Configuring Cisco Performance Monitor

This document contains information about and instructions for configuring Cisco Performance Monitor.

Information About Cisco Performance Monitor

Overview of Cisco Performance Monitor

Cisco Performance Monitor enables you to monitor the flow of packets in your network and become aware of any issues that might impact the flow before it starts to significantly impact the performance of the application in question. Performance monitoring is especially important for video traffic because high quality interactive video traffic is highly sensitive to network issues. Even minor issues that may not affect other applications can have dramatic effects on video quality.

Because Cisco Performance Monitor uses similar software components and commands as Cisco NetFlow and Cisco Flexible NetFlow, familiarity with these products will help you to understand how to configure Cisco Performance Monitor. These products provide statistics on packets flowing through a router and are the standard for acquiring IP operational data from IP networks. They provide data to support network and security monitoring, network planning, traffic analysis, and IP accounting. For more information about Cisco NetFlow and Cisco Flexible NetFlow, see the documents listed in the Additional References section.

For more information about the design, configuration, and troubleshooting of Performance Monitor and other Cisco Medianet products, including a Quick Start Guide and Deployment Guide, see the Cisco Medianet Knowledge Base Portal, located at http://www.cisco.com/web/solutions/medianet/knowledgebase/index.html.

Prerequisites for Configuring Cisco Performance Monitor

The following prerequisites must be met before you can configure Cisco Performance Monitor:

IPv4 Traffic

  • The networking device must be configured for IPv4 routing.

  • One of the following must be enabled on your router and on any interfaces on which you want to enable Cisco Performance Monitor: Cisco Express Forwarding or distributed Cisco Express Forwarding.

Configuration Components of Cisco Performance Monitor

To configure Cisco Performance Monitor, configure many of the same basic elements that you normally configure for Flexible NetFlow:

  • Interface

  • Policy

  • Class

  • Flow monitor

  • Flow record

  • Flow exporter

The figure below shows how these elements are related to each other. The elements at the bottom of the figure are configured first.

Figure 1. Cisco Performance Monitor Components

As shown above, a policy includes one or more classes. Each class has a flow monitor associated with it, and each flow monitor has a flow record and an optional flow exporter associated with it. These elements are configured in the following order:

  1. Configure a flow record to specify the key and non-key fields that you want to monitor. This is configured using match and collect commands. You can also optimally configure a flow exporter to specify the export destination. For Cisco Performance Monitor, you must configure a performance-monitor type flow record.

  2. Configure a flow monitor that includes the flow record and flow exporter. For Cisco Performance Monitor, you must configure a performance-monitor type flow monitor.

  3. Configure a class to specify the filtering criteria using the class-map command.

  4. Configure a policy to include one or more classes and one or more performance-monitor type flow monitors using the policy-map command. For Cisco Performance Monitor, you must configure performance-monitor type policies.

  5. Associate a performance-monitor type policy to the appropriate interface using the service-policy type performance-monitor command.

Data That You Can Monitor Using Cisco Performance Monitor

You can monitor the following information by configuring a flow record with collect or match commands for the corresponding non-key fields:


Tip


For more information about these statistics, see the show performance monitor status command in the Cisco Media Monitoring Command Reference.


  • IP Packet Count

  • IP TTL

  • IP TTL minimum

  • IP TTL maximum

  • Flow to Interface Mapping

  • IP Flow destination address and port, source address and port, and protocol

  • RTP Synchronization Source (SSRC)

  • IP Octets Count

  • Media Stream Packet Count

  • Media Stream Octect Count

  • Media Byte Rate

  • Media Byte Count

  • Media Packet Rate

  • Media Packet Loss Count

  • Media Packet Loss Rate

  • Packets Expected Count

  • Measured Rate

  • Media Loss Event Count

  • Round Trip Time (RTT)

  • Interarrival Jitter (RFC3550) max

  • Interarrival Jitter (RFC3550) min 2

  • Interarrival Jitter (RFC3550) mean

  • Media Rate Variation

  • Monitor Event

  • Media Error

  • Media Stop

  • IP Byte Count

  • IP Byte Rate

  • IP Source Mask

  • IP Destination Mask

  • Epoch of A Monitoring Interval

  • Packet Forwarding Status

  • Packet Drops

  • DSCP and IPv6 Traffic Class

  • TCP: Maximum Segment Size

  • TCP: Window Size Maximum

  • TCP: Window Size Maximum

  • TCP: Window Size Average

  • Out Of Order Bytes

  • Out Of Order Packets

SNMP MIB Support for Cisco Performance Monitor

Cisco Performance Monitor provides support for the use of the industry-standard Simple Network Management Protocol (SNMP) to monitor media streams. This support is implemented with the addition of the following Cisco proprietary SNMP Management Information Base (MIB) modules:

  • CISCO-FLOW-MONITOR-TC-MIB—Defines the textual conventions common to the following MIB modules.

  • CISCO-FLOW-MONITOR-MIB—Defines the framework that describes the flow monitors supported by a system, the flows that it has learned, and the flow metrics collected for those flows.

  • CISCO-RTP-METRICS-MIB—Defines objects that describe the quality metrics collected for RTP streams, similar to those described by an RTCP Receiver Report packet (RFC 3550).

  • CISCO-IP-CBR-METRICS-MIB—Defines objects that describe the quality metrics collected for IP streams that have a Constant Bit Rate (CBR).

For detailed information about these MIBs, and to locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at http://www.cisco.com/go/mibs .

This feature also includes two new command-line interface (CLI) commands and one modified CLI command. The commands are as follows:

  • snmp-server host —Enables the delivery of flow monitoring SNMP notifications to a recipient.

  • snmp-server enable traps flowmon —Enables flow monitoring SNMP notifications. By default, flow monitoring SNMP notifications are disabled.

  • snmp mib flowmon alarm history —Sets the maximum number of entries maintained by the flow monitor alarm history log.

Limitations for the Catalyst 6500 Platform

Cisco Performance Monitor has the following limitations on the Catalyst 6000 platform:

  • There are some limitations on which types of interfaces can be monitored. The next two tables list which types of interfaces are supported for ingress and egress monitoring on the Catalyst 6500 platform.

Table 1. Support for Ingress Interfaces

Interface Type

Support

Layer 3 Routed Port

Yes

Layer 3 Sub-interface (a)

No

Layer 3 port channels

Yes

Layer 3 port-channel sub-interface (a)

No

Layer 3 SVI (b)

Partial (see the third bullet below)

L3 Tunnels

No

Layer 2 Physical (Switched) Ports

Yes

Layer 2 Port-channels

Yes

Layer 2 Vlans

Yes

Table 2. Support for Egress Interfaces

Interface Type

Support

Layer 3 Routed Port

Yes

Layer 3 Sub-interface (a)

Yes

Layer 3 port channels

Yes

Layer 3 port-channel sub-interface (a)

Yes

Layer 3 SVI (b)

Yes

L3 Tunnels

No

Layer 2 Physical (Switched) Ports

No

Layer 2 Port-channels

No

Layer 2 Vlans

Yes

  • Performance monitoring on VRFs is not supported.

  • Performance Monitoring of multicast flows is not supported.

  • Routed traffic from a trunk port on a VLAN interface cannot not be monitored because it is not possible to identify the source VLAN interface for the traffic. You will see the following syslog message: “Routed traffic from trunk ports will not be monitored by ingress policy on VLAN interface.”

    For a workaround, you can configure a performance monitoring policy on a trunk interface. This monitoring will result in additional CPU usage.

  • You cannot use match all type Class maps. Only match any type of lookups are supported. If you configure performance monitoring to use match-all type class maps, it will result in the cloning of packet to the CPU. Packets will then again be classified in the CPU when match-all classes are properly applied and packet are dropped if required. This causes higher than expected CPU usage.

  • Performance monitoring policy on the egress of a VLAN interface will not monitor traffic getting bridged within the VLAN. This is due to hardware limitation. Workaround is to apply the policy at the ingress of VLAN interface as well as egress. Policy on the ingress of the VLAN interface will monitor bridged packets.

  • Cloned packets from Egress policies can only be software rate-limited. No hardware-based protection is available for these packets. Therefore, you might see high interrupt CPU usage during scenarios when many flows are being monitored.

  • Egress performance monitoring makes use of a recirculation mechanism on the Catalyst 6500 platform. This introduces several microseconds of additional latency to the frame switching.

  • Performance monitoring is not supported for the packets switched using the Fast (CEF) Path.

  • Lawful intercept and performance monitoring makes use of the same mechanism for cloning the packets. The Lawful Intercept feature takes precedence over performance monitoring. Therefore, performance monitoring does not function when the Lawful Intercept feature is enabled. When this occurs, a syslog message is created.

  • Performance monitoring makes use of same mechanism as other features, such as Optimized ACL logging, VACL Capture, IPv6 Copy, and so on. The feature that is enabled first takes precedence. The other features are blocked from being configured and a syslog message is created.

Limitations for IPv6 Support

Support for IPv6 with Performance Monitor has the following limitations:

  • The following topologies are supported with IPv6: Non-MPLS, DMVPN (on most platforms), and dual stack.

  • The following topologies are not supported with IPv6: MPLS/VRF (6PE and 6VPE), GETVPN and IPV6 over IPV4 tunnel.

  • Mediatrace does not support IPv6.

  • Exporting data to a IPv6 address is not supported on the ASR1K platform.

  • Flexible NetFlow does not support IPv6 multicast.

  • DMVPN is not supported with IPv6 on the ASR1K platform.

How to Configure Troubleshoot and Maintain Cisco Performance Monitor


Note


Many of the Flexible NetFlow commands, keywords, and arguments used in used in these tasks are available in previous releases. For more information about these existing Flexible NetFlow commands, keywords, and arguments, refer to the Cisco IOS Flexible NetFlow Command Reference.


Configuring a Flow Exporter for Cisco Performance Monitor

Flow exporters are used to send the data that you collect with Cisco Performance Monitor to a remote system such as a NetFlow Collection Engine. Flow exporters use user datagram protocol (UDP) as the transport protocol and use the Version 9 export format.

To configure a flow exporter for the flow monitor, in order to export the data that is collected by Cisco Performance Monitor to a remote system for further analysis and storage, perform the following optional task. For Cisco Performance Monitor, flow exporters are configured the same way as they are configured for Cisco IOS Flexible NetFlow. For more information. see Configuring Data Export for Cisco IOS Flexible NetFlow with Flow Exporters.


Note


You can export to a destination using either an IPv4 or IPv6 address.



Note


Each flow exporter supports only one destination. If you want to export the data to multiple destinations, you must configure multiple flow exporters and assign them to the flow monitor.


SUMMARY STEPS

  1. enable
  2. configure terminal
  3. flow exporter exporter-name
  4. description description
  5. destination {ip-address | hostname } [vrf vrf-name ]
  6. export-protocol {netflow-v5 | netflow-v9 | ipfix }
  7. dscp dscp
  8. source interface-type interface-number
  9. option {application-attributes | application table | exporter-stats | interface-table | metadata-table | sampler-table | vrf-table } [timeout seconds ]
  10. output-features
  11. template data timeout seconds
  12. transport udp udp-port
  13. ttl seconds
  14. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

flow exporter exporter-name

Example:


Device(config)# flow exporter EXPORTER-1

Creates the flow exporter and enters Flexible NetFlow flow exporter configuration mode.

  • This command also allows you to modify an existing flow exporter.

Step 4

description description

Example:


Device(config-flow-exporter)# description Exports to the datacenter

(Optional) Configures a description to the exporter that will appear in the configuration and the display of the show flow exporter command.

Step 5

destination {ip-address | hostname } [vrf vrf-name ]

Example:


Device(config-flow-exporter)# destination 172.16.10.2

Specifies the IP address or hostname of the system to which the exporter sends data.

Note

 

You can export to a destination using either an IPv4 or IPv6 address.

Step 6

export-protocol {netflow-v5 | netflow-v9 | ipfix }

Example:


Device(config-flow-exporter)# export-protocol netflow-v9

Specifies the protocol used by the exporter.

Note

 

The export of extracted fields from NBAR is only supported over IPFIX.

Step 7

dscp dscp

Example:


Device(config-flow-exporter)# dscp 63

(Optional) Configures differentiated services code point (DSCP) parameters for datagrams sent by the exporter.

  • The range for the dscp argument is from 0 to 63. Default: 0.

Step 8

source interface-type interface-number

Example:


Device(config-flow-exporter)# source ethernet 0/0

(Optional) Specifies the local interface from which the exporter will use the IP address as the source IP address for exported datagrams.

Step 9

option {application-attributes | application table | exporter-stats | interface-table | metadata-table | sampler-table | vrf-table } [timeout seconds ]

Example:


Device(config-flow-exporter)# option exporter-stats timeout 120

(Optional) Enables the use of option tables to decrease the amount of data exported. These tables allow the exporter to just export an ID that represents the complete value of the metadata and is mapped to the value by the option table. For example, the interface table maps the SNMP index to the interface name and the VRF table maps the VRF ID to the name.

  • You can enable the use of any combination of option tables concurrently.

  • The range for the seconds argument is 1 to 86,400. Default: 600.

Step 10

output-features

Example:


Device(config-flow-exporter)# output-features

(Optional) Enables sending export packets using quality of service (QoS) and encryption.

Step 11

template data timeout seconds

Example:


Device(config-flow-exporter)# template data timeout 120

(Optional) Configure the resending of templates based on a timeout.

  • The range for the seconds argument is 1 to 86400 (86400 seconds = 24 hours).

Step 12

transport udp udp-port

Example:


Device(config-flow-exporter)# transport udp 650

Configures UDP as the transport protocol and specifies the UDP port on which the destination system is listening for exported datagrams.

  • The range for the udp-port argument is from 1 to 65536.

Step 13

ttl seconds

Example:


Device(config-flow-exporter)# ttl 15

(Optional) Configures the time-to-live (TTL) value for datagrams sent by the exporter.

  • The range for the seconds argument is from 1 to 255.

Step 14

end

Example:


Device(config-flow-exporter)# end

Exits flow exporter configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

To check the configuration and status of your flow exporter, use the show flow exporter command.

Configuring a Flow Record for Cisco Performance Monitor

The basic concepts and techniques for configuring a flow record for Cisco Performance Monitor are the same as flow records for Flexible NetFlow. The flow record specifies how the data collected data is aggregated and presented. The only significant difference is that, for Cisco Performance Monitor, the command includes type performance-monitor .

