- Cisco BGP Overview
- BGP 4
- Configuring a Basic BGP Network
- BGP Support for 4-byte ASN
- IPv6 Routing: Multiprotocol BGP Extensions for IPv6
- IPv6 Routing: Multiprotocol BGP Link-Local Address Peering
- IPv6 Multicast Address Family Support for Multiprotocol BGP
- Connecting to a Service Provider Using External BGP
- BGP Named Community Lists
- BGP Prefix-Based Outbound Route Filtering
- BGP Route-Map Continue Support for Outbound Policy
- Removing Private AS Numbers from the AS Path in BGP
- Configuring BGP Neighbor Session Options
- BGP Neighbor Policy
- BGP Dynamic Neighbors
- BGP Support for Next-Hop Address Tracking
- BGP Restart Neighbor Session After Max-Prefix Limit Reached
- BGP Support for Dual AS Configuration for Network AS Migrations
- Configuring Internal BGP Features
- BGP VPLS Auto Discovery Support on Route Reflector
- BGP NSF Awareness
- IPv6 NSF and Graceful Restart for MP-BGP IPv6 Address Family
- BGP Support for BFD
- BGP Support for MTR
- BGP Link Bandwidth
- iBGP Multipath Load Sharing
- BGP Multipath Load Sharing for Both eBGP and iBGP in an MPLS-VPN
- Loadsharing IP Packets Over More Than Six Parallel Paths
- BGP Policy Accounting
- BGP Policy Accounting Output Interface Accounting
- BGP Cost Community
- BGP Support for IP Prefix Import from Global Table into a VRF Table
- BGP Support for IP Prefix Export from a VRF Table into the Global Table
- BGP per Neighbor SoO Configuration
- Per-VRF Assignment of BGP Router ID
- BGP Next Hop Unchanged
- BGP Event-Based VPN Import
- BGP Best External
- BGP PIC Edge for IP and MPLS-VPN
- Configuring BGP: RT Constrained Route Distribution
- Configuring BGP Consistency Checker
- BGP MIB Support
- Cisco-BGP-MIBv2
- BGP Additional Paths
- BGP Attribute Filter and Enhanced Attribute Error Handling
- BGP—Support for iBGP Local-AS
- BGP-Multiple Cluster IDs
- BGP-RT and VPN Distinguisher Attribute Rewrite Wildcard
- BGP-VPN Distinguisher Attribute
- BGP-VRF-Aware Conditional Advertisement
- BGP Diverse Path Using a Diverse-Path Route Reflector
- BGP Graceful Shutdown
BGP Support for BFD
Bidirectional Forwarding Detection (BFD) is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable. The main benefit of implementing BFD for BGP is a significantly faster reconvergence time.
- Finding Feature Information
- Information About BGP Support for BFD
- How to Decrease BGP Convergence Time Using BFD
- Additional References
- Feature Information for BGP Support for BFD
Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About BGP Support for BFD
BFD for BGP
Bidirectional Forwarding Detection (BFD) is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable. The main benefit of implementing BFD for BGP is a marked decrease in reconvergence time.
Caution | BFD and BGP Graceful Restart capability cannot both be configured on a router running BGP. If an interface goes down, BFD detects the failure and indicates that the interface cannot be used for traffic forwarding and the BGP session goes down, but graceful restart still allows traffic forwarding on platforms that support NSF even though the BGP session is down, allowing traffic forwarding using the interface that is down. Configuring both BFD and BGP graceful restart for NSF on a router running BGP may result in suboptimal routing. |
See also the “Configuring BGP Neighbor Session Options” chapter, the section “Configuring BFD for BGP IPv6 Neighbors.”
For more details about BFD, see the Cisco IOS IP Routing: BFD Configuration Guide.
How to Decrease BGP Convergence Time Using BFD
Prerequisites
Cisco Express Forwarding (CEF) and IP routing must be enabled on all participating routers.
BGP must be configured on the routers before BFD is deployed. You should implement fast convergence for the routing protocol that you are using. See the IP routing documentation for your version of Cisco IOS software for information on configuring fast convergence.
Restrictions
For the Cisco implementation of BFD Support for BGP in Cisco IOS Release15.1(1)SG, only asynchronous mode is supported. In asynchronous mode, either BFD peer can initiate a BFD session.
IPv6 encapsulation is supported.
BFD works only for directly-connected neighbors. BFD neighbors must be no more than one IP hop away. Multihop configurations are not supported.
Configuring both BFD and BGP Graceful Restart for NSF on a router running BGP may result in suboptimal routing.
Decreasing BGP Convergence Time Using BFD
You start a BFD process by configuring BFD on the interface. When the BFD process is started, no entries are created in the adjacency database, in other words, no BFD control packets are sent or received. The adjacency creation takes places once you have configured BFD support for the applicable routing protocols. The first two tasks must be configured to implement BFD support for BGP to reduce the BGP convergence time. The third task is an optional task to help monitor or troubleshoot BFD.
See also the “Configuring BFD for BGP IPv6 Neighbors” section in the “Configuring BGP Neighbor Session Options” module.
Configuring BFD Session Parameters on the Interface
The steps in this procedure show how to configure BFD on the interface by setting the baseline BFD session parameters on an interface. Repeat the steps in this procedure for each interface over which you want to run BFD sessions to BFD neighbors.
1.
enable
2.
configure
terminal
3.
interface
type
number
4.
bfd
interval
milliseconds
min_rx
milliseconds
multiplier
interval-multiplier
5.
end
DETAILED STEPS
Configuring BFD Support for BGP
Perform this task to configure BFD support for BGP, so that BGP is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD.
1.
enable
2.
configure
terminal
3.
router
bgp
autonomous-system-number
4.
neighbor
ip-address
fall-over
bfd
5.
end
6.
show
bfd
neighbors
[details]
7.
show
ip
bgp
neighbors
[ip-address
[received-routes |
routes |
advertised-routes |
paths [regexp] |
dampened-routes |
flap-statistics |
received
prefix-filter |
policy [detail]]]
DETAILED STEPS
Monitoring and Troubleshooting BFD
To monitor or troubleshoot BFD, perform one or more of the steps in this section.
1.
enable
2.
show
bfd
neighbors
[details]
3.
debug
bfd
[event |
packet |
ipc-error |
ipc-event |
oir-error |
oir-event]
DETAILED STEPS
Additional References
Related Documents
Related Topic |
Document Title |
---|---|
Cisco IOS commands |
|
BGP commands |
|
BFD commands |
Cisco IOS IP Routing: Protocol Independent Command Reference |
Configuring BFD support for another routing protocol |
Technical Assistance
Description |
Link |
---|---|
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |
Feature Information for BGP Support for BFD
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.
Feature Name |
Releases |
Feature Information |
---|---|---|
BGP Support for BFD |
12.2(33)SXH 15.0(1)SY |
Bidirectional Forwarding Detection (BFD) is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable. The main benefit of implementing BFD for BGP is a significantly faster reconvergence time. The following commands were introduced or modified by this feature: bfd, neighbor fall-over, show bfd neighbors, and show ip bgp neighbors. |