インターフェイス タイプの概要
ここでは、スイッチによってサポートされる各種インターフェイス タイプについて説明するとともに、これらのインターフェイス タイプの設定に関する詳細情報が記載された章についても言及します。また、インターフェイスの物理特性に応じた設定手順についても説明します。
ここでは、次のようなインターフェイス タイプについて説明します。
• 「ポートベースの VLAN」
• 「スイッチ ポート」
• 「ルーテッド ポート」
• 「SVI」
• 「EtherChannel ポート グループ」
• 「デュアルパーパス アップリンク ポート」
• 「PoE ポート」
• 「インターフェイスの接続」
ポートベースの VLAN
VLAN は、ユーザの物理的な位置に関係なく、機能、チーム、またはアプリケーションなどで論理的に分割されたスイッチによるネットワークです。VLAN の詳細については、「VLAN の設定」を参照してください。ポートで受信したパケットが転送されるのは、その受信ポートと同じ VLAN に属するポートに限られます。異なる VLAN 上のネットワーク デバイスは、VLAN 間でトラフィックをルーティングするレイヤ 3 デバイスがなければ、互いに通信できません。
VLAN に分割することにより、VLAN 内でトラフィック用の堅固なファイアウォールを実現します。また、各 VLAN には固有の MAC アドレス テーブルがあります。VLAN が認識されるのは、ローカル ポートが VLAN に対応するように設定されたとき、VLAN Trunking Protocol(VTP; VLAN トランキング プロトコル)トランク上のネイバーからその存在を学習したとき、またはユーザが VLAN を作成したときです。
通常範囲の VLAN(VLAN ID が 1 ~ 1005)を設定するには、 vlan vlan-id グローバル コンフィギュレーション コマンドを使用して config-vlan モードを開始するか、 vlan database 特権 EXEC コマンドを使用して VLAN データベース コンフィギュレーション モードを開始します。VLAN ID(1 ~ 1005)用の VLAN 設定は VLAN データベースに保存されます。拡張範囲 VLAN(VLAN ID が 1006 ~ 4094)を設定するには、config-vlan モードを使用し、VTP モードをトランスペアレントに設定する必要があります。拡張範囲 VLAN は、VLAN データベースに追加されません。VTP モードがトランスペアレントである場合は、VTP および VLAN 設定はスイッチの実行コンフィギュレーションに保存されるので、 copy running-config startup-config 特権 EXEC コマンドを実行して、これをスイッチのスタートアップ コンフィギュレーション ファイルに保存できます。
switchport インターフェイス コンフィギュレーション コマンドを使用すると、VLAN にポートが追加されます。
• インターフェイスを特定します。
• トランク ポートには、トランク特性を設定し、必要に応じて所属できる VLAN を定義します。
• アクセス ポートには、所属する VLAN を設定して定義します。
• トンネル ポートの場合は、カスタマー固有の VLAN タグ用に VLAN ID の設定と定義を行います。「IEEE 802.1Q トンネリングおよびレイヤ 2 プロトコル トンネリングの設定」を参照してください。
スイッチ ポート
スイッチ ポートは、物理ポートに対応付けられたレイヤ 2 専用インターフェイスです。スイッチ ポートは、1 つまたは複数の VLAN に属します。スイッチ ポートは、アクセス ポート、トランク ポート、またはトンネル ポートのいずれかに設定できます。ポートは、アクセス ポートまたはトランク ポートに設定できます。また、ポート単位で Dynamic Trunking Protocol(DTP)を稼働させ、リンクのもう一端のポートとネゴシエートすることで、スイッチ ポート モードも設定できます。IEEE 802.1Q トランク ポートに接続した非対称リンクの一部として、トンネル ポートを手動で設定する必要があります。スイッチ ポートは物理インターフェイスおよび対応レイヤ 2 プロトコルの管理に使用します。ルーティングやブリッジングは処理しません。
スイッチ ポートの設定には、 switchport インターフェイス コンフィギュレーション コマンドを使用します。レイヤ 3 モードのインターフェイスをレイヤ 2 モードにするには、 switchport コマンドを no キーワードで使用します。
(注) レイヤ 3 モードのインターフェイスをレイヤ 2 モードにした場合、影響のあるインターフェイスに関連する以前の設定情報が消失する可能性があり、インターフェイスはデフォルト設定に戻ります。
アクセス ポート特性およびトランク ポート特性の詳細については、「VLAN の設定」を参照してください。トンネル ポートの詳細については、「IEEE 802.1Q トンネリングおよびレイヤ 2 プロトコル トンネリングの設定」 を参照してください。
アクセス ポート
アクセス ポートは(音声 VLAN ポートとして設定されている場合を除き)1 つの VLAN だけに所属し、その VLAN のトラフィックだけを伝送します。トラフィックは、VLAN タギングなしのネイティブ フォーマットで送受信されます。アクセス ポートに着信したトラフィックは、ポートに割り当てられている VLAN に所属するとみなされます。アクセス ポートがタグ付きパケット(Inter-Switch Link [ISL; スイッチ間リンク] またはタグ付き IEEE 802.1Q)を受信した場合、そのパケットは廃棄され、送信元アドレスは学習されません。
2 種類のアクセス ポートがサポートされています。
• スタティック アクセス ポート。このポートは、手動で VLAN に割り当てます(IEEE 802.1x で使用する場合は RADIUS サーバを使用します。詳細については、 VLAN 割り当てを使用した IEEE 802.1x 認証の利用を参照してください)。
• ダイナミック アクセス ポートの VLAN メンバシップは、着信パケットを通じて学習されます。デフォルトでは、ダイナミック アクセス ポートはどの VLAN のメンバーでもなく、ポートとの伝送はポートの VLAN メンバシップが検出されたときにだけイネーブルになります。スイッチ上のダイナミック アクセス ポートは、VLAN Membership Policy Server(VMPS; VLAN メンバシップ ポリシー サーバ)によって VLAN に割り当てられます。VMPS として動作できるのは、Catalyst 6500 シリーズ スイッチです。Catalyst 3560 を VMPS サーバにすることはできません。
また、Cisco IP Phone と接続するアクセス ポートを、1 つの VLAN は音声トラフィック用に、もう 1 つの VLAN は Cisco IP Phone に接続しているデバイスからのデータ トラフィック用に使用するように設定できます。音声 VLAN ポートの詳細については、「音声 VLAN の設定」を参照してください。
トランク ポート
トランク ポートは複数の VLAN のトラフィックを伝送し、デフォルトで VLAN データベース内のすべての VLAN のメンバーとなります。サポートされているトランク ポートのタイプは次のとおりです。
• ISL トランク ポートでは、受信パケットはすべて ISL ヘッダーを使用してカプセル化されているものとみなされ、送信パケットはすべて ISL ヘッダーとともに送信されます。ISL トランク ポートから受信したネイティブ(タグなし)フレームは廃棄されます。
• IEEE 802.1Q トランク ポートは、タグ付きとタグなしの両方のトラフィックを同時にサポートします。IEEE 802.1Q トランク ポートは、デフォルトの Port VLAN ID(PVID; ポート VLAN ID)に割り当てられ、すべてのタグなしトラフィックはポートのデフォルト PVID 上を流れます。NULL VLAN ID を備えたすべてのタグなしおよびタグ付きトラフィックは、ポートのデフォルト PVID に所属するものとみなされます。発信ポートのデフォルト PVID と等しい VLAN ID を持つパケットは、タグなしで送信されます。残りのトラフィックはすべて、VLAN タグ付きで送信されます。
デフォルトでは、トランク ポートは、VTP に認識されているすべての VLAN のメンバーですが、トランク ポートごとに VLAN の許可リストを設定して、VLAN メンバシップを制限できます。許可 VLAN のリストは、その他のポートには影響を与えませんが、対応トランク ポートには影響を与えます。デフォルトでは、使用可能なすべての VLAN(VLAN ID 1 ~ 4094)が許可リストに含まれます。トランク ポートは、VTP が VLAN を認識し、VLAN がイネーブル状態にある場合に限り、VLAN のメンバーになることができます。VTP が新しいイネーブル VLAN を認識し、その VLAN がトランク ポートの許可リストに登録されている場合、トランク ポートは自動的にその VLAN のメンバーになり、トラフィックはその VLAN のトランク ポート間で転送されます。VTP が、VLAN のトランク ポートの許可リストに登録されていない、新しいイネーブル VLAN を認識した場合、ポートはその VLAN のメンバーにはならず、その VLAN のトラフィックはそのポート間で転送されません。
トランク ポートの詳細については、「VLAN の設定」を参照してください。
トンネル ポート
トンネル ポートは IEEE 802.1Q トンネリングで使用され、サービスプロバイダー ネットワークのカスタマーのトラフィックを、同じ VLAN 番号を使用するその他のカスタマーから分離します。サービスプロバイダー エッジ スイッチのトンネル ポートからカスタマーのスイッチの IEEE 802.1Q トランク ポートに、非対称リンクを設定します。エッジ スイッチのトンネル ポートに入るパケットには、カスタマーの VLAN ですでに IEEE 802.1Q タグが付いており、カスタマーごとに IEEE 802.1Q タグの別のレイヤ(メトロ タグと呼ばれる)でカプセル化され、サービスプロバイダー ネットワークで一意の VLAN ID が含まれます。タグが 2 重に付いたパケットは、その他のカスタマーのものとは異なる、元のカスタマーの VLAN が維持されてサービスプロバイダー ネットワークを通過します。発信インターフェイス、およびトンネル ポートでは、メトロ タグが削除されてカスタマーのネットワークのオリジナル VLAN 番号が取得されます。
トンネル ポートは、トランク ポートまたはアクセス ポートにすることができず、それぞれのカスタマーに固有の VLAN に属す必要があります。
トンネル ポートの詳細については、「IEEE 802.1Q トンネリングおよびレイヤ 2 プロトコル トンネリングの設定」を参照してください。
ルーテッド ポート
