Information About IPv6 Multicast: Bootstrap Router
IPv6 BSR
PIM devices in a domain must be able to map each multicast group to the correct RP address. The BSR protocol for PIM-SM provides a dynamic, adaptive mechanism to distribute group-to-RP mapping information rapidly throughout a domain. With the IPv6 BSR feature, if an RP becomes unreachable, it will be detected and the mapping tables will be modified so that the unreachable RP is no longer used, and the new tables will be rapidly distributed throughout the domain.
Every PIM-SM multicast group needs to be associated with the IP or IPv6 address of an RP. When a new multicast sender starts sending, its local DR will encapsulate these data packets in a PIM register message and send them to the RP for that multicast group. When a new multicast receiver joins, its local DR will send a PIM join message to the RP for that multicast group. When any PIM device sends a (*, G) join message, the PIM device needs to know which is the next device toward the RP so that G (Group) can send a message to that device. Also, when a PIM device is forwarding data packets using (*, G) state, the PIM device needs to know which is the correct incoming interface for packets destined for G, because it needs to reject any packets that arrive on other interfaces.
A small set of devices from a domain are configured as candidate bootstrap routers (C-BSRs) and a single BSR is selected for that domain. A set of devices within a domain are also configured as candidate RPs (C-RPs); typically, these devices are the same devices that are configured as C-BSRs. Candidate RPs periodically unicast candidate-RP-advertisement (C-RP-Adv) messages to the BSR of that domain, advertising their willingness to be an RP. A C-RP-Adv message includes the address of the advertising C-RP, and an optional list of group addresses and mask length fields, indicating the group prefixes for which the candidacy is advertised. The BSR then includes a set of these C-RPs, along with their corresponding group prefixes, in bootstrap messages (BSMs) it periodically originates. BSMs are distributed hop-by-hop throughout the domain.
Bidirectional BSR support allows bidirectional RPs to be advertised in C-RP messages and bidirectional ranges in the BSM. All devices in a system must be able to use the bidirectional range in the BSM; otherwise, the bidirectional RP feature will not function.
IPv6 BSR: Configure RP Mapping
The IPv6 BSR ability to configure RP mapping allows IPv6 multicast devices to be statically configured to announce scope-to-RP mappings directly from the BSR instead of learning them from candidate-RP messages. Announcing RP mappings from the BSR is useful in several situations:
-
When an RP address never changes because there is only a single RP or the group range uses an anycast RP, it may be less complex to configure the RP address announcement statically on the candidate BSRs.
-
When an RP address is a virtual RP address (such as when using bidirectional PIM), it cannot be learned by the BSR from a candidate-RP. Instead, the virtual RP address must be configured as an announced RP on the candidate BSRs.
IPv6 BSR: Scoped Zone Support
BSR provides scoped zone support by distributing group-to-RP mappings in networks using administratively scoped multicast. The user can configure candidate BSRs and a set of candidate RPs for each administratively scoped region in the user’s domain.
For BSR to function correctly with administrative scoping, a BSR and at least one C-RP must be within every administratively scoped region. Administratively scoped zone boundaries must be configured at the zone border devices, because they need to filter PIM join messages that might inadvertently cross the border due to error conditions. In addition, at least one C-BSR within the administratively scoped zone must be configured to be a C-BSR for the administratively scoped zone’s address range.
A separate BSR election will then take place (using BSMs) for every administratively scoped range, plus one for the global range. Administratively scoped ranges are identified in the BSM because the group range is marked to indicate that this is an administrative scope range, not just a range that a particular set of RPs is configured to handle.
Unless the C-RP is configured with a scope, it discovers the existence of the administratively scoped zone and its group range through reception of a BSM from the scope zone’s elected BSR containing the scope zone’s group range. A C-RP stores each elected BSR's address and the administratively scoped range contained in its BSM. It separately unicasts C-RP-Adv messages to the appropriate BSR for every administratively scoped range within which it is willing to serve as an RP.
All PIM devices within a PIM bootstrap domain where administratively scoped ranges are in use must be able to receive BSMs and store the winning BSR and RP set for all administratively scoped zones that apply.
IPv6 Multicast: RPF Flooding of BSR Packets
Cisco IPv6 devices provide support for the RPF flooding of BSR packets so that the device will not disrupt the flow of BSMs. The device will recognize and parse enough of the BSM to identify the BSR address. The device performs an RPF check for this BSR address and forwards the packet only if it is received on the RPF interface. The device also creates a BSR entry containing RPF information to use for future BSMs from the same BSR. When BSMs from a given BSR are no longer received, the BSR entry is timed out.