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. flow record type performance-monitor record-name
  4. match application {name [account-on-resolution ] | vendor | version }
  5. match connection transaction-id
  6. match flow {direction | sampler }
  7. match interface {input | output }
  8. match ipv4 {destination {address | prefix [minimum-mask mask ]} | protocol | source {address | prefix [minimum-mask mask ]}
  9. match ipv4 fragmentation {flags |offset }
  10. match ipv4 {section {header size header-size | payload size payload-size }
  11. match ipv4 total-length
  12. match ipv4 ttl
  13. match ipv6 {dscp | flow-label | next-header | payload-length | precedence | protocol | traffic-class | version }
  14. match ipv6 destination {address | {mask | prefix } [minimum-mask mask ]}
  15. match ipv6 extension map
  16. match ipv6 fragmentation {flags | id | offset }
  17. match ipv6 hop-limit
  18. match ipv6 length {header | payload | total }
  19. match ipv6 {section {header size header-size | payload size payload-size }
  20. match ipv6 source {address | {mask | prefix } [minimum-mask mask ]}
  21. match metadata {global-session-id | multi-party-session-id }
  22. match routing {destination | source }
  23. match routing is-multicast
  24. match routing multicast replication-factor
  25. match transport {destination-port | igmp | rtp [ssrc ] | source-port }
  26. match transport icmp ipv4 {code | type }
  27. match transport icmp ipv6 {code | type }
  28. match transport tcp {acknowledgement-number | destination-port | flags {[ack] | [cwr] | [ece] | [fin] | [psh] | [syn] | [urg]} | header-length | maximum-segment-size | sequence-number | urgent-pointer | window-size | window-size-maximum | window-size-minimum | window-size-average}
  29. match transport udp {destination-port | message-length | source-port}
  30. collect application media {bytes {rate | counter } | packets {rate |counter } | events }
  31. collect application {name [account-on-resolution ]| description | http host | nntp group-name | pop3 server | rstp host-name | sip {destination | source } | smtp {sender | server } | vendor | version }
  32. collect connection
  33. collect counter {bytes [long | rate ] |packets [dropped [long ] | long ]}
  34. collect datalink mac source address {input | output }
  35. collect flow direction
  36. collect interface {input | output }
  37. collect ipv4 {destination mask [minimum-mask mask ]} | dscp | source mask [minimum-mask mask ] | ttl [minimum | maximum ]}
  38. collect ipv4 fragmentation {flags | offset }
  39. collect ipv4 {section {header size header-size | prefix [payload size payload-size }
  40. collect ipv4 total-length [maximum | minimum ]
  41. collect ipv6 {dscp | flow-label | next-header | payload-length | precedence | protocol | traffic-class | version }
  42. collect ipv6 destination {address {mask | prefix } [minimum-mask mask ]}
  43. collect ipv6 extension-map
  44. collect ipv6 fragmentation {flags | offset }
  45. collect ipv6 hop-limit [maximum ] [minimum ]
  46. collect ipv6 length {header | payload | total [maximum ] [minimum ] }
  47. collect ipv6 {section {header size header-size | prefix [payload size payload-size }
  48. collect ipv6 source {address {mask | prefix } [minimum-mask mask ]}
  49. collect metadata {global-session-id | multi-party-session-id }
  50. collect monitor event
  51. collect routing forwarding-status [reason ]
  52. collect routing is-multicast
  53. collect routing multicast replication-factor
  54. collect timestamp internal
  55. collect timestamp sys-uptime {first | last }
  56. collect transport {destination-port | igmp type | source-port | event packet-loss counter | packets {expected counter | lost {counter | rate } | out-of-order } | round-trip-time | rtp jitter {minimum | mean | maximum }}
  57. collect transport icmp ipv4
  58. collect transport icmp ipv6
  59. collect transport tcp {acknowledgement-number | destination-port | flags {[ack] | [cwr] | [ece] | [fin] | [psh] | [syn] | [urg]} | header-length | maximum-segment-size | sequence-number | urgent-pointer | window-size | window-size-maximum | window-size-minimum | window-size-average}
  60. collect transport udp {destination-port | message-length | source-port }
  61. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

flow record type performance-monitor record-name

Example:


Device(config)# flow record type performance-monitor record-8

Creates a flow record and enters flow record configuration mode.

  • This command also allows you to modify an existing flow record.

Step 4

match application {name [account-on-resolution ] | vendor | version }

Example:


Device(config-flow-record)# match application name

Specifies that the application name, vendor, or version will be used as a key field.

Step 5

match connection transaction-id

Example:


Device(config-flow-record)# match connection transaction-id

Specifies that the application name will be used as a key field.

Step 6

match flow {direction | sampler }

Example:


Device(config-flow-record)# match flow direction

Specifies that the flow direction field will be used as a key field.

Step 7

match interface {input | output }

Example:


Device(config-flow-record)# match flow direction

Specifies that the input interface field will be used as a key field.

Step 8

match ipv4 {destination {address | prefix [minimum-mask mask ]} | protocol | source {address | prefix [minimum-mask mask ]}

Example:


Device(config-flow-record)# match ipv4 destination address

Specifies that one or more of the IPv4 fields will be used as a key field.

Step 9

match ipv4 fragmentation {flags |offset }

Example:


Device(config-flow-record)# match ipv4 fragmentation flags

Specifies that one or more of the IPv4 fields will be used as a key field.

Step 10

match ipv4 {section {header size header-size | payload size payload-size }

Example:


Device(config-flow-record)# match ipv4 section header size 8

Specifies that one or more of the IPv4 fields will be used as a key field.

Step 11

match ipv4 total-length

Example:


Device(config-flow-record)# match ipv4 total-length

Specifies that the IPv4 total length field will be used as a key field.

Step 12

match ipv4 ttl

Example:


Device(config-flow-record)# match ipv4 ttl

Specifies that the IPv4 ttl field will be used as a key field.

Step 13

match ipv6 {dscp | flow-label | next-header | payload-length | precedence | protocol | traffic-class | version }

Example:


Device(config-flow-record)# match ipv6 dscp

Specifies that the IPv6 DSCP field will be used as a key field.

Step 14

match ipv6 destination {address | {mask | prefix } [minimum-mask mask ]}

Example:


Device(config-flow-record)# match ipv4 destination address

Specifies that the IPv6 destination address field will be used as a key field.

Step 15

match ipv6 extension map

Example:


Device(config-flow-record)# match ipv6 extension map

Specifies that the IPv6 extension map field will be used as a key field.

Step 16

match ipv6 fragmentation {flags | id | offset }

Example:


Device(config-flow-record)# match ipv6 fragmentation flags

Specifies that the IPv6 fragmentation flags field will be used as a key field.

Step 17

match ipv6 hop-limit

Example:


Device(config-flow-record)# match ipv6 hop-limit

Specifies that the IPv6 hop limit field will be used as a key field.

Step 18

match ipv6 length {header | payload | total }

Example:


Device(config-flow-record)# match ipv6 length total

Specifies that the IPv6 total length field will be used as a key field.

Step 19

match ipv6 {section {header size header-size | payload size payload-size }

Example:


Device(config-flow-record)# match ipv6 section header size 8

Specifies that the IPv6 section header size field will be used as a key field.

Step 20

match ipv6 source {address | {mask | prefix } [minimum-mask mask ]}

Example:


Device(config-flow-record)# match ipv6 source address

Specifies that the IPv6 source address field will be used as a key field.

Step 21

match metadata {global-session-id | multi-party-session-id }

Example:


Device(config-flow-record)# match metadata global-session-id

Specifies that a metadata session ID field will be used as a key field.

Step 22

match routing {destination | source }

Example:


Device(config-flow-record)# match routing source

Specifies that the routing source flag field will be used as a key field.

Step 23

match routing is-multicast

Example:


Device(config-flow-record)# match routing is-multicast

Specifies that the routing is-multicast flag field will be used as a key field.

Step 24

match routing multicast replication-factor

Example:


Device(config-flow-record)# match routing multicast replication-factor

Specifies that the routing multicast replication-factor flag field will be used as a key field.

Step 25

match transport {destination-port | igmp | rtp [ssrc ] | source-port }

Example:


Device(config-flow-record)# match transport destination-port

Specifies that one or more of the transport layer fields will be used as a key field, including the Synchronization Source (SSRC) field in the Real-Time Transport Protocol (RTP) packet header.

Step 26

match transport icmp ipv4 {code | type }

Example:


Device(config-flow-record)# match transport icmp ipv4 code

Specifies that the IPv4 ICMP transport code field will be used as a key field.

Step 27

match transport icmp ipv6 {code | type }

Example:


Device(config-flow-record)# match transport icmp ipv6 code

Specifies that the IPv6 ICMP transport code field will be used as a key field.

Step 28

match transport tcp {acknowledgement-number | destination-port | flags {[ack] | [cwr] | [ece] | [fin] | [psh] | [syn] | [urg]} | header-length | maximum-segment-size | sequence-number | urgent-pointer | window-size | window-size-maximum | window-size-minimum | window-size-average}

Example:


Device(config-flow-record)# match transport tcp destination-port

Specifies that the IPv6 TCP transport destination port field will be used as a key field.

Step 29

match transport udp {destination-port | message-length | source-port}

Example:


Device(config-flow-record)# match transport udp destination-port

Specifies that the IPv6 UDP transport destination port field will be used as a key field.

Step 30

collect application media {bytes {rate | counter } | packets {rate |counter } | events }

Example:


Device(config-flow-record)# collect application media events

Specifies that the application media bytes, packets, or events will be used as a nonkey field. An application event occurs when either one of the thresholds specified by a react statement for the flow was crossed at least once in the monitoring interval or no media packets were seen.

Step 31

collect application {name [account-on-resolution ]| description | http host | nntp group-name | pop3 server | rstp host-name | sip {destination | source } | smtp {sender | server } | vendor | version }

Example:


Device(config-flow-record)# collect application name

Specifies that the application name will be used as a nonkey field.

Step 32

collect connection

Example:


Device(config-flow-record)# collect connection initiator 

Specifies that the connection initiator will be used as a nonkey field.

Step 33

collect counter {bytes [long | rate ] |packets [dropped [long ] | long ]}

Example:


Device(config-flow-record)# collect counter bytes long

Specifies the number of bytes or packets that will be used as a nonkey field.

Step 34

collect datalink mac source address {input | output }

Example:


Device(config-flow-record)# collect flow direction

Specifies that the flow direction field will be used as a nonkey field.

Step 35

collect flow direction

Example:


Device(config-flow-record)# collect flow direction

Specifies that the flow direction field will be used as a nonkey field.

Step 36

collect interface {input | output }

Example:


Device(config-flow-record)# collect interface input

Specifies that the input or output interface will be used as a nonkey field.

Step 37

collect ipv4 {destination mask [minimum-mask mask ]} | dscp | source mask [minimum-mask mask ] | ttl [minimum | maximum ]}

Example:


Device(config-flow-record)# collect ipv4 dscp

Specifies that the IPv4 DSCP field will be used as a nonkey field.

Step 38

collect ipv4 fragmentation {flags | offset }

Example:


Device(config-flow-record)# collect ipv4 fragmentation flags

Specifies that the IPv4 fragmentation flags field will be used as a nonkey field.

Step 39

collect ipv4 {section {header size header-size | prefix [payload size payload-size }

Example:


Device(config-flow-record)# collect ipv4 section header size 8

Specifies that the IPv4 section header size field will be used as a nonkey field.

Step 40

collect ipv4 total-length [maximum | minimum ]

Example:


Device(config-flow-record)# collect ipv4 total-length

Specifies that the IPv4 total-length field will be used as a nonkey field.

Step 41

collect ipv6 {dscp | flow-label | next-header | payload-length | precedence | protocol | traffic-class | version }

Example:


Device(config-flow-record)# collect ipv6 dscp

Specifies that the IPv6 DSCP field will be used as a nonkey field.

Step 42

collect ipv6 destination {address {mask | prefix } [minimum-mask mask ]}

Example:


Device(config-flow-record)# collect ipv6 destination mask

Specifies that the IPv6 destination mask field will be used as a nonkey field.

Step 43

collect ipv6 extension-map

Example:


Device(config-flow-record)# collect ipv6 extension-map

Specifies that the IPv6 extension-map field will be used as a nonkey field.

Step 44

collect ipv6 fragmentation {flags | offset }

Example:


Device(config-flow-record)# collect ipv6 fragmentation flags

Specifies that the IPv6 fragmentation flags field will be used as a nonkey field.

Step 45

collect ipv6 hop-limit [maximum ] [minimum ]

Example:


Device(config-flow-record)# collect ipv6 hop-limit

Specifies that the IPv6 hop-limit field will be used as a nonkey field.

Step 46

collect ipv6 length {header | payload | total [maximum ] [minimum ] }

Example:


Device(config-flow-record)# collect ipv6 length total

Specifies that the IPv6 total length field will be used as a nonkey field.

Step 47

collect ipv6 {section {header size header-size | prefix [payload size payload-size }

Example:


Device(config-flow-record)# collect ipv6 section header size 8

Specifies that the IPv6 section header size field will be used as a nonkey field.

Step 48

collect ipv6 source {address {mask | prefix } [minimum-mask mask ]}

Example:


Device(config-flow-record)# collect ipv6 source mask

Specifies that the IPv6 source mask field will be used as a nonkey field.

Step 49

collect metadata {global-session-id | multi-party-session-id }

Example:


Device(config-flow-record)# collect meatdata global-session-id

Specifies that a metadata session ID field will be used as a nonkey field.

Step 50

collect monitor event

Example:


Device(config-flow-record)# collect monitor event

Specifies that the monitor event field will be used as a nonkey field. A monitor event occurs when no media application packets were seen

Step 51

collect routing forwarding-status [reason ]

Example:


Device(config-flow-record)# collect routing forwarding-status

Specifies that the one or more of the routing attributes will be used as a nonkey field.

Step 52

collect routing is-multicast

Example:


Device(config-flow-record)# collect routing is-multicast

Specifies that the routing is-multicast field will be used as a nonkey field.

Step 53

collect routing multicast replication-factor

Example:


Device(config-flow-record)# collect routing multicast replication-factor

Specifies that the routing multicast replication-factor field will be used as a nonkey field.

Step 54

collect timestamp internal

Example:


Device(config-flow-record)# collect timestamp internal

Specifies that the system timestamp of the first seen or last seen packet in a flow will be used as a nonkey field.

Step 55

collect timestamp sys-uptime {first | last }

Example:


Device(config-flow-record)# collect timestamp sys-uptime

Specifies that the system timestamp of the sys-uptime will be used as a nonkey field.

Step 56

collect transport {destination-port | igmp type | source-port | event packet-loss counter | packets {expected counter | lost {counter | rate } | out-of-order } | round-trip-time | rtp jitter {minimum | mean | maximum }}

Example:


Device(config-flow-record)# collect transport packets expected counter

Specifies that one or more of the transport layer fields will be used as a nonkey field. These fields include metrics for:

  • Packet-loss counter

  • Expected packets counter

  • Jitter

Step 57

collect transport icmp ipv4

Example:


Device(config-flow-record)# collect transport icmp ipv4

Specifies that the transport ICMP IPv4 field will be used as a nonkey field.

Step 58

collect transport icmp ipv6

Example:


Device(config-flow-record)# collect transport icmp ipv6

Specifies that the transport ICMP IPv6 field will be used as a nonkey field.

Step 59

collect transport tcp {acknowledgement-number | destination-port | flags {[ack] | [cwr] | [ece] | [fin] | [psh] | [syn] | [urg]} | header-length | maximum-segment-size | sequence-number | urgent-pointer | window-size | window-size-maximum | window-size-minimum | window-size-average}

Example:


Device(config-flow-record)# collect transport tcp destination-port

Step 60

collect transport udp {destination-port | message-length | source-port }

Example:


Device(config-flow-record)# collect transport udp destination-port

Specifies that the transport UDP destination port field will be used as a nonkey field.

Step 61

end

Example:


Device(config-flow-record)# end

Exits flow record configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

To check the configuration and status of your flow record, use the show flow record type performance-monitor command.