ルーテッド ポートは物理ポートであり、ルータ上にあるポートのように動作しますが、ルータに接続されている必要はありません。ルーテッド ポートは、アクセス ポートとは異なり、特定の VLAN に対応付けられていません。VLAN サブインターフェイスをサポートしない点を除けば、通常のルータ インターフェイスのように動作します。ルーテッド ポートは、レイヤ 3 ルーティング プロトコルで設定できます。ルーテッド ポートはレイヤ 3 インターフェイス専用で、DTP や Spanning-Tree Protocol(STP; スパニング ツリー プロトコル)などのレイヤ 2 プロトコルはサポートしません。
ルーテッド ポートを設定するには、 no switchport インターフェイス コンフィギュレーション コマンドでインターフェイスをレイヤ 3 モードにします。次に、ポートに IP アドレスを割り当て、ルーティングをイネーブルにし、ip routing およびrouter protocol グローバル コンフィギュレーション コマンドを使用してルーティング プロトコルの特性を指定します。
(注) no switchport インターフェイス コンフィギュレーション コマンドを実行すると、インターフェイスがいったんシャットダウンしてから再度イネーブルになります。これにより、インターフェイスが接続しているデバイスに関するメッセージが表示されることがあります。レイヤ 2 モードのインターフェイスをレイヤ 3 モードにした場合、影響のあるインターフェイスに関連する以前の設定が消失する可能性があります。
ソフトウェアに、設定できるルーテッド ポートの個数制限はありません。ただし、ハードウェアには限界があるため、この個数と設定されている他の機能の数との相互関係によって CPU パフォーマンスに影響が及ぶことがあります。ハードウェアのリソース制限に達したときに何が発生するかについては、「レイヤ 3 インターフェイスの設定」を参照してください。
IP ユニキャストおよびマルチキャストのルーティングおよびルーティング プロトコルの詳細については、「IP ユニキャスト ルーティングの設定」および「IP マルチキャスト ルーティングの設定」を参照してください。
(注) IP ベース イメージ(以前の Standard Multilayer Image[SMI; 標準マルチレイヤ イメージ])は、スタティック ルーティングおよび Routing Information Protocol(RIP)をサポートします。完全なレイヤ 3 ルーティングまたはフォールバック ブリッジングを実行するには、スイッチに IP サービス イメージ(以前の Enhanced Multilayer Image[EMI;拡張マルチレイヤ イメージ])をインストールする必要があります。
SVI
Switch Virtual Intertface(SVI; スイッチ仮想インターフェイス)は、スイッチ ポートの VLAN を、システムのルーティング機能またはブリッジング機能に対する 1 つのインターフェイスとして表します。1 つの VLAN に対応付けできるのは 1 つの SVI だけですが、VLAN 間でルーティングする場合、VLAN 間でルーティングできないプロトコルをフォールバック ブリッジングする場合、またはスイッチと IP ホストの接続を行う場合のみ、VLAN に SVI を設定する必要があります。デフォルトでは、SVI はデフォルト VLAN(VLAN 1)用に作成され、リモート スイッチの管理を可能にします。追加の SVI は明示的に設定する必要があります。
(注) インターフェイス VLAN 1 は削除できません。
SVI はシステムにしか IP ホスト接続を行いません。レイヤ 3 モードでは、SVI 全体にルーティングを設定できます。
スイッチは合計 1005 の VLAN(および SVI)をサポートしますが、ハードウェアには限界があるため、SVI とルーテッド ポートの数および設定されている他の機能の数との相互関係によって、CPU パフォーマンスに影響が及ぶことがあります。ハードウェアのリソース制限に達したときに何が発生するかについては、「レイヤ 3 インターフェイスの設定」を参照してください。
SVI は、VLAN インターフェイスに対してvlan インターフェイス コンフィギュレーション コマンドを実行したときに初めて作成されます。VLAN は、ISL または IEEE 802.1Q カプセル化トランク上のデータ フレームに関連付けられた VLAN タグ、あるいはアクセス ポート用に設定された VLAN ID に対応します。トラフィックをルーティングするそれぞれの VLAN に対して VLAN インターフェイスを設定し、IP アドレスを割り当ててください。詳細については、「手動でのスイッチ情報の割り当て」を参照してください。
(注) 作成した SVI をアクティブにするには、物理ポートに関連付ける必要があります。
SVI は、ルーティング プロトコルとブリッジング設定をサポートします。IP ルーティング設定の詳細については、「IP ユニキャスト ルーティングの設定」、「IP マルチキャスト ルーティングの設定」および「フォールバック ブリッジングの設定」を参照してください。
(注) IP ベース イメージはスタティック ルーティングおよび RIP をサポートします。より高度なルーティングやフォールバック ブリッジングを行う場合は、スイッチに IP サービス イメージを搭載する必要があります。
EtherChannel ポート グループ
EtherChannel ポート グループは、複数のスイッチ ポートを 1 つのスイッチ ポートとして扱います。このようなポート グループは、スイッチ間、またはスイッチおよびサーバ間で広帯域接続を行う単一論理ポートとして動作します。EtherChannel は、チャネルのリンク全体でトラフィックの負荷を分散させます。EtherChannel 内のリンクで障害が発生すると、それまでその障害リンクで伝送されていたトラフィックが EtherChannel 内の残りのリンクに切り替えられます。複数のトランク ポートを 1 つの論理トランク ポート、複数のアクセス ポートを 1 つの論理アクセス ポート、複数のトンネル ポートを 1 つの論理トンネル ポート、または複数のルーテッド ポートを 1 つの論理ルーテッド ポートにグループ化できます。ほとんどのプロトコルは、単一ポートまたは集約スイッチ ポート上で動作し、ポート グループ内の物理ポートを認識しません。例外は、DTP、Cisco Discovery Protocol(CDP)、および Port Aggregation Protocol(PAgP)で、物理ポート上でしか動作しません。
EtherChannel を設定するとき、ポートチャネル論理インターフェイスを作成し、EtherChannel にインターフェイスを割り当てます。レイヤ 3 インターフェイスの場合は、 interface port-channel グローバル コンフィギュレーション コマンドを使用して手動で論理インターフェイスを作成します。そのあと、 channel-group インターフェイス コンフィギュレーション コマンドを使用して、手動で EtherChannel にインターフェイスを割り当てます。レイヤ 2 インターフェイスの場合は、 channel-group インターフェイス コンフィギュレーション コマンドを使用して、ダイナミックにポート チャネル論理インターフェイスを作成します。このコマンドは物理および論理ポートをバインドします。詳細は、「EtherChannel およびリンクステート トラッキングの設定」を参照してください。
デュアルパーパス アップリンク ポート
Catalyst 3560 スイッチの一部のモデルでは、デュアルパーパス アップリンク ポートをサポートしています。各 アップリンク ポートはフロント エンド(RJ-45 コネクタおよび着脱可能小型フォーム ファクタ [SFP] モジュール コネクタ)を 2 つ持つ単一のインターフェイスとみなされます。2 つのフロント エンドは冗長性を持たないインターフェイスであるため、スイッチはペアのうちの 1 つのコネクタのみをアクティブにします。
デフォルトでは、スイッチは最初に接続されたインターフェイス タイプを動的に選択します。ただし、手動で RJ-45 コネクタまたは SFP モジュール コネクタを選択する場合は、 media-type インターフェイス コンフィギュレーション コマンドを使用できます。デュアルパーパス アップリンクの速度およびデュプレックスの設定の詳細については、「インターフェイス速度およびデュプレックス パラメータの設定」を参照してください。
各アップリンク ポートは、RJ-45 ポートのステータスを表示する LED と、SFP モジュール ポートのステータスを表示する LED の 2 つの LED を搭載しています。ポートの LED はアクティブとなっているコネクタ上に存在します。LED の詳細については、ハードウェア インストレーション ガイドを参照してください。
PoE ポート
Catalyst 3560 Power over Ethernet(PoE)対応スイッチ ポートでは、接続している次のデバイスに電力が自動的に供給されます(回路に電力が供給されていないことをスイッチが感知した場合)。
• シスコ先行標準受電装置(Cisco IP Phone および Cisco Aironet アクセス ポイントなど)
• IEEE 802.3af 準拠の受電装置
24 ポート PoE スイッチの場合、各 10/100 ポートまたは 10/100/1000 PoE ポートには最大 15.4 W までの電力が供給されます。48 ポート PoE スイッチでは、48 の 10/100 ポートまたは 10/100/1000 PoE ポートのうち 24 のポートでそれぞれ 15.4 W の電力を、または任意のポートの組み合わせにより同時に平均で 7.7 W の電力を、スイッチ最大電力出力 370 W まで供給します。
受電装置が PoE スイッチおよび AC 電源に接続されている場合、冗長電力として利用できます。
サポート対象のプロトコルおよび標準
スイッチでは、次のプロトコルおよび標準を使用して PoE をサポートしています。
• 電力消費を含む CDP ― 受電装置は、消費している電力量をスイッチに通知します。スイッチは、電力消費メッセージに応答しません。スイッチは、PoE ポートに電力を供給するか、PoE ポートから電力を取り除くだけです。
• シスコ インテリジェント電力管理 ― 受電装置およびスイッチは、電力ネゴシエーション CDP メッセージによって電力消費レベルについてネゴシエーションを行います。このネゴシエーションにより、7 W より多くを消費する高電力シスコ受電装置は、最高電力モードで動作できるようになります。受電装置は、最初に低電力モードでブートして 7 W 未満の電力を消費し、ネゴシエーションを行って高電力モードで動作するための十分な電力を得ます。受電装置は、スイッチから確認を受信した場合に限って高電力モードに切り替わります。
高電力デバイスは、電力ネゴシエーション CDP がサポートされていないスイッチにおいて、低電力で動作できます。
Cisco IOS Release 12.2(25)SE 以前の場合、Catalyst 3560 PoE 対応スイッチ(インテリジェント電力管理がサポート非対象)では、インテリジェント電力管理がサポートされている高電力受電装置が、低電力モードで動作します。低電力モードのデバイスでは、すべての機能は動作しません。
