Overview


This chapter provides these topics about the IE 3000 switch software:

Features

Default Settings After Initial Switch Configuration

Network Configuration Examples

Where to Go Next

In this document, IP refers to IP Version 4 (IPv4) unless there is a specific reference to IP Version 6 (IPv6).

Features

The switch ships with one of these software images installed:

The LAN base image supports basic Layer 2 intelligent features, such as access control lists (ACLs) and quality of service (QoS).

The IP services image includes all Layer 2+ features plus full Layer 3 routing (IP unicast routing, IP multicast routing, and fallback bridging).

Some features described in this chapter are available only on the cryptographic (supports encryption) version of the software. You must obtain authorization to use this feature and to download the cryptographic version of the software from Cisco.com. For more information, see the release notes for this release.

Ease-of-Deployment and Ease-of-Use Features

Performance Features

Management Options

Manageability Features

Availability and Redundancy Features

VLAN Features

Security Features

QoS and CoS Features

Layer 3 Features (includes features requiring the IP services image)

Monitoring Features

Ease-of-Deployment and Ease-of-Use Features

Express Setup for quickly configuring a switch for the first time with basic IP information, contact information, switch and Telnet passwords, and Simple Network Management Protocol (SNMP) information through a browser-based program. For more information about Express Setup, see the getting started guide.

User-defined and Cisco-default Smartports macros for creating custom switch configurations for simplified deployment across the network.

A removable compact flash card that stores the Cisco IOS software image and configuration files for the switch. You can replace and upgrade the switch without reconfiguring the software features. Updated boot loader that has a secondary boot loader image that supports the compact flash file system driver to access the compact flash memory card. The switch boot loader contains a primary boot loader and a secondary boot loader that both reside in the boot flash.

An embedded device manager GUI for configuring and monitoring a single switch through a web browser. For information about launching the device manager, see the getting started guide. For more information about the device manager, see the switch online help.

Cisco Network Assistant (hereafter referred to as Network Assistant) for

Managing communities, which are device groups like clusters, except that they can contain routers and access points and can be made more secure.

Simplifying and minimizing switch and switch cluster management from anywhere in your intranet.

Accomplishing multiple configuration tasks from a single graphical interface without needing to remember command-line interface (CLI) commands to accomplish specific tasks.

Interactive guide mode that guides you in configuring complex features such as VLANs, ACLs, and quality of service (QoS).

Configuration wizards that prompt you to provide only the minimum required information to configure complex features such as QoS priorities for traffic, priority levels for data applications, and security.

Downloading an image to a switch.

Applying actions to multiple ports and multiple switches at the same time, such as VLAN and QoS settings, inventory and statistic reports, link- and switch-level monitoring and troubleshooting, and multiple switch software upgrades.

Viewing a topology of interconnected devices to identify existing switch clusters and eligible switches that can join a cluster and to identify link information between switches.

Monitoring real-time status of a switch or multiple switches from the LEDs on the front-panel images. The system, redundant power system (RPS), and port LED colors on the images are similar to those used on the physical LEDs.


Note The Network Assistant must be downloaded from this URL: http://www.cisco.com/go/cna_doc.


Switch clustering technology for

Unified configuration, monitoring, authentication, and software upgrade of multiple, cluster-capable switches, regardless of their geographic proximity and interconnection media, including Ethernet, Fast Ethernet, Fast EtherChannel, small form-factor pluggable (SFP) modules, Gigabit Ethernet, and Gigabit EtherChannel connections. For a list of cluster-capable switches, see the release notes.

Automatic discovery of candidate switches and creation of clusters of up to 16 switches that can be managed through a single IP address.

Extended discovery of cluster candidates that are not directly connected to the command switch.

Performance Features

Cisco EnergyWise manages the energy usage of end points including power over Ethernet (PoE) devices and non-Cisco devices. For information, see the Cisco EnergyWise Configuration Guide.

Autosensing of port speed and autonegotiation of duplex mode on all switch ports for optimizing bandwidth.

Automatic-medium-dependent interface crossover (auto-MDIX) capability on 10/100 and 10/100/1000 Mb/s interfaces and on 10/100/1000 BASE-TX SFP module interfaces that enables the interface to automatically detect the required cable connection type (straight-through or crossover) and to configure the connection appropriately.

Support for up to 1546 bytes routed frames, up to 9000 bytes for frames that are bridged in hardware, and up to 2000 bytes for frames that are bridged by software.

IEEE 802.3x flow control on all ports (the switch does not send pause frames).

EtherChannel for enhanced fault tolerance and for providing up to 8 Gb/s (Gigabit EtherChannel) or 800 Mb/s (Fast EtherChannel) full-duplex bandwidth among switches, routers, and servers.

Port Aggregation Protocol (PAgP) and Link Aggregation Control Protocol (LACP) for automatic creation of EtherChannel links.

Forwarding of Layer 2 and Layer 3 packets at Gigabit line rate

Multicast virtual routing and forwarding (VRF) Lite for configuring multiple private routing domains for network virtualization and virtual private multicast networks (on switches running the IP services image

Per-port storm control for preventing broadcast, multicast, and unicast storms.

Port blocking on forwarding unknown Layer 2 unknown unicast, multicast, and bridged broadcast traffic.

Cisco Group Management Protocol (CGMP) server support and Internet Group Management Protocol (IGMP) snooping for IGMP Versions 1, 2, and 3:

(For CGMP devices) CGMP for limiting multicast traffic to specified end stations and reducing overall network traffic.

(For IGMP devices) IGMP snooping for forwarding multimedia and multicast traffic.

IGMP report suppression for sending only one IGMP report per multicast router query to the multicast devices (supported only for IGMPv1 or IGMPv2 queries).

IGMP snooping querier support to configure switch to generate periodic IGMP general query messages.

IGMP helper to allow the switch to forward a host request to join a multicast stream to a specific IP destination address.

