- Index
- Preface
- Product Overview
- Command-Line Interfaces
- Configuring the Switch for the First Time
- Administering the Switch
- Configuring Interfaces
- Checking Port Status and Connectivity
- Configuring Supervisor Engine Redundancy Using RPR and SSO
- Configuring NSF with SSO Supervisor Engine Redundancy
- Environmental Monitoring and Power Management
- Configuring Power over Ethernet
- Configuring Switches with Cisco Network Assistant
- Configuring VLANs, VTP, and VMPS
- Configuring Layer 2 Ethernet Interfaces
- Configuring SmartPort Macros
- Configuring STP and MST
- Configuring Optional STP Features
- Configuring EtherChannel
- Configuring IGMP Snooping and Filtering
- Configuring 802.1Q and Layer 2 Protocol Tunneling
- Configuring CDP
- Configuring UDLD
- Configuring Unidirectional Ethernet
- Configuring Layer 3 Interfaces
- Configuring Cisco Express Forwarding
- Configuring IP Multicast
- Configuring NetFlow
- Configuring Policy-Based Routing
- Configuring VRF-lite
- Configuring QoS
- Configuring Voice Interfaces
- Configuring 802.1X Port-Based Authentication
- Configuring Port Security
- Configuring RMON
- Configuring Control Plane Policing
- Configuring DHCP Snooping and IP Source Guard
- Configuring Dynamic ARP Inspection
- Configuring Network Security with ACLs
- Configuring Private VLANs
- Configuring Port Unicast and Multicast Flood Blocking
- Configuring Port-Based Traffic Control
- Configuring SPAN and RSPAN
- Configuring Dynamic VLAN Membership
- Configuring System Message Logging
- Configuring SNMP
- Performing Diagnostics on the Catalyst 4500 Series Switch
- Configuring MIB Support
- Configuring WCCPv2 Services
- Acronyms
- Understanding and Configuring Multiple Spanning Trees
Configuring UDLD
This chapter describes how to configure the UniDirectional Link Detection (UDLD) and Unidirectional Ethernet on the Catalyst 4500 series switch. It also provides guidelines, procedures, and configuration examples.
This chapter includes the following major sections:
•Configuring UDLD on the Switch
Note For complete syntax and usage information for the switch commands used in this chapter, look at the Cisco Catalyst 4500 Series Switch Command Reference and related publications at this location:
http://www.cisco.com/en/US/products/hw/switches/ps4324/index.html
If the command is not found in the Catalyst 4500 Command Reference, it is located in the larger Cisco IOS library. Refer to the Catalyst 4500 Series Switch Cisco IOS Command Reference and related publications at this location:
http://www.cisco.com/en/US/products/ps6350/index.html
Overview of UDLD
UDLD allows devices connected through fiber-optic or copper Ethernet cables (for example, Category 5 cabling) to monitor the physical configuration of the cables and detect when a unidirectional link exists. A unidirectional link occurs whenever traffic transmitted by the local device over a link is received by the neighbor but traffic transmitted from the neighbor is not received by the local device. When a unidirectional link is detected, UDLD shuts down the affected interface and alerts the user. Unidirectional links can cause a variety of problems, including spanning tree topology loops.
UDLD is a Layer 2 protocol that works with the Layer 1 mechanisms to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down misconnected interfaces. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.
If one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fibers are working normally from a Layer 1 perspective, then UDLD at Layer 2 determines whether or not those fibers are connected correctly and whether or not traffic is flowing bidirectionally between the right neighbors. This check cannot be performed by autonegotiation because autonegotiation operates at Layer 1.
The switch periodically transmits UDLD packets to neighbor devices on interfaces with UDLD enabled. If the packets are echoed back within a specific time frame and they are lacking a specific acknowledgment (echo), the link is flagged as unidirectional and the interface is shut down. Devices on both ends of the link must support UDLD in order for the protocol to successfully identify and disable unidirectional links.
Note By default, UDLD is locally disabled on copper interfaces to avoid sending unnecessary control traffic on this type of media, since it is often used for access interfaces.
Figure 21-1 shows an example of a unidirectional link condition. Each switch can send packets to a neighbor switch but is not able to receive packets from the same switch that it is sending packets to. UDLD detects and disables these one-way connections.
Figure 21-1 Unidirectional Link
Default UDLD Configuration
Table 21-1 shows the UDLD default configuration.
Configuring UDLD on the Switch
The following sections describe how to configure UDLD:
•Enabling UDLD on Individual Interfaces
•Disabling UDLD on Non-Fiber-Optic Interfaces
•Disabling UDLD on Fiber-Optic Interfaces
•Resetting Disabled Interfaces
Enabling UDLD Globally
To enable UDLD globally on all fiber-optic interfaces on the switch, perform this task:
Enabling UDLD on Individual Interfaces
To enable UDLD on individual interfaces, perform this task:
Disabling UDLD on Non-Fiber-Optic Interfaces
To disable UDLD on individual non-fiber-optic interfaces, perform this task:
Disabling UDLD on Fiber-Optic Interfaces
To disable UDLD on individual fiber-optic interfaces, perform this task:
Resetting Disabled Interfaces
To reset all interfaces that have been shut down by UDLD, perform this task:
|
|
---|---|
Switch# udld reset |
Resets all interfaces that have been shut down by UDLD. |