シスコ インテリジェント電力管理には、電力消費を含む CDP との下位互換性があります。スイッチは、受信した CDP メッセージに従って応答します。CDP は、サードパーティ製受電装置でサポートされません。このため、スイッチは IEEE 分類を使用してデバイスの電力使用量を判断します。
• IEEE 802.3af ― この標準の主な機能は、受電装置検出、電力管理、切断検出、オプションの受電装置電力分類です。詳細については、標準を参照してください。
受電装置検出および初期電力割り当て
スイッチは、PoE 対応ポートがシャットダウン状態でなく、PoE がイネーブルになっていて(デフォルト)、接続したデバイスが AC アダプタによって電力供給されていない場合、シスコ先行標準受電装置または IEEE 準拠の受電装置を検出します。
デバイスが検出されると、スイッチは、デバイスのタイプに基づいてデバイスの電力要件を判断します。
• シスコ先行標準の受電装置は、スイッチがそのデバイスを検出しても電力要件を提供しないので、スイッチは、パワーバジェットの初期割り当てとして 15.4 W を割り当てます。
初期電力割り当ては、受電装置が要求する最大電力量です。スイッチは、受電装置を検出して電力供給する場合、この量の電力を最初に割り当てます。スイッチが受電装置から CDP メッセージを受信し、受電装置が CDP 電力ネゴシエーション メッセージでスイッチと電力レベルについてネゴシエーションを行った場合、初期電力割り当ては調整されることがあります。
• スイッチは、検出した IEEE デバイスを電力消費クラス内で分類します。スイッチは、パワー バジェットで使用可能な電力に基づいて、ポートに電力供給できるかどうか判断します。 表10-1 は、電力レベルの一覧です。
表10-1 IEEE 電力分類
|
|
0(クラス ステータス不明) |
15.4 W |
1 |
4.0 W |
2 |
7.0 W |
3 |
15.4 W |
4(将来の使用のために予約) |
クラス 0 としての扱い |
スイッチは電力要求のモニタとトラッキングを行い、電力が使用可能である場合に限って電力を供給します。スイッチはパワー バジェット(スイッチで PoE に使用できる電力量)をトラッキングします。電力の供給または拒否がポートで行われると、スイッチはパワーアカウンティング計算を実行し、パワー バジェットを最新に保ちます。
電力がポートに適用されたあとで、スイッチは CDP を使用して、接続されたシスコ受電装置の 実際の 電力消費要件を判断し、パワー バジェットを相応に調整します。これはサードパーティ製 PoE デバイスには適用されません。スイッチは要件を処理して電力の供給または拒否を行います。要求が認可されると、スイッチはパワー バジェットを更新します。要求が拒否された場合、スイッチは、ポートの電力がオフに切り替わっていることを確認し、Syslog メッセージを生成して LED を更新します。受電装置は、追加の電力についてもスイッチとネゴシエーションを行うこともできます。
不足電圧、過電圧、過熱、オシレータ障害、または短絡状態による障害をスイッチが検出した場合、ポートへの電源をオフにし、Syslog メッセージを生成し、パワー バジェットと LED を更新します。
電力管理モード
スイッチでは、次の PoE モードがサポートされます。
• auto ― 接続されているデバイスで電力が必要であるかどうか、スイッチが自動的に検出します。ポートに接続されている受電装置をスイッチが検出し、スイッチに十分な電力がある場合、スイッチは電力を供給してパワー バジェットを更新し、先着順でポートの電力をオンに切り替えて LED を更新します。LED の詳細については、ハードウェア インストレーション ガイドを参照してください。
すべての受電装置用としてスイッチに十分な電力がある場合は、すべての受電装置がアップします。スイッチに接続された受電装置すべてに対し十分な電力が利用できる場合、すべてのデバイスに電力を供給します。利用できる PoE が十分でない場合、または他のデバイスが電力を待っている間にデバイスが切断されて再接続された場合、どのデバイスへ電力が供給されるかが定義できなくなります。
許可電力がシステム パワー バジェットを超える場合、スイッチは電力を拒否し、ポートへの電力がオフになっていることを確認したうえで、Syslog メッセージを生成し、LED を更新します。電力が拒否されたあと、スイッチは定期的にパワー バジェットを再確認し、続けて電力要求の許可を試行します。
スイッチにより電力を供給されているデバイスが、さらに壁面コンセントに接続されている場合、スイッチはデバイスに電力を供給し続けることがあります。この時、デバイスがスイッチから電力を供給されているか、AC 電源から電力を供給されているかにかかわらず、スイッチは自身が引き続きデバイスへ電力を供給しているとの通知を行うことがあります。
受電装置が取り外された場合、スイッチは切断を自動的に検出し、ポートから電力を取り除きます。非受電装置を接続しても、そのデバイスに障害は発生しません。
ポートで許可される最大ワット数を指定できます。受電装置の IEEE クラス最大ワット数が、設定した最大値より大きい場合、スイッチはそのポートに電力を供給しません。スイッチが受電装置に電力を供給したが、受電装置が設定最大値より多くの電力を CDP メッセージによってあとで要求した場合、スイッチはポートの電力を取り除きます。その受電装置に割り当てられていた電力は、グローバル パワー バジェットに戻されます。ワット数を指定しない場合、スイッチは最大値の電力を供給します。任意の PoE ポートで auto 設定を使用してください。auto モードがデフォルト設定です。
• static ― スイッチは、受電装置が接続されていなくてもポートに電力をあらかじめ割り当て、そのポートで電力が使用できるようにします。スイッチは、設定した最大ワット数をポートに割り当てますが、その量は、IEEE クラスまたは受電装置からの CDP メッセージによって調整されません。電力があらかじめ割り当てられているので、最大ワット数以下の電力を使用する受電装置は、固定ポートに接続されている場合、電力が保証されます。ポートは先着順方式に関連しなくなります。
しかし受電装置の IEEE クラスが最大ワット数より大きい場合、スイッチはその受電装置に電力を供給しません。受電装置で最大ワット数以上が必要になったことを CDP メッセージによってスイッチが学習した場合、その受電装置はシャットダウンされます。
ワット数を指定しない場合、スイッチは最大値をあらかじめ割り当てます。スイッチは、受電装置を検出した場合に限り、ポートに電力を供給します。優先順位が高いインターフェイスには、 static 設定を使用してください。
• never ― スイッチは受電装置検出をディセーブルにして、電力供給されていないデバイスが接続されても、PoE ポートに電力を供給しません。PoE 対応ポートに電力を絶対に適用せず、そのポートをデータ専用ポートにする場合に限り、このモードを使用してください。
PoE ポートの設定の詳細については、「PoE ポートの電力管理モードの設定」を参照してください。
インターフェイスの接続
単一 VLAN 内のデバイスは、スイッチを通じて直接通信できます。異なる VLAN に属すポート間では、ルーティングデバイスを介さなければデータを交換できません。標準のレイヤ 2 スイッチを使用すると、異なる VLAN のポートは、ルータを通じて情報を交換する必要があります。
ルーティングがイネーブルに設定されたスイッチを使用することにより、IP アドレスを割り当てた SVI で VLAN 20 および VLAN 30 の両方を設定すると、外部ルータを使用せずに、スイッチを介してパケットをホスト A からホスト B に直接送信できます(図10-1 を参照)。
図10-1 Catalyst 3560 スイッチによる VLAN の接続
スイッチ上で IP サービス イメージが稼働している場合、スイッチはインターフェイス間でトラフィックを転送する方式として、ルーティングおよびフォールバック ブリッジングの 2 通りをサポートします。スイッチ上で IP ベース イメージが稼働している場合は、基本ルーティング(スタティック ルーティングと RIP)のみがサポートされます。高いパフォーマンスを維持するため、可能な場合は常にスイッチ ハードウェアによって転送を行います。ただし、ハードウェア内をルーティングできるのは、イーサネット II カプセル化機能を備えた IP バージョン 4 パケットのみです。非 IP トラフィックと、他のカプセル化方式を使用しているトラフィックは、ハードウェアによってフォールバック ブリッジングできます。
• ルーティング機能は、すべての SVI およびルーテッド ポートでイネーブルにできます。スイッチは、IP トラフィックだけをルーティングします。IP ルーティング プロトコル パラメータとアドレス設定が SVI またはルーテッド ポートに追加されると、このポートで受信した IP トラフィックはルーティングされます。詳細については、「IP ユニキャスト ルーティングの設定」、「IP マルチキャスト ルーティングの設定」、および「MSDP の設定」を参照してください。
• フォールバック ブリッジングを行うと、スイッチでルーティングされないトラフィックや、DECnet などのルーティングできないプロトコルに属するトラフィックが転送されます。また、フォールバック ブリッジングは、2 つ以上の SVI またはルーテッド ポート間のブリッジングによって、複数の VLAN を 1 つのブリッジ ドメインに接続します。フォールバック ブリッジングを設定する場合は、ブリッジ グループに SVI またはルーテッド ポートを割り当てます。各 SVI またはルーテッド ポートにはそれぞれ 1 つしかブリッジ グループが割り当てられません。同じグループ内のすべてのインターフェイスは、同じブリッジ ドメインに属します。詳細は、「フォールバック ブリッジングの設定」を参照してください。
インターフェイス コンフィギュレーション モードの使用方法
スイッチは、次のインターフェイス タイプをサポートします。
• 物理ポート ― スイッチ ポートおよびルーテッド ポート
• VLAN ― スイッチ仮想インターフェイス
• ポート チャネル ― EtherChannel インターフェイス
インターフェイス範囲も設定できます(インターフェイス範囲の設定を参照)。
物理インターフェイス(ポート)を設定するには、インターフェイスのタイプ、モジュール番号、およびスイッチ ポート番号を指定し、インターフェイス コンフィギュレーション モードを開始します。
• タイプ ― 10/100 Mbps イーサネット対応のファスト イーサネット(fastethernet または fa)、10/100/1000 Mbps イーサネット ポート対応のギガビット イーサネット(gigabitethernet または gi)、または SFP モジュール ギガビット イーサネット インターフェイス。
• モジュール番号 ― スイッチのモジュールまたはスロット番号(Catalyst 3560 スイッチでは常に 0)。