Configuring a Usage Record for AVC Phase 2

To configure an input usage record, perform the following required task.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. flow record flow-record-name
  4. match interface input
  5. match flow direction
  6. match connection client {ipv4 | ipv6} address
  7. match connection client transport port
  8. match connection server {ipv4 | ipv6} address
  9. match connection server transport port
  10. match ipv4 {initiator | responder} address
  11. match ipv6 {initiator | responder} address
  12. match transport {initiator | responder} port
  13. match routing vrf {input | output}
  14. match datalink {destination-vlan-id | source-vlan-id}
  15. match datalink vlan {input | output}
  16. match datalink mac {destination | source} address {input | output}
  17. match flow {class | qos-class}
  18. match policy performance-monitor classification hierarchy
  19. match services waas segment
  20. collect interface output
  21. collect flow direction
  22. collect timestamp sys-uptime first
  23. collect timestamp sys-uptime last
  24. collect counter bytes long
  25. collect counter packets
  26. collect connection client {ipv4 | ipv6} address
  27. collect connection client counter {bytes long | packets long | packets retransmitted}
  28. collect connection client transport port
  29. collect connection new-connections
  30. collect connection sum-duration
  31. collect routing vrf {input | output}
  32. collect connection delay application {sum | min | max}
  33. collect connection delay network {client-to-server | to-server [histogram { bucket1 | bucket2 | bucket3 | bucket4 | bucket5 | bucket6 | bucket7}] {sum | min | max}
  34. collect connection delay response {client-to-server | to-client | to-server} {sum | min | max}
  35. collect connection performance application-delay {sum | min | max}
  36. collect connection performance initiator bytes long
  37. collect connection performance initiator count re-transmitted-packets
  38. collect connection performance initiator network-delay {sum | min | max}
  39. collect connection performance initiator packets long
  40. collect connection performance network-delay {sum | min | max}
  41. collect connection performance new-transaction-time
  42. collect connection performance total-transaction-time {sum | min | max}
  43. collect connection performance total-transaction-time {sum | min | max}
  44. collect connection performance responder bytes long
  45. collect connection performance responder response-time {sum | min | max}
  46. collect connection performance responder network-delay {sum | min | max}
  47. collect connection performance responder count {histogram { bucket1 | bucket2 | bucket3 | bucket4 | bucket5 | bucket6 | bucket7} | late-responses | responses}
  48. collect connection performance responder packets long
  49. collect connection performance total-delay {sum | min | max}
  50. collect connection performance total-transaction-time {sum | min | max}
  51. collect connection server {ipv4 | ipv6} address
  52. collect connection server counter {bytes long | packets long | packets retransmitted}
  53. collect connection server transport port
  54. collect connection transaction {counter complete | duration {sum | min | max}}
  55. collect datalink {destination-vlan-id | source-vlan-id}
  56. collect datalink mac {destination | source} address {input | output}
  57. collect datalink vlan {input | output}
  58. collect policy performance-monitor classification hierarchy
  59. collect services waas {passthrough-reason | segment}
  60. collect timestamp absolute {first | last}
  61. collect transport tcp {option map | window-size {sum | minimum | maximum} | maximum-segment-size}
  62. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Router> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Router# configure terminal

Enters global configuration mode.

Step 3

flow record flow-record-name

Example:


Router(config)# flow record my-input-usage-monitor

Creates a flow record and enters flow record configuration mode.

Step 4

match interface input

Example:


Router(config-flow-record)# match interface input

Configures the input interface for the packet as a key field for the flow record.

input—Traffic arrives on the Cisco router’s input interface.

Step 5

match flow direction

Example:


Router(config-flow-record)# match flow direction

Configures the direction of the flow record as a key field. The direction is either input or output.

Step 6

match connection client {ipv4 | ipv6} address

Example:


Router(config-flow-record)# match connection client ipv6 address

Configures the Ipv6 address of the client as a key field for a flow record.

Step 7

match connection client transport port

Example:


Router(config-flow-record)# match connection client transport port

Configures the connection port of the client as a key field for a flow record.

Step 8

match connection server {ipv4 | ipv6} address

Example:


Router(config-flow-record)# match connection server ipv6 address

Configures the Ipv6 address of the server as a key field for a flow record.

Step 9

match connection server transport port

Example:


Router(config-flow-record)# match connection server transport port

Configures the connection port of the server as a key field for a flow record.

Step 10

match ipv4 {initiator | responder} address

Example:


Router(config-flow-record)# match ipv4 initiator address

(Optional) For IPv4 networks, configures the IPv4 address of the initiator or responder as a key field. The direction is either input or output.

Step 11

match ipv6 {initiator | responder} address

Example:


Router(config-flow-record)# match ipv6 initiator address

(Optional) For IPv6 networks, configures the IPv6 address of the initiator or responder as a key field. The direction is either input or output.

Step 12

match transport {initiator | responder} port

Example:


Router(config-flow-record)# match transport initiator port

(Optional) Configures the transport port of the initiator or responder as a key field.

Step 13

match routing vrf {input | output}

Example:


Router(config-flow-record)# match routing vrf input

(Optional) Configures the virtual routing and forwarding (VRF) ID for incoming or outgoing packets as a key field.

Step 14

match datalink {destination-vlan-id | source-vlan-id}

Example:


Router(config-flow-record)# match datalink destination-vlan-id

(Optional) Configures the destination VLAN ID as a key field.

Step 15

match datalink vlan {input | output}

Example:


Router(config-flow-record)# match datalink vlan input

(Optional) Configures the VLAN ID for incoming or outgoing packets as a key field.

Step 16

match datalink mac {destination | source} address {input | output}

Example:


Router(config-flow-record)# match datalink mac destination address output

(Optional) Configures the destination MAC address as a key field.

Step 17

match flow {class | qos-class}

Example:


Router(config-flow-record)# match flow class

Configures the use of the class ID as a key field for a flow record.

Step 18

match policy performance-monitor classification hierarchy

Example:


Router(config-flow-record)# match policy performance-monitor classification hierarchy

Configures the use of the Performance Monitor policy classification hierarchy as a key field for a flow record.

Step 19

match services waas segment

Example:


Router(config-flow-record)# match services waas segment

Configures the use of the WAAS segment as a key field for a flow record.

Step 20

collect interface output

Example:


Router(config-flow-record)# collect interface output

Configures the output interface as a non-key field for a flow record and enables collecting the output interface fields from the flows for the flow record.

Step 21

collect flow direction

Example:


Router(config-flow-record)# collect flow direction 

Configures the flow direction as a non-key field for a flow record.

Step 22

collect timestamp sys-uptime first

Example:


Router(config-flow-record)# collect timestamp sys-uptime first

Configures the system uptime of the first seen packet in a flow as a nonkey field for a flow record.

  • first—Configures the system uptime for the time the first packet was seen from the flows as a nonkey field and enables collecting time stamps based on the system uptime for the time the first packet was seen from the flows.

Step 23

collect timestamp sys-uptime last

Example:


Router(config-flow-record)# collect timestamp sys-uptime last

Configures the system uptime of the last seen packet in a flow as a nonkey field for a flow record.

  • last—Configures the system uptime for the time the last packet was seen from the flows as a nonkey field and enables collecting time stamps based on the system uptime for the time the most recent packet was seen from the flows.

Step 24

collect counter bytes long

Example:


Router(config-flow-record)# collect counter bytes long

Configures the number of bytes in a flow as a nonkey field for a flow record.

  • bytes—Configures the number of bytes seen in a flow as a nonkey field and enables collecting the total number of bytes from the flow.

  • long—Enables collecting the total number of bytes or packets from the flow by using a 64-bit counter rather than a 32-bit counter.

Step 25

collect counter packets

Example:


Router(config-flow-record)# collect counter packets

Configures the number of packets in a flow as a nonkey field for a flow record.

  • packets—Configures the number of packets seen in a flow as a nonkey field and enables collecting the total number of packets from the flow.

Step 26

collect connection client {ipv4 | ipv6} address

Example:


Router(config-flow-record)# collect connection client ipv6 address

Configures the Ipv6 address of the client as a nonkey field for a flow record.

Step 27

collect connection client counter {bytes long | packets long | packets retransmitted}

Example:


Router(config-flow-record)# collect connection client counter packets retransmitted

Configures the number of the client packets retransmitted as a nonkey field for a flow record.

Step 28

collect connection client transport port

Example:


Router(config-flow-record)# collect connection client transport port

Configures the client connection port as a nonkey field for a flow record.

Step 29

collect connection new-connections

Example:


Router(config-flow-record)# collect connection new-connections

Counts the number of TCP or UDP connections which were opened during the observation period. The observation period may be specified by the flow start and end timestamps.

Step 30

collect connection sum-duration

Example:


Router(config-flow-record)# collect connection sum-duration

Aggregates the total time, in seconds, for all the TCP or UDP connections, which were in use during the observation period. For example, if there are five concurrent connections each for 10 seconds, the value would be 50 seconds.

Step 31

collect routing vrf {input | output}

Example:


Router(config-flow-record)# collect routing vrf output

Configures the virtual routing and forwarding (VRF) ID for incoming or outgoing packets output as a nonkey field for a flow record.

Step 32

collect connection delay application {sum | min | max}

Example:


Router(config-flow-record)# collect connection delay application sum 

Configures the total amount of application delay as a nonkey field for a flow record.

Step 33

collect connection delay network {client-to-server | to-server [histogram { bucket1 | bucket2 | bucket3 | bucket4 | bucket5 | bucket6 | bucket7}] {sum | min | max}

Example:


Router(config-flow-record)# collect connection delay network client-to-server sum 

Configures the total amount of network delay between the client and the server as a nonkey field for a flow record.

Step 34

collect connection delay response {client-to-server | to-client | to-server} {sum | min | max}

Example:


Router(config-flow-record)# collect connection delay response client-to-server sum 

Configures the total amount of response delay between the client and the server as a nonkey field for a flow record.

Step 35

collect connection performance application-delay {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance application-delay sum 

Configures the total application delay as a nonkey field for a flow record.

Step 36

collect connection performance initiator bytes long

Example:


Router(config-flow-record)# collect connection performance initiator bytes long 

Configures the number of long bytes for the Mediatrace initiator as a nonkey field for a flow record.

Step 37

collect connection performance initiator count re-transmitted-packets

Example:


Router(config-flow-record)# collect connection performance initiator count re-transmitted-packets

Configures the number of retrransmitted packets for the Mediatrace initiator as a nonkey field for a flow record.

Step 38

collect connection performance initiator network-delay {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance initiator network-delay sum 

Configures the total network delay for the Mediatrace initiator as a nonkey field for a flow record.

Step 39

collect connection performance initiator packets long

Example:


Router(config-flow-record)# collect connection performance initiator packets long 

Configures the number of long packets for the Mediatrace initiator as a nonkey field for a flow record.

Step 40

collect connection performance network-delay {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance network-delay sum 

Configures the total network delay as a nonkey field for a flow record.

Step 41

collect connection performance new-transaction-time

Example:


Router(config-flow-record)# collect connection performance new-transaction 

Configures the new transaction field as a nonkey field for a flow record.

Step 42

collect connection performance total-transaction-time {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance total-transaction-time sum 

Configures the total transaction time as a nonkey field for a flow record.

Step 43

collect connection performance total-transaction-time {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance total-transaction-time sum 

Configures the total transaction time as a nonkey field for a flow record.

Step 44

collect connection performance responder bytes long

Example:


Router(config-flow-record)# collect connection performance responder bytes long 

Configures the number of long bytes for the Mediatrace responder as a nonkey field for a flow record.

Step 45

collect connection performance responder response-time {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance responder response-time sum 

Configures the total response time for the Mediatrace responder as a nonkey field for a flow record.

Step 46

collect connection performance responder network-delay {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance responder network-delay sum 

Configures the total network delay for the Mediatrace responder as a nonkey field for a flow record.

Step 47

collect connection performance responder count {histogram { bucket1 | bucket2 | bucket3 | bucket4 | bucket5 | bucket6 | bucket7} | late-responses | responses}

Example:


Router(config-flow-record)# collect connection performance responder count late-responses 

Configures the number of late responses for the Mediatrace responder as a nonkey field for a flow record.

Step 48

collect connection performance responder packets long

Example:


Router(config-flow-record)# collect connection performance responder packets long 

Configures the number of long packets for the Mediatrace responder as a nonkey field for a flow record.

Step 49

collect connection performance total-delay {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance total-delay sum 

Configures the total connection delay as a nonkey field for a flow record.

Step 50

collect connection performance total-transaction-time {sum | min | max}

Example:


Router(config-flow-record)# collect connection performance total-transaction-time sum 

Configures the total transaction time as a nonkey field for a flow record.

Step 51

collect connection server {ipv4 | ipv6} address

Example:


Router(config-flow-record)# collect connection server ipv6 address

Configures the IPv6 address of the server as a nonkey field for a flow record.

Step 52

collect connection server counter {bytes long | packets long | packets retransmitted}

Example:


Router(config-flow-record)# collect connection server counter packets retransmitted

Configures the number of the server packets retransmitted as a nonkey field for a flow record.

Step 53

collect connection server transport port

Example:


Router(config-flow-record)# collect connection server transport port

Configures the server connection port as a nonkey field for a flow record.

Step 54

collect connection transaction {counter complete | duration {sum | min | max}}

Example:


Router(config-flow-record)# collect connection transaction duration sum 

Configures the total duration of the transaction as a nonkey field for a flow record.

Step 55

collect datalink {destination-vlan-id | source-vlan-id}

Example:


Router(config-flow-record)# collect datalink destination-vlan-id

(Optional) Configures the destination VLAN ID as a nonkey field.

Step 56

collect datalink mac {destination | source} address {input | output}

Example:


Router(config-flow-record)# collect datalink mac destination address input

(Optional) Configures the destination MAC address as a nonkey field.

Step 57

collect datalink vlan {input | output}

Example:


Router(config-flow-record)# collect datalink vlan input

(Optional) Configures the VLAN ID for incoming or outgoing packets as a nonkey field.

Step 58

collect policy performance-monitor classification hierarchy

Example:


Router(config-flow-record)# collect  policy performance-monitor classification hierarchy

Configures the use of the Performance Monitor policy classification hierarchy as a nonkey field for a flow record.

Step 59

collect services waas {passthrough-reason | segment}

Example:


Router(config-flow-record)# collect services waas segment

Configures the use of the WAAS segment as a nonkey field for a flow record.

Step 60

collect timestamp absolute {first | last}

Example:


Router(config-flow-record)# collect timestamp absolute first

Configures the use of the first timestamp as a nonkey field for a flow record.

Step 61

collect transport tcp {option map | window-size {sum | minimum | maximum} | maximum-segment-size}

Example:


Router(config-flow-record)# collect connection performance initiator network-delay sum 

Configures the total network delay for the Mediatrace initiator as a nonkey field for a flow record.

Step 62

end

Example:


Router(config-flow-record)# end

Exits flow record configuration mode and returns to privileged EXEC mode.

Configuring a Flow Monitor for Cisco Performance Monitor

The basic concepts for configuring a flow monitor for Cisco Performance Monitor are the same as flow monitors for Flexible NetFlow. Each flow monitor has a separate cache assigned to it and requires a record to define the contents and layout of its cache entries.