Multicast VLAN registration (MVR) to continuously send multicast streams in a multicast VLAN while isolating the streams from subscriber VLANs for bandwidth and security reasons.

IGMP filtering for controlling the set of multicast groups to which hosts on a switch port can belong.

IGMP throttling for configuring the action when the maximum number of entries is in the IGMP forwarding table.

IGMP leave timer for configuring the leave latency for the network.

Switch Database Management (SDM) templates for allocating system resources to maximize support for user-selected features.

Web Cache Communication Protocol (WCCP) for redirecting traffic to local wide-area application engines, for enabling content requests to be fulfilled locally, and for localizing web-traffic patterns in the network (requires the IP services image).

Cisco IOS IP Service Level Agreements (SLAs), a part of Cisco IOS software that uses active traffic monitoring for measuring network performance.

Configurable small-frame arrival threshold to prevent storm control when small frames (64 bytes or less) arrive on an interface at a specified rate (the threshold).

Flex Link Multicast Fast Convergence to reduce the multicast traffic convergence time after a Flex Link failure.

RADIUS server load balancing to allow access and authentication requests to be distributed evenly across a server group.

Support for QoS marking of CPU-generated traffic and queue CPU-generated traffic on the egress network ports.

Management Options

An embedded device manager—The device manager is a GUI that is integrated in the software image. You use it to configure and to monitor a single switch. For information about launching the device manager, see the getting started guide. For more information about the device manager, see the switch online help.

Network Assistant—Network Assistant is a network management application that can be downloaded from Cisco.com. You use it to manage a single switch, a cluster of switches, or a community of devices. For more information about Network Assistant, see Getting Started with Cisco Network Assistant, available on Cisco.com.

CLI—The Cisco IOS software supports desktop- and multilayer-switching features. You can access the CLI by connecting your management station directly to the switch console port, by connecting your PC directly to the Ethernet management port, or by using Telnet from a remote management station or PC. For more information about the CLI, see Chapter 2, "Using the Command-Line Interface."

SNMP—SNMP management applications such as CiscoWorks2000 LAN Management Suite (LMS) and HP OpenView. You can manage from an SNMP-compatible management station that is running platforms such as HP OpenView or SunNet Manager. The switch supports a comprehensive set of MIB extensions and four remote monitoring (RMON) groups. For more information about using SNMP, see Chapter 36, "Configuring SNMP."

Cisco IOS Configuration Engine (previously known to as the Cisco IOS CNS agent)-—Configuration service automates the deployment and management of network devices and services. You can automate initial configurations and configuration updates by generating switch-specific configuration changes, sending them to the switch, executing the configuration change, and logging the results.

For more information about CNS, see Chapter 5, "Configuring Cisco IOS Configuration Engine."

CIP—Common Industrial Protocol (CIP) is a peer-to-peer application protocol that provides application level connections between the switch and industrial devices such as I/O controllers, sensors, relays, and so forth.You can manage the switch using CIP-based management tools, such as RSLogix. For more information about the CIP commands that the switch supports, see the command reference.

Enhancement to the Common Industrial Protocol (CIP) that adds the ability to configure DHCP parameters with CIP.

Manageability Features

CNS embedded agents for automating switch management, configuration storage, and delivery

DHCP for automating configuration of switch information (such as IP address, default gateway, hostname, and Domain Name System [DNS] and TFTP server names)

DHCP relay for forwarding User Datagram Protocol (UDP) broadcasts, including IP address requests, from DHCP clients

DHCP server for automatic assignment of IP addresses and other DHCP options to IP hosts

DHCP-based autoconfiguration and image update to download a specified configuration a new image to a large number of switches

DHCP server port-based address allocation for the preassignment of an IP address to a switch port

Directed unicast requests to a DNS server for identifying a switch through its IP address and its corresponding hostname and to a TFTP server for administering software upgrades from a TFTP server

Address Resolution Protocol (ARP) for identifying a switch through its IP address and its corresponding MAC address

Unicast MAC address filtering to drop packets with specific source or destination MAC addresses

Configurable MAC address scaling that allows disabling MAC address learning on a VLAN to limit the size of the MAC address table

Cisco Discovery Protocol (CDP) Versions 1 and 2 for network topology discovery and mapping between the switch and other Cisco devices on the network

Link Layer Discovery Protocol (LLDP) and LLDP Media Endpoint Discovery (LLDP-MED) for interoperability with third-party IP phones

LLDP media extensions (LLDP-MED) location TLV that provides location information from the switch to the endpoint device

Support for CDP and LLDP enhancements for exchanging location information with video end points for dynamic location-based content distribution from servers

Network Time Protocol (NTP) for providing a consistent time stamp to all switches from an external source

Precision Time Protocol (PTP) as defined in the IEEE 1588 standard to synchronize with nanosecond accuracy the real-time clocks of the devices in a network

Cisco IOS File System (IFS) for providing a single interface to all file systems that the switch uses

Support for the SSM PIM protocol to optimize multicast applications, such as video

Source Specific Multicast (SSM) mapping for multicast applications provides a mapping of source to group, allowing listeners to connect to multicast sources dynamically and reduces dependencies on the application

Support for Enhanced Interior Gateway Routing Protocol (EIGRP) IPv6 to utilize IPv6 transport, communicate with IPv6 peers, and advertise IPv6 routes

Support for these IP services, making them VRF aware so that they can operate on multiple routing instances: HSRP, ARP, SNMP, IP SLA, TFTP, FTP, syslog, traceroute, and ping

Configuration logging to log and to view changes to the switch configuration

Unique device identifier to provide product identification information through a show inventory user EXEC command display

In-band management access through the device manager over a Netscape Navigator or Microsoft Internet Explorer browser session

In-band management access for up to 16 simultaneous Telnet connections for multiple CLI-based sessions over the network