• ポート番号 ― スイッチ上のインターフェイス番号。ポート番号は、fastethernet0/1 または
gigabitethernet0/1 のように、常に 1 で始まります。複数のインターフェイス タイプがある場合は(10/100 ポートおよび SFP モジュール ポートなど)、ポート番号は 2 番めのインターフェイス タイプである gigabitethernet0/1 から再開します。
スイッチ上のインターフェイスの位置を物理的に確認することで、物理インターフェイスを識別できます。 show 特権 EXEC コマンドを使用して、スイッチ上の特定のインターフェイスまたはすべてのインターフェイスに関する情報を表示することもできます。以降、この章では、主に物理インターフェイスの設定手順について説明します。
インターフェイスの設定手順
以下の一般的な手順は、すべてのインターフェイス設定プロセスに当てはまります。
ステップ 1 特権 EXEC プロンプトに configure terminal コマンドを入力します。
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
ステップ 2 interface グローバル コンフィギュレーション コマンドを入力します。インターフェイス タイプおよびコネクタ数を特定します。次の例では、ギガビット イーサネット ポート 1 が選択されています。
Switch(config)# interface gigabitethernet0/1
(注) インターフェイス タイプとインターフェイス番号の間にスペースを入れる必要はありません。たとえば、gigabitethernet 0/1、gigabitethernet0/1、gi 0/1、または gi0/1 のいずれも指定できます。
ステップ 3 各 interface コマンドの後ろに、インターフェイスに必要なインターフェイス コンフィギュレーション コマンドを続けて入力します。入力するコマンドによって、そのインターフェイスで稼働するプロトコルとアプリケーションが定義されます。別のインターフェイス コマンドまたは end を入力して特権 EXEC モードに戻ると、コマンドが収集されてインターフェイスに適用されます。
また、 interface range または interface range macro グローバル コンフィギュレーション コマンドを使用すると、一定範囲のインターフェイスを設定することもできます。ある範囲内で設定したインターフェイスは、同じタイプである必要があります。また、同じ機能オプションを指定して設定しなければなりません。
ステップ 4 インターフェイスを設定してから、「インターフェイスのモニタおよびメンテナンス」 に示した show 特権 EXEC コマンドで、そのステータスを確認してください。
show interfaces 特権 EXEC コマンドを使用して、スイッチ上のまたはスイッチ用に設定されたすべてのインターフェイスのリストを表示します。デバイスがサポートする各インターフェイスまたは指定したインターフェイスのレポートが出力されます。
インターフェイス範囲の設定
interface range グローバル コンフィギュレーション コマンドを使用して、同じコンフィギュレーション パラメータを持つ複数のインターフェイスを設定できます。インターフェイス レンジ コンフィギュレーション モードを開始すると、このモードを終了するまで、入力されたすべてのコマンド パラメータはその範囲内のすべてのインターフェイスに対するものとみなされます。
同じパラメータでインターフェイス範囲を設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface range { port-range | macro macro_name } |
設定するインターフェイス範囲(VLAN または物理ポート)を指定し、インターフェイス コンフィギュレーション モードを開始します。 • interface range コマンドを使用すると、最大 5 つのポート範囲または定義済みマクロを 1 つ設定できます。 • macro 変数については、「インターフェイス レンジ マクロの設定および使用方法」を参照してください。 • カンマで区切った port-range では、各エントリに対応するインターフェイス タイプを入力し、カンマの前後にスペースを含めます。 • ハイフンで区切った port-range では、インターフェイス タイプの再入力は不要ですが、ハイフンの前後にスペースを入力する必要があります。 |
ステップ 3 |
|
この時点で、通常のコンフィギュレーション コマンドを使用して、範囲内のすべてのインターフェイスにコンフィギュレーション パラメータを適用します。各コマンドは、入力されたとおりに実行されます。 |
ステップ 4 |
end |
特権 EXEC モードに戻ります。 |
ステップ 5 |
show interfaces [ interface-id ] |
指定した範囲内のインターフェイスの設定を確認します。 |
ステップ 6 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
interface range グローバル コンフィギュレーション コマンドを使用するときは、次の注意事項に留意してください。
• port-range の有効なエントリは次のとおりです。
– vlan vlan-ID - vlan-ID 、VLAN ID は 1 ~ 4094
– fastethernet module/{first port } - { last port }、モジュールは常に 0
– gigabitethernet module/{ first port } - { last port }、モジュールは常に 0
– port-channel port-channel-number - port-channel-number 、 port-channel-number は 1 ~ 48
(注) ポート チャネルを指定して interface range コマンドを使用する場合は、先頭および最後のチャネル番号をアクティブなポート チャネルにする必要があります。
• interface range コマンドを使用するときは、先頭のインターフェイス番号とハイフンの間にスペースが必要です。たとえば、コマンドinterface range gigabitethernet 0/1 - 4は有効な範囲ですが、コマンドinterface range gigabit ethernet0/1-4 は無効な範囲です。
• interface range コマンドが機能するのは、 interface vlan コマンドで設定された VLAN インターフェイスに限られます。 show running-config 特権 EXEC コマンドを使用すると、設定されている VLAN インターフェイスが表示されます。 show running-config コマンドで表示されない VLAN インターフェイスに interface range コマンドを使用することはできません。
• ある範囲内のすべてのインターフェイスは、同じタイプ(すべてがファスト イーサネット ポート、すべてがギガビット イーサネット ポート、すべてが EtherChannel ポート、またはすべてが VLAN)でなければなりません。ただし、1 つのコマンド内で複数のレンジを組み合わせることができます。
次の例では、 interface range グローバル コンフィギュレーション コマンドを使用して、ポート 1 ~ 4 の速度を100 Mbps に設定します。
Switch# configure terminal
Switch(config)# interface range gigabitethernet0/1 - 4
Switch(config-if-range)# speed 100
この例では、カンマを使用して別のインターフェイス タイプ ストリングを追加し、ファスト イーサネット ポート 1 ~ 3 と、ギガビット イーサネット ポート 1 および 2 の両方をイネーブルにし、フロー制御ポーズ フレームを受信できるようにします。
Switch# configure terminal
Switch(config)# interface range fastethernet0/1 - 3 , gigabitethernet0/1 - 2
Switch(config-if-range)# flowcontrol receive on
インターフェイス レンジ モードで複数のコンフィギュレーション コマンドを入力した場合、各コマンドは入力した時点で実行されます。インターフェイス レンジ モードを終了したあとで、コマンドがバッチ処理されるわけではありません。コマンドの実行中にインターフェイス レンジ モードを終了すると、一部のコマンドが範囲内のすべてのインターフェイスに対して実行されない場合もあります。コマンド プロンプトが再表示されるのを待ってから、インターフェイス レンジ コンフィギュレーション モードを終了してください。
インターフェイス レンジ マクロの設定および使用方法
インターフェイス レンジ マクロを作成すると、設定するインターフェイスの範囲を自動的に選択できます。interface range macro グローバル コンフィギュレーション コマンドで macro キーワードを使用するには、まず define interface-range グローバル コンフィギュレーション コマンドでマクロを定義する必要があります。
インターフェイス レンジ マクロを設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
define interface-range macro_name interface-range |
インターフェイス レンジ マクロを定義して NVRAM(不揮発性 RAM)に保存します。 • macro_name は、最大 32 文字の文字列です。 • マクロには、カンマで区切ったインターフェイスを 5 つまで含めることができます。 • それぞれの interface-range は、同じポート タイプで構成されていなければなりません。 |
ステップ 3 |
interface range macro macro_name |
macro_name の名前でインターフェイス レンジ マクロに保存された値を使用することによって、設定するインターフェイスの範囲を選択します。 ここで、通常のコンフィギュレーション コマンドを使用して、定義したマクロ内のすべてのインターフェイスに設定を適用できます。 |
ステップ 4 |
end |
特権 EXEC モードに戻ります。 |
ステップ 5 |
show running-config | include define |
定義済みのインターフェイス レンジ マクロの設定を表示します。 |
ステップ 6 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
マクロを削除するには、 no define interface-range macro_name グローバル コンフィギュレーション コマンドを使用します。
define interface-range グローバル コンフィギュレーション コマンドを使用するときは、次の注意事項に留意してください。