When you configure a flow monitor, you must use either:

  • An existing flow record that you configured

  • One of the following default predefined records:
    • The default RTP record (default-rtp )
    • The default TCP record (default-tcp )
    • Flexible NetFlow’s "NetFlow IPv4 original input"

Note


To modify a flow record, you must remove it from all flow monitors it is associated with.


SUMMARY STEPS

  1. enable
  2. configure terminal
  3. flow monitor type performance-monitor monitor-name
  4. description description
  5. cache {entries | timeout | type }
  6. statistics {packet }
  7. exporter exporter-name
  8. record {record-name | default-rtp | default-tcp |netflow ipv4 original-input }
  9. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

flow monitor type performance-monitor monitor-name

Example:


Device(config)# flow monitor type performance-monitor FLOW-MONITOR-2

Creates a flow monitor and enters flow monitor configuration mode.

  • This command also allows you to modify an existing flow monitor.

Step 4

description description

Example:


Device(config-flow-monitor)# description Used for monitoring IPv4 traffic

(Optional) Creates a description for the flow monitor.

Step 5

cache {entries | timeout | type }

Example:


Device(config-flow-monitor)# cache timeout 20

(Optional) Creates a cache for the flow monitor.

Step 6

statistics {packet }

Example:


Device(config-flow-monitor)# statistics

(Optional) specifies whether statistics are collected for the flow monitor.

Step 7

exporter exporter-name

Example:


Device(config-flow-monitor)# exporter export-4

Specifies the flow exporter for the flow monitor.

Step 8

record {record-name | default-rtp | default-tcp |netflow ipv4 original-input }

Example:


Device(config-flow-monitor)# record default-rtp

Specifies the flow record for the flow monitor.

Step 9

end

Example:


Device(config-flow-monitor)# end

Exits flow monitor configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

To check the configuration and status of your flow monitor, use the show flow monitor type performance-monitor command and the show running-config flow monitor command.

Configuring a Flow Class for Cisco Performance Monitor

The basic concepts and techniques for configuring a class for Cisco Performance Monitor are the same as for any other type of class. The class specifies the filter that determines which flow traffic to monitor. The filter is configured using various match commands in class-map mode.

If you do not already have a flow monitor configured, you can either:


Note


Nested class maps are not supported. In other words, you cannot use the class-map command while in class-map configuration mode (config-cmap).


SUMMARY STEPS

  1. enable
  2. configure terminal
  3. class-map class-name
  4. description description
  5. match {access-group {access-group | name access-group-name } | any | class-map class-map-name | cos cos-value | destination-address mac address | discard-class class-number | dscp dscp-value | flow {direction | sampler } | fr-de | fr-dlci dlci-number | input-interface interface-name | ip {rtp starting-port-number port-range | precedence | dscp } | mpls experimental topmost number | not match-criterion | packet length {max maximum-length-value [min minimum-length-value ] | min minimum-length-value [max maximum-length-value ]} | precedence {precedence-criteria1 | precedence-criteria2 | precedence-criteria3 | precedence-criteria4 } | protocol protocol-name | qos-group qos-group-value | source-address mac address-destination | vlan {vlan-id | vlan-range | vlan-combination }}
  6. rename class-name
  7. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

class-map class-name

Example:


Device(config)# class-map class-4

Specifies a class to include in the policy. Repeat this command for each class that you want to include in the policy.

Step 4

description description

Example:


Device(config-cmap)# description match any packets

(Optional) Creates a description for the flow class.

Step 5

match {access-group {access-group | name access-group-name } | any | class-map class-map-name | cos cos-value | destination-address mac address | discard-class class-number | dscp dscp-value | flow {direction | sampler } | fr-de | fr-dlci dlci-number | input-interface interface-name | ip {rtp starting-port-number port-range | precedence | dscp } | mpls experimental topmost number | not match-criterion | packet length {max maximum-length-value [min minimum-length-value ] | min minimum-length-value [max maximum-length-value ]} | precedence {precedence-criteria1 | precedence-criteria2 | precedence-criteria3 | precedence-criteria4 } | protocol protocol-name | qos-group qos-group-value | source-address mac address-destination | vlan {vlan-id | vlan-range | vlan-combination }}

Example:


Device(config-cmap)# match any

Specifies the classification criteria.

For more information and examples, see the Cisco Media Monitoring Command Reference.

Step 6

rename class-name

Example:


Device(config-cmap)# rename class-4

Specifies a new name for the flow class.

Step 7

end

Example:


Device(config-cmap)# end

Exits the current configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

To check the configuration and status of your flow class, use the show policy-map type performance-monitor or show class-map command.

Configuring a Flow Policy for Cisco Performance Monitor Using an Existing Flow Monitor

The basic concepts and techniques for configuring a class for Cisco Performance Monitor are the same as for any other type of class. The class specifies which flow monitor is included. The only significant difference is that, for Cisco Performance Monitor, the policy-map command includes type performance-monitor .

If you do not already have a flow monitor configured or do not want to use any of your existing flow monitors for a new class, you can configure it using the flow monitor inline option and specifying which flow record and flow exporter are included.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. policy-map type performance-monitor policy-name
  4. parameter-map type performance-monitor system-default-aor
  5. class {class-name | class-default }
  6. flow monitor monitor-name
  7. monitor metric ip-cbr
  8. rate layer3 {byte-rate {bps | kbps | mbps | gbps } | packet }
  9. exit
  10. monitor metric rtp
  11. clock-rate {type-number | type-name | default } rate
  12. max-dropout number
  13. max-reorder number
  14. min-sequential number
  15. ssrc maximum number
  16. exit
  17. monitor parameters
  18. flows number
  19. interval duration number
  20. history number
  21. timeout number
  22. exit
  23. react ID {media-stop | mrv | rtp-jitter-average | transport-packets-lost-rate }
  24. action {snmp | syslog }
  25. alarm severity {alert | critical | emergency | error | info }
  26. alarm type {discrete | grouped {count number | percent number }
  27. threshold value {ge number | gt number | le number | lt number | range rng-start rng-end }
  28. description description
  29. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

policy-map type performance-monitor policy-name

Example:


Device(config)# policy-map type performance-monitor FLOW-MONITOR-4

Creates a policy and enters policy configuration mode.

  • This command also allows you to modify an existing policy.

Step 4

parameter-map type performance-monitor system-default-aor

Example:


Device(config-pmap)# parameter-map type performance-monitor system-default-aor

Creates a parameter map for Performance Monitor. The only map available is the system-default -aor map

Step 5

class {class-name | class-default }

Example:


Device(config-pmap)# class class-4

Specifies a class to include in the policy. Repeat this command for each class that you want to include in the policy.

Step 6

flow monitor monitor-name

Example:


Device(config-pmap-c)# flow monitor FLOW-MONITOR-4

Enters flow monitor configuration mode. If you do not want to use an existing flow monitor, you can use the inline option to configure a new one, as described in the Applying a Cisco Performance Monitor Policy to an Interface Without Using an Existing Flow Policy.

Step 7

monitor metric ip-cbr

Example:


Device(config-pmap-c)# monitor metric ip-cbr

(Optional) Enters IP-CBR monitor metric configuration mode.

Step 8

rate layer3 {byte-rate {bps | kbps | mbps | gbps } | packet }

Example:


Device(config-pmap-c-mipcbr)# rate layer3 248 mbps

(Optional) Specifies the rate for monitoring the metrics.

  • byte-rate --Data rate in Bps, kBps, mBps, or gBps. The range is 1 to 65535.

  • packet --Packet rate in packets per second.

Step 9

exit

Example:


Device(config-pmap-c-mipcbr)# exit

Returns to policy class configuration mode.

Step 10

monitor metric rtp

Example:


Device(config-pmap-c)# monitor metric rtp

Enters RTP monitor metric configuration mode.

Step 11

clock-rate {type-number | type-name | default } rate

Example:


Device(config-pmap-c-mrtp)# clock-rate 8 9600

Specifies the clock rate used to sample RTP video-monitoring metrics.

For more information about the clock-type numbers and names, see the Cisco Media Monitoring Command Reference.

The range for rate is 1 kHz to 192 kHz.

Step 12

max-dropout number

Example:


Device(config-pmap-c-mrtp)# max-dropout 2

Specifies the maximum number of dropouts allowed when sampling RTP video-monitoring metrics.

Step 13

max-reorder number

Example:


Device(config-pmap-c-mrtp)# max-reorder 4

Specifies the maximum number of reorders allowed when sampling RTP video-monitoring metrics.

Step 14

min-sequential number

Example:


Device(config-pmap-c-mrtp)# min-sequential 2

Specifies the minimum number of sequential packets required to identify a stream as being an RTP flow.

Step 15

ssrc maximum number

Example:


Device(config-pmap-c-mrtp)# ssrc maximum 20

Specifies the maximum number of SSRCs that can be monitored within the same flow. A flow is defined by the protocol, source/destination address, and source/destination port).

Step 16

exit

Example:


Device(config-pmap-c-mrtp)# exit

Returns to policy class configuration mode.

Step 17

monitor parameters

Example:


Device(config-pmap-c)# monitor parameters

Enters monitor parameters configuration mode.

Step 18

flows number

Example:


Device(config-pmap-c-mparam)# flows 40

Specifies the maximum number of flows for each monitor cache.

Step 19

interval duration number

Example:


Device(config-pmap-c-mparam)# interval duration 40

Specifies the interval, in seconds, between samples taken of video-monitoring metrics.

Step 20

history number

Example:


Device(config-pmap-c-mparam)# history 4

Specifies the number of historical buckets of collected video-monitoring metrics.

Step 21

timeout number

Example:


Device(config-pmap-c-mparam)# timeout 20

Specifies the number of intervals before a stopped flow is removed from the database.

Step 22

exit

Example:


Device(config-pmap-c-mparam)# exit

Returns to policy class configuration mode.

Step 23

react ID {media-stop | mrv | rtp-jitter-average | transport-packets-lost-rate }

Example:


Device(config-pmap-c)# react 41 rtp-jitter-average 

Enters a mode where you can specify what reaction occurs when a threshold is violated for the following metrics:

  • ID-- ID for react configuration. Range is 1 to 65535.

  • media-stop --No traffic is found for the flow.

  • mrv --Ratio calculated by dividing the difference between the actual rate and the expected rate, by the expected rate.

  • rtp-jitter-average --Average jitter.

  • transport-packets-lost-rate --Ratio calculated by dividing the number of lost packets by the expected packet count.

Step 24

action {snmp | syslog }

Example:


Device(config-pmap-c-react)# action syslog

Specifies how violations of the thresholds with be reported.

Step 25

alarm severity {alert | critical | emergency | error | info }

Example:


Device(config-pmap-c-react)# alarm severity critical

Specifies which level of alarm will be reported. The default setting is info .

Step 26

alarm type {discrete | grouped {count number | percent number }

Example:


Device(config-pmap-c-react)# alarm type discrete

Specifies which types of levels are considered alarms that require reporting. The default setting is discrete .

Step 27

threshold value {ge number | gt number | le number | lt number | range rng-start rng-end }

Example:


Device(config-pmap-c-react)# threshold value ge 20

Specifies which types of threshold values are considered alarms that require reporting.

If no value is set but the application name is configured as a key field, then the system uses the value for the threshold that it finds in the default map. If no value is set and the application name is not configured as a key field, then the default value is used for the threshold.

If more than one react command is configured for the same policy and class but only one of the react configurations has threshold values set, then the values of the configured react take precedence and the rest of the threshold values are ignored.

If more than one react command is configured for the same policy and none of them have the threshold value configured, then the default threshold value is applied for the configuration with the lowest react ID.

Step 28

description description

Example:


Device(config-cmap-c-react)# description rtp-jitter-average above 40

(Optional) Creates a description for the reaction.

Step 29

end

Example:


Device(config-pmap-c-react)# end

Exits the current configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

To check the configuration and status of your flow policy, use the show policy-map type performance-monitor command.

Configuring a Flow Policy for Cisco Performance Monitor Without Using an Existing Flow Monitor

The basic concepts and techniques for configuring a class for Cisco Performance Monitor are the same as for any other type of class. The class specifies which flow monitor is included. The only significant difference is that, for Cisco Performance Monitor, the policy-map command includestype performance-monitor .

If you do not already have a flow monitor configured or do not want to use any of your existing flow monitors for a new class, you can configure it under the class configuration mode, by specifying which flow record and flow exporter are included.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. policy-map type performance-monitor policy-name class class-name
  4. parameter-map type performance-monitor system-default-aor
  5. class {class-name | class-default }
  6. flow monitor inline
  7. record {record-name | default-rtp | default-tcp }
  8. exporter exporter-name
  9. exit
  10. monitor metric ip-cbr
  11. rate layer3 {byte-rate {bps | kbps | mbps | gbps } | packet }
  12. exit
  13. monitor metric rtp
  14. clock-rate {type-number | type-name } rate
  15. max-dropout number
  16. max-reorder number
  17. min-sequential number
  18. ssrc maximum number
  19. exit
  20. monitor parameters
  21. flows number
  22. interval duration number
  23. history number
  24. timeout number
  25. exit
  26. react ID {media-stop | mrv | rtp-jitter-average | transport-packets-lost-rate }
  27. action {snmp | syslog }
  28. alarm severity {alert | critical | emergency | error | info }
  29. alarm type {discrete | grouped {count number | percent number }
  30. threshold value {ge number | gt number | le number | lt number | range rng-start rng-end
  31. description description
  32. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

policy-map type performance-monitor policy-name class class-name

Example:


Device(config)# policy-map type performance-monitor FLOW-MONITOR-4

Creates a policy and enters policy configuration mode.

  • This command also allows you to modify an existing policy.

Step 4

parameter-map type performance-monitor system-default-aor

Example:


Device(config-pmap)# parameter-map type performance-monitor system-default-aor

Creates a parameter map for Performance Monitor. The only map available is the system-default -aor map

Step 5

class {class-name | class-default }

Example:


Device(config-pmap)# class class-4

Specifies a class to include in the policy. Repeat this command for each class that you want to include in the policy.

Step 6

flow monitor inline

Example:


Device(config-pmap-c)# flow monitor inline

Enters inline mode and enables you to configure a new flow monitor.

Step 7

record {record-name | default-rtp | default-tcp }

Example:


Device(config-pmap-c-flowmon)# record default-tcp

Specifies a flow record to associate with the flow monitor.

Step 8

exporter exporter-name

Example:


Device(config-pmap-c-flowmon)# exporter exporter-4

Specifies a flow record to associate with the flow exporter.

Step 9

exit

Example:


Device(config-pmap-c-flowmon)# exit

Returns to policy class configuration mode.

Step 10

monitor metric ip-cbr

Example:


Device(config-pmap-c)# monitor metric ip-cbr

(Optional) Enters IP-CBR monitor metric configuration mode.

Step 11

rate layer3 {byte-rate {bps | kbps | mbps | gbps } | packet }

Example:


Device(config-pmap-c-mipcbr)# rate layer3 248 mbps

(Optional) Specifies the rate for monitoring the metrics.

  • byte-rate —Data rate in Bps, kBps, mBps, or gBps. The range is 1 to 65535.