In-band management access for up to five simultaneous, encrypted Secure Shell (SSH) connections for multiple CLI-based sessions over the network

In-band management access through SNMP Versions 1, 2c, and 3 get and set requests

Out-of-band management access through the switch console port to a directly attached terminal or to a remote terminal through a serial connection or a modem

Secure Copy Protocol (SCP) feature to provide a secure and authenticated method for copying switch configuration or switch image files (requires the cryptographic version of the software)

Configuration replacement and rollback to replace the running configuration on a switch with any saved Cisco IOS configuration file

The HTTP client in Cisco IOS supports can send requests to both IPv4 and IPv6 HTTP server, and the HTTP server in Cisco IOS can service HTTP requests from both IPv4 and IPv6 HTTP clients

Simple Network and Management Protocol (SNMP) can be configured over IPv6 transport so that an IPv6 host can send SNMP queries and receive SNMP notifications from a device running IPv6

IPv6 stateless autoconfiguration to manage link, subnet, and site addressing changes, such as management of host and mobile IP addresses

Disabling MAC address learning on a VLAN

DHCP server port-based address allocation for the preassignment of an IP address to a switch port.

Wired location service sends location and attachment tracking information for connected devices to a Cisco Mobility Services Engine (MSE)

CPU utilization threshold trap monitors CPU utilization

LLDP-MED network-policy profile time, length, value (TLV) for creating a profile for voice and voice-signalling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode

Support for including a hostname in the option 12 field of DHCPDISCOVER packets. This provides identical configuration files to be sent by using the DHCP protocol

DHCP Snooping enhancement to support the selection of a fixed string-based format for the circuit-id sub-option of the Option 82 DHCP field

Support for PROFINET IO, a modular communication framework for distributed automation applications. The switch provides a PROFINET management connection to the IO controllers.

Availability and Redundancy Features

HSRP for command switch and Layer 3 router redundancy (requires the IP services image)

Enhanced object tracking, which separates the tracking mechanism from HSRP and creates a separate, standalone tracking process that can be used by processes other than HSRP (requires the IP services image)

UniDirectional Link Detection (UDLD) and aggressive UDLD for detecting and disabling unidirectional links on fiber-optic interfaces caused by incorrect fiber-optic wiring or port faults

IEEE 802.1D Spanning Tree Protocol (STP) for redundant backbone connections and loop-free networks. STP has these features:

Up to 128 spanning-tree instances supported

Per-VLAN spanning-tree plus (PVST+) for load balancing across VLANs

Rapid PVST+ for load balancing across VLANs and providing rapid convergence of spanning-tree instances

UplinkFast and BackboneFast for fast convergence after a spanning-tree topology change and for achieving load balancing between redundant uplinks, including Gigabit uplinks

IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) for grouping VLANs into a spanning-tree instance and for providing multiple forwarding paths for data traffic and load balancing and rapid per-VLAN Spanning-Tree plus (rapid-PVST+) based on the IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) for rapid convergence of the spanning tree by immediately changing root and designated ports to the forwarding state

Optional spanning-tree features available in PVST+, rapid-PVST+, and MSTP mode:

Port Fast for eliminating the forwarding delay by enabling a port to immediately change from the blocking state to the forwarding state

BPDU guard for shutting down Port Fast-enabled ports that receive bridge protocol data units (BPDUs)

BPDU filtering for preventing a Port Fast-enabled port from sending or receiving BPDUs

Root guard for preventing switches outside the network core from becoming the spanning-tree root

Loop guard for preventing alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link

Equal-cost routing for link-level and switch-level redundancy (requires the IP services image)

Flex Link Layer 2 interfaces to back up one another as an alternative to STP for basic link redundancy

Link-state tracking to mirror the state of the ports that carry upstream traffic from connected hosts and servers, and to allow the failover of the server traffic to an operational link on another Cisco Ethernet switch.

Shorter Resilient Ethernet Protocol (REP) hello: Changes the range of the REP link status layer (LSL) age timer from 3000 to 10000 ms in 500-ms intervals to 120 to 10000 ms in 40-ms intervals.

VLAN Features

Support for up to 1005 VLANs for assigning users to VLANs associated with appropriate network resources, traffic patterns, and bandwidth

Support for VLAN IDs in the 1 to 4094 range as allowed by the IEEE 802.1Q standard

VLAN Query Protocol (VQP) for dynamic VLAN membership

IEEE 802.1Q trunking encapsulation on all ports for network moves, adds, and changes; management and control of broadcast and multicast traffic; and network security by establishing VLAN groups for high-security users and network resources

Dynamic Trunking Protocol (DTP) for negotiating trunking on a link between two devices and for negotiating the type of trunking encapsulation (IEEE 802.1Q) to be used

VLAN Trunking Protocol (VTP) and VTP pruning for reducing network traffic by restricting flooded traffic to links destined for stations receiving the traffic

Voice VLAN for creating subnets for voice traffic from Cisco IP Phones

VLAN 1 minimization for reducing the risk of spanning-tree loops or storms by allowing VLAN 1 to be disabled on any individual VLAN trunk link. With this feature enabled, no user traffic is sent or received on the trunk. The switch CPU continues to send and receive control protocol frames.

Private VLANs to address VLAN scalability problems, to provide a more controlled IP address allocation, and to allow Layer 2 ports to be isolated from other ports on the switch (requires the IP services image)

Port security on a PVLAN host to limit the number of MAC addresses learned on a port, or define which MAC addresses may be learned on a port

VLAN Flex Link Load Balancing to provide Layer 2 redundancy without requiring Spanning Tree Protocol (STP). A pair of interfaces configured as primary and backup links can load balance traffic based on VLAN.