• interface-range の有効なエントリは次のとおりです。
– vlan vlan-ID - vlan-ID 、VLAN ID は 1 ~ 4094
– fastethernet module/{first port } - { last port }、モジュールは常に0
– gigabitethernet module/{ first port } - { last port }、モジュールは常に 0
– port-channel port-channel-number - port-channel-number 、 port-channel-number は 1 ~ 48
(注) ポート チャネルを指定してインターフェイス範囲を使用する場合は、先頭および最後のチャネル番号をアクティブなポート チャネルにする必要があります。
• interface-range を入力するときは、最初のインターフェイス番号とハイフンの間にスペースを入れます。たとえば、 gigabitethernet 0/1 - 4 は有効な範囲ですが、 gigabitethernet 0/1-4 は無効な範囲です。
• VLAN インターフェイスは、 interface vlan コマンドで設定しておかなければなりません。 show running-config 特権 EXEC コマンドを使用すると、設定されている VLAN インターフェイスが表示されます。 show running-config コマンドで表示されない VLAN インターフェイスを interface-range として使用することはできません。
• ある範囲内のすべてのインターフェイスは、同じタイプ(すべてがファスト イーサネット ポート、すべてがギガビット イーサネット ポート、すべてが EtherChannel ポート、またはすべてが VLAN)でなければなりません。ただし、1 つのマクロ内で複数のインターフェイス タイプを組み合わせることができます。
次に、 enet_list という名前のインターフェイス レンジ マクロを定義してポート 1 および 2 を含め、マクロ設定を確認する例を示します。
Switch# configure terminal
Switch(config)# define interface-range enet_list gigabitethernet0/1 - 2
Switch# show running-config | include define
define interface-range enet_list GigabitEthernet0/1 - 2
次に、複数のタイプのインターフェイスを含む マクロ macro1 を作成する例を示します。
Switch# configure terminal
Switch(config)# define interface-range macro1 fastethernet0/1 - 2, gigabitethernet0/1 - 2
次に、インターフェイス レンジ マクロ enet_list に対するインターフェイス レンジ コンフィギュレーション モードを開始する例を示します。
Switch# configure terminal
Switch(config)# interface range macro enet_list
次に、インターフェイス レンジ マクロ enet_list を削除し、処理を確認する例を示します。
Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch# show run | include define
イーサネット インターフェイスの設定
ここでは、次の設定情報について説明します。
• 「イーサネット インターフェイスのデフォルト設定」
• 「デュアルパーパス アップリンク ポート タイプの設定」
• 「インターフェイス速度およびデュプレックス モードの設定」
• 「IEEE 802.3x フロー制御の設定」
• 「インターフェイスでの Auto-MDIX の設定」
• 「PoE ポートの電力管理モードの設定」
• 「インターフェイスに関する記述の追加」
イーサネット インターフェイスのデフォルト設定
表10-2 は、レイヤ 2 インターフェイスにのみ適用される一部の機能を含む、イーサネット インターフェイスのデフォルト設定を示しています。表に示されている VLAN パラメータの詳細については、「VLAN の設定」を参照してください。また、ポートへのトラフィック制御の詳細については、「ポート単位のトラフィック制御の設定」を参照してください。
(注) インターフェイスがレイヤ 3 モードの場合に、レイヤ 2 パラメータを設定するには、パラメータを指定せずに switchport インターフェイス コンフィギュレーション コマンドを入力し、インターフェイスをレイヤ 2 モードにする必要があります。これにより、インターフェイスがいったんシャットダウンしてから再度イネーブルになり、インターフェイスが接続しているデバイスに関するメッセージが表示されることがあります。レイヤ 3 モードのインターフェイスをレイヤ 2 モードにした場合、影響のあるインターフェイスに関連する以前の設定情報が消失する可能性があり、インターフェイスはデフォルト設定に戻ります。
表10-2 レイヤ 2 イーサネット インターフェイスのデフォルト設定
|
|
動作モード |
レイヤ 2 または スイッチング モード( switchport コマンド) |
VLAN 許容範囲 |
VLAN 1 ~ 4094 |
デフォルト VLAN(アクセス ポート用) |
VLAN 1(レイヤ 2 インターフェイスのみ) |
ネイティブ VLAN(IEEE 802.1Q トランク用) |
VLAN 1(レイヤ 2 インターフェイスのみ) |
VLAN トランキング |
Switchport mode dynamic auto(DTP をサポート)(レイヤ 2 インターフェイスのみ) |
ポート イネーブル ステート |
すべてのポートがイネーブル |
ポート記述 |
未定義 |
速度 |
自動ネゴシエーション |
デュプレックス モード |
自動ネゴシエーション |
フロー制御 |
フロー制御は receive : off に設定されます。送信パケットでは常にオフです。 |
EtherChannel(PAgP) |
すべてのイーサネット ポートでディセーブル。「EtherChannel およびリンクステート トラッキングの設定」を参照してください。 |
ポート ブロッキング(不明マルチキャストおよび不明ユニキャスト トラフィック) |
ディセーブル(ブロッキングされない)(レイヤ 2 インターフェイスのみ)。「ポート ブロッキングの設定」を参照してください。 |
ブロードキャスト、マルチキャスト、およびユニキャスト ストーム制御 |
ディセーブル。「ストーム制御のデフォルト設定」を参照してください。 |
保護ポート |
ディセーブル(レイヤ 2 インターフェイスのみ)。「保護ポートの設定」を参照してください。 |
ポート セキュリティ |
ディセーブル(レイヤ 2 インターフェイスのみ)。「ポート セキュリティのデフォルト設定」を参照してください。 |
PortFast |
ディセーブル。「オプションのスパニング ツリー機能のデフォルト設定」を参照してください。 |
Auto-MDIX |
イネーブル。
(注) 受電装置がクロス ケーブルでスイッチに接続されている場合、スイッチは、IEEE 802.3af に完全には準拠していない、Cisco IP Phone やアクセス ポイントなどの準規格の受電をサポートしていない場合があります。これは、スイッチ ポート上で Automatic Medium-Dependent Interface Crossover(Auto-MIDX)がイネーブルかどうかは関係ありません。
|
PoE |
イネーブル(auto) |
キープアライブ メッセージ |
SFP モジュールでディセーブル。他のすべてのポートでイネーブル。 |
デュアルパーパス アップリンク ポート タイプの設定
Catalyst 3560 スイッチの一部のモデルでは、デュアルパーパス アップリンク ポートをサポートします。詳細については、「デュアルパーパス アップリンク ポート」を参照してください。
速度およびデュプレックスを設定する際にアクティブにするデュアルパーパス アップリンクを選択するには、特権 EXEC モードを開始して次の手順を実行します。この手順は任意です。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface interface-id |
設定するデュアルパーパス アップリンク ポートを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 3 |
media-type {auto-select | rj45 | sfp} |
デュアルパーパス アップリンク ポートのインターフェイスおよびタイプを選択します。キーワードの意味は次のとおりです。 • auto-select ― スイッチは動的にタイプを選択します。アップリンクを検出した場合、スイッチはアクティブなリンクがダウンするまで、その他のタイプをディセーブルにします。アクティブなリンクがダウンした場合、スイッチはいずれかのリンクがアップになるまで両方のタイプをイネーブルにします。auto-select モードでは、スイッチは速度およびデュプレックスの自動ネゴシエーション(デフォルト)を使用して、両方のタイプを設定します。搭載された SFP モジュールのタイプによっては、スイッチが動的にタイプを選択できない場合があります。詳細については、この手順に関する情報を参照してください。 • rj45 ― スイッチは SFP モジュール インターフェイスをディセーブルにします。このポートにケーブルを接続している場合は、RJ-45 側がダウンしているか、または接続されていない場合でもリンクは実現されません。このモードでは、デュアルパーパス ポートは 10/100/1000BASE-TX インターフェイスのような動作を実行します。これにより、このインターフェイス タイプに一致した速度およびデュプレックスを設定できます。 • sfp ― スイッチは RJ-45 モジュール インターフェイスをディセーブルにします。このポートにケーブルを接続している場合、SFP モジュール側がダウンしているか、または SFP モジュールが存在していない場合でもリンクは実現されません。搭載されている SFP モジュールのタイプに基づいて、このインターフェイス タイプに一致する速度およびデュプレックスを設定できます。 スピードおよびデュプレックスの詳細については、「速度とデュプレックス モードの設定時の注意事項」を参照してください。 |
ステップ 4 |
end |
特権 EXEC モードに戻ります。 |
ステップ 5 |
show interfaces interface-id transceiver properties |
設定値を確認します。 |
ステップ 6 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
デフォルトの設定に戻すには、 no media-type インターフェイス コンフィギュレーション コマンドを使用します。