  • packet —Packet rate in packets per second.

Step 12

exit

Example:


Device(config-pmap-c-mipcbr)# exit

Returns to policy class configuration mode.

Step 13

monitor metric rtp

Example:


Device(config-pmap-c)# monitor metric rtp

Enters RTP monitor metric configuration mode.

Step 14

clock-rate {type-number | type-name } rate

Example:


Device(config-pmap-c-mrtp)# clock-rate 8 9600

Specifies the clock rate used to sample RTP video-monitoring metrics.

For more information about the clock-type numbers and names, see the Cisco Media Monitoring Command Reference.

The range for rate is 1 kHz to 192 kHz.

Step 15

max-dropout number

Example:


Device(config-pmap-c-mrtp)# max-dropout 2

Specifies the maximum number of dropouts allowed when sampling RTP video-monitoring metrics.

Step 16

max-reorder number

Example:


Device(config-pmap-c-mrtp)# max-reorder 4

Specifies the maximum number of reorders allowed when sampling RTP video-monitoring metrics.

Step 17

min-sequential number

Example:


Device(config-pmap-c-mrtp)# min-sequential 2

Specifies the minimum number of sequential packets required to identify a stream as being an RTP flow.

Step 18

ssrc maximum number

Example:


Device(config-pmap-c-mrtp)# ssrc maximum 20

Specifies the maximum number of SSRCs that can be monitored within the same flow. A flow is defined by the protocol, source/destination address, and source/destination port).

Step 19

exit

Example:


Device(config-pmap-c-mrtp)# exit

Returns to policy class configuration mode.

Step 20

monitor parameters

Example:


Device(config-pmap-c)# monitor parameters

Enters monitor parameters configuration mode.

Step 21

flows number

Example:


Device(config-pmap-c-mparam)# flows 40

Specifies the maximum number of flows for each monitor cache.

Step 22

interval duration number

Example:


Device(config-pmap-c-mparam)# interval duration 40

Specifies the duration of the intervals, in seconds, for collecting monitoring metrics.

Step 23

history number

Example:


Device(config-pmap-c-mparam)# history 4

Specifies the number of historical intervals of collected monitoring metrics to display.

Step 24

timeout number

Example:


Device(config-pmap-c-mparam)# timeout 20

Specifies the number intervals before a stopped flow is removed from the database.

Step 25

exit

Example:


Device(config-pmap-c-mparam)# exit

Returns to policy class configuration mode.

Step 26

react ID {media-stop | mrv | rtp-jitter-average | transport-packets-lost-rate }

Example:


Device(config-pmap-c)# react 41 rtp-jitter-average 

Enters a mode where you can specify what reaction occurs when a threshold is violated for the following metrics:

  • ID— ID for react configuration. Range is 1 to 65535.

  • media-stop —No traffic is found for the flow.

  • mrv —Ratio calculated by dividing the difference between the actual rate and the expected rate, by the expected rate.

  • rtp-jitter-average —Average jitter.

  • transport-packets-lost-rate —Ratio calculated by dividing the number of lost packets by the expected packet count.

Step 27

action {snmp | syslog }

Example:


Device(config-pmap-c-react)# action syslog

Specifies how violations of the thresholds with be reported.

Step 28

alarm severity {alert | critical | emergency | error | info }

Example:


Device(config-pmap-c-react)# alarm severity critical  

Specifies which level of alarm will be reported.The default setting is info .

Step 29

alarm type {discrete | grouped {count number | percent number }

Example:


Device(config-pmap-c-react)# alarm severity critical  

Specifies which types of levels are considered alarms that require reporting. The default setting is discrete .

Step 30

threshold value {ge number | gt number | le number | lt number | range rng-start rng-end

Example:


Device(config-pmap-c-react)# threshold value ge 20

Specifies which types of threshold values are considered alarms that require reporting.

If no value is set but the application name is configured as a key field, then the system uses the value for the threshold that it finds in the default map. If no value is set and the application name is not configured as a key field, then the default value is used for the threshold.

If more than one react command is configured for the same policy and class but only one of the react configurations has threshold values set, then the values of the configured react take precedence and the rest of the threshold values are ignored.

If more than one react command is configured for the same policy and none of them have the threshold value configured, then the default threshold value is applied for the configuration with the lowest react ID.

Step 31

description description

Example:


Device(config-cmap-c-react)# description rtp-jitter-average above 40

(Optional) Creates a description for the reaction.

Step 32

end

Example:


Device(config-pmap-c-react)# end

Exits the current configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

To check the configuration and status of your flow policy, use the show policy-map type performance-monitor command.

Applying a Cisco Performance Monitor Policy to an Interface Using an Existing Flow Policy

Before it can be activated, a Cisco Performance Monitor policy must be applied to at least one interface. To activate a Cisco Performance Monitor policy, perform the following required task.


Note


You can apply a Cisco Performance Monitor policy to an IPv6 interface.


SUMMARY STEPS

  1. enable
  2. configure terminal
  3. interface type number
  4. service-policy type performance-monitor {input | output } policy-name
  5. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

interface type number

Example:


Device(config)# interface ethernet 0/0

Specifies an interface and enters interface configuration mode.

You can specify an IPv6 interface.

Step 4

service-policy type performance-monitor {input | output } policy-name

Example:


Example:


Device(config-if)# service-policy type performance-monitor input mypolicy-map-4

Example:


Attaches a policy map to an input interface or virtual circuit (VC), or an output interface or VC, to be used as the service policy for that interface or VC.

  • input —Attaches the specified policy map to the input interface or input VC.

  • output —Attaches the specified policy map to the output interface or output VC.

  • policy-name —name of a service policy map (created by the policy-map command) to be attached. The name can be a maximum of 40 alphanumeric characters.

Step 5

end

Example:


Device(config-if)# end

Exits the current configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

To check the configuration and status of your service policy, use the following commands:

  • show performance monitor history

  • show performance monitor status

  • show policy-map ypre performance-monitor interface

Applying a Cisco Performance Monitor Policy to an Interface Without Using an Existing Flow Policy

Before it can be activated, a Cisco Performance Monitor policy must be applied to at least one interface. To activate a Cisco Performance Monitor policy, perform the following required task.

SUMMARY STEPS

  1. enable
  2. configure terminal
  3. interface type number
  4. service-policy type performance-monitor inline {input | output }
  5. match {access-group {access-group | name access-group-name } | any | class-map class-map-name | cos cos-value | destination-address mac address | discard-class class-number | dscp dscp-value | flow {direction | sampler } | fr-de | fr-dlci dlci-number | input-interface interface-name | ip {rtp starting-port-number port-range | precedence | dscp } | mpls experimental topmost number | not match-criterion | packet length {max maximum-length-value [min minimum-length-value ] | min minimum-length-value [max maximum-length-value ]} | precedence {precedence-criteria1 | precedence-criteria2 | precedence-criteria3 | precedence-criteria4 } | protocol protocol-name | qos-group qos-group-value | source-address mac address-destination | vlan {vlan-id | vlan-range | vlan-combination }}
  6. flow monitor {monitor-name | inline }
  7. record {record-name | default-rtp | default-tcp }
  8. exporter exporter-name
  9. exit
  10. monitor metric ip-cbr
  11. rate layer3 {byte-rate {bps | kbps | mbps | gbps } | packet }
  12. exit
  13. monitor metric rtp
  14. clock-rate {type-number | type-name } rate
  15. max-dropout number
  16. max-reorder number
  17. min-sequential number
  18. ssrc maximum number
  19. exit
  20. monitor parameters
  21. flows number
  22. interval duration number
  23. history number
  24. timeout number
  25. exit
  26. react ID {media-stop | mrv | rtp-jitter-average | transport-packets-lost-rate }
  27. action {snmp | syslog }
  28. alarm severity {alert | critical | emergency | error | info }
  29. alarm type {discrete | grouped {count number | percent number }}
  30. threshold value {ge number | gt number | le number | lt number | range rng-start rng-end }
  31. end

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 3

interface type number

Example:


Device(config)# interface ethernet 0/0

Specifies an interface and enters interface configuration mode.

You can specify an IPv6 interface.

Step 4

service-policy type performance-monitor inline {input | output }

Example:


Example:


Device(config-if)# service-policy type performance-monitor inline input

Attaches a policy map to an input interface or virtual circuit (VC), or an output interface or VC, to be used as the service policy for that interface or VC.

  • input —Attaches the specified policy map to the input interface or input VC.

  • output —Attaches the specified policy map to the output interface or output VC.

Step 5

match {access-group {access-group | name access-group-name } | any | class-map class-map-name | cos cos-value | destination-address mac address | discard-class class-number | dscp dscp-value | flow {direction | sampler } | fr-de | fr-dlci dlci-number | input-interface interface-name | ip {rtp starting-port-number port-range | precedence | dscp } | mpls experimental topmost number | not match-criterion | packet length {max maximum-length-value [min minimum-length-value ] | min minimum-length-value [max maximum-length-value ]} | precedence {precedence-criteria1 | precedence-criteria2 | precedence-criteria3 | precedence-criteria4 } | protocol protocol-name | qos-group qos-group-value | source-address mac address-destination | vlan {vlan-id | vlan-range | vlan-combination }}

Example:


Device(config-if-spolicy-inline)# match any

Specifies the classification criteria.

For more information and examples, see the Cisco Media Monitoring Command Reference .

Step 6

flow monitor {monitor-name | inline }

Example:


Device(config-if-spolicy-inline)# flow monitor inline

Specifies an existing flow monitor to associate with a flow policy. If you do not want to use an existing flow monitor, you can use the inline option to configure a new one.

If needed, you can also use the inline option to specify a flow record and flow exporter.

Step 7

record {record-name | default-rtp | default-tcp }

Example:


Device(config-spolicy-inline-flowmon)# record default-tcp

(Optional) If you do not want to use an existing flow monitor, and instead used the inline option, use this command to configure a flow record.

Step 8

exporter exporter-name

Example:


Device(config-spolicy-inline-flowmon)# exporter exporter-4

(Optional) If you do not want to use an existing flow monitor, and instead used the inline option, use this command to configure a flow exporter.

Step 9

exit

Example:


Device(config-spolicy-inline-flowmon)# exit

Returns to service-policy inline configuration mode.

Step 10

monitor metric ip-cbr

Example:


Device(config-if-spolicy-inline)# monitor metric ip-cbr

Enters IP-CBR monitor metric configuration mode.

Step 11

rate layer3 {byte-rate {bps | kbps | mbps | gbps } | packet }

Example:


Device(config-spolicy-inline-mipcbr)# rate layer3 248 mbps

Specifies the rate for monitoring the metrics.

  • byte-rate —Data rate in Bps, kBps, mBps, or gBps. The range is 1 to 65535.

  • packet —Packet rate in packets per second.

Step 12

exit

Example:


Device(config-spolicy-inline-mipcbr)# exit

Returns to service-policy inline configuration mode.

Step 13

monitor metric rtp

Example:


Device(config-if-spolicy-inline)# monitor metric rtp

Enters RTP monitor metric configuration mode.

Step 14

clock-rate {type-number | type-name } rate

Example:


Device(config-spolicy-inline-mrtp)# clock-rate 8 9600

Specifies the clock rate used to sample RTP video-monitoring metrics.

For more information about the clock-type numbers and names, see the Cisco Media Monitoring Command Reference.

The range for rate is 1 kHz to 192 kHz.

Step 15

max-dropout number

Example:


Device(config-spolicy-inline-mrtp)# max-dropout 2

Specifies the maximum number of dropouts allowed when sampling RTP video-monitoring metrics.

Step 16

max-reorder number

Example:


Device(config-spolicy-inline-mrtp)# max-reorder 4

Specifies the maximum number of reorders allowed when sampling RTP video-monitoring metrics.

Step 17

min-sequential number

Example:


Device(config-spolicy-inline-mrtp)# min-sequential 2

Specifies the minimum number of sequential packets required to identify a stream as being an RTP flow.

Step 18

ssrc maximum number

Example:


Device(config-spolicy-inline-mrtp)# ssrc maximum 20

Specifies the maximum number of SSRCs that can be monitored within the same flow. A flow is defined by the protocol, source/destination address, and source/destination port).

Step 19

exit

Example:


Device(config-spolicy-inline-mrtp)# exit

Returns to service-policy inline configuration mode.

Step 20

monitor parameters

Example:


Device(config-if-spolicy-inline)# monitor parameters

Enters monitor parameters configuration mode.

Step 21

flows number

Example:


Device(config-spolicy-inline-mparam)# flows 40

Specifies the maximum number of flows for each monitor cache.

Step 22

interval duration number

Example:


Device(config-spolicy-inline-mparam)# interval duration 40

Specifies the duration of the intervals, in seconds, for collecting monitoring metrics.

Step 23

history number

Example:


Device(config-spolicy-inline-mparam)# history 4

Specifies the number of historical intervals of collected monitoring metrics to display.

Step 24

timeout number

Example:


Device(config-spolicy-inline-mparam)# timeout 20

Specifies the number of intervals before a stopped flow is removed from the database.

Step 25

exit

Example:


Device(config-spolicy-inline-mparam)# exit

Returns to service-policy inline configuration mode.

Step 26

react ID {media-stop | mrv | rtp-jitter-average | transport-packets-lost-rate }

Example:


Device(config-if-spolicy-inline)# react 6 rtp-jitter-average 

Enters a mode where you can specify what reaction occurs when a threshold is violated for the following metrics:

  • ID— ID for react configuration. Range is 1 to 65535.

  • media-stop —No traffic is found for the flow.

  • mrv —Ratio calculated by dividing the difference between the actual rate and the expected rate, by the expected rate.

  • rtp-jitter-average —Average jitter.

  • transport-packets-lost-rate —Ratio calculated by dividing the number of lost packets by the expected packet count.

Step 27

action {snmp | syslog }

Example:


Device(config-spolicy-inline-react)# action syslog

Specifies how violations of the thresholds with be reported.

Step 28

alarm severity {alert | critical | emergency | error | info }

Example:


Device(config-spolicy-inline-react)# alarm severity critical  

Specifies which level of alarm will be reported.

Step 29

alarm type {discrete | grouped {count number | percent number }}

Example:


Device(config-pspolicy-inline-react)# alarm severity critical  

Specifies which types of levels are considered alarms that require reporting.

Step 30

threshold value {ge number | gt number | le number | lt number | range rng-start rng-end }

Example:


Device(config-spolicy-inline-react)# threshold value ge 20

Specifies which types of threshold values are considered alarms that require reporting.

If no value is set but the application name is configured as a key field, then the system uses the value for the threshold that it finds in the default map. If no value is set and the application name is not configured as a key field, then the default value is used for the threshold.

If more than one react command is configured for the same policy and class but only one of the react configurations has threshold values set, then the values of the configured react take precedence and the rest of the threshold values are ignored.

If more than one react command is configured for the same policy and none of them have the threshold value configured, then the default threshold value is applied for the configuration with the lowest react ID.

Step 31

end

Example:


Device(config-spolicy-inline-react)# end

Exits the current configuration mode and returns to privileged EXEC mode.

What to do next

To check the configuration and status of your service policy, use the show performance monitor status command and show performance monitor history command.

Verifying That Cisco Performance Monitor Is Collecting Data

To verify that Cisco Performance Monitor is collecting data, perform the following optional task.