Support for 802.1x authentication with restricted VLANs (also known as authentication failed VLANs)

Support for VTP version 3 that includes support for configuring extended range VLANs (VLANs 1006 to 4094) in any VTP mode, enhanced authentication (hidden or secret passwords), propagation of other databases in addition to VTP, VTP primary and secondary servers, and the option to turn VTP on or off by port

Security Features

IP Service Level Agreements (IP SLAs) support to measure network performance by using active traffic monitoring (requires the IP services image)

IP SLAs EOT to use the output from IP SLAs tracking operations triggered by an action such as latency, jitter, or packet loss for a standby router failover takeover (requires the IP services image)

Web authentication to allow a supplicant (client) that does not support IEEE 802.1x functionality to be authenticated using a web browser

Local web authentication banner so that a custom banner or an image file can be displayed at a web authentication login screen

MAC authentication bypass (MAB) aging timer to detect inactive hosts that have authenticated after they have authenticated by using MAB

Password-protected access (read-only and read-write access) to management interfaces (device manager, Network Assistant, and the CLI) for protection against unauthorized configuration changes

Multilevel security for a choice of security level, notification, and resulting actions

Static MAC addressing for ensuring security

Protected port option for restricting the forwarding of traffic to designated ports on the same switch

Port security option for limiting and identifying MAC addresses of the stations allowed to access the port

VLAN aware port security option to shut down the VLAN on the port when a violation occurs, instead of shutting down the entire port.

Port security aging to set the aging time for secure addresses on a port

BPDU guard for shutting down a Port Fast-configured port when an invalid configuration occurs

Standard and extended IP access control lists (ACLs) for defining security policies in both directions on routed interfaces (router ACLs) and VLANs and inbound on Layer 2 interfaces (port ACLs)

Extended MAC access control lists for defining security policies in the inbound direction on Layer 2 interfaces

VLAN ACLs (VLAN maps) for providing intra-VLAN security by filtering traffic based on information in the MAC, IP, and TCP/UDP headers (requires the IP services image)

Source and destination MAC-based ACLs for filtering non-IP traffic

IPv6 ACLs to be applied to interfaces to filter IPv6 traffic (requires the IP services image)

DHCP snooping to filter untrusted DHCP messages between untrusted hosts and DHCP servers

IP source guard to restrict traffic on nonrouted interfaces by filtering traffic based on the DHCP snooping database and IP source bindings

Dynamic ARP inspection to prevent malicious attacks on the switch by not relaying invalid ARP requests and responses to other ports in the same VLAN

IEEE 802.1Q tunneling so that customers with users at remote sites across a service-provider network can keep VLANs segregated from other customers and Layer 2 protocol tunneling to ensure that the customer's network has complete STP, CDP, and VTP information about all users (requires the IP services image)

Layer 2 point-to-point tunneling to facilitate the automatic creation of EtherChannels (requires the IP services image)

Layer 2 protocol tunneling bypass feature to provide interoperability with third-party vendors

IEEE 802.1x port-based authentication to prevent unauthorized devices (clients) from gaining access to the network. These features are supported:

Multidomain authentication (MDA) to allow both a data device and a voice device, such as an IP phone (Cisco or non-Cisco), to independently authenticate on the same IEEE 802.1x-enabled switch port

Dynamic voice virtual LAN (VLAN) for MDA to allow a dynamic voice VLAN on an MDA-enabled port

VLAN assignment for restricting 802.1x-authenticated users to a specified VLAN

Support for VLAN assignment on a port configured for multi-auth mode. The RADIUS server assigns a VLAN to the first host to authenticate on the port, and subsequent hosts use the same VLAN. Voice VLAN assignment is supported for one IP phone.

Port security for controlling access to 802.1x ports

Voice VLAN to permit a Cisco IP Phone to access the voice VLAN regardless of the authorized or unauthorized state of the port

IP phone detection enhancement to detect and recognize a Cisco IP phone.

Guest VLAN to provide limited services to non-802.1x-compliant users

Restricted VLAN to provide limited services to users who are 802.1x compliant, but do not have the credentials to authenticate via the standard 802.1x processes

802.1x accounting to track network usage

802.1x with wake-on-LAN to allow dormant PCs to be powered on based on the receipt of a specific Ethernet frame

802.1x readiness check to determine the readiness of connected end hosts before configuring IEEE 802.1x on the switch

Voice aware 802.1x security to apply traffic violation actions only on the VLAN on which a security violation occurs.

MAC authentication bypass to authorize clients based on the client MAC address.

Network Edge Access Topology (NEAT) with 802.1X switch supplicant, host authorization with CISP, and auto enablement to authenticate a switch outside a wiring closet as a supplicant to another switch.

IEEE 802.1x with open access to allow a host to access the network before being authenticated.

IEEE 802.1x authentication with downloadable ACLs and redirect URLs to allow per-user ACL downloads from a Cisco Secure ACS server to an authenticated switch.

Flexible-authentication sequencing to configure the order of the authentication methods that a port tries when authenticating a new host.

Multiple-user authentication to allow more than one host to authenticate on an 802.1x-enabled port.

Network Admission Control (NAC) features:

NAC Layer 2 802.1x validation of the antivirus condition or posture of endpoint systems or clients before granting the devices network access.

For information about configuring NAC Layer 2 802.1x validation, see the "Configuring NAC Layer 2 802.1x Validation" section on page 12-59.

NAC Layer 2 IP validation of the posture of endpoint systems or clients before granting the devices network access.

For information about configuring NAC Layer 2 IP validation, see the Network Admission Control Software Configuration Guide.

IEEE 802.1x inaccessible authentication bypass.

For information about configuring this feature, see the "Configuring the Inaccessible Authentication Bypass Feature" section on page 12-54.

Authentication, authorization, and accounting (AAA) down policy for a NAC Layer 2 IP validation of a host if the AAA server is not available when the posture validation occurs.

For information about this feature, see the Network Admission Control Software Configuration Guide.

