BE1 160.5.5.5
 160.6.6.6
 ES to BGP Gates : Ready
 ES to L2FIB Gates : Ready
 Main port :
 Interface name : Bundle-Ether1
 Interface MAC : 008a.9644.acdd
 IfHandle : 0x080004dc
 State : Up
 Redundancy : Not Defined
 ESI type : 0
 Value : 56.5656.5656.5656.5601
 ES Import RT : 5656.5656.5656 (from ESI)
 Source MAC : 0000.0000.0000 (N/A)
 Topology :
 Operational : MH
 Configured : All-active (AApF) (default)
 Primary Services : Auto-selection
 Secondary Services: Auto-selection
 Service Carving Results:
 Forwarders : 161
 Permanent : 10
 EVI:ETag P : 700:1, 701:1, 702:1, 703:1, 704:1, 705:1
 EVI:ETag P : 706:1, 707:1, 708:1, 709:1
 Elected : 76
 EVI E : 100, 102, 104, 106, 108, 110
 EVI E : 112, 114, 116, 118, 120, 122,
 EVI E : 124, 126, 128, 130, 132, 134,
 EVI E : 136, 138, 140, 142, 144, 146,
 EVI E : 148, 150, 152, 154, 156, 158,
 EVI E : 160, 162, 164, 166, 168, 170,
 EVI E : 172, 174, 176, 178, 180, 182,
 EVI E : 184, 186, 188, 190, 192, 194,
 EVI E : 196, 198, 200, 202, 204, 206,
 EVI E : 208, 210, 212, 214, 216, 218,
 EVI E : 220, 222, 224, 226, 228, 230,
 EVI E : 232, 234, 236, 238, 240, 242,
 EVI E : 244, 246, 248, 250
 Not Elected : 75
 EVI NE : 101, 103, 105, 107, 109, 111
 EVI NE : 113, 115, 117, 119, 121, 123,
 EVI NE : 125, 127, 129, 131, 133, 135,
 EVI NE : 137, 139, 141, 143, 145, 147,
 EVI NE : 149, 151, 153, 155, 157, 159,
 EVI NE : 161, 163, 165, 167, 169, 171,
 EVI NE : 173, 175, 177, 179, 181, 183,
 EVI NE : 185, 187, 189, 191, 193, 195,
 EVI NE : 197, 199, 201, 203, 205, 207,
 EVI NE : 209, 211, 213, 215, 217, 219,
 EVI NE : 221, 223, 225, 227, 229, 231,
 EVI NE : 233, 235, 237, 239, 241, 243,
 EVI NE : 245, 247, 249
 MAC Flushing mode : STP-TCN
 Peering timer : 3 sec [not running]
 Recovery timer : 30 sec [not running]
 Carving timer : 0 sec [not running]
 Local SHG label : 68663
 Remote SHG labels : 1
 68670 : nexthop 160.6.6.6