Note


Flows are correlated so that if the same policy is applied on the same input and output interface, the show command will display a single flow for the input and output interfaces and the interface name and direction for the flow are not displayed.


If no data is being collected, complete the remaining tasks in this section.

Before you begin

The interface to which you applied the input flow monitor must be receiving traffic that meets the criteria defined by the original flow record before you can display the flows in the flow monitor cache.

where filter = {ip {source-addr source-prefix | any } {dst-addr dst-prefix | any } | {tcp | udp } {source-addr source-prefix | any } {[eq | lt | gt number | range min max | ssrc {ssrc-number | any } | {{dst-addr dst-prefix | any } eq | lt | gt number | range min max | ssrc {ssrc-number | any }}

SUMMARY STEPS

  1. enable
  2. show policy-map type performance-monitor [interface interface-name ] [class class-name ] [input | output ]
  3. show performance monitor status [interface interface name [filter ] | policy policy-map-name class class-map-name [filter ]} | filter ]
  4. show performance monitor history [interval {all | number [start number ]} | interface interface name [filter ] | policy policy-map-name class class-map-name [filter ]} | filter ]

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show policy-map type performance-monitor [interface interface-name ] [class class-name ] [input | output ]

For a description of the fields displayed by this command, see Cisco Media Monitoring Command Reference.

The following example shows the output for one flow policy:

Example:


  Policy Map type performance-monitor PM-POLICY-4
    Class PM-CLASS-4
      flow monitor PM-MONITOR-4
        record PM-RECORD-4
        exporter PM-EXPORTER-4
      monitor parameters
        interval duration 30
        timeout 10
        history 10
        flows 8000
      monitor metric rtp
        min-sequential 5
        max-dropout 5
        max-reorder 5
        clock-rate default 90000
        ssrc maximum 5
Table 3. show policy-map type performance-monitor Field Descriptions

Field

Description

Policy Map type performance-monitor

Name of the Cisco Performance Monitor flow policy.

flow monitor

Name of the Cisco Performance Monitor flow monitor.

record

Name of the Cisco Performance Monitor flow record.

exporter

Name of the Cisco Performance Monitor flow exporter.

monitor parameter

Parameters for the flow policy.

interval duration

The configured duration of the collection interval for the policy.

timeout

The configured amount of time wait for a response when collecting data for the policy.

history

The configured number of historical collections to keep for the policy.

flows

The configured number of flows to collect for the policy.

monitor metric rtp

RTP metrics for the flow policy.

min-sequential

The configured minimum number of packets in a sequence used to classify an RTP flow.

max-dropout

The configured maximum number of packets to ignore ahead of the current packet in terms of sequence number.

max-reorder

The configured maximum number of packets to ignore behind the current packet in terms of sequence number.

clock-rate default

The configured clock rate for the RTP packet timestamp clock that is used to calculate the packet arrival latency.

ssrc maximum

The configured maximum number of SSRCs that can be monitored within the same flow. A flow is defined by the protocol, source/destination address, and source/destination port. The range is from 1 to 50.

Step 3

show performance monitor status [interface interface name [filter ] | policy policy-map-name class class-map-name [filter ]} | filter ]

where filter = {ip {source-addr source-prefix | any } {dst-addr dst-prefix | any } | {tcp | udp } {source-addr source-prefix | any } {[eq | lt | gt number | range min max | ssrc {ssrc-number | any } | {{dst-addr dst-prefix | any } eq | lt | gt number | range min max | ssrc {ssrc-number | any }}

This command displays the cumulative statistics for the specified number of most recent intervals. The number of intervals is configured using the history command. The default settings for this commands is 10 of the most recent collection intervals. The duration of collection intervals is specified by the interval duration command.

To view statistics for other intervals, use the show performance monitor history command as described in the next step. For more information about these commands, see the Cisco Media Monitoring Command Reference

Step 4

show performance monitor history [interval {all | number [start number ]} | interface interface name [filter ] | policy policy-map-name class class-map-name [filter ]} | filter ]

where filter = {ip {source-addr source-prefix | any } {dst-addr dst-prefix | any } | {tcp | udp } {source-addr source-prefix | any } {[eq | lt | gt number | range min max | ssrc {ssrc-number | any } | {{dst-addr dst-prefix | any } eq | lt | gt number | range min max | ssrc {ssrc-number | any }}

This command displays the statistics collected by Cisco Performance Monitor during any or all intervals, including the current one. The duration of collection intervals is specified by the interval duration command.

For more information about this command, see the Cisco Media Monitoring Command Reference.

The following example shows the output for the show performance monitor history command:

Note

 

If the same policy is applied on the same input and output interface, the display shows a single flow for the input and output interfaces and the interface name and direction for the flow are not displayed.

Example:


Codes: *   - field is not configurable under flow record
       NA  - field is not applicable for configured parameters
Match: ipv4 source address = 21.21.21.1, ipv4 destination address = 1.1.1.1, 
transport source-port = 10240, transport destination-port = 80, ip protocol = 6,
 Policy: RTP_POL, Class: RTP_CLASS

 start time                                  14:57:34    
                                             ============
 *history bucket number                     : 1           
 routing forwarding-status                  : Unknown
 transport packets expected counter         : NA
 transport packets lost counter             : NA
 transport round-trip-time           (msec) : 4
 transport round-trip-time sum       (msec) : 8
 transport round-trip-time samples          : 2
 transport event packet-loss counter        : 0
 interface input                            : Null
 interface output                           : Null
 counter bytes                              : 8490
 counter packets                            : 180
 counter bytes rate                         : 94
 counter client bytes                      : 80
 counter server bytes                      : 200
 counter client packets                    : 6
 counter server packets                    : 6
 transport tcp window-size minimum         : 1000
 transport tcp window-size maximum         : 2000
 transport tcp window-size average         : 1500
 transport tcp maximum-segment-size        : 0
 application media bytes counter            : 1270
 application media bytes rate               : 14
 application media packets counter          : 180
 application media event                    : Stop
 monitor event                              : false 

 [data set,id=257] Global session ID|Multi-party session ID| 
 [data] 11                      |22              
       
Table 4. show performance monitor status and show performance-monitor history Field Descriptions

Field

Description

history bucket number

Number of the bucket of historical data collected.

routing forwarding-status reason

Forwarding status is encoded using eight bits with the two most significant bits giving the status and the six remaining bits giving the reason code.

Status is either unknown (00), Forwarded (10), Dropped (10) or Consumed (11).

The following list shows the forwarding status values for each status category.

Unknown

  • 0

Forwarded

  • Unknown 64

  • Forwarded Fragmented 65

  • Forwarded not Fragmented 66

Dropped

  • Unknown 128,

  • Drop ACL Deny 129,

  • Drop ACL drop 130,

  • Drop Unroutable 131,

  • Drop Adjacency 132,

  • Drop Fragmentation & DF set 133,

  • Drop Bad header checksum 134,

  • Drop Bad total Length 135,

  • Drop Bad Header Length 136,

  • Drop bad TTL 137,

  • Drop Policer 138,

  • Drop WRED 139,

  • Drop RPF 140,

  • Drop For us 141,

  • Drop Bad output interface 142,

  • Drop Hardware 143,

Consumed

  • Unknown 192,

  • Terminate Punt Adjacency 193,

  • Terminate Incomplete Adjacency 194,

  • Terminate For us 195

transport packets expected counter

Number of packets expected.

transport packets lost counter

Number of packets lost.

transport round-trip-time (msec)

Number of milliseconds required to complete a round trip.

transport round-trip-time sum (msec)

Total number of milliseconds required to complete a round trip for all samples.

transport round-trip-time samples

Total number of samples used to calculate a round trip times

transport event packet-loss counter

Number of loss events (number of contiguous sets of lost packets).

interface input

Incoming interface index.

interface output

Outgoing interface index.

counter bytes

Total number of bytes collected for all flows.

counter packets

Total number of IP packets sent for all flows.

counter bytes rate

Average number of packets or bits (as configured) processed by the monitoring system per second during the monitoring interval for all flows.

counter client bytes

Number of bytes sent by the client.

counter server bytes

Number of bytes sent by the server.

counter client packets

Number of packets sent by the client.

counter servers packets

Number of packets sent by the server.

transport tcp window-size-maximum

Maximum size of the TCP window.

transport tcp window-size-minimum

Minimum size of the TCP window.

transport tcp window-size-average

Average size of the TCP window.

transport tcp maximum-segment-size

Maximum TCP segment size.

application media bytes counter

Number of IP bytes from by media applications received for a specific media stream.

application media bytes rate

Average media bit rate (bps) for all flows during the monitoring interval.

application media packets counter

Number of IP packets produced from media applications received for a specific media stream.

application media event

Bit 1 is not used. Bit 2 indicates that no media application packets were seen, in other words, a Media Stop Event occurred.

monitor event

Bit 1 indicates that one of the thresholds specified by a react statement for the flow was crossed at least once in the monitoring interval. Bit 2 indicates that there was a loss-of-confidence in measurement.


Displaying Option Tables.

You can view the mapping contained in the various option table by using the following show command .

SUMMARY STEPS

  1. enable
  2. show metadata {application attributes | application table | exporter stats | interface table | metadata version table | sampler table | vrf table }

DETAILED STEPS

  Command or Action Purpose

Step 1

enable

Example:


Device> enable

Enables privileged EXEC mode.

  • Enter your password if prompted.

Step 2

show metadata {application attributes | application table | exporter stats | interface table | metadata version table | sampler table | vrf table }

Example:

The following example shows how to display the mapping of the application ID to the application name by using the show metadata application table command :


 ID        Name                  Vendor      Version
--------------------------------------------------------------------------------
100673296  webex-audio           -           -
100673297  webex-video           -           -

Displaying Information Specific to the Catalyst 6500 Platform

To display or clear information for the Feature Manager and other functionality specific to the Catalyst 6500 platform, perform the following optional task.

SUMMARY STEPS

  1. enable
  2. clear fm performance-monitor counters
  3. debug fm performance-monitor {all | dynamic | event | unusual | verbose | vmr }
  4. platform performance-monitor rate-limit pps number
  5. show platform software feature-manager performance-monitor {all | counters | interface interface-type interface-number | rdt-indices }
  6. show platform software feature-manager tcam dynamic performance-monitor {handle ip ip-address | interface interface-type interface-number }
  7. show platform hardware acl entry interface interface-type interface-number security {in | out } {ip | ipv6 } [ detail ]
  8. show platform software ccm interface interface-type interface-number security {interface interface-type interface-number | class-group class-group-ID }

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

clear fm performance-monitor counters

The clearfm performance-monitor counters command clears counters for the Performance Monitor component of Feature Monitor.

Example:


Device# clear fm performance-monitor counters
Device#

Step 3

debug fm performance-monitor {all | dynamic | event | unusual | verbose | vmr }

This command enables all levels of debugging for the Performance Monitor component of Feature Manager.

Example:


Device# debug fm performance-monitor all
Device#

Step 4

platform performance-monitor rate-limit pps number

This command sets the rate limit for the Performance Monitor component of Feature Monitor.

Example:


Device# platform performance-monitor rate-limit pps 2000
Device#

Step 5

show platform software feature-manager performance-monitor {all | counters | interface interface-type interface-number | rdt-indices }

This command displays information about the Performance Monitor component of Feature Manager.

Example:


Device# show platform software feature-manager performance-monitor all
Device#

Interface: FastEthernet2/3
Policy: video-flow-test          Group ID: A0000001
-----------------------------------------------------------------------------
Feature: VM Ingress L3 
=============================================================================
DPort  - Destination Port  SPort  - Source Port       Pro    - Protocol        
RFTCM  - R-Recirc. Flag    MRLCS  - M-Multicast Flag  Res    - VMR Result      
       - F-Fragment flag          - R-Reflexive flag  Prec   - Drop Precedence 
       - T-Trailing Fragments     - L-Layer 3 only    GrpId  - Qos Group Id    
       - C-From CPU               - C-Capture Flag    Adj.   - Adj. Index      
       - M-L2 Lookup Miss         - S-RPF suppress    Pid    - NF Profile Index 
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V       224.0.0.0         0.0.0.0                  0          0      0         -----       0       -----
       M       240.0.0.0         0.0.0.0                   0          0      0         00000    0         0
      PERMIT_RESULT

     2 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
      L3_DENY_RESULT
          
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          10.10.10.0            0          0      17        -----        0      ---C-
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT

     2 V         0.0.0.0          10.10.20.0            0          0      17        -----        0      ---C-
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT

     3 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
L3_DENY_RESULT

+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
      PERMIT_RESULT



Interface: FastEthernet2/3
Policy: video-flow-test          Group ID: A0000001
-----------------------------------------------------------------------------
Feature: VM Egress L3 
=============================================================================
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
PERMIT_RESULT

     2 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
      L3_DENY_RESULT
          
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          10.10.10.0            0          0      17        -----        0      -----
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT Adjacency: 0x5512D8F4 

     2 V         0.0.0.0          10.10.20.0            0          0      17        -----        0      -----
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT Adjacency: 0x5512D8F4 

     3 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
       L3_DENY_RESULT

+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     3 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
     PERMIT_RESULT Adjacency: 0x5512D8F4 


Adjacency: 0x5512D8F4
        FeatureId: 0x84  AdjId: 0xFFFFFFFF Flags: RecirculationAdj|

        Cause: 0x0 Priority: 0xC Device#

Interface: FastEthernet2/3
Policy: video-flow-test          Group ID: A0000001
-----------------------------------------------------------------------------
Feature: VM Ingress L3 
=============================================================================
DPort  - Destination Port  SPort  - Source Port       Pro    - Protocol        
RFTCM  - R-Recirc. Flag    MRLCS  - M-Multicast Flag  Res    - VMR Result      
       - F-Fragment flag          - R-Reflexive flag  Prec   - Drop Precedence 
       - T-Trailing Fragments     - L-Layer 3 only    GrpId  - Qos Group Id    
       - C-From CPU               - C-Capture Flag    Adj.   - Adj. Index      
       - M-L2 Lookup Miss         - S-RPF suppress    Pid    - NF Profile Index 
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V       224.0.0.0         0.0.0.0                  0          0      0         -----       0       -----
       M       240.0.0.0         0.0.0.0                   0          0      0         00000    0         0
      PERMIT_RESULT

     2 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
      L3_DENY_RESULT
          
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          10.10.10.0            0          0      17        -----        0      ---C-
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT

     2 V         0.0.0.0          10.10.20.0            0          0      17        -----        0      ---C-
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT

     3 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
L3_DENY_RESULT

+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
      PERMIT_RESULT



Interface: FastEthernet2/3
Policy: video-flow-test          Group ID: A0000001
-----------------------------------------------------------------------------
Feature: VM Egress L3 
=============================================================================
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
PERMIT_RESULT

     2 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
      L3_DENY_RESULT
          
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     1 V         0.0.0.0          10.10.10.0            0          0      17        -----        0      -----
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT Adjacency: 0x5512D8F4 

     2 V         0.0.0.0          10.10.20.0            0          0      17        -----        0      -----
       M          0.0.0.0          255.255.255 0      0          0      255      00000     0        0
      PERMIT_RESULT Adjacency: 0x5512D8F4 

     3 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
       L3_DENY_RESULT

+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+
| Indx | T |   Dest Ip Addr | Source Ip Addr | DPort | SPort | Pro | RFTCM | Prec | MRLCS | Pid | Stats Id|
+-----+--+-----------------+-------------------+-------+-------+----+---------+------+---------+-----+--------+

     3 V         0.0.0.0          0.0.0.0                  0          0      0         -----        0      -----
       M          0.0.0.0         0.0.0.0                   0          0      0         00000     0        0
     PERMIT_RESULT Adjacency: 0x5512D8F4 


Adjacency: 0x5512D8F4
        FeatureId: 0x84  AdjId: 0xFFFFFFFF Flags: RecirculationAdj|

        Cause: 0x0 Priority: 0xC 

Step 6

show platform software feature-manager tcam dynamic performance-monitor {handle ip ip-address | interface interface-type interface-number }

This command displays information about dynamic and static policies for a specific host.