TACACS+, a proprietary feature for managing network security through a TACACS server

RADIUS for verifying the identity of, granting access to, and tracking the actions of remote users through AAA services

Kerberos security system to authenticate requests for network resources by using a trusted third party (requires the cryptographic versions of the software)

Secure Socket Layer (SSL) Version 3.0 support for the HTTP 1.1 server authentication, encryption, and message integrity and HTTP client authentication to allow secure HTTP communications (requires the cryptographic version of the software)

Voice aware IEEE 802.1x and MAC authentication bypass (MAB) security violation to shut down only the data VLAN on a port when a security violation occurs

Support for IP source guard on static hosts.

RADIUS Change of Authorization (CoA) to change the attributes of a certain session after it is authenticated. When there is a change in policy for a user or user group in AAA, administrators can send the RADIUS CoA packets from the AAA server, such as Cisco Secure ACS to reinitialize authentication, and apply to the new policies.

IEEE 802.1x User Distribution to allow deployments with multiple VLANs (for a group of users) to improve scalability of the network by load balancing users across different VLANs. Authorized users are assigned to the least populated VLAN in the group, assigned by RADIUS server.

Support for critical VLAN with multiple-host authentication so that when a port is configured for multi-auth, and an AAA server becomes unreachable, the port is placed in a critical VLAN in order to still permit access to critical resources.

Customizable web authentication enhancement to allow the creation of user-defined login, success, failure and expire web pages for local web authentication.

Support for Network Edge Access Topology (NEAT) to change the port host mode and to apply a standard port configuration on the authenticator switch port.

VLAN-ID based MAC authentication to use the combined VLAN and MAC address information for user authentication to prevent network access from unauthorized VLANs.

MAC move to allow hosts (including the hosts connected behind an IP phone) to move across ports within the same switch without any restrictions to enable mobility. With MAC move, the switch treats the reappearance of the same MAC address on another port in the same way as a completely new MAC address.

Support for 3DES and AES with version 3 of the Simple Network Management Protocol (SNMPv3). This release adds support for the 168-bit Triple Data Encryption Standard (3DES) and the 128-bit, 192-bit, and 256-bit Advanced Encryption Standard (AES) encryption algorithms to SNMPv3.

QoS and CoS Features

Automatic QoS (auto-QoS) to simplify the deployment of existing QoS features by classifying traffic and configuring egress queues

Automatic quality of service (QoS) Voice over IP (VoIP) enhancement for port -based trust of DSCP and priority queuing for egress traffic

Classification

IP type-of-service/Differentiated Services Code Point (IP ToS/DSCP) and IEEE 802.1p CoS marking priorities on a per-port basis for protecting the performance of mission-critical applications

IP ToS/DSCP and IEEE 802.1p CoS marking based on flow-based packet classification (classification based on information in the MAC, IP, and TCP/UDP headers) for high-performance quality of service at the network edge, allowing for differentiated service levels for different types of network traffic and for prioritizing mission-critical traffic in the network

Trusted port states (CoS, DSCP, and IP precedence) within a QoS domain and with a port bordering another QoS domain

Trusted boundary for detecting the presence of a Cisco IP Phone, trusting the CoS value received, and ensuring port security

Policing

Traffic-policing policies on the switch port for managing how much of the port bandwidth should be allocated to a specific traffic flow

If you configure multiple class maps for a hierarchical policy map, each class map can be associated with its own port-level (second-level) policy map. Each second-level policy map can have a different policer.

Aggregate policing for policing traffic flows in aggregate to restrict specific applications or traffic flows to metered, predefined rates

Out-of-Profile

Out-of-profile markdown for packets that exceed bandwidth utilization limits

Ingress queueing and scheduling

Two configurable ingress queues for user traffic (one queue can be the priority queue)

Weighted tail drop (WTD) as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications

Shaped round robin (SRR) as the scheduling service for specifying the rate at which packets are sent to the internal ring (sharing is the only supported mode on ingress queues)

Egress queues and scheduling

Four egress queues per port

WTD as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications

SRR as the scheduling service for specifying the rate at which packets are dequeued to the egress interface (shaping or sharing is supported on egress queues). Shaped egress queues are guaranteed but limited to using a share of port bandwidth. Shared egress queues are also guaranteed a configured share of bandwidth, but can use more than the guarantee if other queues become empty and do not use their share of the bandwidth.

Auto-QoS enhancements that add automatic configuration classification of traffic flow from video devices, such as the Cisco Telepresence System and Cisco Surveillance Camera.

Layer 3 Features


Note Features noted in this section are available only on the IP services image.


HSRP Version 1 (HSRPv1) and HSRP Version 2 (HSRPv2) for Layer 3 router redundancy

IP routing protocols for load balancing and for constructing scalable, routed backbones:

RIP Versions 1 and 2

Full OSPF (requires the IP services feature set)

Starting with Cisco IOS Release 12.2(55)SE, the IP base feature set supports OSPF for routed access to enable customers to extend Layer 3 routing capabilities to the access or wiring closet.

Enhanced Interior Gateway Routing Protocol (EIGRP) IPv6 to utilize IPv6 transport, communicate with IPv6 peers, and advertise IPv6 routes

HSRP for IPv6

Border Gateway Protocol (BGP) Version 4

IP routing between VLANs (inter-VLAN routing) for full Layer 3 routing between two or more VLANs, allowing each VLAN to maintain its own autonomous data-link domain

Policy-based routing (PBR) for configuring defined policies for traffic flows

Multiple VPN routing/forwarding (multi-VRF) instances in customer edge devices to allow service providers to support multiple virtual private networks (VPNs) and overlap IP addresses between VPNs

Fallback bridging for forwarding non-IP traffic between two or more VLANs

Static IP routing for manually building a routing table of network path information

Equal-cost routing for load balancing and redundancy

Internet Control Message Protocol (ICMP) and ICMP Router Discovery Protocol (IRDP) for using router advertisement and router solicitation messages to discover the addresses of routers on directly attached subnets