インターフェイス タイプを変更した場合、速度およびデュプレックス設定は削除されます。スイッチは速度およびデュプレックスを自動ネゴシエーションするように両方のタイプを設定します(デフォルト)。 auto-select を設定した場合、 speed および duplex インターフェイス コンフィギュレーション コマンドを設定できます。
スイッチを起動した場合、または shutdown および no shutdown インターフェイス コンフィギュレーション コマンドを使用してデュアルパーパス アップリンク ポートをイネーブルにした場合、スイッチは SFP モジュール インターフェイスを優先します。その他のすべての状況では、スイッチは最初にアップになったリンクに基づいてアクティブ リンクを選択します。
インターフェイス速度およびデュプレックス モードの設定
スイッチのイーサネット インターフェイスは、全二重または半二重モードのいずれかで、10、100、1000 Mbps で動作します。全二重モードの場合、2 つのステーションが同時にトラフィックを送受信できます。通常、10 Mbps ポートは半二重モードで動作します。これは、各ステーションがトラフィックを受信するか、送信するかのどちらか一方しかできないことを意味します。
スイッチ モデルには、ファスト イーサネット(10/100 Mbps)ポート、ギガビット イーサネット(10/100/1000 Mbps)ポートと、SFP モジュールをサポートする SFP モジュール スロットの組み合わせが含まれます。
ここでは、インターフェイス速度とデュプレックス モードの設定手順について説明します。
• 「速度とデュプレックス モードの設定時の注意事項」
• 「インターフェイス速度およびデュプレックス パラメータの設定」
速度とデュプレックス モードの設定時の注意事項
インターフェイス速度およびデュプレックス モードを設定するときには、次の注意事項に留意してください。
• ファスト イーサネット(10/100 Mbps)ポートは、すべての速度およびデュプレックス オプションをサポートします。
• ギガビット イーサネット(10/100/1000 Mbps)ポートは、すべての速度オプションとデュプレックス オプション(自動、半二重、全二重)をサポートします。ただし、1000 Mbps で稼働させているギガビット イーサネット ポートは、半二重モードをサポートしません。
• SFP モジュール ポートの場合、次の SFP モジュール タイプによって速度とデュプレックスの CLI(コマンドライン インターフェイス)オプションが変わります。
–1000 BASE- x ( x には、BX、CWDM、LX、SX、ZX が適宜入ります)SFP モジュール ポートは、 speed インターフェイス コンフィギュレーション コマンドで nonegotiate キーワードをサポートします。デュプレックス オプションはサポートされません。
–1000BASE-T SFP モジュール ポートは、10/100/1000 Mbps ポートと同一の速度とデュプレックス オプションをサポートします。
–100BASE- x ( x には、BX、CWDM、LX、SX、ZX が適宜入ります)SFP モジュール ポートは、100 Mbps のみサポートします。これらのモジュールは、全二重および半二重オプションをサポートしますが、自動ネゴシエーションをサポートしません。
スイッチでサポートされる SFP モジュールについては、各製品のリリース ノートを参照してください。
• 回線の両側で自動ネゴシエーションがサポートされる場合は、できるだけデフォルトの auto ネゴシエーションを使用してください。
• 一方のインターフェイスが自動ネゴシエーションをサポートし、もう一方がサポートしない場合は、両方のインターフェイス上でデュプレックスと速度を設定します。サポートする側で auto 設定を使用しないでください。
• STP がイネーブルの場合にポートを再設定すると、スイッチがループの有無を調べるために最大で 30 秒かかる可能性があります。STP の再設定が行われている間、ポート LED はオレンジに点灯します。
注意 インターフェイス速度とデュプレックス モードの設定を変更すると、再設定時にシャットダウンが発生し、インターフェイスが再びイネーブルになることがあります。
インターフェイス速度およびデュプレックス パラメータの設定
物理インターフェイスの速度およびデュプレックス モードを設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface interface-id |
設定する物理インターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 3 |
speed { 10 | 100 | 1000 | auto [ 10 | 100 | 1000 ] | nonegotiate } |
インターフェイスに対する適切な速度パラメータを入力します。 • インターフェイスの速度を指定するには、 10 、 100 、または 1000 を入力します。 1000 キーワードを使用できるのは、10/100/1000 Mbps ポートに対してだけです。 • インターフェイスに接続されたデバイスと自動ネゴシエーションが行えるようにするには、 auto を入力します。 auto キーワードと一緒に 10 、 100 、または 1000 キーワードを使用した場合、ポートは指定の速度でのみ自動ネゴシエートします。 • nonegotiate キーワードを使用できるのは、SFP モジュール ポートに対してだけです。SFP モジュール ポートは 1000 Mbps だけで動作しますが、自動ネゴシエーションをサポートしていないデバイスに接続されている場合は、ネゴシエートしないように設定できます。 速度の設定の詳細については、「速度とデュプレックス モードの設定時の注意事項」を参照してください。 |
ステップ 4 |
duplex { auto | full | half } |
インターフェイスのデュプレックス パラメータを入力します。 半二重モードをイネーブルにします(10 または 100 Mbps のみで動作するインターフェイスの場合)。1000 Mbps で動作するインターフェイスには半二重モードを設定できません。 Cisco IOS Release 12.2(20)SE1 からは、速度が auto に設定されている場合、デュプレックスに設定できます。 デュプレックスの設定の詳細については、「速度とデュプレックス モードの設定時の注意事項」を参照してください。 |
ステップ 5 |
end |
特権 EXEC モードに戻ります。 |
ステップ 6 |
show interfaces interface-id |
インターフェイス速度およびデュプレックス モード設定を表示します。 |
ステップ 7 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
インターフェイスをデフォルトの速度およびデュプレックス設定(自動ネゴシエーション)に戻すには、 no speed および no duplex インターフェイス コンフィギュレーション コマンドを使用します。すべてのインターフェイス設定をデフォルトに戻すには、 default interface interface-id インターフェイス コンフィギュレーション コマンドを使用します。
次に、10/100 Mbps ポートでインターフェイスの速度を 10 Mbps に、デュプレックス モードを半二重に設定する例を示します。
Switch# configure terminal
Switch(config)# interface fasttethernet0/3
Switch(config-if)# speed 10
Switch(config-if)# duplex half
次に、10/100/1000 Mbps ポートで、インターフェイスの速度を 100 Mbps に設定する例を示します。
Switch# configure terminal
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# speed 100
(注) インターフェイス gi0/1 から gi0/16 の場合、サーバ方向の内部インターフェイスのみなので、サーバ速度とデュプレックス設定は適用されません。インターフェイス gi0/17 から gi0/20 の場合、SFP モジュール モードで動作しているときはサーバ速度とデュプレックス設定は適用されません。インターフェイス gi0/23 から gi0/24 の場合、media-type internal に設定されているときは、サーバ速度とデュプレックス設定は適用されません。詳細については、「アクセス ポート」を参照してください。
IEEE 802.3x フロー制御の設定
フロー制御により、接続しているイーサネット ポートは、輻輳しているノードがリンク動作をもう一方の端で一時停止できるようにすることによって、輻輳時のトラフィック レートを制御できます。あるポートで輻輳が生じ、それ以上はトラフィックを受信できなくなった場合、ポーズ フレームを送信することによって、その状態が解消されるまで送信を中止するように、そのポートから相手ポートに通知します。ポーズ フレームを受信すると、送信側デバイスはデータ パケットの送信を中止するので、輻輳時のデータ パケット損失が防止されます。
(注) Catalyst 3560 ポートは、ポーズ フレームを受信できますが、送信できません。
flowcontrol インターフェイス コンフィギュレーション コマンドを使用して、インターフェイスのポーズ フレームを受信( receive )する能力を on 、 off 、または desired に設定します。デフォルトの状態は off です。
desired に設定した場合、インターフェイスはフロー制御パケットの送信を必要とする接続デバイス、または必要ではないがフロー制御パケットを送信できる接続デバイスに対して動作できます。
デバイスのフロー制御設定には、次のルールが適用されます。
• receive on (または desired ) ― ポートはポーズ フレームを送信できませんが、ポーズ フレームを送信する必要のある、または送信できる接続デバイスと組み合わせて使用できます。ポーズ フレームの受信は可能です。
• receive off ― フロー制御はどちらの方向にも動作しません。輻輳が生じても、リンクの相手側に通知はなく、どちら側のデバイスもポーズ フレームの送受信を行いません。
(注) コマンドの設定と、その結果生じるローカルおよびリモート ポートでのフロー制御解決の詳細については、このリリースのコマンド リファレンスに記載された flowcontrol インターフェイス コンフィギュレーション コマンドを参照してください。
インターフェイス上でフロー制御を設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface interface-id |
設定する物理インターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 3 |