Example:


Device# show platform software feature-manager tcam dynamic performance-monitor handle ip 10.1.1.0
-----------------------------------------------------------------------------
HANDLE                      Feature ID   No of entries     MD5
-----------------------------------------------------------------------------
10.1.1.0             VM Ingress L3                         2 

Step 7

show platform hardware acl entry interface interface-type interface-number security {in | out } {ip | ipv6 } [ detail ]

This command displays inbound access control list (ACL) entries for IP on an interface.

Example:


Device# show platform hardware acl entry interface fastEthernet 1/1 security in ip detail

mls_if_index:2000400A dir:0 feature:0 proto:0


pass#0 features
UAPRSF: U-urg, A-ack, P-psh, R-rst, S-syn, F-fin
MLGFI: M-mpls_plus_ip_pkt, L-L4_hdr_vld, G-gpid_present,F-global_fmt_match, I-ife/ofe
's' means set; 'u' means unset; '-' means don't care
---------------------------------------------------------------------------------------------------------------------------------------------------
INDEX  LABEL FS ACOS    AS     IP_SA      SRC_PORT       IP_DA      DST_PORT        F FF        L4PROT 

TCP-F:UAPRSF MLGFI OtherL4OPs                                  RSLT                  CNT
--------------------------------------------------------------------------------------------------------------------------------------------------
fno:0

tcam:B, bank:0, prot:0    Aces 

I  V  16375   2049  0    0     0         0.0.0.0               -         0.0.0.0               - 0  0      0      -       -----          -                     
0x0000000800000038            10331192<-
I  M  16375 0x1FFF  0 0x00 0x000         0.0.0.0               -         0.0.0.0               - 0  0    0x0

Step 8

show platform software ccm interface interface-type interface-number security {interface interface-type interface-number | class-group class-group-ID }

This command displays information about ternary content addressable memory (TCAM) Cisco CallManager (CCM) entries on an interface.

Example:


Device# show platform software ccm interface fastEthernet 2/3 in

 Target-Class : id 0xA0000000, dir CCM_INPUT, if_type 1, if_info 0x14823998

 Class-Group List: 0xA0000001 
b1-cs217#

b1-cs217#sh platform software ccm interface fastEthernet 2/3 out

 Target-Class : id 0xA0000002, dir CCM_OUTPUT, if_type 1, if_info 0x14823998

 Class-Group List: 0xA0000001 

This command displays information about ternary content addressable memory (TCAM) Cisco CallManager (CCM) entries for a class group

Example:


Device# show platform software ccm class-group A0000001
 Class-group    : video-flow-test, id 0xA0000001
 Target input   : 0xA0000000 
 Target Output  : 0xA0000002 
        Class   : video-flow, id 0xA98681, type 1
                Filter          : type MATCH_NUMBERED_ACCESS_GROUP, id 0xF0000002
                Filter params   : ACL Index: 101 Linktype: 7

                Feature         : PERFORMANCE_MONITOR
                Params          :
                  Feature Object : 0x54224218
                    Name           : 
                    Meter context  : 0x54264440
                    Sibling        : 0x0
                    Dynamic        : FALSE
                  Feature Object : 0x54221170
                    Name           : 
                    Meter context  : 0x54263858
                    Sibling        : 0x0
                    Dynamic        : FALSE
                Intf List       : 0xA0000000  0xA0000002 
        Class   : class-default, id 0xADA3F1, type 39
                Filter          : type MATCH_ANY, id 0xF0000003
                Filter params   : any

                Feature         : FEATURE_EMPTY
                Params          :
                  Feature Object : 0x1741629C
                    Name           : 
                    Meter context  : 0x0
                    Sibling        : 0x0
                    Dynamic        : FALSE
                Intf List       : 0xA0000000  0xA0000002 

Displaying the Performance Monitor Cache and Clients

To display the cache and the clients for Cisco Performance Monitor, perform the following optional task.

SUMMARY STEPS

  1. enable
  2. show performance monitor cache [policy policy-map-name class class-map-name ] [interface interface name ]
  3. show performance monitor clients detail all

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show performance monitor cache [policy policy-map-name class class-map-name ] [interface interface name ]

Example:


MMON Metering Layer Stats:
  static pkt cnt: 3049 
  static cce sb cnt: 57 
  dynamic pkt cnt: 0 
  Cache type:                            Permanent
  Cache size:                                 2000
  Current entries:                               8
  High Watermark:                                9
  Flows added:                                   9
  Updates sent            (  1800 secs)          0
IPV4 SRC ADDR    IPV4 DST ADDR    IP PROT  TRNS SRC PORT  TRNS DST PORT  
ipv4 ttl ipv4 ttl min ipv4 ttl max  ipv4 dscp bytes long perm pktslong perm  user space vm
==========================================================================================
10.1.1.1         10.1.2.3              17           4000           1967
0             0             0  0x00                         80
1 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000
10.1.1.1         10.1.2.3              17           6000           1967
0             0             0  0x00                         80
1  0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000
10.1.1.1         10.1.2.3              17           4000           2000
0             0             0  0x00                         44
1  0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000
10.1.1.1         10.1.2.3               6           6000           3000
0             0             0  0x00                         84
2  0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000
10.1.1.1         10.1.2.3              17           1967           6001
0             0             0  0x00                         36
1  0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000
10.1.1.1         10.1.2.3              17           1967           4001
0             0             0  0x00                         36
1  0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000
10.1.1.1         10.1.2.3               6           3001           6001
0             0             0  0x00                        124
3  0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000
10.1.1.1         10.1.2.3              17           2001           4001
0             0             0  0x00                         44
1  0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000

Step 3

show performance monitor clients detail all

Example:


Client name for ID 1 : Mediatrace-131419052
   Type: Mediatrace
   Age: 443 seconds
   Monitor Object: _MMON_DYN_-class-map-69
        Flow spec: (dvmc-acl#47) 10.10.130.2 1000 10.10.132.2 2000 17
        monitor parameters
                interval duration 60
                timeout 2
                history 1
                flows 100
        monitor metric rtp
                min-sequential 10
                max-dropout 5
                max-reorder 5
                clock-rate 112 90000
                clock-rate default 90000
                ssrc maximum 20
        monitor metric ip-cbr
                rate layer3 packet 20
        Flow record: dvmc_fnf_fdef_47
                Key fields:
                        ipv4 source address
                        ipv4 destination address
                        transport source-port
                        transport destination-port
                        ip protocol
                Non-key fields:
                        monitor event
                        application media event
                        routing forwarding-status
                        ip dscp
                        ip ttl
                        counter bytes rate
                        application media bytes rate
                        transport rtp jitter mean
                        transport packets lost counter
                        transport packets expected counter
                        transport event packet-loss counter
                        transport packets lost rate
                        timestamp interval
                        counter packets dropped
                        counter bytes
                        counter packets
                        application media bytes counter
                        application media packets counter
        Monitor point: _MMON_DYN_-policy-map-70 GigabitEthernet0/3 output
        Classification Statistic:
                matched packet: 545790
                matched byte: 64403220

Displaying the Clock Rate for Cisco Performance Monitor Classes

To display the clock rate for one or more classes, perform the following optional task.

SUMMARY STEPS

  1. enable
  2. show performance monitor clock rate [policy policy-map-name class class-map-name ]

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show performance monitor clock rate [policy policy-map-name class class-map-name ]

If no class name is specified, information for all classes are displayed.

Example:


Device# show performance monitor clock rate policy all-apps class telepresence-CS4
Load for five secs: 6%/2%; one minute: 5%; five minutes: 5% Time source is NTP, 17:41:35.508 EST Wed Feb 16 2011
RTP clock rate for Policy: all-apps, Class: telepresence-CS4 
     Payload type     Clock rate(Hz)
     pcmu    (0  )     8000
     gsm     (3  )     8000
     g723    (4  )     8000
     dvi4    (5  )     8000
     dvi4-2  (6  )     16000
     lpc     (7  )     8000
     pcma    (8  )     8000
     g722    (9  )     8000
     l16-2   (10 )     44100
     l16     (11 )     44100
     qcelp   (12 )     8000
     cn      (13 )     8000
     mpa     (14 )     90000
     g728    (15 )     8000
     dvi4-3  (16 )     11025
     dvi4-4  (17 )     22050
     g729    (18 )     8000
     celb    (25 )     90000
     jpeg    (26 )     90000
     nv      (28 )     90000
     h261    (31 )     90000
     mpv     (32 )     90000
     mp2t    (33 )     90000
     h263    (34 )     90000
             (96 )     48000
             (112)     90000
     default           90000

Displaying the Current Status of a Flow Monitor

To display the current status of a flow monitor, perform the following optional task.

Before you begin

The interface to which you applied the input flow monitor must be receiving traffic that meets the criteria defined by the original flow record before you can display the flows in the flow monitor cache.

SUMMARY STEPS

  1. enable
  2. show flow monitor type performance-monitor

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show flow monitor type performance-monitor

The show flow monitor type performance-monitor command shows the current status of the flow monitor that you specify.

Example:


Device# show flow monitor type performance-monitor
Flow Monitor type performance-monitor monitor-4:
  Description:           User defined
  Flow Record:           record-4
  Flow Exporter:         exporter-4
  No. of Inactive Users: 0
  No. of Active Users:   0

Verifying the Flow Monitor Configuration

To verify the configuration commands that you entered, perform the following optional task.

Before you begin

The interface to which you applied the input flow monitor must be receiving traffic that meets the criteria defined by the original flow record before you can display the flows in the flow monitor cache.

SUMMARY STEPS

  1. enable
  2. show running-config flow monitor

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show running-config flow monitor

The show running-config flow monitor command shows the configuration commands of the flow monitor that you specify.

Example:


Device# show running-config flow monitor
Current configuration:
!
flow monitor FLOW-MONITOR-1
 description Used for basic IPv4 traffic analysis
 record netflow ipv4 original-input
!
!
flow monitor FLOW-MONITOR-2
 description Used for basic IPv6 traffic analysis
 record netflow ipv6 original-input
!

Verifying That Cisco IOS Flexible NetFlow and Cisco Performance Monitor Is Enabled on an Interface

To verify that Flexible NetFlow and Cisco Performance Monitor is enabled on an interface, perform the following optional task.

SUMMARY STEPS

  1. enable
  2. show flow interface type number

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Router> enable
Router#

Step 2

show flow interface type number

The show flow interface command verifies that Flexible NetFlow and Cisco Performance Monitor is enabled on an interface.

Example:


Router# show flow interface ethernet 0/0
Interface Ethernet0/0
  FNF:  monitor:         FLOW-MONITOR-1
        direction:       Input
        traffic(ip):     on
  FNF:  monitor:         FLOW-MONITOR-2
        direction:       Input
        traffic(ipv6):   on

Displaying the Flow Monitor Cache

To display the data in the flow monitor cache, perform the following optional task.

Before you begin

The interface to which you applied the input flow monitor must be receiving traffic that meets the criteria defined by the original flow record before you can display the flow data in the flow monitor cache.

SUMMARY STEPS

  1. enable
  2. show flow monitor name monitor-name cache format record

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show flow monitor name monitor-name cache format record

The show flow monitor name monitor-name cache format record command string displays the status, statistics, and the flow data in the cache for a flow monitor.

Example:


Device# show flow monitor name FLOW-MONITOR-1 cache format record
Cache type:                            Normal
  Cache size:                              4096
  Current entries:                            8
  High Watermark:                             8
  Flows added:                               24
  Flows aged:                                16
    - Active timeout   (  1800 secs)          0
    - Inactive timeout (    15 secs)         16
    - Event aged                              0
    - Watermark aged                          0
    - Emergency aged                          0
IPV4 SOURCE ADDRESS:       10.251.10.1
IPV4 DESTINATION ADDRESS:  172.16.10.2
TRNS SOURCE PORT:          0
TRNS DESTINATION PORT:     2048
INTERFACE INPUT:           Et0/0
FLOW SAMPLER ID:           0
IP TOS:                    0x00
IP PROTOCOL:               1
ip source as:              0
ip destination as:         0
ipv4 next hop address:     172.16.7.2
ipv4 source mask:          /0
ipv4 destination mask:     /24
tcp flags:                 0x00
interface output:          Et1/0
counter bytes:             733500
counter packets:           489
timestamp first:           720892
timestamp last:            975032
.
.
.
IPV4 SOURCE ADDRESS:       172.16.6.1
IPV4 DESTINATION ADDRESS:  224.0.0.9
TRNS SOURCE PORT:          520
TRNS DESTINATION PORT:     520
INTERFACE INPUT:           Et0/0
FLOW SAMPLER ID:           0
IP TOS:                    0xC0
IP PROTOCOL:               17
ip source as:              0
ip destination as:         0
ipv4 next hop address:     0.0.0.0
ipv4 source mask:          /24
ipv4 destination mask:     /0
tcp flags:                 0x00
interface output:          Null
counter bytes:             52
counter packets:           1
timestamp first:           973804
timestamp last:            973804
Device# show flow monitor name FLOW-MONITOR-2 cache format record
Cache type:                            Normal
  Cache size:                              4096
  Current entries:                            6
  High Watermark:                             8
  Flows added:                             1048
  Flows aged:                              1042
    - Active timeout   (  1800 secs)         11
    - Inactive timeout (    15 secs)       1031
    - Event aged                              0
    - Watermark aged                          0
    - Emergency aged                          0
IPV6 FLOW LABEL:           0
IPV6 EXTENSION MAP:        0x00000040
IPV6 SOURCE ADDRESS:       2001:DB8:1:ABCD::1
IPV6 DESTINATION ADDRESS:  2001:DB8:4:ABCD::2
TRNS SOURCE PORT:          3000
TRNS DESTINATION PORT:     55
INTERFACE INPUT:           Et0/0
FLOW DIRECTION:            Input
FLOW SAMPLER ID:           0
IP PROTOCOL:               17
IP TOS:                    0x00
ip source as:              0
ip destination as:         0
ipv6 next hop address:     ::
ipv6 source mask:          /48
ipv6 destination mask:     /0
tcp flags:                 0x00
interface output:          Null
counter bytes:             521192
counter packets:           9307
timestamp first:           9899684
timestamp last:            11660744
.
.
.
IPV6 FLOW LABEL:           0
IPV6 EXTENSION MAP:        0x00000000
IPV6 SOURCE ADDRESS:       FE80::A8AA:BBFF:FEBB:CC03
IPV6 DESTINATION ADDRESS:  FF02::9
TRNS SOURCE PORT:          521
TRNS DESTINATION PORT:     521
INTERFACE INPUT:           Et0/0
FLOW DIRECTION:            Input
FLOW SAMPLER ID:           0
IP PROTOCOL:               17
IP TOS:                    0xE0
ip source as:              0
ip destination as:         0
ipv6 next hop address:     ::
ipv6 source mask:          /10
ipv6 destination mask:     /0
tcp flags:                 0x00
interface output:          Null
counter bytes:             92
counter packets:           1
timestamp first:           11653832
timestamp last:            11653832

Displaying the Current Status of a Flow Exporter

To display the current status of a flow exporter, perform the following optional task.