Protocol-Independent Multicast (PIM) for multicast routing within the network, allowing for devices in the network to receive the multicast feed requested and for switches not participating in the multicast to be pruned. Includes support for PIM sparse mode (PIM-SM), PIM dense mode (PIM-DM), and PIM sparse-dense mode

Multicast Source Discovery Protocol (MSDP) for connecting multiple PIM-SM domains

Distance Vector Multicast Routing Protocol (DVMRP) tunneling for interconnecting two multicast-enabled networks across nonmulticast networks

DHCP relay for forwarding UDP broadcasts, including IP address requests, from DHCP clients

DHCP for IPv6 relay, client, server address assignment and prefix delegation

IPv6 unicast routing capability for forwarding IPv6 traffic through configured interfaces

IPv6 default router preference (DRP) for improving the ability of a host to select an appropriate router

Nonstop forwarding (NSF) awareness to enable the Layer 3 switch to continue forwarding packets from an NSF-capable neighboring router when the primary route processor (RP) is failing and the backup RP is taking over, or when the primary RP is manually reloaded for a nondisruptive software upgrade

The ability to exclude a port in a VLAN from the SVI line-state up or down calculation

Intermediate System-to-Intermediate System (IS-IS) routing supports dynamic routing protocols for Connectionless Network Service (CLNS) networks.

Monitoring Features

EOT and IP SLAs EOT static route support identify when a preconfigured static route or a DHCP route goes down

Embedded event manager (EEM) for device and system management to monitor key system events and then act on them though a policy)

MAC address notification traps and RADIUS accounting for tracking users on a network by storing the MAC addresses that the switch has learned or removed

Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) for traffic monitoring on any port or VLAN

SPAN and RSPAN support of Intrusion Detection Systems (IDS) to monitor, repel, and report network security violations

Four groups (history, statistics, alarms, and events) of embedded RMON agents for network monitoring and traffic analysis

Syslog facility for logging system messages about authentication or authorization errors, resource issues, and time-out events

Layer 2 traceroute to identify the physical path that a packet takes from a source device to a destination device

Time Domain Reflector (TDR) to diagnose and resolve cabling problems on 10/100 and 10/100/1000 copper Ethernet ports

SFP module diagnostic management interface to monitor physical or operational status of an SFP module

Facilities for processing alarms related to temperature, power-supply conditions, and the status of the Ethernet ports

Alarm relay contacts that can be used for an external relay system

On-board failure logging (OBFL) to collect information about the switch and the power supplies connected to it (Catalyst 2960-S only)

Enhanced object tracking for HSRP.

Digital optical monitoring (DOM) to check status of X2 small form-factor pluggable (SFP) modules

Default Settings After Initial Switch Configuration

The switch is designed for plug-and-play operation, requiring only that you assign basic IP information to the switch and connect it to the other devices in your network. If you have specific network needs, you can change the interface-specific and system-wide settings.


Note For information about assigning an IP address by using the browser-based Express Setup program, see the getting started guide. For information about assigning an IP address by using the CLI-based setup program, see the hardware installation guide.


If you do not configure the switch at all, the switch operates with these default settings:

Default switch IP address, subnet mask, and default gateway is 0.0.0.0. For more information, see Chapter 4, "Assigning the Switch IP Address and Default Gateway," and Chapter 26, "Configuring DHCP Features and IP Source Guard Features."

Default domain name is not configured. For more information, see Chapter 4, "Assigning the Switch IP Address and Default Gateway."

DHCP client is enabled, the DHCP server is enabled (only if the device acting as a DHCP server is configured and is enabled), and the DHCP relay agent is enabled (only if the device is acting as a DHCP relay agent is configured and is enabled). For more information, see Chapter 4, "Assigning the Switch IP Address and Default Gateway," and Chapter 26, "Configuring DHCP Features and IP Source Guard Features."

Switch cluster is disabled. For more information about switch clusters, see Chapter 6, "Clustering Switches," and the Getting Started with Cisco Network Assistant, available on Cisco.com.

No passwords are defined. For more information, see Chapter 7, "Administering the Switch."

System name and prompt is Switch. For more information, see Chapter 7, "Administering the Switch."

NTP is enabled. For more information, see Chapter 7, "Administering the Switch."

DNS is enabled. For more information, see Chapter 7, "Administering the Switch."

TACACS+ is disabled. For more information, see Chapter 11, "Configuring Switch-Based Authentication."

RADIUS is disabled. For more information, see Chapter 11, "Configuring Switch-Based Authentication."

The standard HTTP server and Secure Socket Layer (SSL) HTTPS server are both enabled. For more information, see Chapter 11, "Configuring Switch-Based Authentication."

IEEE 802.1x is disabled. For more information, see Chapter 12, "Configuring IEEE 802.1x Port-Based Authentication."

Port parameters

Operating mode is Layer 2 (switchport). For more information, see Chapter 14, "Configuring Interface Characteristics."

Interface speed and duplex mode is autonegotiate. For more information, see Chapter 14, "Configuring Interface Characteristics."

Auto-MDIX is enabled. For more information, see Chapter 14, "Configuring Interface Characteristics."

Flow control is off. For more information, see Chapter 14, "Configuring Interface Characteristics."

VLANs

Default VLAN is VLAN 1. For more information, see Chapter 16, "Configuring VLANs."

VLAN trunking setting is dynamic auto (DTP). For more information, see Chapter 16, "Configuring VLANs."

Trunk encapsulation is negotiate. For more information, see Chapter 16, "Configuring VLANs."

VTP mode is server. For more information, see Chapter 17, "Configuring VTP."

VTP version is Version 1. For more information, see Chapter 17, "Configuring VTP."

No private VLANs are configured. For more information, see Chapter 19, "Configuring Private VLANs."

Voice VLAN is disabled. For more information, see Chapter 18, "Configuring Voice VLAN."