flowcontrol { receive } { on | off | desired } |
ポートのフロー制御モードを設定します。 |
ステップ 4 |
end |
特権 EXEC モードに戻ります。 |
ステップ 5 |
show interfaces interface-id |
インターフェイス フロー制御の設定を確認します。 |
ステップ 6 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
フロー制御をディセーブルにする場合は、 flowcontrol receive off インターフェイス コンフィギュレーション コマンドを使用します。
次に、ポート上のフロー制御をオンにする例を示します。
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# flowcontrol receive on
インターフェイスでの Auto-MDIX の設定
インターフェイス上の Auto-MDIX がイネーブルに設定されている場合、インターフェイスが必要なケーブル接続タイプ(ストレートまたはクロス)を自動的に検出し、接続を適切に設定します。Auto-MDIX 機能を使用せずにスイッチを接続する場合、サーバ、ワークステーション、またはルータなどのデバイスの接続にはストレート ケーブルを使用し、他のスイッチやリピータの接続にはクロス ケーブルを使用する必要があります。Auto-MDIX がイネーブルの場合、他のデバイスとの接続にはどちらのケーブルでも使用でき、ケーブルが正しくない場合はインターフェイスが自動的に修正を行います。ケーブル接続の詳細については、ハードウェア インストレーション ガイドを参照してください。
Auto-MDIX はデフォルトでイネーブルです。Auto-MDIX をイネーブルに設定する場合、Auto-MDIX 機能が正しく動作するようにインターフェイスの速度およびデュプレックスを auto に設定する必要があります。Auto-MDIX はすべての 10/100 および10/100/1000 Mbps インターフェイスと、
10/100/1000BASE-TX SFP モジュール インターフェイスでサポートされます。1000BASE-SX または 1000BASE-LX SFP モジュール インターフェイスではサポートされていません。
表10-3 に、Auto-MDIX の設定およびケーブル接続ごとのリンク ステートを示します。
表10-3 リンク状態と Auto-MDIX の設定
|
|
|
|
オン |
オン |
リンク アップ |
リンク アップ |
オン |
オフ |
リンク アップ |
リンク アップ |
オフ |
オン |
リンク アップ |
リンク アップ |
オフ |
オフ |
リンク アップ |
リンク ダウン |
インターフェイス上で Auto-MDIX を設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface interface-id |
設定する物理インターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 3 |
speed auto |
接続されたデバイスと速度の自動ネゴシエーションを行うようにインターフェイスを設定します。 |
ステップ 4 |
duplex auto |
接続されたデバイスとデュプレックス モードの自動ネゴシエーションを行うようにインターフェイスを設定します。 |
ステップ 5 |
mdix auto |
インターフェイス上で Auto-MDIX をイネーブルにします。 |
ステップ 6 |
end |
特権 EXEC モードに戻ります。 |
ステップ 7 |
show controllers ethernet-controller interface-id phy |
インターフェイスで Auto-MDIX の動作ステートを確認します。 |
ステップ 8 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
Auto-MDIX をディセーブルにするには、 no mdix auto インターフェイス コンフィギュレーション コマンドを使用します。
次に、ポート上の Auto-MDIX をイネーブルにする例を示します。
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# speed auto
Switch(config-if)# duplex auto
Switch(config-if)# mdix auto
PoE ポートの電力管理モードの設定
通常デフォルト設定(自動モード)での動作は適切に行われ、プラグアンドプレイ動作が提供されます。それ以上の設定は必要ありません。ただし、PoE ポートの優先順位を上げたり、PoE ポートをデータ専用にしたり、最大ワット数を指定して高電力受電装置をポートで禁止したりする場合は、次の手順を実行します。
(注) PoE 設定を変更するとき、設定中のポートでは電力が低下します。新しい設定、その他の PoE ポートの状態、パワー バジェットの状態により、そのポートの電力は再びアップしない場合があります。たとえばポート 1 が自動でオンの状態になっており、そのポートを固定モードに設定するとします。スイッチはポート 1 から電力を排除し、受電装置を検出してポートに電力を再び供給します。ポート 1 が自動でオンの状態になっており、最大ワット数 10 W に設定した場合、スイッチはポートから電力を排除し、受電装置を再び検出し、受電装置がクラス 1、クラス 2、シスコ専用受電装置のうちいずれかである場合、スイッチはポートに電力を再び供給します。
電力管理モードを PoE 対応ポートで設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface interface-id |
設定する物理ポートを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 3 |
power inline {auto [max max-wattage ] | never | static [ max max-wattage ]} |
ポートに PoE モードを設定します。キーワードの意味は次のとおりです。 • auto ― 受電装置検出をイネーブルにします。十分な電力が使用可能である場合、デバイスの検出後、PoE ポートに電力が自動的に割り当てられます。これがデフォルトの設定です。 • (任意) max max-wattage ― ポートで許可する電力を制限します。指定できる範囲は 4000 ~ 15400 ミリワットです。値を指定しない場合は、最大値が許可されます(15400 ミリワット)。 • never ― デバイス検出およびポートの電力をディセーブルにします。
(注) シスコ受電装置がポートに接続されている場合は、ポートの設定に power inline never コマンドを使用しないでください。問題のあるリンクアップが発生し、ポートが errdisable ステートになることがあります。
• static ― 受電装置検出をイネーブルにします。スイッチが受電装置を検出する前に、電力がポートにあらかじめ割り当てられます(予約されます)。スイッチは、デバイスが接続されていなくてもこのポートに電力を予約し、デバイスの検出時に電力が供給されることを保証します。 スイッチは、固定モードに設定されているポートに電力を割り当ててから、自動モードに設定されているポートに電力を割り当てます。 |
ステップ 4 |
end |
特権 EXEC モードに戻ります。 |
ステップ 5 |
show power inline [interface-id] |
スイッチまたは指定されたインターフェイスの PoE のステータスを表示します。 |
ステップ 6 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
show power inline ユーザ EXEC コマンドの出力については、このリリースのコマンド リファレンスを参照してください。PoE 関連コマンドの詳細については、「PoE スイッチ ポートのトラブルシューティング」を参照してください。音声 VLAN の設定の詳細については、「音声 VLAN の設定」を参照してください。
PoE ポートに接続されたデバイスのパワー バジェット
シスコの受電装置が PoE ポートに接続されている場合、スイッチは Cisco Discovery Protocol(CDP)を使用して、デバイスの 実際の 電力消費を判断し、パワー バジェットをそれに合わせて調整します。これは IEEE サードパーティ製受電装置には適用されません。これらのデバイスでは、スイッチは電力要件を許可すると、受電装置の IEEE 分類に従って、パワー バジェットを調整します。受電装置がクラス 0(クラス ステータス不明)またはクラス 3 の場合、スイッチは実際の電力所要量に関係なく、デバイスに15,400 ミリワットを計上します。受電装置が実際の消費よりも高いクラスをレポートしたり、または電力分類(デフォルトはクラス 0)をサポートしていない場合、スイッチは IEEE クラス情報を使用してグローバル パワー バジェットをトラッキングするため、電力供給できるデバイスが少なくなります。
power inline consumption wattage コンフィギュレーション コマンドを使用すれば、IEEE 分類で指定されたデフォルトの電力要件を上書きできます。IEEE 分類により命令された電力とデバイスが実際に必要な電力の差は、その他のデバイスで使用するために、グローバル パワー バジェットに戻されます。これにより、スイッチのパワー バジェットが拡大され、より効果的に使用できるようになります。
たとえば、スイッチが PoE ポートごとに 15,400 ミリワットを計上する場合、接続できるクラス 0 の受電装置は 24 デバイスだけです。クラス 0 デバイスの実際の電力要件が 5000 ミリワットの場合、消費ワットを 5000 ミリワットに設定し、最大 48 デバイスまで接続できます。24 ポートまたは 48 ポートのスイッチで利用可能な PoE 出力電力の合計は、370,000 ミリワットです。
注意 スイッチのパワー バジェットは慎重に計画し、電力供給をオーバーサブスクライブしないようにする必要があります。
(注) パワー バジェットを手動で設定する場合は、スイッチと受電装置間のケーブルでの電力損失も考慮する必要があります。
power inline consumption default wattage または no power inline consumption default コマンドを入力すると、次の注意メッセージが表示されます。
%CAUTION: Interface interface-id: Misconfiguring the 'power inline consumption/allocation' command may cause damage to the switch and void your warranty. Take precaution not to oversubscribe the power supply. Refer to documentation.