SUMMARY STEPS

  1. enable
  2. show flow exporter [exporter-name ]

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show flow exporter [exporter-name ]

The show flow exporter command shows the current status of the flow exporter that you specify.

Example:


Device# show flow exporter EXPORTER-1
Flow Exporter EXPORTER-1:
  Description:              Exports to Chicago datacenter
  Transport Configuration:
    Destination IP address: 172.16.10.2
    Source IP address:      172.16.7.1
    Transport Protocol:     UDP
    Destination Port:       65
    Source Port:            56041
    DSCP:                   0x0
    TTL:                    255

Verifying the Flow Exporter Configuration

To verify the configuration commands that you entered to configure the flow exporter, perform the following optional task.

SUMMARY STEPS

  1. enable
  2. show running-config flow exporter exporter-name

DETAILED STEPS


Step 1

enable

The enable command enters privileged EXEC mode (enter the password if prompted).

Example:


Device> enable
Device#

Step 2

show running-config flow exporter exporter-name

The show running-config flow exporter command shows the configuration commands of the flow exporter that you specify.

Example:


Device# show running-config flow exporter EXPORTER-1
Building configuration...
!
flow exporter EXPORTER-1
 description Exports to datacenter
 destination 172.16.10.2
 transport udp 65
!

Enabling Debugging

To enable debugging for Cisco Performance Monitor, perform the following optional task in privileged EXEC mode.

SUMMARY STEPS

  1. debug performance monitor {database | dynamic | event | export | flow-monitor | metering | provision | sibling | snmp | tca | timer }

DETAILED STEPS


debug performance monitor {database | dynamic | event | export | flow-monitor | metering | provision | sibling | snmp | tca | timer }

The debug performance monitor command enables debugging for the following performance monitor components:

  • Flow database

  • Dynamic monitoring

  • Performance events

  • Exporting

  • Flow monitors

  • Metering layer

  • Provisioning

  • Sibling management

  • SNMP

  • TCA

  • Timers

The following example shows how to enable debugging for dynamic monitoring:

Example:


Device# debug performance monitor dynamic 

Configuration Example for Cisco Performance Monitor

Example Monitor for Lost RTP Packets and RTP Jitter

This example show a configuration that monitors the number of lost RTP packets, the amount of RTP jitter, and other basic statistics for the gig1 interface. In this example, Cisco Performance Monitor is also configured to make an entry in the syslog when the any of the following events occur on the interface:

  • The percentage of lost RTP packets is between 5 percent and 9 percent.

  • The percentage of lost RTP packets is greater than 10 percent.

  • A media stop event has occurred.


! Set the filter spec for the flows to monitor.
access-list 101 ip permit host 10.10.2.20 any
! Use the flow record to define the flow keys and metric to collect.
flow record type performance-monitor video-monitor-record
 match ipv4 source
 match ipv4 destination
 match transport source-port
 match transport destination-port
 match rtp ssrc
 collect timestamp
 collect counter byte
 collect counter packet
 collect mse
 collect media-error
 collect counter rtp interval-jitter
 collect counter rtp packet lost
 collect counter rtp lost event
! Set the exporting server. The export message format is based on FNFv.9.
flow export video-nms-server
 export-protocol netflow-v9
 destination cisco-video-management
 transport udp 32001
! Set the flow filter in the class-map. 
class-map match-all video-class
 access-group  ipv4 101
! Set the policy map with the type performance-monitor for video monitor.
policy-map type performance-monitor video-monitor
 ! Set the video monitor actions. 
 class video-class  
  ! Specify where the metric data is being exported to.
  export  flow video-nms-server 
  flow monitor inline
   record video-monitor-record
! Set the monitoring modeling parameters.
monitor parameters 
 ! Set the measurement timeout to 10 secs.
 interval duration 10 
 ! Set the timeout to 10 minutes.
 timeout 10 
 ! Specify that 30 flow intervals can be kept in performance database.
 history 30 
 priority 7
 ! Set rtp flow verification criteria.
 monitor metric rtp 
 ! Configure a RTP flow criteria: at least 10 packets in sequence.
 min-sequential   10 
 ! Ignore packets that are more than 5 packet ahead in terms of seq  number.  max-dropout  5 
 ! Ignore packets that are more than 5 packets behind in terms of seq  number.
 max-reorder 5 
 ! Set the clock rate frequency for rtp packet timestamp clock.
 clock-rate 89000 
 ! Set the maximum number of ssrc allowed within this class.
 ssrc maximum  100 
 ! Set TCA for alarm.
 react 100 transport-packets-lost-rate
  description critical  TCA
  ! Set the threshold to greater than 10%.
  threshold gt 10 
  ! Set the threshold to the average number based on the last five intervals.
  threshold type average 5 
  action  syslog
  alarm severity critical
 react 110 transport-packets-lost-rate
  description medium TCA  
  ! Set the threshold to between 5% and 9% of packet lost.
  threshold range gt 5 le 9 
  threshold type average 10
  action  syslog
  alarm type grouped percent 30
 react 3000 media-stop
  action syslog 
  alarm severity critical
  alarm type grouped percent 30
            
interface gig1
 service-policy type performance-monitor video-mon in

Where to Go Next

For more information about configuring the products in the Medianet product family, see the other chapter in this guide or see the Cisco Media Monitoring Configuration Guide.

Additional References

Related Documents

Related Topic

Document Title

Design, configuration, and troubleshooting resources for Performance Monitor and other Cisco Medianet products, including a Quick Start Guide and Deployment Guide.

See the Cisco Medianet Knowledge Base Portal, located at http://www.cisco.com/web/solutions/medianet/knowledgebase/index.html

IP addressing commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples

Cisco Media Monitoring Command Reference

Configuration commands for Flexible NetFlow

Cisco IOS Flexible NetFlow Command Reference

Overview of Flexible NetFlow

“Cisco IOS Flexible NetFlow Overview”

Flexible NetFlow Feature Roadmap

“Cisco IOS Flexible NetFlow Features Roadmap”

Configuring flow exporters to export Flexible NetFlow data.

“Configuring Data Export for Cisco IOS Flexible NetFlow with Flow Exporters”

Customizing Flexible NetFlow

“Customizing Cisco IOS Flexible NetFlow Flow Records and Flow Monitors”

Configuring flow sampling to reduce the overhead of monitoring traffic with Flexible NetFlow

“Using Cisco IOS Flexible NetFlow Flow Sampling to Reduce the CPU Overhead of Analyzing Traffic”

Configuring Flexible NetFlow using predefined records

“Configuring Cisco IOS Flexible NetFlow with Predefined Records”

Using Flexible NetFlow Top N Talkers to analyze network traffic

“Using Cisco IOS Flexible NetFlow Top N Talkers to Analyze Network Traffic”

Configuring IPv4 multicast statistics support for Flexible NetFlow

“Configuring IPv4 Multicast Statistics Support for Cisco IOS Flexible NetFlow”

Standards

Standard

Title

None

MIBs

MIB

MIBs Link

  • CISCO-FLOW-MONITOR-TC-MIB

  • CISCO-FLOW-MONITOR-MIB

  • CISCO-RTP-METRICS-MIB

  • CISCO-IP-CBR-METRICS-MIB

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

RFC

Title

RFC 3954

Cisco Systems NetFlow Services Export Version 9

http://www.ietf.org/rfc/rfc3954.txt

RFC 3550

RTP: A Transport Protocol for Real-Time Applications

http://www.ietf.org/rfc/rfc3550.txt

Technical Assistance

Description

Link

The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

http://www.cisco.com/cisco/web/support/index.html

Feature Information for Cisco Performance Monitor

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 5. Feature Information for Cisco Performance Monitor

Feature Name

Releases

Feature Information

Cisco Performance Monitor 1.0

15.1(3)T

12.2(58)SE

15.1(4)M1

15.0(1)SY

Cisco IOS XE Release 3.5S

15.1(1)SG

Cisco IOS XE Release 3.3 SG

This feature enables you to monitor the flow of packets in your network and become aware of any issues that might impact the flow before it starts to significantly impact your applications’ performance.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.5S.

There are some limitations to the monitoring of ingress or egress data on certain types of interfaces for the Cisco IOS XE Release 3.3 SG and Cisco IOS release 15.1(1)SG. For more information, see the "Limitations" section.

For all other releases, the following commands were introduced or modified by this feature: action (policy react and policy inline react), alarm severity (policy react and policy inline react), alarm type (policy react and policy inline react), class-map , clock-rate (policy RTP), collect application media , clear fm performance-monitor counters , collect counter , collect flow direction , collect interface , collect ipv4 , collect ipv4 destination , collect ipv4 source , collect ipv4 ttl , collect monitor event , collect routing , collect timestamp interval , collect transport event packet-loss counter , collect transport packets , collect transport rtp jitter , debug fm performance-monitor counters , debug performance-monitor counters , description (Performance Monitor), destination dscp (Flexible NetFlow), export-protocol , exporter , flow monitor type performance-monitor , flow record type performance-monitor , flows , history (monitor parameters), interval duration , match access-group , match any , match class-map , match cos , match destination-address mac , match discard-class , match dscp , match flow , match fr-de , match fr-dlci , match input-interface , match ip dscp , match ip precedence , match ip rtp , match ipv4 , match ipv4 destination , match ipv4 source , match mpls experimental topmost , match not , match packet length (class-map), match precedence , match protocol , match qos-group , match source-address mac , match transport destination-port , match transport rtp ssrc , match transport source-port , match vlan , max-dropout (policy RTP), max-reorder (policy RTP), min-sequential (policy RTP), monitor metric ip-cbr , monitor metric rtp , monitor parameters , option (Flexible NetFlow), output-features , platform performance-monitor rate-limit , policy-map type performance-monitor , rate layer3 , react (policy), record (Performance Monitor), rename (policy), service-policy type performance-monitor , show performance monitor history , show performance monitor status , show platform hardware acl entry interface , show platform software ccm , show platform software feature-manager performance-monitor , show platform software feature-manager tcam , show policy-map type performance-monitor , snmp-server host , snmp-server enable traps flowmon , snmp mib flowmon alarm history , source (Flexible NetFlow), ssrc maximum , template data timeout , threshold value (policy react and policy inline react), timeout (monitor parameters), transport (Flexible NetFlow), and ttl (Flexible NetFlow).

Cisco Performance Monitor (phase 2)

15.2(2)T

Cisco IOS XE Release 3.5S

This feature enables you monitor IPv6 fields and also use all other Flexible Netflow collect and match commands not supported in the previous release.

Flows are now correlated so that if the same policy is applied on the same input and output interface, the show command will display a single flow for the input and output interfaces.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.5S.

The following commands were introduced or modified by this feature: collect datalink mac , collect ipv4 fragmentation , collect ipv4 section , collect ipv4 total-length , collect ipv6 , collect ipv6 destination , collect ipv6 extensionmap , collect ipv6 fragmentation , collect ipv6 hop-count , collect ipv6 length , collect ipv6 section , collect ipv6 source , collect routing is-multicast , collect routing multicast replication-factor , collect timestamp sys-uptime , collect transport , collect transport icmp ipv4 , collect transport icmp ipv6 , collect transport tcp , collect transport udp , match application name , match connection transaction-id , match datalink dot1q vlan , match datalink mac , match datalink vlan , match interface , match ipv4 fragmentation , match ipv4 section , match ipv4 total-length , match ipv4 ttl , match ipv6 , match ipv6 destination , match ipv6 extension map , match ipv6 fragmentation , match ipv6 hop-limit , match ipv6 length , match ipv6 section , match ipv6 source , match routing , match routing is-multicast , match routing multicast replication-factor , match transport , match transport icmp ipv4 , match transport icmp ipv6 , match transport tcp , match transport udp

Cisco Performance Monitor (phase 3)

15.2(3)T

Cisco IOS XE Release 3.7S

This feature enables you to configure multiple exporters and monitor metadata fields and new TCP metrics.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.7S.

The following commands were introduced or modified by this feature: collect application , collect transport tcp bytes out-of-order , collect transport packets out-of-order , collect transport tcp maximum-segment-size , collect transport tcp window-size maximum , collect transport tcp window-size minimum , collect transport tcp window-size average , match application , match transport tcp bytes out-of-order , match transport packets out-of-order , match transport tcp maximum-segment-size , match transport tcp window-size maximum , match transport tcp window-size minimum , match transport tcp window-size average

Performance Monitoring - IPv6 support

Cisco IOS XE Release 3.6S

This feature enables you to attach a monitor to IPv6 interfaces.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.6S.

Performance Monitoring - transport packet out of order

Cisco IOS XE Release 3.6S

This feature enables you to monitor the total number of out-of-order TCP packets.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.6S.

The following commands were introduced or modified by this feature: collect transport tcp bytes out-of-order and collect transport packets out-of-order .

Flexible NetFlow: IPFIX Export Format

15.2(4)M

Cisco IOS XE Release 3.7S

Enables sending export packets using the IPFIX export protocol. The export of extracted fields from NBAR is only supported over IPFIX.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.7S.

The following command was introduced: export-protocol .

Flexible NetFlow: Export to an IPv6 Address

Cisco IOS XE Release 3.7S

This feature enables Flexible NetFlow to export data to a destination using an IPv6 address.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.7S.

The following command was introduced: destination .

Flexible NetFlow: Extracted Fields Support

Cisco IOS XE Release 3.7S

Enables the collection of extracted fields using NBAR. The export of extracted fields is only supported over IPFIX.

Support for this feature was added for Cisco ASR 1000 Series Aggregation Services routers in Cisco IOS XE Release 3.7S.

The following commands were introduced or modified by this feature: collect http host , collect nntp group-name , collect pop3 server , collect rtsp host-name , collect sip destination , collect sip source , collect smtp server , ,and collect smtp sender .

Application Visibility and Control (AVC) 2.0, which includes the following features:

  • Enable visualization of application usage under performance-monitoring policy

  • Enable performance of application usage

  • Enable Prime integration with router packet capture

  • Enable visualization of service path

  • FNF: Account On Resolution (AOR) for WAAS Segment

  • FNF: Account On Resolution (AOR) for performance monitoring policy-map

Cisco IOS XE Release 3.8S

AVC 2.0 provides extensive new functionality, including the integration of AVC with the Media Monitoring technology.

This book only describes how to configure a flow record for AVC 2.0. For a complete explanation of AVC 2.0, see the AVC Configuration Guide at http://www.cisco.com/en/US/docs/ios-xml/ios/avc/configuration/xe-3s/avc-xe-3s-book.html.