IEEE 802.1Q tunneling and Layer 2 protocol tunneling are disabled. For more information, see Chapter 20, "Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling."

STP, PVST+ is enabled on VLAN 1. For more information, see Chapter 21, "Configuring STP."

MSTP is disabled. For more information, see Chapter 22, "Configuring MSTP."

Optional spanning-tree features are disabled. For more information, see Chapter 23, "Configuring Optional Spanning-Tree Features."

Flex Links are not configured. For more information, see Chapter 25, "Configuring Flex Links and the MAC Address-Table Move Update Feature."

DHCP snooping is disabled. The DHCP snooping information option is enabled. For more information, see Chapter 26, "Configuring DHCP Features and IP Source Guard Features."

IP source guard is disabled. For more information, see Chapter 26, "Configuring DHCP Features and IP Source Guard Features."

DHCP server port-based address allocation is disabled. For more information, see Chapter 26, "Configuring DHCP Features and IP Source Guard Features."

Dynamic ARP inspection is disabled on all VLANs. For more information, see Chapter 27, "Configuring Dynamic ARP Inspection."

IGMP snooping is enabled. No IGMP filters are applied. For more information, see Chapter 28, "Configuring IGMP Snooping and MVR."

IGMP throttling setting is deny. For more information, see Chapter 28, "Configuring IGMP Snooping and MVR."

The IGMP snooping querier feature is disabled. For more information, see Chapter 28, "Configuring IGMP Snooping and MVR."

MVR is disabled. For more information, see Chapter 28, "Configuring IGMP Snooping and MVR."

Port-based traffic

Broadcast, multicast, and unicast storm control is disabled. For more information, see Chapter 29, "Configuring Port-Based Traffic Control."

No protected ports are defined. For more information, see Chapter 29, "Configuring Port-Based Traffic Control."

Unicast and multicast traffic flooding is not blocked. For more information, see Chapter 29, "Configuring Port-Based Traffic Control."

No secure ports are configured. For more information, see Chapter 29, "Configuring Port-Based Traffic Control."

CDP is enabled. For more information, see Chapter 32, "Configuring CDP."

UDLD is disabled. For more information, see Chapter 33, "Configuring UDLD."

SPAN and RSPAN are disabled. For more information, see Chapter 30, "Configuring SPAN and RSPAN."

RMON is disabled. For more information, see Chapter 34, "Configuring RMON."

Syslog messages are enabled and appear on the console. For more information, see Chapter 35, "Configuring System Message Logging."

SNMP is enabled (Version 1). For more information, see Chapter 36, "Configuring SNMP."

No ACLs are configured. For more information, see Chapter 38, "Configuring Network Security with ACLs."

QoS is disabled. For more information, see Chapter 39, "Configuring QoS."

No EtherChannels are configured. For more information, see Chapter 40, "Configuring EtherChannels and Link-State Tracking."

IP unicast routing is disabled. For more information, see Chapter 41, "Configuring IP Unicast Routing."

IPv6 unicast routing is disabled. For more information, see Chapter 42, "Configuring IPv6 Unicast Routing."

No HSRP groups are configured. For more information, see Chapter 45, "Configuring HSRP."

IP multicast routing is disabled on all interfaces. For more information, see Chapter 49, "Configuring IP Multicast Routing."

MSDP is disabled. For more information, see Chapter 50, "Configuring MSDP."

Fallback bridging is not configured. For more information, see Chapter 51, "Configuring Fallback Bridging."

Network Configuration Examples

This section provides network configuration concepts and includes examples of using the switch to create dedicated network segments and interconnecting the segments through Fast Ethernet and Gigabit Ethernet connections.

"Design Concepts for Using the Switch" section

"Ethernet-to-the-Factory Architecture" section

Design Concepts for Using the Switch

As your network users compete for network bandwidth, it takes longer to send and receive data. When you configure your network, consider the bandwidth required by your network users and the relative priority of the network applications that they use.

Table 1-1 describes what can cause network performance to degrade and how you can configure your network to increase the bandwidth available to your network users.

Table 1-1 Increasing Network Performance

Network Demands
Suggested Design Methods

Too many users on a single network segment and a growing number of users accessing the Internet

Create smaller network segments so that fewer users share the bandwidth, and use VLANs and IP subnets to place the network resources in the same logical network as the users who access those resources most.

Use full-duplex operation between the switch and its connected workstations.

Increased power of new PCs, workstations, and servers

High bandwidth demand from networked applications (such as e-mail with large attached files) and from bandwidth-intensive applications (such as multimedia)

Connect global resources—such as servers and routers to which the network users require equal access—directly to the high-speed switch ports so that they have their own high-speed segment.

Use the EtherChannel feature between the switch and its connected servers and routers.


Bandwidth alone is not the only consideration when designing your network. As your network traffic profiles evolve, consider providing network services that can support applications for voice and data integration, multimedia integration, application prioritization, and security. Table 1-2 describes some network demands and how you can meet them.

Table 1-2 Providing Network Services 

Network Demands
Suggested Design Methods

Efficient bandwidth usage for multimedia applications and guaranteed bandwidth for critical applications

Use IGMP snooping to efficiently forward multimedia and multicast traffic.

Use other QoS mechanisms such as packet classification, marking, scheduling, and congestion avoidance to classify traffic with the appropriate priority level, thereby providing maximum flexibility and support for mission-critical, unicast, and multicast and multimedia applications.

Use MVR to continuously send multicast streams in a multicast VLAN but to isolate the streams from subscriber VLANs for bandwidth and security reasons.

High demand on network redundancy and availability to provide always on mission-critical applications

Use Hot Standby Router Protocol (HSRP) for cluster command switch and router redundancy.

Use VLAN trunks and BackboneFast for traffic-load balancing on the uplink ports so that the uplink port with a lower relative port cost is selected to carry the VLAN traffic.