IEEE 電力分類の詳細については、「PoE ポート」を参照してください。
スイッチの各 PoE ポートに接続された受電装置へのパワー バジェット量を設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
no cdp run |
(任意)CDP をディセーブルにします。 |
ステップ 3 |
power inline consumption default wattage |
スイッチの各 PoE ポートに接続された受電装置の電力消費を設定します。各デバイスで指定できる範囲は 4000 ~ 15400 ミリワットです。デフォルト値は 15400 ミリワットです。 |
ステップ 4 |
end |
特権 EXEC モードに戻ります。 |
ステップ 5 |
show power inline consumption default |
電力消費ステータスを表示します。 |
ステップ 6 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
設定をデフォルトに戻すには、 no power inline consumption default グローバル コンフィギュレーション コマンドを使用します。
特定の PoE ポートに接続された受電装置へのパワー バジェット量を設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
no cdp run |
(任意)CDP をディセーブルにします。 |
ステップ 3 |
interface interface-id |
設定する物理ポートを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 4 |
power inline consumption default wattage |
スイッチの PoE ポートに接続された受電装置の電力消費を設定します。各デバイスで指定できる範囲は 4000 ~ 15400 ミリワットです。デフォルト値は 15400 ミリワットです。 |
ステップ 5 |
end |
特権 EXEC モードに戻ります。 |
ステップ 6 |
show power inline consumption default |
電力消費ステータスを表示します。 |
ステップ 7 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
設定をデフォルトに戻すには、 no power inline consumption default インターフェイス コンフィギュレーション コマンドを使用します。
show power inline consumption default 特権 EXEC コマンドの出力の詳細については、このリリースのコマンド リファレンスを参照してください。
インターフェイスに関する記述の追加
インターフェイスの機能に関する記述を追加できます。記述は、特権 EXEC コマンド show configuration 、 show running-config 、および show interfaces の出力に表示されます。
インターフェイスに関する記述を追加するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface interface-id |
記述を追加するインターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 3 |
description string |
インターフェイスに関する記述を追加します(最大 240 文字)。 |
ステップ 4 |
end |
特権 EXEC モードに戻ります。 |
ステップ 5 |
show interfaces interface-id description または show running-config |
設定を確認します。 |
ステップ 6 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
記述を削除するには、 no description インターフェイス コンフィギュレーション コマンドを使用します。
次に、ポートに記述を追加して、その記述を確認する例を示します。
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# description Connects to Marketing
Switch# show interfaces gigabitethernet0/2 description
Interface Status Protocol Description
Gi0/2 admin down down Connects to Marketing
レイヤ 3 インターフェイスの設定
Catalyst 3560 スイッチは、次に示す 3 種類のレイヤ 3 インターフェイスをサポートします。
• SVI:トラフィックをルーティングする VLAN に対応する SVI を設定する必要があります。SVI は、 interface vlan グローバル コンフィギュレーション コマンドのあとに VLAN ID を入力して作成します。SVI を削除するには、 no interface vlan グローバル コンフィギュレーション コマンドを使用します。インターフェイス VLAN 1 は削除できません。
(注) 作成した SVI をアクティブにするには、物理ポートに関連付ける必要があります。VLAN へのレイヤ 2 ポートの割り当てについては、「VLAN の設定」を参照してください。
• ルーテッド ポート:ルーテッド ポートは、 no switchport インターフェイス コンフィギュレーション コマンドを使用してレイヤ 3 モードに設定された物理ポートです。
• レイヤ 3 EtherChannel ポート:ルーテッド ポートで構成された EtherChannel インターフェイスです。
EtherChannel ポートについては、「EtherChannel およびリンクステート トラッキングの設定」を参照してください。
レイヤ 3 スイッチでは、ルーテッド ポートおよび SVI ごとに IP アドレスを 1 つ割り当てることができます。
スイッチ に設定可能な SVI とルーテッド ポートの数について定義済みの制限はありません。ただし、ハードウェアには限界があるため、SVI およびルーテッド ポートの個数と、設定されている他の機能の個数の組み合わせによっては、CPU 利用率が影響を受けることがあります。スイッチが最大限のハードウェア リソースを使用している場合にルーテッド ポートまたは SVI を作成しようとすると、次のような結果になります。
• 新たなルーテッド ポートを作成しようとすると、スイッチはインターフェイスをルーテッド ポートに変換するための十分なリソースがないことを示すメッセージを表示し、インターフェイスはスイッチポートのままとなります。
• 拡張範囲の VLAN を作成しようとすると、エラー メッセージが生成され、拡張範囲の VLAN は拒否されます。
• VTPが新たな VLAN をスイッチへ通知すると、スイッチは使用可能な十分なハードウェア リソースがないことを示すメッセージを送り、その VLAN をシャットダウンします。 show vlan ユーザ EXEC コマンドの出力に、サスペンド ステートの VLAN が示されます。
• スイッチが、ハードウェアのサポート可能な数を超える VLAN とルーテッド ポートが設定されたコンフィギュレーションを使って起動を試みると、VLAN は作成されますが、ルーテッド ポートはシャットダウンされ、スイッチはハードウェア リソースが不十分であるという理由を示すメッセージを送信します。
すべてのレイヤ 3 インターフェイスには、トラフィックをルーティングするためのIPアドレスが必要です。以下の手順は、レイヤ 3 インターフェイスとしてインターフェイスを設定する方法およびインターフェイスに IP アドレスを割り当てる方法を示します。
(注) 物理ポートがレイヤ 2 モードである(デフォルト)場合は、no switchport インターフェイス コンフィギュレーション コマンドを実行してインターフェイスをレイヤ 3 モードにする必要があります。no switchport コマンドを実行すると、インターフェイスがディセーブルになってから再度イネーブルになります。これにより、インターフェイスが接続しているデバイスに関するメッセージが表示されることがあります。さらに、レイヤ 2 モードのインターフェイスをレイヤ 3 モードにすると、影響を受けたインターフェイスに関連する前の設定情報は失われ、インターフェイスはデフォルト設定に戻る可能性があります。
レイヤ 3 インターフェイスを設定するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
interface {{ fastethernet | gigabitethernet } interface-id } | { vlan vlan-id } | { port-channel port-channel-number } |
レイヤ 3 インターフェイスとして設定するインターフェイスを指定し、インターフェイス コンフィギュレーション モードを開始します。 |
ステップ 3 |
no switchport |
物理ポートに限り、レイヤ 3 モードを開始します。 |
ステップ 4 |
ip address ip_address subnet_mask |
IP アドレスおよび IP サブネットを設定します。 |
ステップ 5 |
no shutdown |
インターフェイスをイネーブルにします。 |
ステップ 6 |
end |
特権 EXEC モードに戻ります。 |
ステップ 7 |
show interfaces [ interface-id ] show ip interface [ interface-id ] show running-config interface [ interface-id ] |
設定を確認します。 |
ステップ 8 |
copy running-config startup-config |
(任意)コンフィギュレーション ファイルに設定を保存します。 |
インターフェイスの IP アドレスを削除するには、 no ip address インターフェイス コンフィギュレーション コマンドを使用します。
次に、ポートをルーテッド ポートとして設定し、IP アドレスを割り当てる例を示します。
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 192.20.135.21 255.255.255.0
Switch(config-if)# no shutdown
システム MTU の設定
スイッチ上のすべてのインターフェイスで送受信されるフレームのデフォルト Maximum Transmission Unit(MTU; 最大伝送ユニット)サイズは、1500 バイトです。10 または 100 Mbps で動作するすべてのインターフェイスで MTU サイズを増やすには、 system mtu グローバル コンフィギュレーション コマンドを使用します。また、 system mtu jumbo グローバル コンフィギュレーション コマンドを使用すると、すべてのギガビット イーサネット インターフェイス上でジャンボ フレームをサポートするように MTU サイズを増やすことができます。 system mtu routing グローバル コンフィギュレーション コマンドを使用すると、ルーテッド ポートの MTU サイズを変更できます。
(注) システムの MTU サイズを超えるルーティング MTU サイズは設定できません。システムの MTU サイズを現在設定されているルーティング MTU サイズより小さい値に変更する場合、設定変更は許可されますが、次にスイッチがリセットされるまで適用されません。設定変更が有効になると、ルーティング MTU サイズは自動的にデフォルトの新しいシステム MTU サイズになります。
system mtu コマンドはギガビット イーサネット ポートには影響せず、system jumbo mtu コマンドは 10/100 ポートには影響しません。 system mtu jumbo コマンドを設定していない場合、 system mtu コマンドの設定はすべてのギガビット イーサネット インターフェイスに適用されます。
個々のインターフェイスに MTU サイズを設定することはできません。スイッチ上のすべての 10/100 インターフェイスまたはすべてのギガビット イーサネット インターフェイスに対して設定されます。システムまたはジャンボ MTU サイズを変更する場合、新規設定を有効にするにはスイッチをリセットする必要があります。 system mtu routing コマンドは、スイッチをリセットしなくても有効になります。
スイッチの CPU が受信できるフレーム サイズは、system mtu または system mtu jumbo コマンドで入力した値に関係なく、1998 バイトに制限されています。通常、転送またはルーティングされたフレームは CPU によって受信されませんが、場合によっては、制御トラフィック、SNMP(簡易ネットワーク管理プロトコル)、Telnet、またはルーティング プロトコルへ送信されたトラフィックなどのパケットが CPU へ送信されることがあります。
ルーテッド パケットは、出力ポートで MTU チェックの対象となります。ルーテッド ポートで使用される MTU 値は( system mtu jumbo 値ではなく)適用された system mtu 値から抽出されます。つまり、ルーテッド MTU はどの VLAN のシステム MTU よりも大きくなりません。ルーティング プロトコルは、隣接関係とリンクの MTU をネゴシエーションする場合にシステム MTU 値を使用します。たとえば、Open Shortest Path First(OSPF)プロトコルは、ピア ルータとの隣接関係を設定する前にこの MTU 値を使用します。特定の VLAN のルーテッド パケットの MTU 値を表示するには、 show platform port-asic mvid 特権 EXEC コマンドを使用します。
(注) レイヤ 2 ギガビット イーサネット インターフェイスが、10/100 インターフェイスより大きいサイズのフレームを受け取るように設定されている場合、レイヤ 2 ギガビット イーサネット インターフェイスに着信するジャンボ フレームとレイヤ 2 10/100 インターフェイスで発信されるジャンボ フレームは廃棄されます。
すべての 10/100 またはギガビット イーサネット インターフェイスで MTU サイズを変更するには、特権 EXEC モードで次の手順を実行します。
|
|
|
ステップ 1 |
configure terminal |
グローバル コンフィギュレーション モードを開始します。 |
ステップ 2 |
system mtu bytes |
(任意)10 または 100 Mbps で稼働するスイッチのすべてのインターフェイスに対して MTU サイズを変更します。指定できる範囲は、1500 ~ 1998 バイトです。デフォルトは 1500 バイトです。 |
ステップ 3 |
system mtu jumbo bytes |
(任意)スイッチのすべてのギガビット イーサネット インターフェイスに対して MTU サイズを変更します。指定できる範囲は 1500 ~ 9000 バイトです。デフォルトは 1500 バイトです。 |
ステップ 4 |
system mtu routing bytes |
(任意)ルーテッド ポートのシステム MTU を変更します。指定できる範囲は 1500 ~システム MTU 値で、すべてのポートにルーティング可能な最大 MTU 値です。 これより大きなパケットは受け入れられますが、ルーティングされません。 |
ステップ 5 |
end |
特権 EXEC モードに戻ります。 |
ステップ 6 |
copy running-config startup-config |
コンフィギュレーション ファイルに設定を保存します。 |
ステップ 7 |
reload |
OS(オペレーティング システム)をリロードします。 |
特定のインターフェイス タイプで許容範囲外の値を入力した場合、その値は受け入れられません。
スイッチのリロード後、show system mtu 特権 EXEC コマンドを入力することによって、設定値を確認できます。
次に、ギガビット イーサネット ポートの最大パケット サイズを 1800 バイトに設定する例を示します。
Switch(config)# system jumbo mtu 1800
次に、ギガビット イーサネット インターフェイスを範囲外の値に設定しようとした場合に表示される応答の例を示します。
Switch(config)# system mtu jumbo 25000
% Invalid input detected at '^' marker.