An evolving demand for IP telephony

Use QoS to prioritize applications such as IP telephony during congestion and to help control both delay and jitter within the network.

Use switches that support at least two queues per port to prioritize voice and data traffic as either high- or low-priority, based on IEEE 802.1p/Q. The switch supports at least four queues per port.

Use voice VLAN IDs (VVIDs) to provide separate VLANs for voice traffic.

A growing demand for using existing infrastructure to transport data and voice from a home or office to the Internet or an intranet at higher speeds

Use the Catalyst Long-Reach Ethernet (LRE) switches to provide up to 15 Mb of IP connectivity over existing infrastructure, such as existing telephone lines.

Note LRE is the technology used in the Catalyst 2900 LRE XL and Catalyst 2950 LRE switches. See the documentation sets specific to these switches for LRE information.


Ethernet-to-the-Factory Architecture

This section is an overview of the Ethernet-to-the-Factory (EttF) architecture that provides network and security services to the devices and applications in automation and control systems. It then integrates those into the wider enterprise network.

EttF architecture applies to many types of manufacturing environments, but it must be tailored to the industry type, the manufacturing type, and the production-facility size. Deployments can range from small networks (less than 50 devices), to medium-sized networks (less than 200 devices), and to large networks (up to and more than 1000 devices).

Within the EttF architecture are conceptual structures called zones that separate the various functions, from the highest-level enterprise switches and processes to the smallest devices that control more detailed processes and devices on the factory floor. See Figure 1-1.

Enterprise Zone

The enterprise zone comprises the centralized IT systems and functions. Wired and wireless access is available to enterprise network services, such as enterprise resource management, business-to-business, and business-to-customer services.The basic business administration tasks, such as site business planning and logistics, are performed here and rely on standard IT services. Guest access systems are often located here, although it is not uncommon to find them in lower levels of the framework to gain flexibility that might be difficult to achieve at the enterprise level.

Demilitarized Zone

The demilitarized zone (DMZ) provides a buffer for sharing of data and services between the enterprise and manufacturing zones. The DMZ maintains availability, addresses security vulnerabilities, and abiding by regulatory compliance mandates. The DMZ provides segmentation of organizational control, for example, between the IT and production organizations. Different policies for each organization can be applied and contained. For example, the production organization might apply security policies to the manufacturing zone that are different than those applied to the IT organization.

Manufacturing Zone

The manufacturing zone comprises the cell networks and site-level activities. All the systems, devices, and controllers that monitor the plant operations are in this zone. The cell zone is a functional area within a production facility.

The cell zone is a set of devices, controllers, and so on, that provide the real-time control of a functional aspect of the automation process. They are all in real-time communication with each other. This zone requires clear isolation and protection from the other levels of plant or enterprise operations.

Figure 1-1 shows the EttF architecture.

Figure 1-1 Ethernet-to-the-Factory Architecture

Topology Options

Topology design starts with considering how devices are connected to the network. The cell network also requires physical topologies that meet the physical constraints of the production floor. This section provides guidelines for topology designs and describes the trunk-drop, ring, and redundant-star topologies.

Physical layout—The layout of the production environment drives the topology design. For example, a trunk-drop or ring topology is a good choice for a long conveyor-belt system, but a redundant-star configuration is not a good choice.

Real-time communications—Latency and jitter are primarily caused by the amount of traffic and number of hops a packet must make to reach its destination. The amount of traffic in a Layer  2 network is driven by various factors, but the number of devices is important. Follow these guidelines for real-time communications:

The amount of latency introduced per Layer 2 hop should be considered. For instance, there is a higher latency with 100 Mb interfaces than there is with 1 Gigabit interfaces.

Bandwidth should not consistently exceed 50 percent of the interface capacity on any switch.

The CPU should not consistently exceed 50 to 70 percent utilization. Above this level, the switch might not properly process control packets and might behave abnormally.

These are the key connectivity considerations:

Devices are connected to a switch through a single network connection or an IP-enabled I/O block or linking device if they do not support Ethernet. Most devices have no or limited failover capabilities and therefore cannot effectively use redundant network connections.

Redundant connections can be used in certain industries and applications, such as process-related industries that are applied to critical infrastructure.

Cell Network—Trunk-Drop Topology

Switches are connected to each other to form a chain of switches in a trunk-drop topology (also known as a cascaded topology). See Figure 1-2.

The connection between the Layer 3 switch and the first Layer 2 switch is very susceptible to oversubscription, which can degrade network performance.

There is no redundancy to the loss of a connection.

Figure 1-2 Cell Network-Trunk-Drop Topology

Cell Network—Ring Topology

A ring topology is similar to a trunk-drop topology except that the last switch in the chain is connected to the Layer 3 switch that forms a network ring. If a connection is lost in a ring, each switch maintains connectivity to the other switches. See Figure 1-3.

The network can only recover from the loss of a single connection.

It is more difficult to implement because it requires additional protocol implementation and Rapid Spanning Tree Protocol (RSTP).

Although better than the trunk-drop, the top of the ring (connections to the Layer 3 switches) can become a bottleneck and is susceptible to oversubscription, which can degrade network performance.

Figure 1-3 Cell Network-Ring Topology

Cell Network—Redundant-Star Topology

In a redundant-star topology, every Layer 2 access switch has dual connections to a Layer 3 distribution switch. Devices are connected to the Layer2 switches. See Figure 1-4.

Any Layer 2 switch is always only two hops to another Layer 2 switch.

In the Layer 2 network, each switch has dual connections to the Layer 3 devices.

The Layer 2 network is maintained even if multiple connections are lost.

Figure 1-4 Cell Network-Redundant Star Topology

Where to Go Next

Before configuring the switch, review these sections for startup information:

Chapter 2, "Using the Command-Line Interface"

Chapter 4, "Assigning the Switch IP Address and Default Gateway"